SlideShare ist ein Scribd-Unternehmen logo
1 von 68
Relatório Parcial de Atividades
(1ºe 2º Semestres)
Uma Proposta de Desenvolvimento de um
Protótipo de Laboratório Remoto aplicado ao
Ensino de Física Moderna
Projeto de José Neres de Almeida Jr.
Orientador: Prof. Dr. Hermes Renato Hildebrand
TIDD – PUC-SP –
Mestrado – Programa de Pós-Graduação TIDD
São Paulo, 2014
2
Sumário
Resumo ....................................................................................................................................... 3
1 Tema:................................................................................................................................... 4
1.1 Laboratório Remoto e o Ensino de Física Moderna ...................................................... 4
2 Problema:............................................................................................................................. 4
2.1 As dificuldades práticas: das simulações no ensino de física ao laboratório remoto.. 4
3 Estado da Arte...................................................................................................................... 8
4 Justificativa........................................................................................................................ 17
5 Objetivos da Pesquisa........................................................................................................ 19
5.1 Objetivos Específicos ................................................................................................. 20
6 Hipótese ............................................................................................................................. 20
6.1 Estratégias para adequação de laboratório remoto como instrumento de utilização
complementar a aulas presenciais ........................................................................................ 20
7 Fundamentação Teórica..................................................................................................... 22
7.1 Introdução .................................................................................................................. 22
7.2 WebLab....................................................................................................................... 23
7.2.1 Arduino No WebLab ............................................................................................ 25
7.2.2 O Que o Webduino traz de novo.......................................................................... 26
7.3 Procedimentos............................................................................................................ 28
7.3.1 Introdução ........................................................................................................... 28
7.3.2 Descrição do WebLab-Deusto ............................................................................. 29
7.3.3 Coleta de Dados .................................................................................................. 36
7.3.4 Segurança ........................................................................................................... 37
8 Metodologia ....................................................................................................................... 37
8.1 Resultados Esperados................................................................................................ 42
8.1.1 Implementação e Testes de Funcionamento ....................................................... 43
8.1.2 Teste de Funcionamento do Experimento........................................................... 43
8.2 Resultados Obtidos até o momento ........................................................................... 43
8.3 Próximas Etapas......................................................................................................... 44
Referências Bibliográficas ........................................................................................................ 45
ANEXO....................................................................................................................................... 48
ANEXO 1................................................................................................................................ 48
Interface de Controle Remoto ............................................................................................ 48
Programação para a Interface de Controle Remoto ........................................................... 48
ANEXO 2................................................................................................................................ 59
Programação no Arduino ................................................................................................... 59
ANEXO 3................................................................................................................................ 66
Experimento Físico ............................................................................................................ 66
3
Uma Proposta de Desenvolvimento de um Protótipo de Laboratório
Remoto aplicado ao Ensino de Física Moderna
Mestrando: José Neres de Almeida Junior – RA00005091
Orientador: Hermes Renato Hildebrand
Resumo
Este trabalho visa apresentar o projeto educacional Webduino e suas
características, dentro do contexto do uso de um Laboratório Remoto aplicado ao
ensino de Física Moderna, ou seja, um laboratório de sensoriamento remoto que se
desenvolve na PUC/SP, focado portanto no ensino de conteúdos de Física, e que para
tanto, é necessário que esteja adequado a um ambiente virtual de ensino e
aprendizagem (ou simplesmente, ambiente virtual de aprendizagem, AVA). No
ambiente a ser elaborado, o laboratório remoto pretende desenvolver recursos
didáticos que permitam utilizar a placa Arduino aplicada ao Ensino de Ciências, em
particular no Ensino de Fìsica, em nível Médio e Superior, quer seja em Licenciaturas
e quer seja em Educação Continuada de Professores, inserindo os projetos na
conhecida “Rede de Sensores” disponíveis na Web. A plataforma de desenvolvimento
selecionada para o gerenciamento dos experimentos é o WebLab-Deusto, por sua
inteligibilidade, funcionalidade e segurança. Devido às questões estruturais de um
Laboratório Remoto, portanto também é necessário que a plataforma de
desenvolvimento e acionamento do experimento esteja inserida dentro do Ambiente
Virtual a ser modelado, dentro de parâmetros que possibilitem ao usuário a
aprendizagem dos conceitos físicos trabalhados e das experiências que ele venha a
controlar e coletar os dados para posterior análise. Para tanto, será construída, dentro
deste projeto, além do experimento que especifica o laboratório remoto, também o
ambiente virtual para contemplar as necessidades pedagógicas e educacionais para
o ensino e aprendizagem dos conceitos físicos advindos da experiência que o usuário
esteja realizando.
PALAVRAS-CHAVE: Arduino, Weblab-Deusto, Laboratório Remoto, Ensino de
Física, Ambiente Virtual de Aprendizagem.
4
Proposta de Desenvolvimento de um Protótipo de Laboratório
Remoto aplicado ao Ensino de Física Moderna
1 Tema:
1.1 Laboratório Remoto e o Ensino de Física Moderna
O tema do trabalho em questão é a montagem de um protótipo e das
arquiteturas necessárias para o desenvolvimento de um laboratório remoto como
complementação, para aulas presenciais, e auxílio à abordagem de tópicos de Física
Moderna, seja experimental, seja teórica. Para tratar a questão, é necessário se
compreender primeiramente o que é um laboratório remoto, também denominado
WebLab. O objetivo de um laboratório remoto é possibilitar a realização e controle em
tempo real de experimentos, usando como meio a internet. Esse ambiente, a ser
desenvolvido, tanto pratica, quanto teoricamente, deverá ser testado em suas funções
e futuramente validado em aplicações ligadas ao ensino de Física.
2 Problema:
2.1 As dificuldades práticas: das simulações no ensino de física ao
laboratório remoto.
Os resultados da aprendizagem do aluno (CLOUGH, 2002) podem ser
impactadas pelas práticas experimentais, e pela forma como ela é conduzida em sala
de aula; isto é, as práticas experimentais em sala de aula somente terá um impacto
maior, desde que não se recaia nos problemas das aulas expositivas tradicionais, com
giz e lousa, que pouco estimula a criatividade e o envolvimento dos aprendizes
(SIEVERS, 2012). Dentro desta perspectiva, os laboratórios são utilizados para
fornecer uma prova de que os princípios teóricos podem ser demonstrados na prática.
Quando usado adequadamente, eles podem entusiasmar motivar e inspirar
estudantes.
5
Para tanto, um laboratório de ensino requer compromissos de tempo, de
espaço e de financiamento para aquisição, instalação e manutenção de equipamentos
e, em seguida acomodações para os alunos. Por outro lado, uma das questões de uso
do laboratório de ensino é o espaço físico, o qual é determinante para realização de
cortes para limitação do número de vagas nas escolas. Sendo assim, é possível
propor uma solução ao problema através da utilização de tecnologia para aumentar
os recursos didáticos. Mas como aplicar o uso da tecnologia como forma de
investigação dos conceitos trabalhados em um laboratório de ensino, presencial?
Uma possibilidade seria o uso de simulações, já que permitem a interação com
modelos que representam o comportamento de processos e experimentos nem
sempre visíveis a olho nu, dependendo do modelo teórico utilizado, além de ser
possível a alteração de parâmetros na simulação, permitindo a comparação do
comportamento representado em relação ao comportamento do fenômeno no mundo
real. Em relação a função da simulação, para Studart (2010),
A principal função da simulação consiste em ser uma efetiva
ferramenta de aprendizagem, fortalecendo bons currículos e
os esforços de bons professores. A finalidade de uso
pedagógico da simulação pode ajudar a introduzir um novo
tópico, construir conceitos ou competências, reforçar ideias ou
fornecer reflexão e revisão final (STUDART, 2010).
Em contrapartida, caso não se reflita na adequação da simulação ao
experimento real, pode-se induzir o aluno a pensar que a simulação represente a
realidade, o que se configura como um erro de conceito, já que a simulação, por mais
atraente que seja, é uma representação de um modelo matemático, o qual por sua
vez, descreve um modelo físico, ou seja, uma interpretação da realidade.
É preciso ter-se em mente que o ponto de partida de toda
simulação é a imitação de aspectos específicos da realidade,
isto significando que, por mais atraente que uma simulação
possa parecer, ela estará sempre seguindo um modelo
matemático desenvolvido para descrever a natureza, e este
modelo poderá ser uma boa imitação ou, por outras vezes, um
autêntico absurdo. Uma simulação pode tão somente imitar
determinados aspectos da realidade, mas nunca a sua total
complexidade (MEDEIROS 2002).
6
Também por isso, por ser uma representação da realidade, muitas simulações
não incluem fatores práticos dos próprios experimentos, como as fontes de incertezas
e erros, os quais alteram o resultado real. Dependendo do tipo de experiência, os tipos
de erros se analisados poderiam contribuir a uma análise mais rica do próprio
fenômeno, além da descoberta de outras relações entre o experimento em si e outras
propriedades, submetendo o aluno a um mundo onde poderá encontrar perturbações
nos sistemas estudados ou erros de aferição dos equipamentos. Por isso, segundo
Hanson (2009) objetos de aprendizagem virtuais, que simulam situações reais através
de dados pré-gravados, tem recebido críticas dos alunos e educadores. Com isso,
algumas simulações apresentam o mesmo resultado, pois não incluem o erro
experimental, que pode ser ocasionado pela calibração dos equipamentos.
Em um Congresso sobre ensino e internet (INTER-UNIVERSITY, 2008), os
desenvolvedores de simulações, concordaram sobre as dificuldades de criar um
programa de computador para simular um processo de forma realista.
Outra forma de se utilizar a tecnologia é utilizando experimentos apenas com
hardware. Nesta direção, uma abordagem alternativa é fornecer laboratórios de
acesso remoto, alternativa que vem apresentando uso cada vez mais crescente no
exterior, pela crescente disponibilidade e capacidade dos computadores pessoais,
como é o caso (apud SIEVERS JUNIOR et al, 2012):
do uso de laboratórios remotos em ciências ambientais e
ecológicos (KREHBIEL, 2003), mas são encontrados
principalmente nos departamento de engenharia, por exemplo
química (SELMER, 2007), elétrica (LANG, 2007) e (LOWE,
2009) e mecânica (WEIGHTMAN, 2007), além de física
(HANSON, 2009).
O que atrai também ao uso do laboratório remoto é também a possibilidade de
acesso via internet ao experimento real, de modo que as fontes de incerteza possam
ser investigadas; além da possibilidade de se utilizar a experiência real acessada
remotamente junto a simulações/objetos de aprendizagem, que possam descrever o
modelo utilizado, como uma ferramenta pedagógica, com possibilidade de análises
mais ricas e comparativas (SIVERS, 2012).
7
A tecnologia do laboratório com acesso remoto, também denominado WebLab,
está sendo desenvolvida em um número crescente de instituições de ensino superior
e está ramificando para outras disciplinas e para outros níveis de ensino (apud
SIEVERS JUNIOR et al, 2012):
No Brasil podemos encontrar alguns laboratórios como
(KYATERA, 2008), e um laboratório para prática remota de
aulas Laboratoriais de Física (SILVA, 2006). Muitos
laboratórios remotos são acessados por qualquer navegador
convencional (WEIGHTMAN, 2007), esses recursos
proporcionam oportunidades à instituições de todo o mundo
para acesso ao equipamento experimental.
Alguns usuários e pequenos grupos estão se formando e deram provas do
sucesso da colaboração e compartilhamento de recursos sobre limites internacionais
(DEUSTO, 2005). Existe um grande potencial para colaboração e compartilhamento
de recursos em escala nacional e internacional.
Entretanto, antes dos laboratórios remotos poderem atingir o seu real potencial,
várias questões logísticas fundamentais continuam a exigir, tais como: Como as
instalações serão financiadas e mantidas? Quem terá acesso e quando? Mais debates
são necessários para resolver essas questões e chegar a um consenso sobre os
pontos fortes e fracos dos laboratórios remotos e seu lugar no currículo, além de
discussões acerca da possibilidade de se utilizar com complemento de simulações e
como complemento a aulas presenciais. Além destas discussões, há controvérsias
em cursos sobre a eficácia dos laboratórios remotos em entregar resultados de
aprendizagem, e seus efeitos globais sobre a experiência dos alunos. A maioria dos
exemplos de laboratórios remotos hoje são apenas versões remotas dos laboratórios
tradicionais e alguns pesquisadores fazem comparações diretas entre os resultados
da aprendizagem com os laboratórios tradicionais versus laboratórios remotos. Fato
este que evidencia apenas uma transferência da aula expositiva para uma aula
laboratorial a distância, o que apenas continua com o problema.
Nesse sentido, nosso objetivo, aqui, é começar a investigar de que forma pode
se propor a adequação de um laboratório remoto junto a aulas presenciais, no que se
diz respeito a conteúdos de Física Moderna, e consequentemente, quais interfaces
podem ser melhor elaboradas e utilizadas junto ao ambiente virtual de aprendizagem
8
no qual o laboratório remoto esteja inserido, visando que o usuário (seja professor ou
aluno) possam desfrutar dos recursos existentes, os trabalhando de forma em que se
possa aprofundar a compreensão dos assuntos tratados.
3 Estado da Arte
No capítulo de problematização, abordamos o contexto dos laboratórios e mais
adiante (no item “Justificativa”) será analisado a escolha e o porquê do uso do
laboratório remoto para os propósitos do projeto, bem como, aqui se inicia a
abordagem de como está a situação e o usos dos mesmos.
Para continuar essa abordagem, analisemos as questões principais levantadas
por Cardoso e Takahashi (2011). Isso nos remete a entender as discussões a respeito
do desenvolvimento e o uso no contexto educacional de Física dos Laboratórios
Remotos. Para tanto, serão estudados os trabalhos realizados por autores que
trabalharam neste mesmo tema, dentro das observações levantadas por Cardoso e
Takahashi (2011), e consequentemente quais as dificuldades encontradas, as
discussões levantadas por eles, a fim de enquadrar os problemas a serem trabalhados
neste projeto.
No artigo de Cardoso e Takahashi (2011), publicado na RBPEC, os autores
fazem o “[...] levantamento e análise de trabalhos sobre o assunto em revistas e
periódicos de ensino e educação, no Brasil e no exterior.” O intuito dos autores, assim
como um dos objetivos deste projeto corrente, é investigar se (e como) os laboratórios
remotos estão sendo utilizados para o ensino, particularmente, de Física, com o
objetivo de avaliar o potencial desse recurso para o ensino-aprendizagem da
disciplina. Para tanto, os autores discorrem das necessidades de um laboratório
remoto e das potencialidades que o uso da experimentação demonstra para o
processo de ensino-aprendizagem, fundamentando-se nas avaliações tanto de
documentos oficiais como o PCN+ (BRASIL, 2002), quanto de pesquisadores. Dentro
desta perspectiva de experimentação, aliada ao princípio de utilização de materiais de
fácil acesso e possibilidade de viabilizar a mesma experiência com acesso remoto,
Cardoso e Takahashi (2011) apontam que:
9
A utilização desses Laboratórios de Experimentação Remota,
como são conhecidos, permitiria a realização cooperativa de
experimentos reais com o objetivo de prover uma melhor
compreensão dos fenômenos científicos e estimular um
interesse maior pela carreira científica.
E, indo além:
[...] a Experimentação Remota não auxilia a aprendizagem por
si só; o uso da experimentação deve ser amparado por
ferramentas didáticas e metodologias devidamente
fundamentadas.
De forma que concluem que a perspectiva de uso dos laboratórios remotos
nãos e dá somente em ambientes que se utilizem de Educação a Distância (EaD),
mas também presencialmente:
Assim, um laboratório remoto pode auxiliar na aprendizagem
de conceitos físicos, sendo um importante recurso nos cursos
de Educação a Distância (EaD) que exigem aulas práticas,
como também aulas presenciais tornado-a mais interativa e
mais dinâmica. Pode, ainda, auxiliar o aprendiz
independentemente das aulas e viabilizar a realização de
experimentos mais complexos e/ou de difícil acesso.
(CARDOSO; TAKAHASHI, 2011)
Com base nestas prerrogativas, os autores abordam a metodologia de
investigação de laboratórios remotos, desde sua adequação até a sua implementação
e uso educacional. Nesse sentido, Cardoso e Takahashi selecionaram e analisaram
artigos de periódicosQualis1 A, nacionais e internacionais, entre os anos 2000 e 2009.
Para a seleção dos periódicos, utilizaram a lista completa da Capes, que
contém a classificação da produção intelectual, e apuraram todos os periódicos das
seções Educação e Ensino de Ciências e Matemática. Além desses, também
selecionaram todos os outros periódicosque continham as palavras ensino, educação
e seus correspondentes em inglês e espanhol. No total, encontraram 78 periódicos.
Como critério de seleção dos artigos, optaram por pesquisar, nos títulos, as
palavras-chave “experimentação remota”, “laboratório remoto” e seus
correspondentes em inglês e espanhol. Com este critério de seleção, Cardoso e
Takahashi (2011) encontraram 31 artigos em apenas 5 periódicos internacionais:
10
“Computer Applications in Engineering Education, Computers & Education”, “IEEE
Transactions on Education”, “Journal of Research in Science Teaching” (versão
impressa) e “Physics Education” (versão impressa).
A partir dos artigos encontrados, eles fizeram um levantamento do número de
artigos publicados em cada ano e em cada área de conhecimento, verificando em
quais periódicos foram publicados e para qual nível de ensino, de forma a elaborar
uma síntese dos objetivos, metodologias e estratégias utilizadas e as principais
contribuições para o ensino. A partir disso, os autores fizeram uma análise em relação
ao enfoque, à justificativa de utilização da Experimentação Remota, às vantagens e
desvantagens do uso do laboratório remoto e à utilização de metodologia de ensino.
A partir destas considerações, os autores começam a análise preocupando-se
em verificar como vem sendo o desenvolvimento de pesquisas sobre laboratórios
remotos nos últimos 10 anos. A partir das análises feitas, constatam que as pesquisas
relacionadas a experimentos que podem ser operados remotamente são
relativamente recentes, devido ao fato de que a tecnologia só pôde ser desenvolvida
devido aos grandes avanços tecnológicos dos últimos tempos, como por exemplo, a
engenharia de automação e controle assistida por computadores, Internet (aqui
incluso o aumento no poder de processamento dos dados transmitidos, também) e
webcams, que são elementos essenciais para esse tipo de experimentação.
Dentre o levantamento realizado, o que demonstra um aspecto interessante a
ser considerado para fins deste projeto, é que dos 78 periódicos Qualis A que foram
analisados, apenas 5 periódicos internacionais continham artigos sobre a questão do
laboratório remoto, sendo que dois deles (Computer Applications in Engineering
Education e IEEE Transactions on Education) apresentam o maior número de
publicações sobre laboratórios remotos. Em nenhum dos periódicos nacionais Qualis
A foram encontrados artigos sobre experimentos remotos, apesar de existirem
pesquisas e laboratórios remotos no Brasil. Isso explica o fato de que pouco se divulga
a criação, elaboração, adequação e implementação de laboratórios remotos, fato este
que impossibilita um maior acesso de usuários e do público-alvo (professores e
alunos) às potencialidades do uso educacional do laboratório remoto.
11
Voltando nossa atenção para a Física, podemos notar, conforme Cardoso e
Takahashi (2011) também apuram que os trabalhos são desenvolvidos para
determinadas áreas de conhecimento, a citar, as Engenharias, devido à necessidade
de experimentação, de prática, para a inserção do egresso no mercado de trabalho e
que a prática é de fundamental importância para a aprendizagem dos conceitos
relacionados com as disciplinas (CARDOSO; TAKAHASHI, 2011). Por outro lado,
estas características que são necessárias às Engenharias também são necessárias
em outras áreas de Ensino, justamente pelo caráter científico das disciplinas
correlatas (por exemplo, Física, Biologia, Química, e eventuais articulações entre
elas), as quais são bases para as Engenharias. Ainda que se apresente as mesmas
necessidades para estas áreas citas, existem poucos trabalhos associados ao uso da
Experimentação Remota nessas áreas, conforme mostra o Quadro 1.
Quadro 1: Quantidade de artigos por área de conhecimento (reprodução de Cardoso e Takahashi,
2011).
Pela pesquisa de levantamento realizada pelos autores, se percebe a presença
de alguns experimentos que poderiam ser utilizados no ensino da Física em nível
superior, como alguns experimentos de eletrônica, interferômetro de Michelson,
imagens ao microscópio eletrônico de varredura, vibração mecânica unidimensional e
pêndulo invertido. Inclusive, relacionando cada experimento à área da Engenharia
relacionada, a maior parte dos experimentos é voltada aos cursos de
Mecânica/Mecatrônica e Elétrica, áreas cuja base é essencialmente a Física.
Pela análise dos autores, além das considerações anteriores, é importante
ressaltar o enfoque que se dá em cada artigo estudado, ou seja, sob qual ponto de
vista os artigos foram desenvolvidos. Categorizando o pelos objetivos de cada artigo
12
e, com base no que foi apresentado, os autores criaram cinco categorias:
Aprendizagem do Aluno (representam alguma metodologia para ensinar com
Experimentação Remota, utilizando planos pedagógicos, estratégias de ensino, etc...),
Análise entre Laboratório Virtual e Laboratório Remoto, Análise entre Laboratório
Remoto e Laboratório Presencial (nestes dois casos anteriores, em ambas as
considerações, são relacionados artigos que evidenciam diferenças, vantagens e
desvantagens entre os respectivos tipos de laboratório), Infraestrutura (artigos que
descrevem a implementação e seus requisitos necessários e ambiente do laboratório
remoto), e Viabilidade (artigos que validam a utilização da experimentação remota).
Analisando os objetivos dos artigos chegaram ao fato de que 19 dos 31 artigos
estudados se enfocam na questão de infraestrutura. Embora os periódicos estejam
publicados em revistas essencialmente voltadas ao ensino e educação, dos artigos
estudados somente 12,9% abordam esta temática, evidenciando a baixa prioridade
da literatura disponível de análises voltadas a adequação de laboratórios remotos para
a temática de aprendizagem. Pois não basta se colocar um laboratório remoto se não
houver uma preocupação em que ele esteja bem estruturado em sua questão
educacional, o que retornaria somente em uma visualização, um entretenimento, sem
um valor significativo para a aprendizagem do usuário.
Com relação aos artigos que enfocaram a aprendizagem (somente 4 – quatro
– dentre os analisados), eles mostram que é possível atingir os objetivos educacionais
com o uso de experimentos remotos e uma metodologia de ensino adequada,
conforme quadro abaixo:
Quadro 2: Descrição dos objetivos, metodologias e estratégias e as principais contribuições para o
ensino dos artigos com foco principal em aprendizagem.
Artigo 1 A Distance PLC Programming Course Employing a Remote
Laboratory Based on a Flexible Manufacturing Cell
Objetivos Aplicar o experimento remoto com uma metodologia de ensino
baseada em projetos e avaliar a aprendizagem e o laboratório
remoto.
Metodologias e
estratégias
 Vinte e cinco estudantes voluntários participaram do trabalho e
foram divididos em dois grupos: o grupo presencial (14 alunos)
e o grupo remoto (11 alunos).
 Os fundamentos teóricos foram disponibilizados na plataforma
de ensino Moodle.
13
 Foi aplicado um questionário para a verificação dos
conhecimentos prévios dos alunos.
 Os alunos resolveram problemas relacionados ao experimento
remoto.
 A metodologia de ensino foi baseada em projetos de
aprendizagem.
 Os alunos elaboraram um relatório documentando o projeto.
Contribuições
para a
aprendizagem
A aplicação do experimento remoto foi avaliada de forma positiva.
Os dois grupos, presencial e remoto, conseguiram atingir os
objetivos relacionados à aprendizagem. A comparação entre a
aprendizagem dos dois grupos não apresentou diferenças
significativas. Os autores acreditam que as vantagens
Artigo 10 A Web-Based Remote Interactive Laboratory for
Internetworking Education
Objetivo Discutir os aspectos pedagógicos e técnicos que influenciam o
design e a implementação do ambiente de laboratório remoto.
Metodologias e
estratégias
 A metodologia de ensino empregada teve por base o
construtivismo, a aprendizagem colaborativa e técnicas de
resolução de problemas.
 As atividades no laboratório remoto foram modeladas para
implementar as nove etapas de ensino propostas por Gagne
(1987, 1992)
 Os alunos aprenderam os conceitos teóricos fundamentais em
palestras nas quais eram descritas as características funcionais
e físicas do experimento remoto.
 Os estudantes realizaram o experimento em grupos de 2 a 3
alunos.
Contribuições
para a
aprendizagem
O laboratório remoto ajudou a alcançar os objetivos pedagógicos
e educacionais do programa. Os resultados da pesquisa também
indicaram que o laboratório remoto é mais fácil de usar e mais
flexível do que o laboratório presencial. No entanto, o laboratório
online é menos acessível fisicamente e menos interativo do que o
presencial.
Artigo 11 An experience of teaching for learning by observation:
Remote-controlled experiments on electrical circuits
Objetivo Descrever uma metodologia que facilite a aprendizagem por
observação com o emprego de experimentos remotos.
Metodologias e
estratégias
 23 estudantes do ensino fundamental participaram do estudo.
 Os alunos foram divididos aleatoriamente em seis grupos. O
professor fez uso de um instrumento real para ilustrar o
14
assunto-alvo. O professor introduziu o uso do experimento
remoto. Os alunos realizaram atividades em grupo e
individualmente e fizeram discussões sobre os resultados. O
trabalho foi finalizado com um resumo do professor.
 Métodos quantitativos e qualitativos foram adotados para
coletar dados sobre o potencial do laboratório remoto.
Contribuições
para a
aprendizagem
Os resultados do estudo revelaram um potencial para maior
promoção do uso do laboratório remoto e que o uso do laboratório
remoto ajudou os alunos a aprofundar o conhecimento sobre o
assunto-alvo. O professor observou que seus alunos estavam
muito envolvidos nas atividades porque eles ficaram fascinados
com o uso do experimento de controle remoto, que é uma
ferramenta totalmente inovadora de aprendizado para eles.
Artigo 20 Remote Laboratories for Optical Circuits
Objetivo Descrever o processo de concepção e implementação do
laboratório remoto assim como os métodos de ensino e avaliação.
Metodologias e
estratégias
 A metodologia foi aplicada a 16 alunos, que realizaram três
experimentos remotamente.
 A fundamentação teórica foi apresentada aos alunos em sala
de aula.
 Os alunos participaram de seções de pré-laboratório, nas quais
assistiram simulações e vídeos de orientação em relação a
cada experimento.
 Após as seções de pré-laboratório os alunos realizaram o
experimento remoto.
 Para avaliar a aprendizagem, os alunos responderam um teste
que continha questões fundamentais.
Contribuições
para a
aprendizagem
Os alunos foram muito bem sucedidos e concluíram todas as
seções do experimento. As médias das notas foram muito altas. A
maioria dos alunos se sentiu confortável diante da interface com
os experimentos.
Através deste quadro pôde-se perceber que é possível a adequação dos
laboratórios remotos com uma abordagem de ensino voltada para a aprendizagem.
Se feita de maneira rigoros, no aspecto metodológico, isso vem a beneficiar,
possibilitando o uso mais apropriado deste recurso tecnológico. Ainda, para os artigos
que tratam da viabilidade dos laboratórios remotos, estes enfocam tanto o
experimento quanto a aprendizagem. Com este aspecto em mente, os resultados
mostraram que os experimentos remotos são viáveis, pois, além dos estudantes
15
aprovarem o uso dos laboratórios remotos, eles atingiram os objetivos educacionais
propostos. Contudo melhorias com relação ao aspecto de velocidade de transmissão
e dados e da interatividade entre o experimento remoto e o usuário devem melhorar
e aumentar, respectivamente.
Dos 19 (dezenove) artigos em que se evidenciam o enfoque na infraestrutura
pode-se argumentar o fato de este ser um primeiro passo e de não ser uma tarefa
simples estruturar toda a questão arquitetural para visualização e acesso do
experimento remotamente. Isso implica no fato de que a maioria se preocupa em
evidenciar a questão estrutural, dado o fato de ser um recurso ainda recente em
termos de uso e assimilação. Porém, dentre estes 19 (dezenove), 13 (treze) aplicaram
e avaliaram os experimentos. Os resultados coletados pelos autores são de extrema
importância no que se refere a evidenciar a montagem do experimento, mas também
de erros e acertos no desenvolvimento dos laboratórios remotos.
Observando esta questão de evidenciar as justificativas e soluções para as
montagens de laboratórios remotos, Cardoso e Takashi (2011) observam que os
autores de cada artigo estudado consideram como justificativas mais importantes para
a construção de laboratórios remotos: a diminuição de custos, o fato de um laboratório
remoto ter potencial para disponibilização para cursos em EaD e não possuir limite de
tempo e espaço, conforme Figura 02.
Figura 02 – Gráfico de Frequência de justificativas quanto ao uso de laboratórios remotos (extraído de
Cardoso e Takahashi, 2011).
16
Além destes levantamentos, Cardoso e Takahashi ainda analisaram outros
critérios, como o fato de os artigos disponibilizarem materiais de apoio, explicitar
metodologia de ensino, citar utilização de instrutores, ou mesmo aqueles artigos que
não citam nenhuma estratégia para desenvolvimento dos experimentos. Dentre estes
critérios, 7 artigos disponibilizam materiais de apoio, 4 utilizam metodologia de ensino
(conforme foi evidenciado anates no quadro 2), 8 utilizam instrutores e 9 artigos não
citam sequer uma estratégia.
Finalmente, em termos de eficácia em relação à aprendizagem, os laboratórios
remotos se mostraram tão eficiente quanto os laboratórios presenciais. Porém o que
é interessante notar, é que, de acordo com Cardoso e Takahashi (2011), ao passo
que alguns autores analisados em seus artigos apontam o laboratório melhor, outros,
ao contrário, apontam que o presencial é melhor, embora a diferença seja pouca. De
qualquer modo, conforme os autores explicitam: “[...] a importância não está na
diferenciação entre a Experimentação Remota ou presencial e, sim, na metodologia
adotada para o desenvolvimento das aulas práticas.” (CARDOSO; TAKAHASHI,
2011).
Sendo assim, após analisar os artigos mencionados segundo todos os critérios
anteriores, os autores, durante o desenvolvimento do trabalho não encontraram
relatos de pesquisa sobre como o acesso remoto a experimentos reais pode
incrementar o processo de ensino e aprendizagem de Física e de que forma isso pode
ser feito. Evidenciando que a Experimentação Remota associada ao ensino de
ciências, no Brasil e no mundo, ainda é um campo muito novo e pouco explorado,
concluem que as consequentes e eventuais limitações na utilização desta ferramenta
de ensino devem ser estudadas de forma aprofundada, o que significa dizer que deve-
se estabelecer uma metodologia adequada, a fim de se suprir as necessidades de
uma aula prática.
Como consequência desta metodologia a ser aprofundada, Cardoso e
Takahashi (2011) apontam que uma solução a ser considerada é a de que os
laboratórios on-line, reais ou virtuais, necessitam de um ambiente de aprendizagem
completo, que ofereça ao aluno apoio para a realização das experiências, a fim de se
17
atribuir uma aprendizagem significativa ao que o usuário consegue interagir e
visualizar, coletando dados e analisando-os, assimilando assim a teoria acerca do
experimento:
Sendo assim, o ambiente de aprendizagem deve conter
material de apoio, como por exemplo, hipertextos contendo
fundamentação teórica, conceitos, metodologia de relatório
(exemplos). E a Experimentação Remota deve ser embasada
em uma metodologia própria, devidamente elaborada, da
mesma forma que uma aula prática presencial também
necessita de uma metodologia específica baseada em teorias
de ensino-aprendizagem. (CARDOSO; TAKAHASHI, 2011)
Em seus comentários finais, os autores sugerem que
os Laboratórios de Experimentação Remota surgem como
algo novo e promissor, com tendência de se tornarem
instrumentos de experimentação muito eficientes, mas que
ainda precisam de uma quantidade maior de pesquisas
sistemáticas sobre suas reais potencialidades,
particularmente, na aprendizagem significativa em Física.
(CARDOSO; TAKAHASHI, 2011)
Com base nestes apontamentos, nas evidências demonstradas pelas análises
dos variados artigos referentes aos usos do Laboratório Remoto, em especial, com
enfoque no ensino de Física, é que montaremos primeiramente um protótipo com
experimentação remota, veiculado a um ambiente virtual de aprendizagem. Com isso,
pretendemos possibilitar que os conteúdos vistos na experiência possam ser melhor
trabalhados e demonstrados, de modo a permitir uma maior interatividade do usuário,
não somente com o experimento, mas com o projeto como um todo. Assim, também
pretendemos permitir que esse usuário (seja o aluno ou o professor) possa aprender
(e até ensinar, no caso do professor, que poderá, se quiser, usar este ambiente como
uma ferramenta de ensino) e assimilar os conteúdos de uma forma mais significativa.
4 Justificativa
Justificando a escolha do critério a ser trabalhado, de acordo com (KONG;
YEUNG; WU, 2009, p. 711)
O laboratório remoto fundamentado em uma pedagogia
adequada do professor e suportado por materiais de apoio a
aprendizagem tem potencial para incentivar os alunos a
18
formular associações entre o mundo real e as teorias
científicas (KONG; YEUNG; WU, 2009)
Dentro de uma estrutura adequada e melhorias no ambiente virtual de
aprendizagem, o laboratório remoto pode ser uma ferramenta que complemente o
estudo de tópicos de Física Moderna, auxiliando e colaborando com a melhora da
aprendizagem. E não somente destinada ao uso pelos alunos, o ambiente virtual no
qual o laboratório remoto esta inserido também pode apresentar uma interface de uso
exclusivo do professor, auxiliando-o em suas tomadas de decisões durante as aulas,
equipando-o com recursos em um ambiente que estimule a criatividade e descoberta
de novas interações e possibilidades de ensino, de forma a instrumentalizá-lo com
amplas e novas ferramentas tecnológicas.
Indo além, podemos argumentar sobre a própria aplicação da estrutura que
temos com um viés educacional, ou seja, justifica-se a ideia de criação de espaços na
web para divulgar recursos existentes e também para viabilizar a criação de
laboratórios de sensoriamento remoto que venham possibilitar que tanto estudantes
quanto professores, em diferentes níveis de aprofundamento, estudem conceitos
importantes, não somente de Física Moderna, mas de qualquer disciplina que venha
a ser administrada dentro da estrutura a ser montada, no ambiente virtual, abrindo a
possibilidade de aplicação do projeto também para outras áreas de ensino que usem
de laboratórios, por exemplo, disciplinas experimentais de Engenharia.
E por isso, até como forma de complementar eventuais experimentos mais
sofisticados que estão sendo tratados em aulas presenciais, possibilita se abordar
questões que não puderam ser tratadas antes, devido a questões de tempo, estrutural,
entre outras. Com isso, outra justificativa para este projeto centra-se em seu uso
complementar a aulas presenciais, de forma a poder ampliar as noções tratadas em
sala de aula, e até mesmo evidenciar outras discussões que possam ser melhor
trabalhadas com o experimento acessado remotamente.
Nesse sentido, as questões que envolvem o processo de Ensino e
Aprendizagem tornam-se relevantes, com o aspecto de se poder criar ambientes
virtuais de aprendizagem que possibilitem o uso de laboratórios remotos
complementando a realização de experimentos concretos (os quais embora tenham
19
maior interesse no que se refere à aprendizagem em sala de aula, devido à questão
de poder se abordar consequências pragmáticas do experimento), da mesma forma
apresentam problemas de custos elevados para muitos experimentos, sensores de
difícil aquisição, ou mesmo questões de indisponibilidadedo laboratório. Sendo assim,
disponibilizar uma plataforma remota, cujo experimento possa ser acessado e
controlado remotamente oferece possibilidades pedagógicas interessantes quando
complementares ao uso do laboratório presencial, desde que tratados com
abordagens diferentes.
E, por outro lado, abre a possibilidade concomitante de uma abordagem
veiculada a disciplinas que estejam sendo tratadas a distância, de forma on-line;
disciplinas estas cada vez mais presentes, principalmente em cursos on-line de
Engenharia (dentro de matérias como Automação, por exemplo, que trabalham
questões de eletrônica ao mesmo tempo que se trabalham aspectos da própria
máquina, de modo que o laboratório remoto seja uma solução adequada)
(LOURENÇO, 2014), em que os conceitos de Física, bem como de Fìsica Moderna
venham a ser trabalhados e analisados, além das disciplinas de Física, propriamente
dita, que possam ser trabalhadas on-line, como a Física Moderna, com experimentos
em que sejam estudados o comportamento das radiações eletromagnéticas, através
da visualização do experimento e da coleta de dados, as quais são trabalhadas neste
projeto em questão.
Assim, a justificativa de se poder utilizar o laboratório remoto tanto complementar as
aulas presenciais quanto em ambientes virtuais bem elaborados em disciplinas e
cursos on-line evidenciam adequação do projeto e a ampla possibilidade de estudos
e aplicabilidade.
5 Objetivos da Pesquisa
O objetivo desta pesquisa se centra no desenvolvimento de um protótipo e
estruturação da arquitetura de acesso e controle de um laboratório remoto, para
experimento de espectrofotometria (com objetivo de uso em ensino de tópicos de
Física Moderna) e que permita interação do usuário com o experimento, em tempo
real.
20
5.1 Objetivos Específicos
5.1.1. Construção do Laboratório Remoto, desde sua concepção teórica e
prática até a elaboração e estruturação.
5.1.2. Implementação e Testes de Funcionamento, evidenciando necessidades
e possíveis melhorais, com relação aos aspectos necessários para o bom
funcionamento e interação do Laboratório Remoto.
6 Hipótese
6.1 Estratégias para adequação de laboratório remoto como instrumento
de utilização complementar a aulas presenciais
Após analisar 19 artigos qualificados com Qualis A, referente aos usos e
metodologias empregadas em Laboratórios Remotos aplicados a conteúdos de Física,
bem como com as avaliações realizadas, Cardoso & Takahashi, evidenciam que os
resultados destas:
mostraram que os laboratórios remotos são equiparáveis aos
laboratórios presenciais em termos de eficácia, em relação à
aprendizagem. Alguns resultados mostraram que a
aprendizagem no laboratório remoto foi um pouco melhor e
outros mostraram o contrário, porém, as diferenças não são
significativas. (CARDOSO; TAKAHASHI, 2011)
Esse fato vem ao encontro do posicionamento dos autores citados, de que a
importância não está na diferenciação entre a Experimentação Remota ou presencial
e, sim, na metodologia adotada para o desenvolvimento das aulas práticas. Ou seja,
de que a metodologia empregada deva evidenciar aspectos que tornem a
aprendizagem mais significativa ao aluno.
No desenvolvimento do trabalho citado (CARDOSO; TAKAHASHI, 2011) não
encontraram relatos de pesquisa sobre como o acesso remoto a experimentos reais
pode incrementar o processo de ensino e aprendizagem de Física e nem de que forma
isso pode ser feito. Constataram que a Experimentação Remota associada ao ensino
de ciências, no Brasil e no mundo, ainda é um campo muito novo e pouco explorado
21
e que as eventuais limitações na utilização desta ferramenta de ensino devem ser
estudadas de forma aprofundada e formulam como uma hipótese, que uma
metodologia adequada deve ser explorada para suprir as necessidades de uma aula
prática. Para tanto, de acordo com Mendes e Fialho (2005, p. 7):
Temos aí uma tecnologia que necessita e merece
aprimoramentos, pois ao contrário dos experimentos
simulados, a experimentação com laboratórios remotos não
apresenta resultados provenientes de cálculos teóricos com
apresentação gráfica imitando fenômenos naturais. Não se
trata de ilusão próxima da realidade, trata-se de
experimentação real, mas remota, tele-controlada. (MENDES;
FIALHO, 2005)
Ainda, de acordo com os mesmo autores, os laboratórios on-line, reais ou
virtuais, necessitam de um ambiente de aprendizagem completo, que ofereça ao aluno
apoio para a realização das experiências, pois, como diz Séré (2003, p. 39),
Através dos trabalhos práticos e das atividades experimentais,
o aluno deve se dar conta de que para desvendar um
fenômeno é necessária uma teoria. Além disso, para obter
uma medida e também para fabricar os instrumentos de
medida é preciso muita teoria. Pode-se dizer que a
experimentação pode ser descrita considerando-se três pólos:
o referencial empírico; os conceitos, leis e teorias; e as
diferentes linguagens e simbolismos utilizados em física. As
atividades experimentais têm o papel de permitir o
estabelecimento de relações entre esses três pólos.
Sendo assim, o ambiente de aprendizagem deve conter material de apoio,
como por exemplo, hipertextos contendo fundamentação teórica, conceitos,
metodologia de relatório (exemplos). E a Experimentação Remota deve ser embasada
em uma metodologia própria, devidamente elaborada, da mesma forma que uma aula
prática presencial também necessita de uma metodologia específica baseada em
teorias de ensino-aprendizagem.
Concordamos com os apontamentos evidenciados por Cardoso e Takahashi
(2011), frente às questões metodológicas e de organização do ambiente de
aprendizagem, de modo que em reforço a esta evidência, nossa hipótese é a de que
a eficácia na aprendizagem nos laboratórios remotos será melhorada conforme se
adeque a metodologia de ensino, em conjunto com a aula prática, evidenciando um
significado tanto a aluno quanto ao professor. Além disso, a prática através do
22
laboratório remoto, se executada de forma significativa para aluno e professor, facilita
processos cognitivos, relacionados a conhecimentos de Física Moderna, a partir do
fato de se poder visualizar o experimento, bem como se interagir com ele.
Assim, para que essa prática seja realmente significativa, com vistas a eficácia
do experimento, é necessária uma melhor adequação do ambiente virtual de
aprendizagem no qual o laboratório remoto esteja inserido, de modo a tornar a
interface mais intuitiva e rica em análises, tanto teóricas, conceituais, quanto dos
resultados colhidos, na prática experimental a distância.
7 Fundamentação Teórica
Neste tópico serão levantados e analisados o referencial que se tem a respeito
da teoria e métodos utilizados na construção, adequação e elaboração de um
Laboratório Remoto aplicado ao Ensino, e em particular como se dá a construção, a
estruturação e a adequação do WebLab da PUC-SP
7.1 Introdução
O Webduino é o nome dado ao projeto de desenvolvimento de um laboratório
de sensoriamento remoto, o qual se desenvolve atualmente na PUC-SP, e que utiliza
a plataforma de prototipagem de dados Arduino. Ele vem sendo desenvolvido pelo
GoPEF (Grupo de Pesquisa em Ensino de Física da PUC/SP), e se iniciou com o
fomento do CNPq, na área de tecnologia educacional, e em poucas palavras, é um
laboratório de controle e sensoriamento remoto baseado no uso da plataforma
Arduino.
Por sua vez, o Arduino é uma plataforma de prototipagem aberta baseada em
hardware e software flexíveis e de fácil utilização (BANZI, 2011). O ambiente Arduíno
foi desenvolvido para ser utilizado por pessoas iniciantes que não possuem
experiência com desenvolvimento de software e eletrônica (MARGOLIS, 2011).
Quando tratamos de software na plataforma Arduíno (UFES, 2012), estamos fazendo
referência tanto ao ambiente de desenvolvimento integrado (IDE) quanto ao software
desenvolvido pelo usuário para tratamento dos dados na placa utilizada. O ambiente
de desenvolvimento do Arduino utiliza um compilador GCC (para linguagens de
23
programação C# e C++), o qual possui interface gráfica construída em Java.
Basicamente, é um programa IDE muito simples de se usar que utiliza bibliotecas
passíveis de serem facilmente encontradas. As funções da IDE do Arduino são
basicamente duas: permitir o desenvolvimento de um software e enviá-lo para a placa
para ser executado.
Neste projeto, a placa de controle Arduino será utilizada juntamente ao
experimento de Física, o Espectrofotômetro, para envio e recebimentod e dados de
usuários, de modo a permitir o acionamento e controle das diversas variáveis a serem
implementadas no experimento. Em conjunto ao Arduino, é necessário se
compreender mais especificamente como será utilizado o laboratório remoto, no qual
o experimento está inserido.
7.2 WebLab
Nos últimos anos, o desenvolvimento tecnológico tem facilitado, de várias
maneiras, o nosso cotidiano (CAVALCANTE et. al, 2012). Sistemas computacionais
estão presentes nas residências e em todos os lugares que circulamos, no controle
do trânsito, nos supermercados, nas agências bancárias, nos aparelhos de telefonia
celular, etc. Por outro lado, ensinar a disciplina de Física no século XXI pode ser uma
tarefa extraordinária, já que toda a tecnologia que nos rodeia está intimamente ligada
aos conceitos físicos essenciais para a compreensão dos mecanismos básicos de
funcionamento de cada um destes sistemas. No entanto, muitos alunos apresentam
grande dificuldade na compreensão dos fenômenos físicos. Entre as razões do
insucesso na aprendizagem de Física são apontados os métodos de ensino
desajustados das teorias de aprendizagem mais recentes e a falta de meios
pedagógicos modernos.
O uso de Tecnologias de Informação e Comunicação (TICs) no ensino tem sido
objeto de estudo em todas as áreas. Nos últimos anos os avanços no uso de TICs
foram extraordinários tendo em vista que os computadores se tornaram mais velozes
em processamento de informações e com maior capacidade de armazenamento e de
representação somando-se às novas interfaces, tais como luvas e capacetes de
visualização que trouxeram a realidade virtual para a sala de aula.
24
Alguns pesquisadores na área de ensino de Física no Brasil têm se dedicado à
produção de diferentes recursos de fácil aquisição que possibilitam a inserção de
novas tecnologias no ensino de Física e, particularmente, na aquisição automática de
dados (AGUIAR; LAUDARES 2001), (MAGNO; MONTARROYOS, 2002), (SOUZA et
al, 1998), (MONTARROYOS; MAGNO, 2001), (DIONISIO; MAGNO, 2007), (HAAG,
2001), (CAVALCANTE; TAVOLARO, 2003), (CAVALCANTE et al, 2002),
(CAVALCANTE et al, 2008), (CAVALCANTE et al, 2009), (SOUZA et al, 2011).
Apesar destas publicações e de todo o avanço tecnológico das últimas
décadas, as salas de aula da grande maioria das escolas brasileiras ainda estão bem
distantes deste universo e o ensino de Física ainda continua desconectado deste
mundo tão fascinante que nos cercam. Os recursos computacionais em geral se
restringem ao uso de simulações, editoração de textos, planilhas de cálculo e internet
para pesquisa de trabalhos escolares. A possibilidade de utilizar o computador como
um instrumento de medida ainda é desconhecida pela grande maioria dos professores
brasileiros (CETIC, 2013).
De outro lado, há um grande incentivo dos órgãos públicos brasileiros a projetos
que tenham como meta gerar conteúdos e recursos para potencializar o uso das TICs
(UNESCO, 2008) nas salas de aula na educação do ensino fundamental e médio,
particularmente, aqueles destinados ao uso dos laptops educacionais. Inclusive, o uso
do computador e das TICs em geral, é defendido pela Lei de Diretrizes e Bases da
Educação que preconiza a necessidade “da compreensão [...] da tecnologia”, no art.
32-II, no ensino fundamental, como formação básica do cidadão (MEC – BRASIL,
1996). Mas, da mesma forma que vem sendo incentivada, sabe-se que a prática de
uso do computador por alunos e professores não se tornou concreta (REIS et al,
2012).
Algumas iniciativas bastante conhecidas como, o projeto Scracth do MIT e,
mais recentemente, a interface de programação Scratch for Arduíno (S4A) que é um
ambiente de programação visual integrado a interface Arduíno e baseado no Scratch,
muito utilizado com fins educacionais, mostram-se cada vez mais promissoras para o
desenvolvimento da capacidade criativa das crianças e adolescentes no aprendizado
de Ciências (CAVALCANTE et al, 2011).
25
Além dos aspectos já mencionados não podemos deixar de mencionar que a
partir de 2004 iniciou-se um grande movimento na internet conhecido como Web 2.0
(W3C, 2009). Na Web 2.0, o usuário deixa de ser um sujeito passivo e passa a fazer
parte de uma imensa rede de compartilhamento de informações e construção de
conhecimento. A consequência imediata deste processo é que o conhecimento já não
está centralizado em uma única pessoa ou em um único lugar, ele distribui-se entre
os usuários da rede. A aprendizagem deixou de ser uma construção individual do
conhecimento, para ser um processo social onde o educador já não é a fonte única
de conteúdos e o “aprendiz não aprende” de forma isolada. A interação social, o
desenvolvimento de novas formas de linguagem e a comunicação são condições
importantes e necessárias para a aprendizagem.
A habilidade mais importante que determina a vida das pessoas é a de
aprender mais habilidades, de desenvolver novos conceitos, de avaliar novas
situações, de lidar com o inesperado. Isto se tornará cada vez mais evidente no futuro:
a habilidade mais competitiva é a habilidade de “aprender a aprender”. O que é certo
para os indivíduos, é, todavia mais certo para as nações (PAPERT, 2008).
Portanto, é necessário criar espaços na rede internet que viabilize, não apenas
divulgar recursos existentes, mas também, a criação de laboratórios de sensoriamento
remoto que possibilite aos estudantes e professores, em diferentes níveis de
aprofundamento, estudar conceitos importantes em Ciências e, mais especificamente,
aqueles relacionados à Ciência Moderna e Contemporânea.
7.2.1 Arduino No WebLab
Uma das justificativas para utilização da plataforma Arduíno está na existência
de um grande número de projetos disponíveis na Web em vários idiomas e em
diferentes áreas do conhecimento caracterizando esta plataforma, como uma
tecnologia essencialmente interdisciplinar (STABILE; CAVALCANTE, 2012). O
Webduino pretende desenvolver diferentes recursos didáticos que possibilitem
ensinar conceitos Físicos, permitindo a quem for acessá-lo um maior domínio da
tecnologia.
26
Uma forma de abordar a tecnologia como ferramenta para o desenvolvimento
de conceitos científicos é através de plataformas digitais e outras APIs que evidenciem
o aspecto científico abordado. Por isso, pretendemos utilizar plataformas, como
Xively, Partcl®, dentre outras API’s, que possibilitam a coleta remota de dados, via
porta serial, Shields Ethernet e/ou Wireless, etc, como forma de permitir a interação
do usuário com a experiência. Opções desta natureza, possibilitam incorporar o
Ensino de Ciências na já conhecida rede de sensores, agregando valores à
experimentação didática.
Por outro lado, a implantação de laboratórios de sensoriamento e controle
baseado em plataformas livres, assim como a Arduíno, torna o Weblab um projeto
muito próximo a realidade do usuário, potencializando recursos disponíveis e
compartilhados na Web.
7.2.2 O Que o Webduino traz de novo
Um dos aspectos inovadores deste projeto está associado ao desenvolvimento
de um laboratório de controle e sensoriamento remoto, voltado ao ensino de Ciências,
totalmente apoiado em uma plataforma open-source em hardware e software
amplamente difundido na internet.
Tratando-se de uma plataforma Open Source o usuário terá acesso à
documentação pertinente, a cada experimento proposto, qual seja: códigos fontes,
esquemas elétricos e vídeos ilustrativos mostrando cada etapa de construção e
montagem, etc, podendo, se assim desejar, montar o seu próprio sistema, manipulá-
lo e disponibilizá-lo em redes remotas, através de servidores remotos como, por
exemplo, o Xively®.
Igualmente inovador é o desenvolvimento de recursos destinados ao ensino de
ciências em nível fundamental em que se pretende criar aplicativos que possibilite
manipular e interagir com experimentos remotos utilizando o software de programação
iconográfica Scratch for Arduíno, que é um ambiente de programação visual integrado
a interface Arduíno e baseado no Scratch, muito utilizado com fins educacionais. Estes
aplicativos deverão possibilitar que usuários do Scratch for Arduíno (S4A), de
diferentes faixas etárias, possam manipular os equipamentos adequados através de
27
mídias interativas inteiramente adaptadas a sua realidade o que, certamente,
contribuirá na ampliação dos recursos educacionais destinado a um público de menor
faixa etária.
Outro aspecto de grande relevância no Weblab da PUC/SP é o
desenvolvimento de uma Interface padrão de comando com reconhecimento de voz
para diferentes dispositivos e experimentos monitorados e controlados remotamente.
Por outro lado, apesar do uso crescente dos recursos tecnológicos por todos
ainda é importante questionar os aspectos correlacionados a acessibilidade destes
recursos. Considera-se acessibilidade como um processo que permite a inclusão de
todas as pessoas com deficiências ou não a participarem de atividades que incluem o
uso de produtos, serviços e informação. Assim, neste projeto, pretendemos responder
a seguinte questão: até que ponto as tecnologias desenvolvidas e disponíveis
possibilitam uma ampla e total inclusão aos serviços, produtos e informação? Quantos
laboratórios de sensoriamento remoto disponíveis na web possibilitam acesso e
interatividade aos experimentos de modo mais amplo?
É preciso abraçar estas questões e enfrentá-las de tal modo que a tecnologia
e seus avanços possibilitem uma maior integração dos usuários, oferecendo amplo
acesso aos serviços, produtos e informações incluindo neste rol os portadores de
necessidades especiais de ordem física, que são; hemiplégicos, paraplégicos,
tetraplégicos (incluindo sujeitos com membros amputados). Os resultados deste
trabalho foram apresentados (CAVALCANTE, 2013) no III WebCurriculo.
Um WebLab (CAVALCANTE, 2013), com todas estas características, bem
como com seus aprofundamentos e futuras aplicações em salas de aula, além de
inovador poderá contribuir para maior difusão e divulgação da ciência, despertando o
interesse dos jovens para uma área de conhecimento que tem sofrido uma forte queda
em todo mundo e, mais acentuadamente, no Brasil.
Devido a questão de inovação do Weblab, é necessário que a forma como é
disposto seja bem estruturado, além da forma como dispomos os dados e informações
coletadas e apresentadas, para que o usuário não tenha problemas de acesso ou
queda na comunicação com o experimento. Por isso, também, é necessário que seja
apresentada a arquitetura dentro do nosso Weblab, o Webduino.
28
7.3 Procedimentos
Neste item serão descritas as etapas de construção do Laboratório Remoto,
desde a concepção teórica e prática, passando pela etapa de elaboração dos itens a
serem trabalhados, controlados e visualizados (no que se refere ao experimento na
prática) dentro do laboratório remoto, até a estruturação e adequação do mesmo
dentro de um Ambiente Virtual, dada a natureza educacional a que se destina este
laboratório remoto.
Para se realizar todo o sistema de sensoriamento remoto, dentro do laboratório
é necessário reconhecer-se a necessidade de entendimento da arquitetura de
software do Weblab, a fim de que não se esbarrar em problemas estruturais, ou
mesmo, cuja implementação cause problemas de acesso, etc. Logo, é relevante
analisar, primeiramente, a arquitetura do Weblab.
7.3.1 Introdução
Um sistema ou dispositivo seja ele computacional ou não, deve sempre
considerar dois aspectos: sua funcionalidade e o que irá impulsioná-lo com sapiência
e destreza. Assim, quando já possuímos uma breve ideia dos sistemas envolvidos,
avaliamos em primeira instância a sua interface de comunicação, que deve fornecer
informações condizentes e com inteligibilidade. Considerando aqui, que se trata de
uma abordagem de desenvolvimento intelectual, as referências requerem concisão,
mas nem sempre explícitas, pois queremos apenas orientar o usuário às descobertas,
que conduzem (MORIN, 2003) a um aprendizado eficaz e significativo. Com isso,
conduzimos nossa busca por um sistema que possibilita unir conceitos de usabilidade
e acessibilidade, além da disponibilização de experimentos de diferentes graus de
complexidade.
Diferentemente de alguns laboratórios de experimentação remota disponíveis
ao público, além do acesso ao experimento em si, o usuário encontra no Webduino,
diferentes recursos didáticos que possibilitam a compreensão do fenômeno físico
abordado, tais como; fundamentação teórica, simuladores, vídeos, etc. Ainda,
pretendemos criar interfaces lúdicas para tratar o experimento remoto dentro de um
29
ambiente de game. E, junto com essas interfaces também pretendemos criar uma
interface de controle, na qual o professor tenha acesso.
A plataforma que melhor se ajusta às nossas condições de contorno é a
WebLab-Deusto desenvolvido pela Universidade de Deusto, (Deusto, Bilbao –
Espanha) (UNIVERSIDADE DE DEUSTO, 2015).
7.3.2 Descrição do WebLab-Deusto
O WebLab-Deusto é um programa de arquitetura distribuída para laboratórios
remotos, o qual proporciona uma série de funcionalidades que facilitam o
desenvolvimento de uma aplicação remota. Pode-se manipular através de comandos
um experimento através de uma rede que pode ser tanto interna quanto externa. É
um projeto open-source desenvolvido pela Universidade de Deusto que fornece um
framework flexível reunindo toda a integridade, garantindo segurança, agilidade,
escalabilidade - recursos essenciais para este serviço.
O projeto desenvolvido pela Universidade de Deusto possui estruturação de
seu código fonte baseado, prioritariamente, em linguagem de programação Python,
ocupando 67,1% de suas linhas de códigos, que, por sua vez, compartilha o sistema
com as linguagens Java, C# e PHP (UNIVERSIDADE DE DEUSTO, 2015). O
laboratório remoto da PUC-SP utiliza as plataformas Git Hub e/ou Google Code, que
possibilitam a inserção de usuários interessados no sistema, que agregarão
conhecimento e conteúdo, ou também traduções para outros vocabulários (esta
perspectiva de desenvolvimento em comunidade online e uso dos serviços de Cloud
Computing oferecem uma grande alavanca para desenvolvimento dos projetos).
A integração multiplataforma de programação que o WebDeusto oferece é a
sua principal vantagem. Ele pode se comunicar com qualquer servidor de um
experimento que ofereça uma comunicação XML-RPC como o Java, tecnologias
.NET, Python e LabVIEW.
30
Fig. 03 - Esquema do funcionamento do WebLab com o WebDeusto (UNIVERSIDADE DE DEUSTO,
2015).
O projeto está dividido em servidores específicos:
 Servidor principal: escrito na linguagem de programação Python, está dividido
em:
o Servidores de acesso: processa as credenciais dos usuários.
o Servidores centrais: gerencia o uso, os acessos, etc.
o Servidores de laboratório: colocado sobre os laboratórios de Física, eles
funcionam como porta de entrada para os servidores da experiência.
o Servidores do experimento: possuem a programação específica para a
experiência.
 Cliente: Conjunto de páginas estáticas que será acessível a partir de um
servidor web (Apache), e acessados de um browser, que fará chamadas para
os servidores do experimento.
31
Fig. 04 - Esquema do Funcionamento do WebLab (UNIVERSIDADE DE DEUSTO, 2015).
Do lado do servidor-cliente, utiliza-se o GWT (Google Web Toolkit), kit de
ferramentas de desenvolvimento para a construção de aplicações AJAX, para a
construção da interface Web.
Algumas das vantagens analisadas na utilização desse framework são:
 Agilidade no desenvolvimento de páginas em Javascript com uma
linguagem de programação robusta, o Java, gerando um código compilado para cada
navegador;
 Acesso em qualquer aparelho com um browser que dê suporte para
HTML, CSS e Javascript;
 Reaproveitamento de código – classes Java podem ser facilmente
modificadas (excelente para a etapa de desenvolvimento).
Podem ser acopladas outras tecnologias ao GWT (Google Web Toolkit), a partir
de modificações e adição de algumas classes e bibliotecas:
 HTML5: Entre suas principais vantagens apresenta portabilidade para
as principais tecnologias mobile atuais; consegue executar vídeos sem ajuda de
32
outros aplicativos, editar imagens 2D e visualizar imagens 3D além de apresentar
recursos mais interativos que o HTML.
 FLASH: Muito utilizada na Internet para executar vídeos e como
plataforma para jogos online e construção de sites, o flash apresenta uma grande
possibilidade de interação e manipulação através de ActionScript. Não é uma
plataforma a ser utilizada na construção de sistemas complexos, mas como
complemento para alguma atividade interativa.
 PHP: uma linguagem de script open-source de uso geral, muito utilizada
e especialmente utilizada para o desenvolvimento de aplicações Web inseridas no
HTML; amplamente utilizada por sua facilidade de aprendizado, mas com recursos
avançados.
Algumas características importantes que nos fizeram escolher esta plataforma:
 Autenticação: WebLab-Deusto oferece um sistema de autenticação
extensível que suporta nome de usuário e senha armazenados em um banco de dados
MySQL, LDAP servidores remotos, e também OpenID para verificar as credenciais
em outra Universidade, Facebook, e autenticação confiável com base no endereço IP
do cliente que requisita acesso;
 Gerenciamento de fila: WebLab-Deusto gera filas diferentes de reserva
para as diferentes plataformas experimentais disponíveis, impedindo sobrecarga aos
experimentos disponíveis;
 Escalabilidade: A arquitetura WebLab-Deusto é apresentada em
escala horizontal e ferramentas de teste estão disponíveis para testar diferentes
implementações;
 Segurança: A arquitetura distribuída WebLab-Deusto mantém em
isolamento o hardware e software que está acoplado à experiência, de modo que
qualquer problema relacionado com um uso errado do experimento nunca não coloca
todo o laboratório remoto em risco.
 Implementação: O sistema de implantação WebLab-Deusto torna fácil
e flexível a configuração do mapa da rede em que todos os servidores e experimentos
estão envolvidos.
 Acompanhamento do usuário: Os usos do laboratório remoto são
armazenados automaticamente. No caso dos experimentos gerenciados, mesmo os
33
comandos trocados entre o servidor e o cliente são armazenados, para eventuais
correções necessárias e acompanhamentos. A quantidade de eventos a serem
registrados cabe ao administrador-WebLab-Deusto.
 Administração: O WebLab-Deusto oferece ferramentas de
administração tais como; monitorar usuários em tempo real, verificar acessos,
adicionar/remover permissões, grupos e usuários, etc.
 Facebook: WebLab-Deusto está integrado com o Facebook, assim os
usuários podem vincular suas contas e usá-lo com ferramentas fornecidas pelo
Facebook, como o bate-papo (lista de aplicativos).
 Dispositivos móveis: A interface de usuário-WebLab Deusto também
é adaptada para dispositivos móveis, e os experimentos gerenciados também podem
ser adaptados para fornecer uma versão mais amigável com o usuário, possibilitando
a aprendizagem móvel.
 Extensibilidade: experiências existentes também podem ser adaptadas
para Weblab-Deusto.
A partir destas considerações concluímos que o WebDeusto se mostra como
uma ferramenta interessante para criação de laboratórios remotos e flexível para
integrar diferentes experimentos, escritos em diferentes linguagens de programação,
à administração do todo. A parte de desenvolvimento das interfaces com a web utiliza
GWT, uma ferramenta muito poderosa, e que permite a criação de interfaces que
possam apresentar as mais variadas abordagens, como por exemplo, a de game, da
mesma forma que permite a criação de interfaces diferentes para especificações
diferentes, como o caso das interfaces para professor e usuário/aluno, as quais
desejamos implementar futuramente. Outras ferramentas que possibilitam maior
aproximação com o usuário podem ser utilizadas, tal como o flash, garantindo-lhe uma
experiência mais amigável com o programa, e o HTML5, pela portabilidade oferecida.
A seguir apresentaremos algumas telas de acesso ao Weblab, da PUC/SP, o
Webduino, baseado na plataforma WebLab-Deusto.
34
Fig.05 - Tela de acesso aos experimentos do Weblab da PUC-SP, baseado na plataforma WebLab-
Deusto (acesso via http://weblabduino.pucsp.br/weblab/client/index.html?locale=pt)
Fig.06 - Tela que mostra a reserva para o experimento (ERA – Espectrofotômetro Remoto
Automatizado).
35
Fig.07 - Tela de acesso ao experimento.
E as figuras do nosso site e do blog do experimento (ERA – Espectrofotômetro Remoto
Automatizado).
Fig. 08 – Tela mostrando o acesso ao site do projeto – o qual se pretende criar uma área de acesso ao
Ambiente de Aprendizagem (http://www.pucsp.br/webduino/experimentos/espectrofotometro-rem oto-
automatizado/index.html)
36
Fig. 09 – Tela mostrando o blog do Projeto, com maiores informações de todas as partes do
experimento, inclusive explicando questões teóricas e pedagógicas do projeto. (Acesso via: http://era-
weblab.blogspot.com.br/)
7.3.3 Coleta de Dados
Para que um experimento seja completo necessitamos que ele, ao receber
estímulos dos alunos, responda de maneira adequada. Na maior parte das análises
experimentais e, da mesma forma que nos experimentos presenciais, extraímos
dados que serão dispostos em gráficos para que se realize as análises necessárias,
posteriormente. Para realizar tal coleta, dispomos de redes de sensores internas e
interfaces de reprodução dos gráficos e de visualização dos dados.
Com isso, para a interface dos usuários explicitaremos os dados através de
gráficos utilizando uma biblioteca Java denominada Jchart2D, que prioriza a
performance na visualização dos dados, sem deixar de lado implementações
complexas e em tempo real. Os processos nesta aproximação ocorrem somente por
tráfego interno, dos experimentos para o cliente (ou seja, o cliente não gera gráficos,
e sim o experimento para o cliente).
Como um dos objetivos iniciais do projeto é permitir a utilização da Rede de
Sensores, disponíveis na Web, utilizamos em um dos experimentos, a plataforma
Xively® para coleta e disponibilização dos dados experimentais. Esta plataforma
possibilita integração paralela dos experimentos, utilizando conexão através da
internet com seu próprio servidor, que nos transmitem os dados em forma de gráficos
37
e arquivos de manipulação para web ou ainda programação como os padrões: XML e
o CSV (Comma-Separeted Values, ou valores separados por vírgula).
Para este tipo de experimento monitorado via Xively®, elaboramos uma
sequência de tutoriais (WEBDUINO, 2014), de modo a permitir que os usuários
possam reproduzir outros experimentos de seu interesse para acesso remoto de
dados gratuitamente, contribuindo para uma maior divulgação e popularização desta
tecnologia.
7.3.4 Segurança
Duas das ferramentas utilizadas para buscar a estabilidade e integridade do
nosso sistema, são o controle de acesso de usuários e o gerenciamento de uso dos
experimentos, ou ainda, controle por filas FIFO (First In First Out; o primeiro da fila
que entrar saíra primeiro). Tal recurso é muito importante, tendo em vista que os
recursos físicos são limitados. Este controle é propiciado em grande parte pela
plataforma Weblab-Deusto.
Utilizamos ainda outras técnicas de segurança em redes tais como Firewalls e
controle de acesso às ferramentas que completam o sistema. Além disso, são
necessários alguns protocolos específicos para cada tipo de comunicação com o
servidor principal, o que de certa forma, evitam explorações indevidas em nossos
sistemas.
8 Metodologia
Este estudo será realizado com uma abordagem de construção de protótipo,
visando uma implementação inicial e verificação, com testes de funcionalidade e
adequação a possíveis necessidades de usuários, para posterior utilização do
Laboratório Remoto e verificação de possíveis melhorias na aprendizagem de alunos,
e complementando o ensino ministrado por professores, em escolas (por ora, em
contato com Goiânia e Campinas). Sendo assim, inicialmente foram realizadas
pesquisas de levantamento do estado da arte e foi realizado o levantamento da
fundamentação teórica (relatados nos itens anteriores) do tema proposto, e frente as
38
necessidades atuais, proceder-se-á à montagem do protótipo do experimento, bem
como a estruturação da arquitetura de rede necessária para a adequação do
laboratório com acesso remoto, dentro de um ambiente de aprendizagem que seja
condizente com as necessidades educacionais do usuário, com relação a tópicos de
Física Moderna, bem como à possíveis necessidade pedagógicas dos profissionais
da área.
Esta etapa do projeto, a ser realizada futuramente, será possível após as
adequações e construção do ambiente, com a realização de testes de funcionamento
e de interação do usuário com o ambiente.
Temos as seguintes etapas de trabalho:
Etapa 0 Realização de disciplinas do curso, Qualificação (Jan/16), Elaboração do
Texto de defesa, Defesa do Projeto.
Etapa 1 Estado da Arte dos Trabalhos relacionados ao desenvolvimento e uso de
Laboratórios Remotos junto ao ensino, em particular, em disciplinas de
Física, evidenciando necessidade, adequações possíveis, melhorias,
críticas ao uso e, se possíveis, intercomparações de laboratórios remotos.
Etapa 2 Levantamento do Referencial Teórico referente às Atividades
Relacionadas a Construção, Estruturação e Adequação, Viabilidade e
Testes de Laboratórios Remotos em Ensino.
Etapa 3 Construção do Laboratório Remoto, desde sua concepção teórica,
considerando os referenciais metodológicos, e prática até a elaboração e
estruturação.
Etapa 4 Implementação e Testes de Funcionamento, evidenciando necessidades
e possíveis melhoras, com relação aos aspectos necessários para o bom
funcionamento e interação do Laboratório Remoto.
Etapa 5 Pré-Teste (considerando a continuação do projeto em questão) com usuário
para verificação da eficácia do ambiente de aprendizagem e que possíveis
melhorias devam ser realizadas e futuras adequações visando um melhor
aproveitamento dos recursos existentes no ambiente.
A primeira etapa da investigação em curso se deu logo pela escolha do tema,
dado que, conforme analisado através da revisão do Estado da Arte dos Laboratórios
on-line, baseados na Internet, estes podem se classificar em dois tipos: virtual e
39
remoto, de modo que a escolha ser pelo laboratório remoto se dá devido às seguintes
características, conforme Nedic et al. (2003):
 Há interação direta com equipamentos reais;
 As informações são reais;
 Não há restrições nem de tempo e nem de espaço;
 Possui um custo médio de montagem, utilização e manutenção;
 Há feedback do resultado das experiências on-line.
Após a escolha do tema a ser estudado, dentro da etapa da Revisão do Estado
da Arte, por se tratar de um assunto relativamente novo, a quase totalidade das
referências ligadas aos laboratórios sejam virtuais ou remotos advêm de artigos
científicos, nos quais as mais recentes informações e estudos da área foram
divulgados.
A partir das informações recolhidas, a Revisão do Estado da Arte continuou
com a investigação do desenvolvimento dos laboratórios remotos em curso em
algumas universidades e centros de pesquisas, analisando-se algumas publicações
Qualis A. Para tanto, utilizou-se o trabalho de Cardoso e Takahashi (2011), publicado
na Revista Brasileira de Pesquisa e Educação em Ciência (RBPEC). Segundo a
investigação destes pesquisadores da Universidade Federal de Uberlândia:
O intuito é investigar se (e como) os laboratórios remotos
estão sendo utilizados no ensino, particularmente, no ensino
de Física. Foram selecionados e analisados artigos de
periódicos Qualis A nacionais e internacionais, entre os anos
2000 e 2009. No desenvolvimento de nosso trabalho não
encontramos relatos de pesquisa sobre acesso remoto a
experimentos para a área de Física ou de como isso pode
incrementar o processo de ensino e aprendizagem dessa
disciplina. Desta forma, as eventuais limitações na utilização
desta ferramenta no ensino devem ser estudadas de forma
aprofundada e suas potencialidades exploradas no sentido de
suprir as necessidades de uma aula prática. (CARDOSO;
TAKAHASHI, 2011)
Após esta análise verificou-se que a utilização dos laboratórios remotos no
contexto de ensino de Física, embora pouco abordado, apresenta-se como uma
prática crescente e sua utilização abre um campo de possibilidades e de
experimentações, as quais devem ser melhor trabalhadas, visando as potencialidades
que advém de uma maior sistematização. Em outras situações (BOTENTOUIT, 2007),
40
foi observado, ainda, que o maior investimento está nos laboratórios direcionados ao
ensino a nível universitário, dados os maiores recursos disponíveis, o que não significa
que não possam ser utilizados em parcerias entre universidades e escolas.
Diante destes levantamentos e das questões surgidas, a procura de respostas
levou-nos a considerar que, em termos metodológicos, o desenho do estudo seria
necessariamente multifacetado, no sentido de envolver a utilização de instrumentos e
amostras diversificados.
As investigações de um modo geral visam à criação do conhecimento científico,
e para chegar aos resultados existem um conjunto de métodos que podem ser
empregados, dentre estes os métodos experimentais, métodos descritivos, e também
métodos qualitativos (através de formulários, questionários, entre outros) ou mesmo
métodos mistos/específicos. Com base nestas considerações, pode-se ressaltar que
o estudo em questão apresenta ao mesmo tempo características de um estudo de
avaliação (LUKAS; SANTIAGO, 2004), de um estudo de caso (COUTINHO; CHAVES,
2002), e ainda características de um modelo metodológico misto muito divulgado em
pesquisas internacionais no domínio da Tecnologia Educativa que, na literatura, se
designa por metodologia de desenvolvimento (VAN DEN AKKEN, 1999),
nomenclatura advinda da área de Desenvolvimento de Softwares.
Para Van Den Akken (1999) as diferenças entre as metodologias de
desenvolvimento e as abordagens empíricas tradicionais estão relacionadas mais às
finalidades da investigação (nível filosófico e epistemológico) do que ao nível dos
métodos propriamente ditos: “os métodos da investigação de desenvolvimento não
são necessariamente diferentes de outras abordagens de investigação educativa”
(VAN DEN AKKEN, 1999). Ou seja, as metodologias de desenvolvimento utilizam,
para a coleta e análise de dados, instrumentos e técnicas tanto das abordagens
quantitativas quanto qualitativas.
As diferenças situam-se na forma como abordam os problemas e como se
concebe o projeto da investigação em si. Coutinho e Chaves (2001) sintetizam da
seguinte forma as características básicas deste modelo metodológico:
 O fim último da pesquisa não é testar a teoria mas resolver problemas práticos
dos professores;
41
 A busca da solução para o problema passa pela concepção de uma solução
“protótipo” que deve ser fundamentada desde um ponto de vista teórico e
prático (ouvidos os profissionais no terreno) e articulada com objetivos de
aprendizagem;
 Condução de uma investigação rigorosa e reflexiva no sentido de testar, avaliar
e refinar no terreno, num processo interativo, a solução protótipo concebida;
 Implica colaboração permanente entre investigadores, profissionais do terreno
(professores) e tecnólogos (informáticos).
Definido o tema de estudo, frente às necessidades no campo do ensino de
Física em território nacional, e selecionada a metodologia a ser empregada, com
relação a elaboração, desenvolvimento e avaliação de um protótipo, o passo seguinte
deve ser a escolha do laboratório remoto a utilizar como referência, base, para o
desenvolvimento do próprio laboratório remoto, inserido em um ambiente virtual de
aprendizagem.
A utilização das novas tecnologias, no que se refere ao uso dos laboratórios
remotos, pode trazer imensas vantagens para o ensino escolar. Tendo isso em mente,
estamos desenvolvendo nosso próprio laboratório remoto de Física, com foco no
ensino de Física, ambientado na Pontifícia Universidade Católica de São Paulo (PUC-
SP), com base na investigação dos recursos e vantagens do laboratório remoto da
Universidade Federal de Santa Catarina – Campus Araranguape, o RexLab (SILVA,
2006), além da interface de uso do WebLabDeusto (UNIVERSIDADE DE DEUSTO,
2015), para a criação do ambiente virtual. Tendo como base estes laboratórios,
procuramos mesclar algumas características e introduzir outras inexistentes,
principalmente no que se refere ao aspecto pedagógico e conceitual de tópicos de
Física Moderna, desde a concepção teórica dos experimentos até questões de
aplicações tecnológicas advindas do estudo fenômeno trabalhado no experimento
remoto, que podem favorecer uma maior aprendizagem.
Com as informações obtidas através da literatura, do Estado da Arte e da
criação do ambiente virtual, no qual deverá ser inserido o laboratório remoto, devemos
partir para a última fase deste projeto de pesquisa, para fins de monografia: o
desenvolvimento de um protótipo, propriamente dito, o qual deverá ser aplicado em
testes de verificação de usabilidade e de aplicação, visando a adequação ao aspecto
42
educacional, porém, para projeto posterior, na continuação desta pesquisa. Um
esquema com o plano de investigação das etapas pode ser observado abaixo na
figura 1.
Fig. 10 - Esquema do plano de investigação (adaptado de Bottentouit, Universidade do Porto, 2007).
Considerando ainda, que este protótipo deve incluir não somente a montagem
física a ser alocada dentro de uma estrutura que possibilite a coleta de dados e de
imagens do experimento real, com acesso remoto, mas também de toda a estrutura
de rede, dentro da qual deve ser alocado o ambiente virtual de aprendizagem, para
que o aspecto educacional não fique relegado a segundo plano, de forma que seja
evidenciado, então, a preocupação com o ensino de tópicos de Física Moderna, além
da troca de informações relacionadas, seja através de fóruns, entre outras interfaces
a serem disponibilizadas dentro do ambiente.
8.1 Resultados Esperados
Com base na metodologia de desenvolvimento, proposta por Van den Akeen
(1999), pretendemos montar o protótipo, após um estudo de avaliação dos
laboratórios existentes, e das potencialidades que necessitam ser explorados; bem
como após a montagem do próprio, pretendemos realizar um estudo de caso, frente
ao ambiente virtual de aprendizagem com o laboratório remoto a ser montado,
contudo, esta etapa temos em mente que não seja possível ser realizada para fins
43
desta pesquisa, e sim, para um trabalho futuro, como continuação dos
desenvolvimentos das etapas correntes.
Sendo assim, nos dois próximo itens mostraremos os resultados que
esperamos encontrar, a fim de se desenvolver o protótipo, concluindo com o ambiente
virtual de aprendizagem no qual estará inserido o laboratório remoto, além dos testes
de aplicabilidadee de eficácia do próprio frente ao contexto atual. Testes de validação
do Laboratório Remoto com o Ambiente Virtual de Aprendizagem pretendemos
desenvolver em trabalhos futuros, como foi dito, em um possível estudo de caso.
8.1.1 Implementação e Testes de Funcionamento
Pretendemos demonstrar, ao longo dos Resultados, etapas e imagens do 1)
Experimento de Espectrofotômetro Remoto Automatizado, propriamente dito,
demonstrando, antes, o 2) Contexto da Espectrofotometria em relação ao Ensino de
Física Moderna, partindo para a 3) Programação no Arduino para o Espectrofotômetro
Remoto Automatizado, até as 4) 4.1) Interfaces: de Visualização do Experimento; 4.2)
de Controle Remoto para acionamento da lâmpada de LED, além das etapas de
construção do 5) Ambiente Virtual de Aprendizagem, no qual estará contido o
experimento, ou seja, o laboratório remoto.
8.1.2 Teste de Funcionamento do Experimento
Além das etapas iniciais de demonstração da construção do protótipo,
pretendemos demonstrar, também, 6) Teste de Funcionamento da Programação do
Arduino; 7) Teste de Funcionamento da Programação de Acionamento da Lâmpada
de LED; 8) Teste de Acionamento do Experimento e Coleta de Dados; etapas estas
que evidenciam os códigos e resultados obtidos, necessários para uma análise mais
aprofundada a posteriori.
8.2 Resultados Obtidos até o momento
Até o momento, montamos a estrutura do experimento físico, bem como a
programação no Arduino para controle de giro do motor, que aciona o giro da rede de
difração a fim de fazer passar as raias do espectro pelo sensor de cor. Este por sua
vez, coleta os dados de irradiância e de comprimento de onda, os quais são
repassados via saída serial a interface de controle, a qual é acionada pelo usuário
44
remoto, o qual poderá observar os dados em um gráfico de Irradiância (W/m²) por
Comprimento de onda (nm), ou em uma tabela com as respectivas colunas.
Também está em fase de adequação às características de Ambiente Virtual de
Aprendizagem, a interface de controle do experimento (como pode ser observada pela
figura 07), a fim de possibilitar um maior suporte a uma aprendizagem mais interativa
e significativa.
Também está pronta a interface de controle de acionamento das cores da
lâmpada de LED RGB, em php, a qual será inserida dentro da interface de controle
do experimento. A programação e a imagem da interface (ANEXO 1), bem como a
programação no arduino (em C++) – ANEXO 2 - que controla o envio de dados a
interface de controle pela saída serial, além da imagem do experimento físico,
propriamente dito (ANEXO 3), com a disposição dos componentes para geração do
espectro, estão na sessão de anexo
8.3 Próximas Etapas
Nas próximas etapas pretendemos:
1. findar a montagem do experimento físico,
a. fixando cada um dos componentes,
b. melhorando a resolução do espectro,
c. melhorando o envio dos dados através da inserção de um novo sensor
de cores (sensor de cores RGB TCS 3200), no lugar do conversor de
frequência
2. Adequação da Programação no Arduino para enviar a coleta de dados e
receber os comandos da interface de controle
3. Inserção com possíveis adequações da Interface de Controle Remoto (que
aciona a mudança de cores da lâmpada de LED, conforme o usuário queira),
na Interface de Controle do Experimento.
4. Adequação da Interface de Controle para torna-la mais apropriada para fins de
um Ambiente Virtual de Aprendizagem:
a. Incrementando a Interface de modo a permitir a colocação de chats,
fóruns entre outros componentes dentro da interface que permita a troca
45
de informações, dentro de uma perspectiva semelhante ao ambiente
disponível no Moodle.
b. Colocando itens dentro da interface que permita uma interação maior
com o usuário remoto, como por exemplo, hiperlyns que possam leva-
lo a vídeos de demonstração de outros experimentos relacionados,
simuladores dos conceitos advindo com o experimento demonstrado
entre outras possibilidades.
c. Melhorar o design da Interface de controle.
Com essas atualizações a serem realizadas ou aperfeiçoadas pretendemos que este
experimento fique já disponível para controle e verificação dos espectros pelo usuário
remoto, além de poder ser usado efetivamente como um recurso para a aprendizagem
do mesmo, e que seja significativa e interessante.
Referências Bibliográficas
AGUIAR, C.E.; LAUDARES, F. “Aquisição de Dados usando Logo e a Porta de Jogos do PC”.
Revista Brasileira de Ensino de Física, 23, 4, 371-379, 2001.
BANZI, M. “Primeiros Passos Com o Arduino”, São Paulo: Novatec, p1, 2011.
BOTENTOUIT JUNIOR, J. B. “Laboratórios Baseados Na Internet: Desenvolvimento De Um
Laboratório Virtual De Química Na Plataforma MOODLE”, Dissertação de Mestrado em Educação
Multimídia. Orientadora: Dra. Clara Maria Pereira Coutinho. Universidade do Porto, Portugal, 2007.
BRASIL. Senado Federal. Lei de Diretrizes e Bases da Educação Nacional: nº 9394/96; art. 32-
II. Brasília, 1996.
BRASIL. Secretaria de Educação Média e Tecnológica. PCN+ Ensino Médio: orientações
educacionais complementares aos Parâmetros Curriculares Nacionais. Ciências da Natureza,
Matemática e suas Tecnologias. Brasília: MEC, SEMTEC, 2002.
CAVALCANTE, M.A. “O projeto Webduino”. Acesso em 16 de Julho de 2014, disponível em
http://webduino.blogspot.com.br/
CAVALCANTE, M.A.; BONIZZIA, A.; GOMES, L.C.P. “Aquisição de dados em laboratórios de
Física; um método simples, fácil e de baixo custo”, Revista Brasileira de Ensino de Física, 30,2, 2501-
2506, 2008.
CAVALCANTE, M.A.; BONIZZIA, A.; GOMES, L.C.P. “O ensino e aprendizagem de física no
Século XXI: sistemas de aquisição de dados nas escolas brasileiras, uma possibilidade real”, Revis ta
Brasileira de Ensino de Física 31,4, 4501-4506, 2009.
CAVALCANTE, M.A.; STABILE, B. S.; FONTES, M. M.; ALMEIDA JUNIOR, J. N.; REBOUÇAS,
H. C. “Webduino: um laboratório de Sensoriamento Remoto para o ensino e Aprendizagem de
Ciências”, em fase de revisão, 2012
CAVALCANTE, M.A.; SILVA, E.; PRADO, R.; HAAG, R. “O Estudo de Colisões através do
Som”, Revista Brasileira de Ensino de Física 24, 2, 150-157, 2002.
CAVALCANTE, M.A.; TAVOLARO, C.R.C. “Medindo a Velocidade do Som”, Física na Escola,
4, 1, 29 – 30, 2003.
46
CAVALCANTE, M.A., TAVOLARO, C.R.C.; MOLISANI, E. “Física com Arduíno para Iniciantes”,
Revista Brasileira de Ensino de Física, 33,4,4053- 4053-8, 2011.
CETIC.BR, Pesquisa TIC Educação 2012 - Pesquisa sobre o uso das TIC nas escolas
brasileiras, São Paulo, 2013.
CLOUGH, M.P. “Using the Laboratory to Enhance Student Learning, Learning Science and the
Science of Learning”, R.W. By-Bee, ed., pp. 85-97, Nat’l Science Teachers Assoc., 2002.
COUTINHO, C. P.; CHAVES, J. H. “O estudo de caso na investigação em Tecnologia Educativa
em Portugal”. Revista Portuguesa de Educação, Vol 15, nº 1, 221-244, 2002.
DIONÍSIO, G. e MAGNO, C.W.; “Photogate de baixo custo com a porta de jogos do PC”, Revista
Brasileira de Ensino de Física, 29,2, 287-293, 2007.
ELTON,L. “Student Motivation and Achievement,” Studies in Higher Education, vol. 13, no. 2,
pp. 215-221, 1988
EVANS, G.R “Teaching.” Academics and the Real World, pp. 38-58, Soc. for Research into
Higher Education & Open Univ. Press, 2002.
HAAG, R. “Utilizando a Placa de Som do Micro PC no Laboratório Didático de Física”, Revista
Brasileira de Ensino de Física, 23, 2, 176-183, 2001.
HANSON, B.; CULMER, P.; GALLAGHER, J.; PAGE, K.; READ, E.; WEIGHTMAN, A.;
LEVESLEY, M. “ReLOAD: Real Laboratories Operated at a Distance”, IEEE Transactions on Learning
Technologies, vol. 2, no. 4, October-December 2009
INTER-UNIVERSITY. “Teaching and Its Funding in the UK”, Univ. of Cambridge, United
Kingdom, Mar., 2008
LOURENÇO, R. S. “Laboratórios Remotos – Um Estudo para a PUC-Rio”, Relatório de
Pesquisa, Departamento de Engenharia Elétrica (DEE) – PUC-Rio, 31 de Julho de 2014.
LUKAS, J. F.; SANTIAGO, K. “Evaluación Educativa”. Madrid: Alianza Editorial, 2004.
MAGNO, C. W.; MONTARROYOS, E. “Decodificando o Controle Remoto com a Placa de Som
do PC”. Revista Brasileira de Ensino de Física, 24, 4, 497- 499, 2002.
MARGOLIS, M. “Arduíno Cookbook”. Sebastopol, CA, USA: O'Rilley Media, p1, 2011.
MEDEIROS, A.; MEDEIROS, C. F. “Possibilidades e Limitações das Simulações
Computacionais no Ensino da Física”, Rev. Bras. Ensino Fís., v.24, n.2, p.77-86, junho 2002.
MENDES, M. A.; FIALHO, F. A. P. Experimentação Tecnológica Prática a Distância. In:
Congresso Internacional de Educação a Distância, 12., 2005. Florianópolis. Atas do XII Congresso
Internacional de Educação a Distância. Florianópolis: ABED, 2005. Disponível em:
http://www.abed.org.br/congresso2005/por/pdf/132tcc2.pdf . Acesso em: 14 jan. 2009.
MONTARROYOS, E.; MAGNO, C.W. “Aquisição de Dados com a Placa de Som do
Computador”, Revista Brasileira de Ensino de Física, 23, 1, 57 – 62, 2001.
MOREIRA, M.A. “Teorias de Aprendizagem.”, 2. ed., São Paulo: EPU, 2011.
MORIN, E. “A cabeça bem-feita: repensar a reforma, reformar o pensamento.”, 8ª ed. Rio
de Janeiro: Bertrand Brasil, 2003.
NEDIC, Z.; MACHOTKA, J.; NAFALSKI, A. “Remote Laboratories Versus Virtual and Real
Laboratories”, 33rd ASEE/IEEE Frontiers in Education Conference. Boulder, CO – USA, Novembro,
2003.
NERSESSIAN, N.J. “Conceptual Changes in Science and Science Education,”, History,
Philosophy and Science Teaching, pp. 133-148, OISE Press, 1992.
PAPERT, S. “A Máquina das Crianças: repensando a escola na era da informática.” Editora
Artmed – edição revisada, 2008.
REIS, S.R.; SANTOS, F.A.S.; TAVARES, J.A.V. “O Uso Das TICs em Sala de Aula: Uma
Reflexão sobre o seu Uso no Colégio Vinícius de Moraes/São Cristóvão”, p. 216, em Anais do 3º
Simpósio Educação e Comunicação, 2012.
47
SÉRÉ, M. G.; COELHO, S. M.; NUNES, A. N. “O Papel Da Experimentação No Ensino Da
Física”. Caderno Brasileiro de Ensino de Física, v. 20, n. 1, p. 31-43, 2003.
SIEVERS JUNIOR, F.; GERMANO, J. S. E.; OLIVEIRA, J. M. P. “WebLab - Um ambiente de
laboratórios de acesso remoto educacional”, em Anais do 23º Simpósio Brasileiro de Informática na
Educação (SBIE 2012), Rio de Janeiro, novembro 2012
SILVA, J. B. “A Utilização Da Experimentação Remota Como Suporte Para Ambientes
Colaborativos De Aprendizagem”. Tese de Doutorado, Orientador: Prof. João Bosco da Mota Alves,
Dr., UFSC, Florianópolis, 2006.
SOUZA, A.R.; PAIXÃO, A.C.; UZÊDA, D.D; DIAS, M.A.; DUARTE, S. e AMORIM, H.S. “A placa
Arduíno: uma opção de baixo custo para experiências de Física assistidas pelo PC”, Revista Brasileira
de Ensino de Física, v.33, n.1, p.1702-1705, 2011.
SOUZA, D. F.; SARTORI, J.; BELL, M.J.; NUNES, L.A. “Aquisição de dados e Aplicações
Simples Usando a Porta Paralela do Micro PC.”, Revista Brasileira de Ensino de Física, v.20, n.4, p.413 -
422, 1998.
STABILE, B.S.; CAVALCANTE, M.A. “Desenvolvimento de interface padrão de comando com
reconhecimento de voz para diferentes dispositivos e experimentos didáticos monitorados e
controlados remotamente”, III Webcurriculo, PUC/SP, Brasil, novembro de 2012. (acesso disponível
em: http://zip.net/bbljlT ).
STUDART, N.; RIPOSATI, A.; MIRANDA, M. “Objetos de aprendizagem no ensino de física:
usando simulações do PhET”, Revista Física na Escola, v.11, n.1, p.27-31, março 2010.
UFES, Minicurso ARDUÍNO – ERUS Equipe de Robótica UFES. Disponível em
http://www.inf.ufes.br/~erus/arquivos/ERUS_minicurso%20Arduíno.pdf., 2012.
UNESCO. Padrões De Competência Em TIC para Professores – Diretrizes de Implementação
v1.0, PARIS, UNESCO, 2008.
UNIVERSIDADE DE DEUSTO. WebLab-Deusto Research Group. Informações retiradas do
site, utilizando Git Hub. Acesso em 20 de Maio de 2015, disponível em
https://www.weblab.deusto.es/web/
VAN DEN AKKEN, J.; NIEVEEN, N.; BRANCH, R. M.; GUSTAFSON, K.; PLOMP, T. (Eds).
“Design Methodology and Developmental Research in Education and Training”. Netherlands: Kluwer
Academic, 1999.
WEBDUINO. Google Code. Acesso em 22 de Outubro de 2014, disponível em Project Hosting:
http://code.google.com/p/weblabduino
WORLD WIDE WEB CONSORCIUM (W3C – Escritório Brasil), Uso de Padrões Web (Palestra),
Maio/2009.
48
ANEXO
ANEXO 1
Interface de Controle Remoto
Esta é a imagem da interface de controle remoto, em primeira versão, de como deve
aparecer na tela ao usuário remoto. Pretendemos inseri-la com possíveis adequações
a interface de controle do experimento.
Fig. A1 – Interface de Controle Remoto (Aciona as cores da Lâmpada de LED)
Programação para a Interface de Controle Remoto
Esta é a programação utilizada pela interface de controle remoto, a qual faz o acionamento
das Cores na lâmpada de LED.
49
<?php
$tecla = $_REQUEST['tecla'];
if ($tecla != "")
{
switch ($tecla)
{
case "aumentarbrilho" : $acao = "1"; break;
case "diminuirbrilho" : $acao = "0"; break;
case "desligar" : $acao = "D"; break;
case "ligar" : $acao = "L"; break;
case "vermelho" : $acao = "R"; break;
case "verde" : $acao = "G"; break;
case "azul" : $acao = "B"; break;
case "branco" : $acao = "W"; break;
case "laranja" : $acao = "o"; break;
case "verdeclaro" : $acao = "g"; break;
case "azulmedio" : $acao = "b"; break;
case "flash" : $acao = "F"; break;
case "laranjaescuro" : $acao = "O"; break;
case "azulclaro" : $acao = "z"; break;
case "roxo" : $acao = "x"; break;
case "estrobo" : $acao = "S"; break;
case "amareloescuro" : $acao = "y"; break;
case "azulesverdeado" : $acao = "c"; break;
case "violeta" : $acao = "V"; break;
case "fadein" : $acao = "<"; break;
case "amarelo" : $acao = "Y"; break;
case "azulesverdeadoescuro" : $acao = "C"; break;
case "violetaclaro" : $acao = "P"; break;
case "smooth" : $acao = "-"; break;
}
$portAdress = fopen("COM6","w+");
sleep(1);
fwrite($portAdress, $acao);
sleep(1);
//echo fgets($portAdress);
fclose($portAdress);
}
?>
<style type="text/css">
.utf8sans {
font-family:"Lucida Grande","Arial Unicode MS", sans-serif;
}
h1{
alignment-adjust:after-edge;
animation:ease-in-out;
font-family: "Lucida Sans Unicode", "Lucida Grande", sans-serif;
font-size:30px;
display: run-in;
padding: 10px 20px;
text-decoration: blink;
border-color:transparent;
border: 10px;
background-image: linear-gradient(to top, #FFC, rgba(0,0,0,.07));
background: ;
color: #111;
}
Laboratório Remoto de Física Moderna
Laboratório Remoto de Física Moderna
Laboratório Remoto de Física Moderna
Laboratório Remoto de Física Moderna
Laboratório Remoto de Física Moderna
Laboratório Remoto de Física Moderna
Laboratório Remoto de Física Moderna
Laboratório Remoto de Física Moderna
Laboratório Remoto de Física Moderna
Laboratório Remoto de Física Moderna
Laboratório Remoto de Física Moderna
Laboratório Remoto de Física Moderna
Laboratório Remoto de Física Moderna
Laboratório Remoto de Física Moderna
Laboratório Remoto de Física Moderna
Laboratório Remoto de Física Moderna
Laboratório Remoto de Física Moderna
Laboratório Remoto de Física Moderna
Laboratório Remoto de Física Moderna

Weitere ähnliche Inhalte

Was ist angesagt?

Robotica microsoft educação
Robotica   microsoft educaçãoRobotica   microsoft educação
Robotica microsoft educaçãoKátia Dutra
 
Projeto de aprendizagem robótica na escola
Projeto de aprendizagem robótica na escolaProjeto de aprendizagem robótica na escola
Projeto de aprendizagem robótica na escolapro-engenharias
 
ApresentaçãO U2 S4 G5
ApresentaçãO U2 S4 G5ApresentaçãO U2 S4 G5
ApresentaçãO U2 S4 G5Grupo 5
 
[2010] Aspectos emocionais e técnicos da tecnologia educacional
[2010] Aspectos emocionais e técnicos da tecnologia educacional[2010] Aspectos emocionais e técnicos da tecnologia educacional
[2010] Aspectos emocionais e técnicos da tecnologia educacionalUFPE
 
Robótica educacional
Robótica educacionalRobótica educacional
Robótica educacionalRaul Andrade
 
Monografia - LABORATÓRIO VIRTUAL DE FÍSICA UTILIZANDO O SOFTWARE UNITY
Monografia - LABORATÓRIO VIRTUAL DE FÍSICA UTILIZANDO O SOFTWARE UNITYMonografia - LABORATÓRIO VIRTUAL DE FÍSICA UTILIZANDO O SOFTWARE UNITY
Monografia - LABORATÓRIO VIRTUAL DE FÍSICA UTILIZANDO O SOFTWARE UNITYTailo Mateus Gonsalves
 
Apresentação - LABORATÓRIO VIRTUAL DE FÍSICA UTILIZANDO O SOFTWARE UNITY
Apresentação - LABORATÓRIO VIRTUAL DE FÍSICA UTILIZANDO O SOFTWARE UNITYApresentação - LABORATÓRIO VIRTUAL DE FÍSICA UTILIZANDO O SOFTWARE UNITY
Apresentação - LABORATÓRIO VIRTUAL DE FÍSICA UTILIZANDO O SOFTWARE UNITYTailo Mateus Gonsalves
 
Aceitação e o emprego do computador portátil na sala de aula
Aceitação e o emprego do computador portátil na sala de aulaAceitação e o emprego do computador portátil na sala de aula
Aceitação e o emprego do computador portátil na sala de aulaRidelc Ahcor Arierep
 
Orientar a atenção dos alunos através de um modelo de movimento ocular pode e...
Orientar a atenção dos alunos através de um modelo de movimento ocular pode e...Orientar a atenção dos alunos através de um modelo de movimento ocular pode e...
Orientar a atenção dos alunos através de um modelo de movimento ocular pode e...Paulo Correia
 
Robotica Educativa
Robotica EducativaRobotica Educativa
Robotica Educativaguest0aa7b2
 
Tecnologias computacionais aplicadas na educação: experiências com robótica e...
Tecnologias computacionais aplicadas na educação: experiências com robótica e...Tecnologias computacionais aplicadas na educação: experiências com robótica e...
Tecnologias computacionais aplicadas na educação: experiências com robótica e...Eliane Pozzebon
 
Robótica educacional tecnologias
Robótica educacional  tecnologias Robótica educacional  tecnologias
Robótica educacional tecnologias liemansueto
 
Robótica na educação
Robótica na educaçãoRobótica na educação
Robótica na educaçãoDavid Cardoso
 
Oficinas do Grupo de Estudos: Uma Aprendizagem Colaborativa entre estudantes ...
Oficinas do Grupo de Estudos: Uma Aprendizagem Colaborativa entre estudantes ...Oficinas do Grupo de Estudos: Uma Aprendizagem Colaborativa entre estudantes ...
Oficinas do Grupo de Estudos: Uma Aprendizagem Colaborativa entre estudantes ...Elaine Cecília Gatto
 

Was ist angesagt? (20)

Robotica microsoft educação
Robotica   microsoft educaçãoRobotica   microsoft educação
Robotica microsoft educação
 
Projeto de aprendizagem robótica na escola
Projeto de aprendizagem robótica na escolaProjeto de aprendizagem robótica na escola
Projeto de aprendizagem robótica na escola
 
8
88
8
 
ApresentaçãO U2 S4 G5
ApresentaçãO U2 S4 G5ApresentaçãO U2 S4 G5
ApresentaçãO U2 S4 G5
 
[2010] Aspectos emocionais e técnicos da tecnologia educacional
[2010] Aspectos emocionais e técnicos da tecnologia educacional[2010] Aspectos emocionais e técnicos da tecnologia educacional
[2010] Aspectos emocionais e técnicos da tecnologia educacional
 
Robótica educacional
Robótica educacionalRobótica educacional
Robótica educacional
 
Monografia - LABORATÓRIO VIRTUAL DE FÍSICA UTILIZANDO O SOFTWARE UNITY
Monografia - LABORATÓRIO VIRTUAL DE FÍSICA UTILIZANDO O SOFTWARE UNITYMonografia - LABORATÓRIO VIRTUAL DE FÍSICA UTILIZANDO O SOFTWARE UNITY
Monografia - LABORATÓRIO VIRTUAL DE FÍSICA UTILIZANDO O SOFTWARE UNITY
 
Apresentação - LABORATÓRIO VIRTUAL DE FÍSICA UTILIZANDO O SOFTWARE UNITY
Apresentação - LABORATÓRIO VIRTUAL DE FÍSICA UTILIZANDO O SOFTWARE UNITYApresentação - LABORATÓRIO VIRTUAL DE FÍSICA UTILIZANDO O SOFTWARE UNITY
Apresentação - LABORATÓRIO VIRTUAL DE FÍSICA UTILIZANDO O SOFTWARE UNITY
 
Aceitação e o emprego do computador portátil na sala de aula
Aceitação e o emprego do computador portátil na sala de aulaAceitação e o emprego do computador portátil na sala de aula
Aceitação e o emprego do computador portátil na sala de aula
 
Orientar a atenção dos alunos através de um modelo de movimento ocular pode e...
Orientar a atenção dos alunos através de um modelo de movimento ocular pode e...Orientar a atenção dos alunos através de um modelo de movimento ocular pode e...
Orientar a atenção dos alunos através de um modelo de movimento ocular pode e...
 
Robotica Educativa
Robotica EducativaRobotica Educativa
Robotica Educativa
 
Arariba geral
Arariba geralArariba geral
Arariba geral
 
Robotica
RoboticaRobotica
Robotica
 
Apresentação do artigo esse
Apresentação do artigo   esseApresentação do artigo   esse
Apresentação do artigo esse
 
Aula do dia 26/03
Aula do dia 26/03Aula do dia 26/03
Aula do dia 26/03
 
Tecnologias computacionais aplicadas na educação: experiências com robótica e...
Tecnologias computacionais aplicadas na educação: experiências com robótica e...Tecnologias computacionais aplicadas na educação: experiências com robótica e...
Tecnologias computacionais aplicadas na educação: experiências com robótica e...
 
Jose travado 2012
Jose travado 2012Jose travado 2012
Jose travado 2012
 
Robótica educacional tecnologias
Robótica educacional  tecnologias Robótica educacional  tecnologias
Robótica educacional tecnologias
 
Robótica na educação
Robótica na educaçãoRobótica na educação
Robótica na educação
 
Oficinas do Grupo de Estudos: Uma Aprendizagem Colaborativa entre estudantes ...
Oficinas do Grupo de Estudos: Uma Aprendizagem Colaborativa entre estudantes ...Oficinas do Grupo de Estudos: Uma Aprendizagem Colaborativa entre estudantes ...
Oficinas do Grupo de Estudos: Uma Aprendizagem Colaborativa entre estudantes ...
 

Ähnlich wie Laboratório Remoto de Física Moderna

Plano%20final%20 maria%20emilia
Plano%20final%20 maria%20emiliaPlano%20final%20 maria%20emilia
Plano%20final%20 maria%20emiliatecampinasoeste
 
Plano%20final%20 maria%20emilia
Plano%20final%20 maria%20emiliaPlano%20final%20 maria%20emilia
Plano%20final%20 maria%20emiliatecampinasoeste
 
Guia Pedagógico- Hibridização dos módulos de Física da disciplina de FQ dos c...
Guia Pedagógico- Hibridização dos módulos de Física da disciplina de FQ dos c...Guia Pedagógico- Hibridização dos módulos de Física da disciplina de FQ dos c...
Guia Pedagógico- Hibridização dos módulos de Física da disciplina de FQ dos c...acarneirinho
 
Wei utilizando pbl no ensino de computação ubíqua
Wei   utilizando pbl no ensino de computação ubíquaWei   utilizando pbl no ensino de computação ubíqua
Wei utilizando pbl no ensino de computação ubíquaElaine Cecília Gatto
 
Relatório de transposição didática pronatec
Relatório de transposição didática  pronatecRelatório de transposição didática  pronatec
Relatório de transposição didática pronatecAbner Lima
 
Inf.educativa i.tarefa sem. 08 e 09.
Inf.educativa i.tarefa sem. 08 e 09.Inf.educativa i.tarefa sem. 08 e 09.
Inf.educativa i.tarefa sem. 08 e 09.wagneregiselly10
 
Software educativo: Uma ferramenta a ser Explorada!
Software educativo: Uma ferramenta a ser Explorada! Software educativo: Uma ferramenta a ser Explorada!
Software educativo: Uma ferramenta a ser Explorada! Fabiana Zuliani
 
Palm - Programa Aluno Monitor - Estimulando Competências e Habilidades Técnic...
Palm - Programa Aluno Monitor - Estimulando Competências e Habilidades Técnic...Palm - Programa Aluno Monitor - Estimulando Competências e Habilidades Técnic...
Palm - Programa Aluno Monitor - Estimulando Competências e Habilidades Técnic...Roberto Carlos Oliveira Junior
 
Apresentação presencial
Apresentação   presencialApresentação   presencial
Apresentação presencialanamariadis
 
Relatório ppel_ava_2015_elizabethbatista_23.06.2015
Relatório ppel_ava_2015_elizabethbatista_23.06.2015Relatório ppel_ava_2015_elizabethbatista_23.06.2015
Relatório ppel_ava_2015_elizabethbatista_23.06.2015Elizabeth Batista
 
O Laboratório de Informática Educativa da EEFM PATRONATO SAGRADA FAMÍLIA
O Laboratório de Informática Educativa da EEFM PATRONATO SAGRADA FAMÍLIAO Laboratório de Informática Educativa da EEFM PATRONATO SAGRADA FAMÍLIA
O Laboratório de Informática Educativa da EEFM PATRONATO SAGRADA FAMÍLIAChristtianne Lima
 
Projeto de Aprendizagem sobre simulação de trajetória de partículas
Projeto de Aprendizagem sobre simulação de trajetória de partículasProjeto de Aprendizagem sobre simulação de trajetória de partículas
Projeto de Aprendizagem sobre simulação de trajetória de partículasxtganderson
 
C:\Fakepath\Gilberto Texto
C:\Fakepath\Gilberto Texto C:\Fakepath\Gilberto Texto
C:\Fakepath\Gilberto Texto gilbertocsilva
 
Simulação de trajetória de particulas através dos gráficos
Simulação de trajetória de particulas através dos gráficosSimulação de trajetória de particulas através dos gráficos
Simulação de trajetória de particulas através dos gráficosxtganderson
 
Trajetória de particulas através dos gráficos
Trajetória de particulas através dos gráficosTrajetória de particulas através dos gráficos
Trajetória de particulas através dos gráficosxtganderson
 
Utilizando pbl no ensino de computação ubíqua
Utilizando pbl no ensino de computação ubíquaUtilizando pbl no ensino de computação ubíqua
Utilizando pbl no ensino de computação ubíquaElaine Cecília Gatto
 

Ähnlich wie Laboratório Remoto de Física Moderna (20)

Plano%20final%20 maria%20emilia
Plano%20final%20 maria%20emiliaPlano%20final%20 maria%20emilia
Plano%20final%20 maria%20emilia
 
Plano%20final%20 maria%20emilia
Plano%20final%20 maria%20emiliaPlano%20final%20 maria%20emilia
Plano%20final%20 maria%20emilia
 
Guia Pedagógico- Hibridização dos módulos de Física da disciplina de FQ dos c...
Guia Pedagógico- Hibridização dos módulos de Física da disciplina de FQ dos c...Guia Pedagógico- Hibridização dos módulos de Física da disciplina de FQ dos c...
Guia Pedagógico- Hibridização dos módulos de Física da disciplina de FQ dos c...
 
Fabio melle
Fabio melleFabio melle
Fabio melle
 
Unidade3 roteiro atividades
Unidade3 roteiro atividadesUnidade3 roteiro atividades
Unidade3 roteiro atividades
 
Wei utilizando pbl no ensino de computação ubíqua
Wei   utilizando pbl no ensino de computação ubíquaWei   utilizando pbl no ensino de computação ubíqua
Wei utilizando pbl no ensino de computação ubíqua
 
Relatório de transposição didática pronatec
Relatório de transposição didática  pronatecRelatório de transposição didática  pronatec
Relatório de transposição didática pronatec
 
Inf.educativa i.tarefa sem. 08 e 09.
Inf.educativa i.tarefa sem. 08 e 09.Inf.educativa i.tarefa sem. 08 e 09.
Inf.educativa i.tarefa sem. 08 e 09.
 
Software educativo: Uma ferramenta a ser Explorada!
Software educativo: Uma ferramenta a ser Explorada! Software educativo: Uma ferramenta a ser Explorada!
Software educativo: Uma ferramenta a ser Explorada!
 
Palm - Programa Aluno Monitor - Estimulando Competências e Habilidades Técnic...
Palm - Programa Aluno Monitor - Estimulando Competências e Habilidades Técnic...Palm - Programa Aluno Monitor - Estimulando Competências e Habilidades Técnic...
Palm - Programa Aluno Monitor - Estimulando Competências e Habilidades Técnic...
 
Poster cplp2010 (Moçambique)
Poster cplp2010 (Moçambique)Poster cplp2010 (Moçambique)
Poster cplp2010 (Moçambique)
 
Apresentação presencial
Apresentação   presencialApresentação   presencial
Apresentação presencial
 
Relatório ppel_ava_2015_elizabethbatista_23.06.2015
Relatório ppel_ava_2015_elizabethbatista_23.06.2015Relatório ppel_ava_2015_elizabethbatista_23.06.2015
Relatório ppel_ava_2015_elizabethbatista_23.06.2015
 
O Laboratório de Informática Educativa da EEFM PATRONATO SAGRADA FAMÍLIA
O Laboratório de Informática Educativa da EEFM PATRONATO SAGRADA FAMÍLIAO Laboratório de Informática Educativa da EEFM PATRONATO SAGRADA FAMÍLIA
O Laboratório de Informática Educativa da EEFM PATRONATO SAGRADA FAMÍLIA
 
Projeto de Aprendizagem sobre simulação de trajetória de partículas
Projeto de Aprendizagem sobre simulação de trajetória de partículasProjeto de Aprendizagem sobre simulação de trajetória de partículas
Projeto de Aprendizagem sobre simulação de trajetória de partículas
 
C:\Fakepath\Gilberto Texto
C:\Fakepath\Gilberto Texto C:\Fakepath\Gilberto Texto
C:\Fakepath\Gilberto Texto
 
Simulação de trajetória de particulas através dos gráficos
Simulação de trajetória de particulas através dos gráficosSimulação de trajetória de particulas através dos gráficos
Simulação de trajetória de particulas através dos gráficos
 
Trajetória de particulas através dos gráficos
Trajetória de particulas através dos gráficosTrajetória de particulas através dos gráficos
Trajetória de particulas através dos gráficos
 
Utilizando pbl no ensino de computação ubíqua
Utilizando pbl no ensino de computação ubíquaUtilizando pbl no ensino de computação ubíqua
Utilizando pbl no ensino de computação ubíqua
 
Moodle Escola D João II
Moodle Escola D João IIMoodle Escola D João II
Moodle Escola D João II
 

Mehr von José Neres de Almeida Junior

Aula 11 hemodinamica - Anatomia Vascular de MMSS.ppt
Aula 11 hemodinamica - Anatomia Vascular de MMSS.pptAula 11 hemodinamica - Anatomia Vascular de MMSS.ppt
Aula 11 hemodinamica - Anatomia Vascular de MMSS.pptJosé Neres de Almeida Junior
 
Texto apresentado para obtenção da qualificação de mestrado
Texto apresentado para obtenção da qualificação de mestradoTexto apresentado para obtenção da qualificação de mestrado
Texto apresentado para obtenção da qualificação de mestradoJosé Neres de Almeida Junior
 
Pré-projeto de Mestrado: Interface Lúdica para Ensino Remoto de Conteúdos de ...
Pré-projeto de Mestrado: Interface Lúdica para Ensino Remoto de Conteúdos de ...Pré-projeto de Mestrado: Interface Lúdica para Ensino Remoto de Conteúdos de ...
Pré-projeto de Mestrado: Interface Lúdica para Ensino Remoto de Conteúdos de ...José Neres de Almeida Junior
 

Mehr von José Neres de Almeida Junior (6)

Aula 11 hemodinamica - Anatomia Vascular de MMSS.ppt
Aula 11 hemodinamica - Anatomia Vascular de MMSS.pptAula 11 hemodinamica - Anatomia Vascular de MMSS.ppt
Aula 11 hemodinamica - Anatomia Vascular de MMSS.ppt
 
aula 3 - tecido conjuntivo - material de apoio.pdf
aula 3 - tecido conjuntivo - material de apoio.pdfaula 3 - tecido conjuntivo - material de apoio.pdf
aula 3 - tecido conjuntivo - material de apoio.pdf
 
aula 2 - tecido epitelial - material de apoio.pdf
aula 2 - tecido epitelial - material de apoio.pdfaula 2 - tecido epitelial - material de apoio.pdf
aula 2 - tecido epitelial - material de apoio.pdf
 
PÓS-QUALIFICAÇÃO - NERES TIDD
PÓS-QUALIFICAÇÃO - NERES TIDDPÓS-QUALIFICAÇÃO - NERES TIDD
PÓS-QUALIFICAÇÃO - NERES TIDD
 
Texto apresentado para obtenção da qualificação de mestrado
Texto apresentado para obtenção da qualificação de mestradoTexto apresentado para obtenção da qualificação de mestrado
Texto apresentado para obtenção da qualificação de mestrado
 
Pré-projeto de Mestrado: Interface Lúdica para Ensino Remoto de Conteúdos de ...
Pré-projeto de Mestrado: Interface Lúdica para Ensino Remoto de Conteúdos de ...Pré-projeto de Mestrado: Interface Lúdica para Ensino Remoto de Conteúdos de ...
Pré-projeto de Mestrado: Interface Lúdica para Ensino Remoto de Conteúdos de ...
 

Kürzlich hochgeladen

Geometria 5to Educacion Primaria EDU Ccesa007.pdf
Geometria  5to Educacion Primaria EDU  Ccesa007.pdfGeometria  5to Educacion Primaria EDU  Ccesa007.pdf
Geometria 5to Educacion Primaria EDU Ccesa007.pdfDemetrio Ccesa Rayme
 
geografia 7 ano - relevo, altitude, topos do mundo
geografia 7 ano - relevo, altitude, topos do mundogeografia 7 ano - relevo, altitude, topos do mundo
geografia 7 ano - relevo, altitude, topos do mundonialb
 
PPT _ Módulo 3_Direito Comercial_2023_2024.pdf
PPT _ Módulo 3_Direito Comercial_2023_2024.pdfPPT _ Módulo 3_Direito Comercial_2023_2024.pdf
PPT _ Módulo 3_Direito Comercial_2023_2024.pdfAnaGonalves804156
 
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbv19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbyasminlarissa371
 
19 de abril - Dia dos povos indigenas brasileiros
19 de abril - Dia dos povos indigenas brasileiros19 de abril - Dia dos povos indigenas brasileiros
19 de abril - Dia dos povos indigenas brasileirosMary Alvarenga
 
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdf
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdfDIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdf
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdfIedaGoethe
 
Educação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SPEducação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SPanandatss1
 
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptxApostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptxIsabelaRafael2
 
637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano
637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano
637743470-Mapa-Mental-Portugue-s-1.pdf 4 anoAdelmaTorres2
 
Empreendedorismo: O que é ser empreendedor?
Empreendedorismo: O que é ser empreendedor?Empreendedorismo: O que é ser empreendedor?
Empreendedorismo: O que é ser empreendedor?MrciaRocha48
 
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chaveAula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chaveaulasgege
 
Slides criatividade 01042024 finalpdf Portugues.pdf
Slides criatividade 01042024 finalpdf Portugues.pdfSlides criatividade 01042024 finalpdf Portugues.pdf
Slides criatividade 01042024 finalpdf Portugues.pdfpaulafernandes540558
 
Mapas Mentais - Português - Principais Tópicos.pdf
Mapas Mentais - Português - Principais Tópicos.pdfMapas Mentais - Português - Principais Tópicos.pdf
Mapas Mentais - Português - Principais Tópicos.pdfangelicass1
 
O guia definitivo para conquistar a aprovação em concurso público.pdf
O guia definitivo para conquistar a aprovação em concurso público.pdfO guia definitivo para conquistar a aprovação em concurso público.pdf
O guia definitivo para conquistar a aprovação em concurso público.pdfErasmo Portavoz
 
Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...
Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...
Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...LuizHenriquedeAlmeid6
 
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024Sandra Pratas
 
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxSlides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxLuizHenriquedeAlmeid6
 
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdfBRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdfHenrique Pontes
 
Recurso Casa das Ciências: Sistemas de Partículas
Recurso Casa das Ciências: Sistemas de PartículasRecurso Casa das Ciências: Sistemas de Partículas
Recurso Casa das Ciências: Sistemas de PartículasCasa Ciências
 
Sociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autoresSociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autoresaulasgege
 

Kürzlich hochgeladen (20)

Geometria 5to Educacion Primaria EDU Ccesa007.pdf
Geometria  5to Educacion Primaria EDU  Ccesa007.pdfGeometria  5to Educacion Primaria EDU  Ccesa007.pdf
Geometria 5to Educacion Primaria EDU Ccesa007.pdf
 
geografia 7 ano - relevo, altitude, topos do mundo
geografia 7 ano - relevo, altitude, topos do mundogeografia 7 ano - relevo, altitude, topos do mundo
geografia 7 ano - relevo, altitude, topos do mundo
 
PPT _ Módulo 3_Direito Comercial_2023_2024.pdf
PPT _ Módulo 3_Direito Comercial_2023_2024.pdfPPT _ Módulo 3_Direito Comercial_2023_2024.pdf
PPT _ Módulo 3_Direito Comercial_2023_2024.pdf
 
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbv19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
 
19 de abril - Dia dos povos indigenas brasileiros
19 de abril - Dia dos povos indigenas brasileiros19 de abril - Dia dos povos indigenas brasileiros
19 de abril - Dia dos povos indigenas brasileiros
 
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdf
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdfDIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdf
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdf
 
Educação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SPEducação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SP
 
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptxApostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
 
637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano
637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano
637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano
 
Empreendedorismo: O que é ser empreendedor?
Empreendedorismo: O que é ser empreendedor?Empreendedorismo: O que é ser empreendedor?
Empreendedorismo: O que é ser empreendedor?
 
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chaveAula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chave
 
Slides criatividade 01042024 finalpdf Portugues.pdf
Slides criatividade 01042024 finalpdf Portugues.pdfSlides criatividade 01042024 finalpdf Portugues.pdf
Slides criatividade 01042024 finalpdf Portugues.pdf
 
Mapas Mentais - Português - Principais Tópicos.pdf
Mapas Mentais - Português - Principais Tópicos.pdfMapas Mentais - Português - Principais Tópicos.pdf
Mapas Mentais - Português - Principais Tópicos.pdf
 
O guia definitivo para conquistar a aprovação em concurso público.pdf
O guia definitivo para conquistar a aprovação em concurso público.pdfO guia definitivo para conquistar a aprovação em concurso público.pdf
O guia definitivo para conquistar a aprovação em concurso público.pdf
 
Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...
Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...
Slides Lição 3, Betel, Ordenança para congregar e prestar culto racional, 2Tr...
 
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
 
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxSlides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
 
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdfBRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
 
Recurso Casa das Ciências: Sistemas de Partículas
Recurso Casa das Ciências: Sistemas de PartículasRecurso Casa das Ciências: Sistemas de Partículas
Recurso Casa das Ciências: Sistemas de Partículas
 
Sociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autoresSociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autores
 

Laboratório Remoto de Física Moderna

  • 1. Relatório Parcial de Atividades (1ºe 2º Semestres) Uma Proposta de Desenvolvimento de um Protótipo de Laboratório Remoto aplicado ao Ensino de Física Moderna Projeto de José Neres de Almeida Jr. Orientador: Prof. Dr. Hermes Renato Hildebrand TIDD – PUC-SP – Mestrado – Programa de Pós-Graduação TIDD São Paulo, 2014
  • 2. 2 Sumário Resumo ....................................................................................................................................... 3 1 Tema:................................................................................................................................... 4 1.1 Laboratório Remoto e o Ensino de Física Moderna ...................................................... 4 2 Problema:............................................................................................................................. 4 2.1 As dificuldades práticas: das simulações no ensino de física ao laboratório remoto.. 4 3 Estado da Arte...................................................................................................................... 8 4 Justificativa........................................................................................................................ 17 5 Objetivos da Pesquisa........................................................................................................ 19 5.1 Objetivos Específicos ................................................................................................. 20 6 Hipótese ............................................................................................................................. 20 6.1 Estratégias para adequação de laboratório remoto como instrumento de utilização complementar a aulas presenciais ........................................................................................ 20 7 Fundamentação Teórica..................................................................................................... 22 7.1 Introdução .................................................................................................................. 22 7.2 WebLab....................................................................................................................... 23 7.2.1 Arduino No WebLab ............................................................................................ 25 7.2.2 O Que o Webduino traz de novo.......................................................................... 26 7.3 Procedimentos............................................................................................................ 28 7.3.1 Introdução ........................................................................................................... 28 7.3.2 Descrição do WebLab-Deusto ............................................................................. 29 7.3.3 Coleta de Dados .................................................................................................. 36 7.3.4 Segurança ........................................................................................................... 37 8 Metodologia ....................................................................................................................... 37 8.1 Resultados Esperados................................................................................................ 42 8.1.1 Implementação e Testes de Funcionamento ....................................................... 43 8.1.2 Teste de Funcionamento do Experimento........................................................... 43 8.2 Resultados Obtidos até o momento ........................................................................... 43 8.3 Próximas Etapas......................................................................................................... 44 Referências Bibliográficas ........................................................................................................ 45 ANEXO....................................................................................................................................... 48 ANEXO 1................................................................................................................................ 48 Interface de Controle Remoto ............................................................................................ 48 Programação para a Interface de Controle Remoto ........................................................... 48 ANEXO 2................................................................................................................................ 59 Programação no Arduino ................................................................................................... 59 ANEXO 3................................................................................................................................ 66 Experimento Físico ............................................................................................................ 66
  • 3. 3 Uma Proposta de Desenvolvimento de um Protótipo de Laboratório Remoto aplicado ao Ensino de Física Moderna Mestrando: José Neres de Almeida Junior – RA00005091 Orientador: Hermes Renato Hildebrand Resumo Este trabalho visa apresentar o projeto educacional Webduino e suas características, dentro do contexto do uso de um Laboratório Remoto aplicado ao ensino de Física Moderna, ou seja, um laboratório de sensoriamento remoto que se desenvolve na PUC/SP, focado portanto no ensino de conteúdos de Física, e que para tanto, é necessário que esteja adequado a um ambiente virtual de ensino e aprendizagem (ou simplesmente, ambiente virtual de aprendizagem, AVA). No ambiente a ser elaborado, o laboratório remoto pretende desenvolver recursos didáticos que permitam utilizar a placa Arduino aplicada ao Ensino de Ciências, em particular no Ensino de Fìsica, em nível Médio e Superior, quer seja em Licenciaturas e quer seja em Educação Continuada de Professores, inserindo os projetos na conhecida “Rede de Sensores” disponíveis na Web. A plataforma de desenvolvimento selecionada para o gerenciamento dos experimentos é o WebLab-Deusto, por sua inteligibilidade, funcionalidade e segurança. Devido às questões estruturais de um Laboratório Remoto, portanto também é necessário que a plataforma de desenvolvimento e acionamento do experimento esteja inserida dentro do Ambiente Virtual a ser modelado, dentro de parâmetros que possibilitem ao usuário a aprendizagem dos conceitos físicos trabalhados e das experiências que ele venha a controlar e coletar os dados para posterior análise. Para tanto, será construída, dentro deste projeto, além do experimento que especifica o laboratório remoto, também o ambiente virtual para contemplar as necessidades pedagógicas e educacionais para o ensino e aprendizagem dos conceitos físicos advindos da experiência que o usuário esteja realizando. PALAVRAS-CHAVE: Arduino, Weblab-Deusto, Laboratório Remoto, Ensino de Física, Ambiente Virtual de Aprendizagem.
  • 4. 4 Proposta de Desenvolvimento de um Protótipo de Laboratório Remoto aplicado ao Ensino de Física Moderna 1 Tema: 1.1 Laboratório Remoto e o Ensino de Física Moderna O tema do trabalho em questão é a montagem de um protótipo e das arquiteturas necessárias para o desenvolvimento de um laboratório remoto como complementação, para aulas presenciais, e auxílio à abordagem de tópicos de Física Moderna, seja experimental, seja teórica. Para tratar a questão, é necessário se compreender primeiramente o que é um laboratório remoto, também denominado WebLab. O objetivo de um laboratório remoto é possibilitar a realização e controle em tempo real de experimentos, usando como meio a internet. Esse ambiente, a ser desenvolvido, tanto pratica, quanto teoricamente, deverá ser testado em suas funções e futuramente validado em aplicações ligadas ao ensino de Física. 2 Problema: 2.1 As dificuldades práticas: das simulações no ensino de física ao laboratório remoto. Os resultados da aprendizagem do aluno (CLOUGH, 2002) podem ser impactadas pelas práticas experimentais, e pela forma como ela é conduzida em sala de aula; isto é, as práticas experimentais em sala de aula somente terá um impacto maior, desde que não se recaia nos problemas das aulas expositivas tradicionais, com giz e lousa, que pouco estimula a criatividade e o envolvimento dos aprendizes (SIEVERS, 2012). Dentro desta perspectiva, os laboratórios são utilizados para fornecer uma prova de que os princípios teóricos podem ser demonstrados na prática. Quando usado adequadamente, eles podem entusiasmar motivar e inspirar estudantes.
  • 5. 5 Para tanto, um laboratório de ensino requer compromissos de tempo, de espaço e de financiamento para aquisição, instalação e manutenção de equipamentos e, em seguida acomodações para os alunos. Por outro lado, uma das questões de uso do laboratório de ensino é o espaço físico, o qual é determinante para realização de cortes para limitação do número de vagas nas escolas. Sendo assim, é possível propor uma solução ao problema através da utilização de tecnologia para aumentar os recursos didáticos. Mas como aplicar o uso da tecnologia como forma de investigação dos conceitos trabalhados em um laboratório de ensino, presencial? Uma possibilidade seria o uso de simulações, já que permitem a interação com modelos que representam o comportamento de processos e experimentos nem sempre visíveis a olho nu, dependendo do modelo teórico utilizado, além de ser possível a alteração de parâmetros na simulação, permitindo a comparação do comportamento representado em relação ao comportamento do fenômeno no mundo real. Em relação a função da simulação, para Studart (2010), A principal função da simulação consiste em ser uma efetiva ferramenta de aprendizagem, fortalecendo bons currículos e os esforços de bons professores. A finalidade de uso pedagógico da simulação pode ajudar a introduzir um novo tópico, construir conceitos ou competências, reforçar ideias ou fornecer reflexão e revisão final (STUDART, 2010). Em contrapartida, caso não se reflita na adequação da simulação ao experimento real, pode-se induzir o aluno a pensar que a simulação represente a realidade, o que se configura como um erro de conceito, já que a simulação, por mais atraente que seja, é uma representação de um modelo matemático, o qual por sua vez, descreve um modelo físico, ou seja, uma interpretação da realidade. É preciso ter-se em mente que o ponto de partida de toda simulação é a imitação de aspectos específicos da realidade, isto significando que, por mais atraente que uma simulação possa parecer, ela estará sempre seguindo um modelo matemático desenvolvido para descrever a natureza, e este modelo poderá ser uma boa imitação ou, por outras vezes, um autêntico absurdo. Uma simulação pode tão somente imitar determinados aspectos da realidade, mas nunca a sua total complexidade (MEDEIROS 2002).
  • 6. 6 Também por isso, por ser uma representação da realidade, muitas simulações não incluem fatores práticos dos próprios experimentos, como as fontes de incertezas e erros, os quais alteram o resultado real. Dependendo do tipo de experiência, os tipos de erros se analisados poderiam contribuir a uma análise mais rica do próprio fenômeno, além da descoberta de outras relações entre o experimento em si e outras propriedades, submetendo o aluno a um mundo onde poderá encontrar perturbações nos sistemas estudados ou erros de aferição dos equipamentos. Por isso, segundo Hanson (2009) objetos de aprendizagem virtuais, que simulam situações reais através de dados pré-gravados, tem recebido críticas dos alunos e educadores. Com isso, algumas simulações apresentam o mesmo resultado, pois não incluem o erro experimental, que pode ser ocasionado pela calibração dos equipamentos. Em um Congresso sobre ensino e internet (INTER-UNIVERSITY, 2008), os desenvolvedores de simulações, concordaram sobre as dificuldades de criar um programa de computador para simular um processo de forma realista. Outra forma de se utilizar a tecnologia é utilizando experimentos apenas com hardware. Nesta direção, uma abordagem alternativa é fornecer laboratórios de acesso remoto, alternativa que vem apresentando uso cada vez mais crescente no exterior, pela crescente disponibilidade e capacidade dos computadores pessoais, como é o caso (apud SIEVERS JUNIOR et al, 2012): do uso de laboratórios remotos em ciências ambientais e ecológicos (KREHBIEL, 2003), mas são encontrados principalmente nos departamento de engenharia, por exemplo química (SELMER, 2007), elétrica (LANG, 2007) e (LOWE, 2009) e mecânica (WEIGHTMAN, 2007), além de física (HANSON, 2009). O que atrai também ao uso do laboratório remoto é também a possibilidade de acesso via internet ao experimento real, de modo que as fontes de incerteza possam ser investigadas; além da possibilidade de se utilizar a experiência real acessada remotamente junto a simulações/objetos de aprendizagem, que possam descrever o modelo utilizado, como uma ferramenta pedagógica, com possibilidade de análises mais ricas e comparativas (SIVERS, 2012).
  • 7. 7 A tecnologia do laboratório com acesso remoto, também denominado WebLab, está sendo desenvolvida em um número crescente de instituições de ensino superior e está ramificando para outras disciplinas e para outros níveis de ensino (apud SIEVERS JUNIOR et al, 2012): No Brasil podemos encontrar alguns laboratórios como (KYATERA, 2008), e um laboratório para prática remota de aulas Laboratoriais de Física (SILVA, 2006). Muitos laboratórios remotos são acessados por qualquer navegador convencional (WEIGHTMAN, 2007), esses recursos proporcionam oportunidades à instituições de todo o mundo para acesso ao equipamento experimental. Alguns usuários e pequenos grupos estão se formando e deram provas do sucesso da colaboração e compartilhamento de recursos sobre limites internacionais (DEUSTO, 2005). Existe um grande potencial para colaboração e compartilhamento de recursos em escala nacional e internacional. Entretanto, antes dos laboratórios remotos poderem atingir o seu real potencial, várias questões logísticas fundamentais continuam a exigir, tais como: Como as instalações serão financiadas e mantidas? Quem terá acesso e quando? Mais debates são necessários para resolver essas questões e chegar a um consenso sobre os pontos fortes e fracos dos laboratórios remotos e seu lugar no currículo, além de discussões acerca da possibilidade de se utilizar com complemento de simulações e como complemento a aulas presenciais. Além destas discussões, há controvérsias em cursos sobre a eficácia dos laboratórios remotos em entregar resultados de aprendizagem, e seus efeitos globais sobre a experiência dos alunos. A maioria dos exemplos de laboratórios remotos hoje são apenas versões remotas dos laboratórios tradicionais e alguns pesquisadores fazem comparações diretas entre os resultados da aprendizagem com os laboratórios tradicionais versus laboratórios remotos. Fato este que evidencia apenas uma transferência da aula expositiva para uma aula laboratorial a distância, o que apenas continua com o problema. Nesse sentido, nosso objetivo, aqui, é começar a investigar de que forma pode se propor a adequação de um laboratório remoto junto a aulas presenciais, no que se diz respeito a conteúdos de Física Moderna, e consequentemente, quais interfaces podem ser melhor elaboradas e utilizadas junto ao ambiente virtual de aprendizagem
  • 8. 8 no qual o laboratório remoto esteja inserido, visando que o usuário (seja professor ou aluno) possam desfrutar dos recursos existentes, os trabalhando de forma em que se possa aprofundar a compreensão dos assuntos tratados. 3 Estado da Arte No capítulo de problematização, abordamos o contexto dos laboratórios e mais adiante (no item “Justificativa”) será analisado a escolha e o porquê do uso do laboratório remoto para os propósitos do projeto, bem como, aqui se inicia a abordagem de como está a situação e o usos dos mesmos. Para continuar essa abordagem, analisemos as questões principais levantadas por Cardoso e Takahashi (2011). Isso nos remete a entender as discussões a respeito do desenvolvimento e o uso no contexto educacional de Física dos Laboratórios Remotos. Para tanto, serão estudados os trabalhos realizados por autores que trabalharam neste mesmo tema, dentro das observações levantadas por Cardoso e Takahashi (2011), e consequentemente quais as dificuldades encontradas, as discussões levantadas por eles, a fim de enquadrar os problemas a serem trabalhados neste projeto. No artigo de Cardoso e Takahashi (2011), publicado na RBPEC, os autores fazem o “[...] levantamento e análise de trabalhos sobre o assunto em revistas e periódicos de ensino e educação, no Brasil e no exterior.” O intuito dos autores, assim como um dos objetivos deste projeto corrente, é investigar se (e como) os laboratórios remotos estão sendo utilizados para o ensino, particularmente, de Física, com o objetivo de avaliar o potencial desse recurso para o ensino-aprendizagem da disciplina. Para tanto, os autores discorrem das necessidades de um laboratório remoto e das potencialidades que o uso da experimentação demonstra para o processo de ensino-aprendizagem, fundamentando-se nas avaliações tanto de documentos oficiais como o PCN+ (BRASIL, 2002), quanto de pesquisadores. Dentro desta perspectiva de experimentação, aliada ao princípio de utilização de materiais de fácil acesso e possibilidade de viabilizar a mesma experiência com acesso remoto, Cardoso e Takahashi (2011) apontam que:
  • 9. 9 A utilização desses Laboratórios de Experimentação Remota, como são conhecidos, permitiria a realização cooperativa de experimentos reais com o objetivo de prover uma melhor compreensão dos fenômenos científicos e estimular um interesse maior pela carreira científica. E, indo além: [...] a Experimentação Remota não auxilia a aprendizagem por si só; o uso da experimentação deve ser amparado por ferramentas didáticas e metodologias devidamente fundamentadas. De forma que concluem que a perspectiva de uso dos laboratórios remotos nãos e dá somente em ambientes que se utilizem de Educação a Distância (EaD), mas também presencialmente: Assim, um laboratório remoto pode auxiliar na aprendizagem de conceitos físicos, sendo um importante recurso nos cursos de Educação a Distância (EaD) que exigem aulas práticas, como também aulas presenciais tornado-a mais interativa e mais dinâmica. Pode, ainda, auxiliar o aprendiz independentemente das aulas e viabilizar a realização de experimentos mais complexos e/ou de difícil acesso. (CARDOSO; TAKAHASHI, 2011) Com base nestas prerrogativas, os autores abordam a metodologia de investigação de laboratórios remotos, desde sua adequação até a sua implementação e uso educacional. Nesse sentido, Cardoso e Takahashi selecionaram e analisaram artigos de periódicosQualis1 A, nacionais e internacionais, entre os anos 2000 e 2009. Para a seleção dos periódicos, utilizaram a lista completa da Capes, que contém a classificação da produção intelectual, e apuraram todos os periódicos das seções Educação e Ensino de Ciências e Matemática. Além desses, também selecionaram todos os outros periódicosque continham as palavras ensino, educação e seus correspondentes em inglês e espanhol. No total, encontraram 78 periódicos. Como critério de seleção dos artigos, optaram por pesquisar, nos títulos, as palavras-chave “experimentação remota”, “laboratório remoto” e seus correspondentes em inglês e espanhol. Com este critério de seleção, Cardoso e Takahashi (2011) encontraram 31 artigos em apenas 5 periódicos internacionais:
  • 10. 10 “Computer Applications in Engineering Education, Computers & Education”, “IEEE Transactions on Education”, “Journal of Research in Science Teaching” (versão impressa) e “Physics Education” (versão impressa). A partir dos artigos encontrados, eles fizeram um levantamento do número de artigos publicados em cada ano e em cada área de conhecimento, verificando em quais periódicos foram publicados e para qual nível de ensino, de forma a elaborar uma síntese dos objetivos, metodologias e estratégias utilizadas e as principais contribuições para o ensino. A partir disso, os autores fizeram uma análise em relação ao enfoque, à justificativa de utilização da Experimentação Remota, às vantagens e desvantagens do uso do laboratório remoto e à utilização de metodologia de ensino. A partir destas considerações, os autores começam a análise preocupando-se em verificar como vem sendo o desenvolvimento de pesquisas sobre laboratórios remotos nos últimos 10 anos. A partir das análises feitas, constatam que as pesquisas relacionadas a experimentos que podem ser operados remotamente são relativamente recentes, devido ao fato de que a tecnologia só pôde ser desenvolvida devido aos grandes avanços tecnológicos dos últimos tempos, como por exemplo, a engenharia de automação e controle assistida por computadores, Internet (aqui incluso o aumento no poder de processamento dos dados transmitidos, também) e webcams, que são elementos essenciais para esse tipo de experimentação. Dentre o levantamento realizado, o que demonstra um aspecto interessante a ser considerado para fins deste projeto, é que dos 78 periódicos Qualis A que foram analisados, apenas 5 periódicos internacionais continham artigos sobre a questão do laboratório remoto, sendo que dois deles (Computer Applications in Engineering Education e IEEE Transactions on Education) apresentam o maior número de publicações sobre laboratórios remotos. Em nenhum dos periódicos nacionais Qualis A foram encontrados artigos sobre experimentos remotos, apesar de existirem pesquisas e laboratórios remotos no Brasil. Isso explica o fato de que pouco se divulga a criação, elaboração, adequação e implementação de laboratórios remotos, fato este que impossibilita um maior acesso de usuários e do público-alvo (professores e alunos) às potencialidades do uso educacional do laboratório remoto.
  • 11. 11 Voltando nossa atenção para a Física, podemos notar, conforme Cardoso e Takahashi (2011) também apuram que os trabalhos são desenvolvidos para determinadas áreas de conhecimento, a citar, as Engenharias, devido à necessidade de experimentação, de prática, para a inserção do egresso no mercado de trabalho e que a prática é de fundamental importância para a aprendizagem dos conceitos relacionados com as disciplinas (CARDOSO; TAKAHASHI, 2011). Por outro lado, estas características que são necessárias às Engenharias também são necessárias em outras áreas de Ensino, justamente pelo caráter científico das disciplinas correlatas (por exemplo, Física, Biologia, Química, e eventuais articulações entre elas), as quais são bases para as Engenharias. Ainda que se apresente as mesmas necessidades para estas áreas citas, existem poucos trabalhos associados ao uso da Experimentação Remota nessas áreas, conforme mostra o Quadro 1. Quadro 1: Quantidade de artigos por área de conhecimento (reprodução de Cardoso e Takahashi, 2011). Pela pesquisa de levantamento realizada pelos autores, se percebe a presença de alguns experimentos que poderiam ser utilizados no ensino da Física em nível superior, como alguns experimentos de eletrônica, interferômetro de Michelson, imagens ao microscópio eletrônico de varredura, vibração mecânica unidimensional e pêndulo invertido. Inclusive, relacionando cada experimento à área da Engenharia relacionada, a maior parte dos experimentos é voltada aos cursos de Mecânica/Mecatrônica e Elétrica, áreas cuja base é essencialmente a Física. Pela análise dos autores, além das considerações anteriores, é importante ressaltar o enfoque que se dá em cada artigo estudado, ou seja, sob qual ponto de vista os artigos foram desenvolvidos. Categorizando o pelos objetivos de cada artigo
  • 12. 12 e, com base no que foi apresentado, os autores criaram cinco categorias: Aprendizagem do Aluno (representam alguma metodologia para ensinar com Experimentação Remota, utilizando planos pedagógicos, estratégias de ensino, etc...), Análise entre Laboratório Virtual e Laboratório Remoto, Análise entre Laboratório Remoto e Laboratório Presencial (nestes dois casos anteriores, em ambas as considerações, são relacionados artigos que evidenciam diferenças, vantagens e desvantagens entre os respectivos tipos de laboratório), Infraestrutura (artigos que descrevem a implementação e seus requisitos necessários e ambiente do laboratório remoto), e Viabilidade (artigos que validam a utilização da experimentação remota). Analisando os objetivos dos artigos chegaram ao fato de que 19 dos 31 artigos estudados se enfocam na questão de infraestrutura. Embora os periódicos estejam publicados em revistas essencialmente voltadas ao ensino e educação, dos artigos estudados somente 12,9% abordam esta temática, evidenciando a baixa prioridade da literatura disponível de análises voltadas a adequação de laboratórios remotos para a temática de aprendizagem. Pois não basta se colocar um laboratório remoto se não houver uma preocupação em que ele esteja bem estruturado em sua questão educacional, o que retornaria somente em uma visualização, um entretenimento, sem um valor significativo para a aprendizagem do usuário. Com relação aos artigos que enfocaram a aprendizagem (somente 4 – quatro – dentre os analisados), eles mostram que é possível atingir os objetivos educacionais com o uso de experimentos remotos e uma metodologia de ensino adequada, conforme quadro abaixo: Quadro 2: Descrição dos objetivos, metodologias e estratégias e as principais contribuições para o ensino dos artigos com foco principal em aprendizagem. Artigo 1 A Distance PLC Programming Course Employing a Remote Laboratory Based on a Flexible Manufacturing Cell Objetivos Aplicar o experimento remoto com uma metodologia de ensino baseada em projetos e avaliar a aprendizagem e o laboratório remoto. Metodologias e estratégias  Vinte e cinco estudantes voluntários participaram do trabalho e foram divididos em dois grupos: o grupo presencial (14 alunos) e o grupo remoto (11 alunos).  Os fundamentos teóricos foram disponibilizados na plataforma de ensino Moodle.
  • 13. 13  Foi aplicado um questionário para a verificação dos conhecimentos prévios dos alunos.  Os alunos resolveram problemas relacionados ao experimento remoto.  A metodologia de ensino foi baseada em projetos de aprendizagem.  Os alunos elaboraram um relatório documentando o projeto. Contribuições para a aprendizagem A aplicação do experimento remoto foi avaliada de forma positiva. Os dois grupos, presencial e remoto, conseguiram atingir os objetivos relacionados à aprendizagem. A comparação entre a aprendizagem dos dois grupos não apresentou diferenças significativas. Os autores acreditam que as vantagens Artigo 10 A Web-Based Remote Interactive Laboratory for Internetworking Education Objetivo Discutir os aspectos pedagógicos e técnicos que influenciam o design e a implementação do ambiente de laboratório remoto. Metodologias e estratégias  A metodologia de ensino empregada teve por base o construtivismo, a aprendizagem colaborativa e técnicas de resolução de problemas.  As atividades no laboratório remoto foram modeladas para implementar as nove etapas de ensino propostas por Gagne (1987, 1992)  Os alunos aprenderam os conceitos teóricos fundamentais em palestras nas quais eram descritas as características funcionais e físicas do experimento remoto.  Os estudantes realizaram o experimento em grupos de 2 a 3 alunos. Contribuições para a aprendizagem O laboratório remoto ajudou a alcançar os objetivos pedagógicos e educacionais do programa. Os resultados da pesquisa também indicaram que o laboratório remoto é mais fácil de usar e mais flexível do que o laboratório presencial. No entanto, o laboratório online é menos acessível fisicamente e menos interativo do que o presencial. Artigo 11 An experience of teaching for learning by observation: Remote-controlled experiments on electrical circuits Objetivo Descrever uma metodologia que facilite a aprendizagem por observação com o emprego de experimentos remotos. Metodologias e estratégias  23 estudantes do ensino fundamental participaram do estudo.  Os alunos foram divididos aleatoriamente em seis grupos. O professor fez uso de um instrumento real para ilustrar o
  • 14. 14 assunto-alvo. O professor introduziu o uso do experimento remoto. Os alunos realizaram atividades em grupo e individualmente e fizeram discussões sobre os resultados. O trabalho foi finalizado com um resumo do professor.  Métodos quantitativos e qualitativos foram adotados para coletar dados sobre o potencial do laboratório remoto. Contribuições para a aprendizagem Os resultados do estudo revelaram um potencial para maior promoção do uso do laboratório remoto e que o uso do laboratório remoto ajudou os alunos a aprofundar o conhecimento sobre o assunto-alvo. O professor observou que seus alunos estavam muito envolvidos nas atividades porque eles ficaram fascinados com o uso do experimento de controle remoto, que é uma ferramenta totalmente inovadora de aprendizado para eles. Artigo 20 Remote Laboratories for Optical Circuits Objetivo Descrever o processo de concepção e implementação do laboratório remoto assim como os métodos de ensino e avaliação. Metodologias e estratégias  A metodologia foi aplicada a 16 alunos, que realizaram três experimentos remotamente.  A fundamentação teórica foi apresentada aos alunos em sala de aula.  Os alunos participaram de seções de pré-laboratório, nas quais assistiram simulações e vídeos de orientação em relação a cada experimento.  Após as seções de pré-laboratório os alunos realizaram o experimento remoto.  Para avaliar a aprendizagem, os alunos responderam um teste que continha questões fundamentais. Contribuições para a aprendizagem Os alunos foram muito bem sucedidos e concluíram todas as seções do experimento. As médias das notas foram muito altas. A maioria dos alunos se sentiu confortável diante da interface com os experimentos. Através deste quadro pôde-se perceber que é possível a adequação dos laboratórios remotos com uma abordagem de ensino voltada para a aprendizagem. Se feita de maneira rigoros, no aspecto metodológico, isso vem a beneficiar, possibilitando o uso mais apropriado deste recurso tecnológico. Ainda, para os artigos que tratam da viabilidade dos laboratórios remotos, estes enfocam tanto o experimento quanto a aprendizagem. Com este aspecto em mente, os resultados mostraram que os experimentos remotos são viáveis, pois, além dos estudantes
  • 15. 15 aprovarem o uso dos laboratórios remotos, eles atingiram os objetivos educacionais propostos. Contudo melhorias com relação ao aspecto de velocidade de transmissão e dados e da interatividade entre o experimento remoto e o usuário devem melhorar e aumentar, respectivamente. Dos 19 (dezenove) artigos em que se evidenciam o enfoque na infraestrutura pode-se argumentar o fato de este ser um primeiro passo e de não ser uma tarefa simples estruturar toda a questão arquitetural para visualização e acesso do experimento remotamente. Isso implica no fato de que a maioria se preocupa em evidenciar a questão estrutural, dado o fato de ser um recurso ainda recente em termos de uso e assimilação. Porém, dentre estes 19 (dezenove), 13 (treze) aplicaram e avaliaram os experimentos. Os resultados coletados pelos autores são de extrema importância no que se refere a evidenciar a montagem do experimento, mas também de erros e acertos no desenvolvimento dos laboratórios remotos. Observando esta questão de evidenciar as justificativas e soluções para as montagens de laboratórios remotos, Cardoso e Takashi (2011) observam que os autores de cada artigo estudado consideram como justificativas mais importantes para a construção de laboratórios remotos: a diminuição de custos, o fato de um laboratório remoto ter potencial para disponibilização para cursos em EaD e não possuir limite de tempo e espaço, conforme Figura 02. Figura 02 – Gráfico de Frequência de justificativas quanto ao uso de laboratórios remotos (extraído de Cardoso e Takahashi, 2011).
  • 16. 16 Além destes levantamentos, Cardoso e Takahashi ainda analisaram outros critérios, como o fato de os artigos disponibilizarem materiais de apoio, explicitar metodologia de ensino, citar utilização de instrutores, ou mesmo aqueles artigos que não citam nenhuma estratégia para desenvolvimento dos experimentos. Dentre estes critérios, 7 artigos disponibilizam materiais de apoio, 4 utilizam metodologia de ensino (conforme foi evidenciado anates no quadro 2), 8 utilizam instrutores e 9 artigos não citam sequer uma estratégia. Finalmente, em termos de eficácia em relação à aprendizagem, os laboratórios remotos se mostraram tão eficiente quanto os laboratórios presenciais. Porém o que é interessante notar, é que, de acordo com Cardoso e Takahashi (2011), ao passo que alguns autores analisados em seus artigos apontam o laboratório melhor, outros, ao contrário, apontam que o presencial é melhor, embora a diferença seja pouca. De qualquer modo, conforme os autores explicitam: “[...] a importância não está na diferenciação entre a Experimentação Remota ou presencial e, sim, na metodologia adotada para o desenvolvimento das aulas práticas.” (CARDOSO; TAKAHASHI, 2011). Sendo assim, após analisar os artigos mencionados segundo todos os critérios anteriores, os autores, durante o desenvolvimento do trabalho não encontraram relatos de pesquisa sobre como o acesso remoto a experimentos reais pode incrementar o processo de ensino e aprendizagem de Física e de que forma isso pode ser feito. Evidenciando que a Experimentação Remota associada ao ensino de ciências, no Brasil e no mundo, ainda é um campo muito novo e pouco explorado, concluem que as consequentes e eventuais limitações na utilização desta ferramenta de ensino devem ser estudadas de forma aprofundada, o que significa dizer que deve- se estabelecer uma metodologia adequada, a fim de se suprir as necessidades de uma aula prática. Como consequência desta metodologia a ser aprofundada, Cardoso e Takahashi (2011) apontam que uma solução a ser considerada é a de que os laboratórios on-line, reais ou virtuais, necessitam de um ambiente de aprendizagem completo, que ofereça ao aluno apoio para a realização das experiências, a fim de se
  • 17. 17 atribuir uma aprendizagem significativa ao que o usuário consegue interagir e visualizar, coletando dados e analisando-os, assimilando assim a teoria acerca do experimento: Sendo assim, o ambiente de aprendizagem deve conter material de apoio, como por exemplo, hipertextos contendo fundamentação teórica, conceitos, metodologia de relatório (exemplos). E a Experimentação Remota deve ser embasada em uma metodologia própria, devidamente elaborada, da mesma forma que uma aula prática presencial também necessita de uma metodologia específica baseada em teorias de ensino-aprendizagem. (CARDOSO; TAKAHASHI, 2011) Em seus comentários finais, os autores sugerem que os Laboratórios de Experimentação Remota surgem como algo novo e promissor, com tendência de se tornarem instrumentos de experimentação muito eficientes, mas que ainda precisam de uma quantidade maior de pesquisas sistemáticas sobre suas reais potencialidades, particularmente, na aprendizagem significativa em Física. (CARDOSO; TAKAHASHI, 2011) Com base nestes apontamentos, nas evidências demonstradas pelas análises dos variados artigos referentes aos usos do Laboratório Remoto, em especial, com enfoque no ensino de Física, é que montaremos primeiramente um protótipo com experimentação remota, veiculado a um ambiente virtual de aprendizagem. Com isso, pretendemos possibilitar que os conteúdos vistos na experiência possam ser melhor trabalhados e demonstrados, de modo a permitir uma maior interatividade do usuário, não somente com o experimento, mas com o projeto como um todo. Assim, também pretendemos permitir que esse usuário (seja o aluno ou o professor) possa aprender (e até ensinar, no caso do professor, que poderá, se quiser, usar este ambiente como uma ferramenta de ensino) e assimilar os conteúdos de uma forma mais significativa. 4 Justificativa Justificando a escolha do critério a ser trabalhado, de acordo com (KONG; YEUNG; WU, 2009, p. 711) O laboratório remoto fundamentado em uma pedagogia adequada do professor e suportado por materiais de apoio a aprendizagem tem potencial para incentivar os alunos a
  • 18. 18 formular associações entre o mundo real e as teorias científicas (KONG; YEUNG; WU, 2009) Dentro de uma estrutura adequada e melhorias no ambiente virtual de aprendizagem, o laboratório remoto pode ser uma ferramenta que complemente o estudo de tópicos de Física Moderna, auxiliando e colaborando com a melhora da aprendizagem. E não somente destinada ao uso pelos alunos, o ambiente virtual no qual o laboratório remoto esta inserido também pode apresentar uma interface de uso exclusivo do professor, auxiliando-o em suas tomadas de decisões durante as aulas, equipando-o com recursos em um ambiente que estimule a criatividade e descoberta de novas interações e possibilidades de ensino, de forma a instrumentalizá-lo com amplas e novas ferramentas tecnológicas. Indo além, podemos argumentar sobre a própria aplicação da estrutura que temos com um viés educacional, ou seja, justifica-se a ideia de criação de espaços na web para divulgar recursos existentes e também para viabilizar a criação de laboratórios de sensoriamento remoto que venham possibilitar que tanto estudantes quanto professores, em diferentes níveis de aprofundamento, estudem conceitos importantes, não somente de Física Moderna, mas de qualquer disciplina que venha a ser administrada dentro da estrutura a ser montada, no ambiente virtual, abrindo a possibilidade de aplicação do projeto também para outras áreas de ensino que usem de laboratórios, por exemplo, disciplinas experimentais de Engenharia. E por isso, até como forma de complementar eventuais experimentos mais sofisticados que estão sendo tratados em aulas presenciais, possibilita se abordar questões que não puderam ser tratadas antes, devido a questões de tempo, estrutural, entre outras. Com isso, outra justificativa para este projeto centra-se em seu uso complementar a aulas presenciais, de forma a poder ampliar as noções tratadas em sala de aula, e até mesmo evidenciar outras discussões que possam ser melhor trabalhadas com o experimento acessado remotamente. Nesse sentido, as questões que envolvem o processo de Ensino e Aprendizagem tornam-se relevantes, com o aspecto de se poder criar ambientes virtuais de aprendizagem que possibilitem o uso de laboratórios remotos complementando a realização de experimentos concretos (os quais embora tenham
  • 19. 19 maior interesse no que se refere à aprendizagem em sala de aula, devido à questão de poder se abordar consequências pragmáticas do experimento), da mesma forma apresentam problemas de custos elevados para muitos experimentos, sensores de difícil aquisição, ou mesmo questões de indisponibilidadedo laboratório. Sendo assim, disponibilizar uma plataforma remota, cujo experimento possa ser acessado e controlado remotamente oferece possibilidades pedagógicas interessantes quando complementares ao uso do laboratório presencial, desde que tratados com abordagens diferentes. E, por outro lado, abre a possibilidade concomitante de uma abordagem veiculada a disciplinas que estejam sendo tratadas a distância, de forma on-line; disciplinas estas cada vez mais presentes, principalmente em cursos on-line de Engenharia (dentro de matérias como Automação, por exemplo, que trabalham questões de eletrônica ao mesmo tempo que se trabalham aspectos da própria máquina, de modo que o laboratório remoto seja uma solução adequada) (LOURENÇO, 2014), em que os conceitos de Física, bem como de Fìsica Moderna venham a ser trabalhados e analisados, além das disciplinas de Física, propriamente dita, que possam ser trabalhadas on-line, como a Física Moderna, com experimentos em que sejam estudados o comportamento das radiações eletromagnéticas, através da visualização do experimento e da coleta de dados, as quais são trabalhadas neste projeto em questão. Assim, a justificativa de se poder utilizar o laboratório remoto tanto complementar as aulas presenciais quanto em ambientes virtuais bem elaborados em disciplinas e cursos on-line evidenciam adequação do projeto e a ampla possibilidade de estudos e aplicabilidade. 5 Objetivos da Pesquisa O objetivo desta pesquisa se centra no desenvolvimento de um protótipo e estruturação da arquitetura de acesso e controle de um laboratório remoto, para experimento de espectrofotometria (com objetivo de uso em ensino de tópicos de Física Moderna) e que permita interação do usuário com o experimento, em tempo real.
  • 20. 20 5.1 Objetivos Específicos 5.1.1. Construção do Laboratório Remoto, desde sua concepção teórica e prática até a elaboração e estruturação. 5.1.2. Implementação e Testes de Funcionamento, evidenciando necessidades e possíveis melhorais, com relação aos aspectos necessários para o bom funcionamento e interação do Laboratório Remoto. 6 Hipótese 6.1 Estratégias para adequação de laboratório remoto como instrumento de utilização complementar a aulas presenciais Após analisar 19 artigos qualificados com Qualis A, referente aos usos e metodologias empregadas em Laboratórios Remotos aplicados a conteúdos de Física, bem como com as avaliações realizadas, Cardoso & Takahashi, evidenciam que os resultados destas: mostraram que os laboratórios remotos são equiparáveis aos laboratórios presenciais em termos de eficácia, em relação à aprendizagem. Alguns resultados mostraram que a aprendizagem no laboratório remoto foi um pouco melhor e outros mostraram o contrário, porém, as diferenças não são significativas. (CARDOSO; TAKAHASHI, 2011) Esse fato vem ao encontro do posicionamento dos autores citados, de que a importância não está na diferenciação entre a Experimentação Remota ou presencial e, sim, na metodologia adotada para o desenvolvimento das aulas práticas. Ou seja, de que a metodologia empregada deva evidenciar aspectos que tornem a aprendizagem mais significativa ao aluno. No desenvolvimento do trabalho citado (CARDOSO; TAKAHASHI, 2011) não encontraram relatos de pesquisa sobre como o acesso remoto a experimentos reais pode incrementar o processo de ensino e aprendizagem de Física e nem de que forma isso pode ser feito. Constataram que a Experimentação Remota associada ao ensino de ciências, no Brasil e no mundo, ainda é um campo muito novo e pouco explorado
  • 21. 21 e que as eventuais limitações na utilização desta ferramenta de ensino devem ser estudadas de forma aprofundada e formulam como uma hipótese, que uma metodologia adequada deve ser explorada para suprir as necessidades de uma aula prática. Para tanto, de acordo com Mendes e Fialho (2005, p. 7): Temos aí uma tecnologia que necessita e merece aprimoramentos, pois ao contrário dos experimentos simulados, a experimentação com laboratórios remotos não apresenta resultados provenientes de cálculos teóricos com apresentação gráfica imitando fenômenos naturais. Não se trata de ilusão próxima da realidade, trata-se de experimentação real, mas remota, tele-controlada. (MENDES; FIALHO, 2005) Ainda, de acordo com os mesmo autores, os laboratórios on-line, reais ou virtuais, necessitam de um ambiente de aprendizagem completo, que ofereça ao aluno apoio para a realização das experiências, pois, como diz Séré (2003, p. 39), Através dos trabalhos práticos e das atividades experimentais, o aluno deve se dar conta de que para desvendar um fenômeno é necessária uma teoria. Além disso, para obter uma medida e também para fabricar os instrumentos de medida é preciso muita teoria. Pode-se dizer que a experimentação pode ser descrita considerando-se três pólos: o referencial empírico; os conceitos, leis e teorias; e as diferentes linguagens e simbolismos utilizados em física. As atividades experimentais têm o papel de permitir o estabelecimento de relações entre esses três pólos. Sendo assim, o ambiente de aprendizagem deve conter material de apoio, como por exemplo, hipertextos contendo fundamentação teórica, conceitos, metodologia de relatório (exemplos). E a Experimentação Remota deve ser embasada em uma metodologia própria, devidamente elaborada, da mesma forma que uma aula prática presencial também necessita de uma metodologia específica baseada em teorias de ensino-aprendizagem. Concordamos com os apontamentos evidenciados por Cardoso e Takahashi (2011), frente às questões metodológicas e de organização do ambiente de aprendizagem, de modo que em reforço a esta evidência, nossa hipótese é a de que a eficácia na aprendizagem nos laboratórios remotos será melhorada conforme se adeque a metodologia de ensino, em conjunto com a aula prática, evidenciando um significado tanto a aluno quanto ao professor. Além disso, a prática através do
  • 22. 22 laboratório remoto, se executada de forma significativa para aluno e professor, facilita processos cognitivos, relacionados a conhecimentos de Física Moderna, a partir do fato de se poder visualizar o experimento, bem como se interagir com ele. Assim, para que essa prática seja realmente significativa, com vistas a eficácia do experimento, é necessária uma melhor adequação do ambiente virtual de aprendizagem no qual o laboratório remoto esteja inserido, de modo a tornar a interface mais intuitiva e rica em análises, tanto teóricas, conceituais, quanto dos resultados colhidos, na prática experimental a distância. 7 Fundamentação Teórica Neste tópico serão levantados e analisados o referencial que se tem a respeito da teoria e métodos utilizados na construção, adequação e elaboração de um Laboratório Remoto aplicado ao Ensino, e em particular como se dá a construção, a estruturação e a adequação do WebLab da PUC-SP 7.1 Introdução O Webduino é o nome dado ao projeto de desenvolvimento de um laboratório de sensoriamento remoto, o qual se desenvolve atualmente na PUC-SP, e que utiliza a plataforma de prototipagem de dados Arduino. Ele vem sendo desenvolvido pelo GoPEF (Grupo de Pesquisa em Ensino de Física da PUC/SP), e se iniciou com o fomento do CNPq, na área de tecnologia educacional, e em poucas palavras, é um laboratório de controle e sensoriamento remoto baseado no uso da plataforma Arduino. Por sua vez, o Arduino é uma plataforma de prototipagem aberta baseada em hardware e software flexíveis e de fácil utilização (BANZI, 2011). O ambiente Arduíno foi desenvolvido para ser utilizado por pessoas iniciantes que não possuem experiência com desenvolvimento de software e eletrônica (MARGOLIS, 2011). Quando tratamos de software na plataforma Arduíno (UFES, 2012), estamos fazendo referência tanto ao ambiente de desenvolvimento integrado (IDE) quanto ao software desenvolvido pelo usuário para tratamento dos dados na placa utilizada. O ambiente de desenvolvimento do Arduino utiliza um compilador GCC (para linguagens de
  • 23. 23 programação C# e C++), o qual possui interface gráfica construída em Java. Basicamente, é um programa IDE muito simples de se usar que utiliza bibliotecas passíveis de serem facilmente encontradas. As funções da IDE do Arduino são basicamente duas: permitir o desenvolvimento de um software e enviá-lo para a placa para ser executado. Neste projeto, a placa de controle Arduino será utilizada juntamente ao experimento de Física, o Espectrofotômetro, para envio e recebimentod e dados de usuários, de modo a permitir o acionamento e controle das diversas variáveis a serem implementadas no experimento. Em conjunto ao Arduino, é necessário se compreender mais especificamente como será utilizado o laboratório remoto, no qual o experimento está inserido. 7.2 WebLab Nos últimos anos, o desenvolvimento tecnológico tem facilitado, de várias maneiras, o nosso cotidiano (CAVALCANTE et. al, 2012). Sistemas computacionais estão presentes nas residências e em todos os lugares que circulamos, no controle do trânsito, nos supermercados, nas agências bancárias, nos aparelhos de telefonia celular, etc. Por outro lado, ensinar a disciplina de Física no século XXI pode ser uma tarefa extraordinária, já que toda a tecnologia que nos rodeia está intimamente ligada aos conceitos físicos essenciais para a compreensão dos mecanismos básicos de funcionamento de cada um destes sistemas. No entanto, muitos alunos apresentam grande dificuldade na compreensão dos fenômenos físicos. Entre as razões do insucesso na aprendizagem de Física são apontados os métodos de ensino desajustados das teorias de aprendizagem mais recentes e a falta de meios pedagógicos modernos. O uso de Tecnologias de Informação e Comunicação (TICs) no ensino tem sido objeto de estudo em todas as áreas. Nos últimos anos os avanços no uso de TICs foram extraordinários tendo em vista que os computadores se tornaram mais velozes em processamento de informações e com maior capacidade de armazenamento e de representação somando-se às novas interfaces, tais como luvas e capacetes de visualização que trouxeram a realidade virtual para a sala de aula.
  • 24. 24 Alguns pesquisadores na área de ensino de Física no Brasil têm se dedicado à produção de diferentes recursos de fácil aquisição que possibilitam a inserção de novas tecnologias no ensino de Física e, particularmente, na aquisição automática de dados (AGUIAR; LAUDARES 2001), (MAGNO; MONTARROYOS, 2002), (SOUZA et al, 1998), (MONTARROYOS; MAGNO, 2001), (DIONISIO; MAGNO, 2007), (HAAG, 2001), (CAVALCANTE; TAVOLARO, 2003), (CAVALCANTE et al, 2002), (CAVALCANTE et al, 2008), (CAVALCANTE et al, 2009), (SOUZA et al, 2011). Apesar destas publicações e de todo o avanço tecnológico das últimas décadas, as salas de aula da grande maioria das escolas brasileiras ainda estão bem distantes deste universo e o ensino de Física ainda continua desconectado deste mundo tão fascinante que nos cercam. Os recursos computacionais em geral se restringem ao uso de simulações, editoração de textos, planilhas de cálculo e internet para pesquisa de trabalhos escolares. A possibilidade de utilizar o computador como um instrumento de medida ainda é desconhecida pela grande maioria dos professores brasileiros (CETIC, 2013). De outro lado, há um grande incentivo dos órgãos públicos brasileiros a projetos que tenham como meta gerar conteúdos e recursos para potencializar o uso das TICs (UNESCO, 2008) nas salas de aula na educação do ensino fundamental e médio, particularmente, aqueles destinados ao uso dos laptops educacionais. Inclusive, o uso do computador e das TICs em geral, é defendido pela Lei de Diretrizes e Bases da Educação que preconiza a necessidade “da compreensão [...] da tecnologia”, no art. 32-II, no ensino fundamental, como formação básica do cidadão (MEC – BRASIL, 1996). Mas, da mesma forma que vem sendo incentivada, sabe-se que a prática de uso do computador por alunos e professores não se tornou concreta (REIS et al, 2012). Algumas iniciativas bastante conhecidas como, o projeto Scracth do MIT e, mais recentemente, a interface de programação Scratch for Arduíno (S4A) que é um ambiente de programação visual integrado a interface Arduíno e baseado no Scratch, muito utilizado com fins educacionais, mostram-se cada vez mais promissoras para o desenvolvimento da capacidade criativa das crianças e adolescentes no aprendizado de Ciências (CAVALCANTE et al, 2011).
  • 25. 25 Além dos aspectos já mencionados não podemos deixar de mencionar que a partir de 2004 iniciou-se um grande movimento na internet conhecido como Web 2.0 (W3C, 2009). Na Web 2.0, o usuário deixa de ser um sujeito passivo e passa a fazer parte de uma imensa rede de compartilhamento de informações e construção de conhecimento. A consequência imediata deste processo é que o conhecimento já não está centralizado em uma única pessoa ou em um único lugar, ele distribui-se entre os usuários da rede. A aprendizagem deixou de ser uma construção individual do conhecimento, para ser um processo social onde o educador já não é a fonte única de conteúdos e o “aprendiz não aprende” de forma isolada. A interação social, o desenvolvimento de novas formas de linguagem e a comunicação são condições importantes e necessárias para a aprendizagem. A habilidade mais importante que determina a vida das pessoas é a de aprender mais habilidades, de desenvolver novos conceitos, de avaliar novas situações, de lidar com o inesperado. Isto se tornará cada vez mais evidente no futuro: a habilidade mais competitiva é a habilidade de “aprender a aprender”. O que é certo para os indivíduos, é, todavia mais certo para as nações (PAPERT, 2008). Portanto, é necessário criar espaços na rede internet que viabilize, não apenas divulgar recursos existentes, mas também, a criação de laboratórios de sensoriamento remoto que possibilite aos estudantes e professores, em diferentes níveis de aprofundamento, estudar conceitos importantes em Ciências e, mais especificamente, aqueles relacionados à Ciência Moderna e Contemporânea. 7.2.1 Arduino No WebLab Uma das justificativas para utilização da plataforma Arduíno está na existência de um grande número de projetos disponíveis na Web em vários idiomas e em diferentes áreas do conhecimento caracterizando esta plataforma, como uma tecnologia essencialmente interdisciplinar (STABILE; CAVALCANTE, 2012). O Webduino pretende desenvolver diferentes recursos didáticos que possibilitem ensinar conceitos Físicos, permitindo a quem for acessá-lo um maior domínio da tecnologia.
  • 26. 26 Uma forma de abordar a tecnologia como ferramenta para o desenvolvimento de conceitos científicos é através de plataformas digitais e outras APIs que evidenciem o aspecto científico abordado. Por isso, pretendemos utilizar plataformas, como Xively, Partcl®, dentre outras API’s, que possibilitam a coleta remota de dados, via porta serial, Shields Ethernet e/ou Wireless, etc, como forma de permitir a interação do usuário com a experiência. Opções desta natureza, possibilitam incorporar o Ensino de Ciências na já conhecida rede de sensores, agregando valores à experimentação didática. Por outro lado, a implantação de laboratórios de sensoriamento e controle baseado em plataformas livres, assim como a Arduíno, torna o Weblab um projeto muito próximo a realidade do usuário, potencializando recursos disponíveis e compartilhados na Web. 7.2.2 O Que o Webduino traz de novo Um dos aspectos inovadores deste projeto está associado ao desenvolvimento de um laboratório de controle e sensoriamento remoto, voltado ao ensino de Ciências, totalmente apoiado em uma plataforma open-source em hardware e software amplamente difundido na internet. Tratando-se de uma plataforma Open Source o usuário terá acesso à documentação pertinente, a cada experimento proposto, qual seja: códigos fontes, esquemas elétricos e vídeos ilustrativos mostrando cada etapa de construção e montagem, etc, podendo, se assim desejar, montar o seu próprio sistema, manipulá- lo e disponibilizá-lo em redes remotas, através de servidores remotos como, por exemplo, o Xively®. Igualmente inovador é o desenvolvimento de recursos destinados ao ensino de ciências em nível fundamental em que se pretende criar aplicativos que possibilite manipular e interagir com experimentos remotos utilizando o software de programação iconográfica Scratch for Arduíno, que é um ambiente de programação visual integrado a interface Arduíno e baseado no Scratch, muito utilizado com fins educacionais. Estes aplicativos deverão possibilitar que usuários do Scratch for Arduíno (S4A), de diferentes faixas etárias, possam manipular os equipamentos adequados através de
  • 27. 27 mídias interativas inteiramente adaptadas a sua realidade o que, certamente, contribuirá na ampliação dos recursos educacionais destinado a um público de menor faixa etária. Outro aspecto de grande relevância no Weblab da PUC/SP é o desenvolvimento de uma Interface padrão de comando com reconhecimento de voz para diferentes dispositivos e experimentos monitorados e controlados remotamente. Por outro lado, apesar do uso crescente dos recursos tecnológicos por todos ainda é importante questionar os aspectos correlacionados a acessibilidade destes recursos. Considera-se acessibilidade como um processo que permite a inclusão de todas as pessoas com deficiências ou não a participarem de atividades que incluem o uso de produtos, serviços e informação. Assim, neste projeto, pretendemos responder a seguinte questão: até que ponto as tecnologias desenvolvidas e disponíveis possibilitam uma ampla e total inclusão aos serviços, produtos e informação? Quantos laboratórios de sensoriamento remoto disponíveis na web possibilitam acesso e interatividade aos experimentos de modo mais amplo? É preciso abraçar estas questões e enfrentá-las de tal modo que a tecnologia e seus avanços possibilitem uma maior integração dos usuários, oferecendo amplo acesso aos serviços, produtos e informações incluindo neste rol os portadores de necessidades especiais de ordem física, que são; hemiplégicos, paraplégicos, tetraplégicos (incluindo sujeitos com membros amputados). Os resultados deste trabalho foram apresentados (CAVALCANTE, 2013) no III WebCurriculo. Um WebLab (CAVALCANTE, 2013), com todas estas características, bem como com seus aprofundamentos e futuras aplicações em salas de aula, além de inovador poderá contribuir para maior difusão e divulgação da ciência, despertando o interesse dos jovens para uma área de conhecimento que tem sofrido uma forte queda em todo mundo e, mais acentuadamente, no Brasil. Devido a questão de inovação do Weblab, é necessário que a forma como é disposto seja bem estruturado, além da forma como dispomos os dados e informações coletadas e apresentadas, para que o usuário não tenha problemas de acesso ou queda na comunicação com o experimento. Por isso, também, é necessário que seja apresentada a arquitetura dentro do nosso Weblab, o Webduino.
  • 28. 28 7.3 Procedimentos Neste item serão descritas as etapas de construção do Laboratório Remoto, desde a concepção teórica e prática, passando pela etapa de elaboração dos itens a serem trabalhados, controlados e visualizados (no que se refere ao experimento na prática) dentro do laboratório remoto, até a estruturação e adequação do mesmo dentro de um Ambiente Virtual, dada a natureza educacional a que se destina este laboratório remoto. Para se realizar todo o sistema de sensoriamento remoto, dentro do laboratório é necessário reconhecer-se a necessidade de entendimento da arquitetura de software do Weblab, a fim de que não se esbarrar em problemas estruturais, ou mesmo, cuja implementação cause problemas de acesso, etc. Logo, é relevante analisar, primeiramente, a arquitetura do Weblab. 7.3.1 Introdução Um sistema ou dispositivo seja ele computacional ou não, deve sempre considerar dois aspectos: sua funcionalidade e o que irá impulsioná-lo com sapiência e destreza. Assim, quando já possuímos uma breve ideia dos sistemas envolvidos, avaliamos em primeira instância a sua interface de comunicação, que deve fornecer informações condizentes e com inteligibilidade. Considerando aqui, que se trata de uma abordagem de desenvolvimento intelectual, as referências requerem concisão, mas nem sempre explícitas, pois queremos apenas orientar o usuário às descobertas, que conduzem (MORIN, 2003) a um aprendizado eficaz e significativo. Com isso, conduzimos nossa busca por um sistema que possibilita unir conceitos de usabilidade e acessibilidade, além da disponibilização de experimentos de diferentes graus de complexidade. Diferentemente de alguns laboratórios de experimentação remota disponíveis ao público, além do acesso ao experimento em si, o usuário encontra no Webduino, diferentes recursos didáticos que possibilitam a compreensão do fenômeno físico abordado, tais como; fundamentação teórica, simuladores, vídeos, etc. Ainda, pretendemos criar interfaces lúdicas para tratar o experimento remoto dentro de um
  • 29. 29 ambiente de game. E, junto com essas interfaces também pretendemos criar uma interface de controle, na qual o professor tenha acesso. A plataforma que melhor se ajusta às nossas condições de contorno é a WebLab-Deusto desenvolvido pela Universidade de Deusto, (Deusto, Bilbao – Espanha) (UNIVERSIDADE DE DEUSTO, 2015). 7.3.2 Descrição do WebLab-Deusto O WebLab-Deusto é um programa de arquitetura distribuída para laboratórios remotos, o qual proporciona uma série de funcionalidades que facilitam o desenvolvimento de uma aplicação remota. Pode-se manipular através de comandos um experimento através de uma rede que pode ser tanto interna quanto externa. É um projeto open-source desenvolvido pela Universidade de Deusto que fornece um framework flexível reunindo toda a integridade, garantindo segurança, agilidade, escalabilidade - recursos essenciais para este serviço. O projeto desenvolvido pela Universidade de Deusto possui estruturação de seu código fonte baseado, prioritariamente, em linguagem de programação Python, ocupando 67,1% de suas linhas de códigos, que, por sua vez, compartilha o sistema com as linguagens Java, C# e PHP (UNIVERSIDADE DE DEUSTO, 2015). O laboratório remoto da PUC-SP utiliza as plataformas Git Hub e/ou Google Code, que possibilitam a inserção de usuários interessados no sistema, que agregarão conhecimento e conteúdo, ou também traduções para outros vocabulários (esta perspectiva de desenvolvimento em comunidade online e uso dos serviços de Cloud Computing oferecem uma grande alavanca para desenvolvimento dos projetos). A integração multiplataforma de programação que o WebDeusto oferece é a sua principal vantagem. Ele pode se comunicar com qualquer servidor de um experimento que ofereça uma comunicação XML-RPC como o Java, tecnologias .NET, Python e LabVIEW.
  • 30. 30 Fig. 03 - Esquema do funcionamento do WebLab com o WebDeusto (UNIVERSIDADE DE DEUSTO, 2015). O projeto está dividido em servidores específicos:  Servidor principal: escrito na linguagem de programação Python, está dividido em: o Servidores de acesso: processa as credenciais dos usuários. o Servidores centrais: gerencia o uso, os acessos, etc. o Servidores de laboratório: colocado sobre os laboratórios de Física, eles funcionam como porta de entrada para os servidores da experiência. o Servidores do experimento: possuem a programação específica para a experiência.  Cliente: Conjunto de páginas estáticas que será acessível a partir de um servidor web (Apache), e acessados de um browser, que fará chamadas para os servidores do experimento.
  • 31. 31 Fig. 04 - Esquema do Funcionamento do WebLab (UNIVERSIDADE DE DEUSTO, 2015). Do lado do servidor-cliente, utiliza-se o GWT (Google Web Toolkit), kit de ferramentas de desenvolvimento para a construção de aplicações AJAX, para a construção da interface Web. Algumas das vantagens analisadas na utilização desse framework são:  Agilidade no desenvolvimento de páginas em Javascript com uma linguagem de programação robusta, o Java, gerando um código compilado para cada navegador;  Acesso em qualquer aparelho com um browser que dê suporte para HTML, CSS e Javascript;  Reaproveitamento de código – classes Java podem ser facilmente modificadas (excelente para a etapa de desenvolvimento). Podem ser acopladas outras tecnologias ao GWT (Google Web Toolkit), a partir de modificações e adição de algumas classes e bibliotecas:  HTML5: Entre suas principais vantagens apresenta portabilidade para as principais tecnologias mobile atuais; consegue executar vídeos sem ajuda de
  • 32. 32 outros aplicativos, editar imagens 2D e visualizar imagens 3D além de apresentar recursos mais interativos que o HTML.  FLASH: Muito utilizada na Internet para executar vídeos e como plataforma para jogos online e construção de sites, o flash apresenta uma grande possibilidade de interação e manipulação através de ActionScript. Não é uma plataforma a ser utilizada na construção de sistemas complexos, mas como complemento para alguma atividade interativa.  PHP: uma linguagem de script open-source de uso geral, muito utilizada e especialmente utilizada para o desenvolvimento de aplicações Web inseridas no HTML; amplamente utilizada por sua facilidade de aprendizado, mas com recursos avançados. Algumas características importantes que nos fizeram escolher esta plataforma:  Autenticação: WebLab-Deusto oferece um sistema de autenticação extensível que suporta nome de usuário e senha armazenados em um banco de dados MySQL, LDAP servidores remotos, e também OpenID para verificar as credenciais em outra Universidade, Facebook, e autenticação confiável com base no endereço IP do cliente que requisita acesso;  Gerenciamento de fila: WebLab-Deusto gera filas diferentes de reserva para as diferentes plataformas experimentais disponíveis, impedindo sobrecarga aos experimentos disponíveis;  Escalabilidade: A arquitetura WebLab-Deusto é apresentada em escala horizontal e ferramentas de teste estão disponíveis para testar diferentes implementações;  Segurança: A arquitetura distribuída WebLab-Deusto mantém em isolamento o hardware e software que está acoplado à experiência, de modo que qualquer problema relacionado com um uso errado do experimento nunca não coloca todo o laboratório remoto em risco.  Implementação: O sistema de implantação WebLab-Deusto torna fácil e flexível a configuração do mapa da rede em que todos os servidores e experimentos estão envolvidos.  Acompanhamento do usuário: Os usos do laboratório remoto são armazenados automaticamente. No caso dos experimentos gerenciados, mesmo os
  • 33. 33 comandos trocados entre o servidor e o cliente são armazenados, para eventuais correções necessárias e acompanhamentos. A quantidade de eventos a serem registrados cabe ao administrador-WebLab-Deusto.  Administração: O WebLab-Deusto oferece ferramentas de administração tais como; monitorar usuários em tempo real, verificar acessos, adicionar/remover permissões, grupos e usuários, etc.  Facebook: WebLab-Deusto está integrado com o Facebook, assim os usuários podem vincular suas contas e usá-lo com ferramentas fornecidas pelo Facebook, como o bate-papo (lista de aplicativos).  Dispositivos móveis: A interface de usuário-WebLab Deusto também é adaptada para dispositivos móveis, e os experimentos gerenciados também podem ser adaptados para fornecer uma versão mais amigável com o usuário, possibilitando a aprendizagem móvel.  Extensibilidade: experiências existentes também podem ser adaptadas para Weblab-Deusto. A partir destas considerações concluímos que o WebDeusto se mostra como uma ferramenta interessante para criação de laboratórios remotos e flexível para integrar diferentes experimentos, escritos em diferentes linguagens de programação, à administração do todo. A parte de desenvolvimento das interfaces com a web utiliza GWT, uma ferramenta muito poderosa, e que permite a criação de interfaces que possam apresentar as mais variadas abordagens, como por exemplo, a de game, da mesma forma que permite a criação de interfaces diferentes para especificações diferentes, como o caso das interfaces para professor e usuário/aluno, as quais desejamos implementar futuramente. Outras ferramentas que possibilitam maior aproximação com o usuário podem ser utilizadas, tal como o flash, garantindo-lhe uma experiência mais amigável com o programa, e o HTML5, pela portabilidade oferecida. A seguir apresentaremos algumas telas de acesso ao Weblab, da PUC/SP, o Webduino, baseado na plataforma WebLab-Deusto.
  • 34. 34 Fig.05 - Tela de acesso aos experimentos do Weblab da PUC-SP, baseado na plataforma WebLab- Deusto (acesso via http://weblabduino.pucsp.br/weblab/client/index.html?locale=pt) Fig.06 - Tela que mostra a reserva para o experimento (ERA – Espectrofotômetro Remoto Automatizado).
  • 35. 35 Fig.07 - Tela de acesso ao experimento. E as figuras do nosso site e do blog do experimento (ERA – Espectrofotômetro Remoto Automatizado). Fig. 08 – Tela mostrando o acesso ao site do projeto – o qual se pretende criar uma área de acesso ao Ambiente de Aprendizagem (http://www.pucsp.br/webduino/experimentos/espectrofotometro-rem oto- automatizado/index.html)
  • 36. 36 Fig. 09 – Tela mostrando o blog do Projeto, com maiores informações de todas as partes do experimento, inclusive explicando questões teóricas e pedagógicas do projeto. (Acesso via: http://era- weblab.blogspot.com.br/) 7.3.3 Coleta de Dados Para que um experimento seja completo necessitamos que ele, ao receber estímulos dos alunos, responda de maneira adequada. Na maior parte das análises experimentais e, da mesma forma que nos experimentos presenciais, extraímos dados que serão dispostos em gráficos para que se realize as análises necessárias, posteriormente. Para realizar tal coleta, dispomos de redes de sensores internas e interfaces de reprodução dos gráficos e de visualização dos dados. Com isso, para a interface dos usuários explicitaremos os dados através de gráficos utilizando uma biblioteca Java denominada Jchart2D, que prioriza a performance na visualização dos dados, sem deixar de lado implementações complexas e em tempo real. Os processos nesta aproximação ocorrem somente por tráfego interno, dos experimentos para o cliente (ou seja, o cliente não gera gráficos, e sim o experimento para o cliente). Como um dos objetivos iniciais do projeto é permitir a utilização da Rede de Sensores, disponíveis na Web, utilizamos em um dos experimentos, a plataforma Xively® para coleta e disponibilização dos dados experimentais. Esta plataforma possibilita integração paralela dos experimentos, utilizando conexão através da internet com seu próprio servidor, que nos transmitem os dados em forma de gráficos
  • 37. 37 e arquivos de manipulação para web ou ainda programação como os padrões: XML e o CSV (Comma-Separeted Values, ou valores separados por vírgula). Para este tipo de experimento monitorado via Xively®, elaboramos uma sequência de tutoriais (WEBDUINO, 2014), de modo a permitir que os usuários possam reproduzir outros experimentos de seu interesse para acesso remoto de dados gratuitamente, contribuindo para uma maior divulgação e popularização desta tecnologia. 7.3.4 Segurança Duas das ferramentas utilizadas para buscar a estabilidade e integridade do nosso sistema, são o controle de acesso de usuários e o gerenciamento de uso dos experimentos, ou ainda, controle por filas FIFO (First In First Out; o primeiro da fila que entrar saíra primeiro). Tal recurso é muito importante, tendo em vista que os recursos físicos são limitados. Este controle é propiciado em grande parte pela plataforma Weblab-Deusto. Utilizamos ainda outras técnicas de segurança em redes tais como Firewalls e controle de acesso às ferramentas que completam o sistema. Além disso, são necessários alguns protocolos específicos para cada tipo de comunicação com o servidor principal, o que de certa forma, evitam explorações indevidas em nossos sistemas. 8 Metodologia Este estudo será realizado com uma abordagem de construção de protótipo, visando uma implementação inicial e verificação, com testes de funcionalidade e adequação a possíveis necessidades de usuários, para posterior utilização do Laboratório Remoto e verificação de possíveis melhorias na aprendizagem de alunos, e complementando o ensino ministrado por professores, em escolas (por ora, em contato com Goiânia e Campinas). Sendo assim, inicialmente foram realizadas pesquisas de levantamento do estado da arte e foi realizado o levantamento da fundamentação teórica (relatados nos itens anteriores) do tema proposto, e frente as
  • 38. 38 necessidades atuais, proceder-se-á à montagem do protótipo do experimento, bem como a estruturação da arquitetura de rede necessária para a adequação do laboratório com acesso remoto, dentro de um ambiente de aprendizagem que seja condizente com as necessidades educacionais do usuário, com relação a tópicos de Física Moderna, bem como à possíveis necessidade pedagógicas dos profissionais da área. Esta etapa do projeto, a ser realizada futuramente, será possível após as adequações e construção do ambiente, com a realização de testes de funcionamento e de interação do usuário com o ambiente. Temos as seguintes etapas de trabalho: Etapa 0 Realização de disciplinas do curso, Qualificação (Jan/16), Elaboração do Texto de defesa, Defesa do Projeto. Etapa 1 Estado da Arte dos Trabalhos relacionados ao desenvolvimento e uso de Laboratórios Remotos junto ao ensino, em particular, em disciplinas de Física, evidenciando necessidade, adequações possíveis, melhorias, críticas ao uso e, se possíveis, intercomparações de laboratórios remotos. Etapa 2 Levantamento do Referencial Teórico referente às Atividades Relacionadas a Construção, Estruturação e Adequação, Viabilidade e Testes de Laboratórios Remotos em Ensino. Etapa 3 Construção do Laboratório Remoto, desde sua concepção teórica, considerando os referenciais metodológicos, e prática até a elaboração e estruturação. Etapa 4 Implementação e Testes de Funcionamento, evidenciando necessidades e possíveis melhoras, com relação aos aspectos necessários para o bom funcionamento e interação do Laboratório Remoto. Etapa 5 Pré-Teste (considerando a continuação do projeto em questão) com usuário para verificação da eficácia do ambiente de aprendizagem e que possíveis melhorias devam ser realizadas e futuras adequações visando um melhor aproveitamento dos recursos existentes no ambiente. A primeira etapa da investigação em curso se deu logo pela escolha do tema, dado que, conforme analisado através da revisão do Estado da Arte dos Laboratórios on-line, baseados na Internet, estes podem se classificar em dois tipos: virtual e
  • 39. 39 remoto, de modo que a escolha ser pelo laboratório remoto se dá devido às seguintes características, conforme Nedic et al. (2003):  Há interação direta com equipamentos reais;  As informações são reais;  Não há restrições nem de tempo e nem de espaço;  Possui um custo médio de montagem, utilização e manutenção;  Há feedback do resultado das experiências on-line. Após a escolha do tema a ser estudado, dentro da etapa da Revisão do Estado da Arte, por se tratar de um assunto relativamente novo, a quase totalidade das referências ligadas aos laboratórios sejam virtuais ou remotos advêm de artigos científicos, nos quais as mais recentes informações e estudos da área foram divulgados. A partir das informações recolhidas, a Revisão do Estado da Arte continuou com a investigação do desenvolvimento dos laboratórios remotos em curso em algumas universidades e centros de pesquisas, analisando-se algumas publicações Qualis A. Para tanto, utilizou-se o trabalho de Cardoso e Takahashi (2011), publicado na Revista Brasileira de Pesquisa e Educação em Ciência (RBPEC). Segundo a investigação destes pesquisadores da Universidade Federal de Uberlândia: O intuito é investigar se (e como) os laboratórios remotos estão sendo utilizados no ensino, particularmente, no ensino de Física. Foram selecionados e analisados artigos de periódicos Qualis A nacionais e internacionais, entre os anos 2000 e 2009. No desenvolvimento de nosso trabalho não encontramos relatos de pesquisa sobre acesso remoto a experimentos para a área de Física ou de como isso pode incrementar o processo de ensino e aprendizagem dessa disciplina. Desta forma, as eventuais limitações na utilização desta ferramenta no ensino devem ser estudadas de forma aprofundada e suas potencialidades exploradas no sentido de suprir as necessidades de uma aula prática. (CARDOSO; TAKAHASHI, 2011) Após esta análise verificou-se que a utilização dos laboratórios remotos no contexto de ensino de Física, embora pouco abordado, apresenta-se como uma prática crescente e sua utilização abre um campo de possibilidades e de experimentações, as quais devem ser melhor trabalhadas, visando as potencialidades que advém de uma maior sistematização. Em outras situações (BOTENTOUIT, 2007),
  • 40. 40 foi observado, ainda, que o maior investimento está nos laboratórios direcionados ao ensino a nível universitário, dados os maiores recursos disponíveis, o que não significa que não possam ser utilizados em parcerias entre universidades e escolas. Diante destes levantamentos e das questões surgidas, a procura de respostas levou-nos a considerar que, em termos metodológicos, o desenho do estudo seria necessariamente multifacetado, no sentido de envolver a utilização de instrumentos e amostras diversificados. As investigações de um modo geral visam à criação do conhecimento científico, e para chegar aos resultados existem um conjunto de métodos que podem ser empregados, dentre estes os métodos experimentais, métodos descritivos, e também métodos qualitativos (através de formulários, questionários, entre outros) ou mesmo métodos mistos/específicos. Com base nestas considerações, pode-se ressaltar que o estudo em questão apresenta ao mesmo tempo características de um estudo de avaliação (LUKAS; SANTIAGO, 2004), de um estudo de caso (COUTINHO; CHAVES, 2002), e ainda características de um modelo metodológico misto muito divulgado em pesquisas internacionais no domínio da Tecnologia Educativa que, na literatura, se designa por metodologia de desenvolvimento (VAN DEN AKKEN, 1999), nomenclatura advinda da área de Desenvolvimento de Softwares. Para Van Den Akken (1999) as diferenças entre as metodologias de desenvolvimento e as abordagens empíricas tradicionais estão relacionadas mais às finalidades da investigação (nível filosófico e epistemológico) do que ao nível dos métodos propriamente ditos: “os métodos da investigação de desenvolvimento não são necessariamente diferentes de outras abordagens de investigação educativa” (VAN DEN AKKEN, 1999). Ou seja, as metodologias de desenvolvimento utilizam, para a coleta e análise de dados, instrumentos e técnicas tanto das abordagens quantitativas quanto qualitativas. As diferenças situam-se na forma como abordam os problemas e como se concebe o projeto da investigação em si. Coutinho e Chaves (2001) sintetizam da seguinte forma as características básicas deste modelo metodológico:  O fim último da pesquisa não é testar a teoria mas resolver problemas práticos dos professores;
  • 41. 41  A busca da solução para o problema passa pela concepção de uma solução “protótipo” que deve ser fundamentada desde um ponto de vista teórico e prático (ouvidos os profissionais no terreno) e articulada com objetivos de aprendizagem;  Condução de uma investigação rigorosa e reflexiva no sentido de testar, avaliar e refinar no terreno, num processo interativo, a solução protótipo concebida;  Implica colaboração permanente entre investigadores, profissionais do terreno (professores) e tecnólogos (informáticos). Definido o tema de estudo, frente às necessidades no campo do ensino de Física em território nacional, e selecionada a metodologia a ser empregada, com relação a elaboração, desenvolvimento e avaliação de um protótipo, o passo seguinte deve ser a escolha do laboratório remoto a utilizar como referência, base, para o desenvolvimento do próprio laboratório remoto, inserido em um ambiente virtual de aprendizagem. A utilização das novas tecnologias, no que se refere ao uso dos laboratórios remotos, pode trazer imensas vantagens para o ensino escolar. Tendo isso em mente, estamos desenvolvendo nosso próprio laboratório remoto de Física, com foco no ensino de Física, ambientado na Pontifícia Universidade Católica de São Paulo (PUC- SP), com base na investigação dos recursos e vantagens do laboratório remoto da Universidade Federal de Santa Catarina – Campus Araranguape, o RexLab (SILVA, 2006), além da interface de uso do WebLabDeusto (UNIVERSIDADE DE DEUSTO, 2015), para a criação do ambiente virtual. Tendo como base estes laboratórios, procuramos mesclar algumas características e introduzir outras inexistentes, principalmente no que se refere ao aspecto pedagógico e conceitual de tópicos de Física Moderna, desde a concepção teórica dos experimentos até questões de aplicações tecnológicas advindas do estudo fenômeno trabalhado no experimento remoto, que podem favorecer uma maior aprendizagem. Com as informações obtidas através da literatura, do Estado da Arte e da criação do ambiente virtual, no qual deverá ser inserido o laboratório remoto, devemos partir para a última fase deste projeto de pesquisa, para fins de monografia: o desenvolvimento de um protótipo, propriamente dito, o qual deverá ser aplicado em testes de verificação de usabilidade e de aplicação, visando a adequação ao aspecto
  • 42. 42 educacional, porém, para projeto posterior, na continuação desta pesquisa. Um esquema com o plano de investigação das etapas pode ser observado abaixo na figura 1. Fig. 10 - Esquema do plano de investigação (adaptado de Bottentouit, Universidade do Porto, 2007). Considerando ainda, que este protótipo deve incluir não somente a montagem física a ser alocada dentro de uma estrutura que possibilite a coleta de dados e de imagens do experimento real, com acesso remoto, mas também de toda a estrutura de rede, dentro da qual deve ser alocado o ambiente virtual de aprendizagem, para que o aspecto educacional não fique relegado a segundo plano, de forma que seja evidenciado, então, a preocupação com o ensino de tópicos de Física Moderna, além da troca de informações relacionadas, seja através de fóruns, entre outras interfaces a serem disponibilizadas dentro do ambiente. 8.1 Resultados Esperados Com base na metodologia de desenvolvimento, proposta por Van den Akeen (1999), pretendemos montar o protótipo, após um estudo de avaliação dos laboratórios existentes, e das potencialidades que necessitam ser explorados; bem como após a montagem do próprio, pretendemos realizar um estudo de caso, frente ao ambiente virtual de aprendizagem com o laboratório remoto a ser montado, contudo, esta etapa temos em mente que não seja possível ser realizada para fins
  • 43. 43 desta pesquisa, e sim, para um trabalho futuro, como continuação dos desenvolvimentos das etapas correntes. Sendo assim, nos dois próximo itens mostraremos os resultados que esperamos encontrar, a fim de se desenvolver o protótipo, concluindo com o ambiente virtual de aprendizagem no qual estará inserido o laboratório remoto, além dos testes de aplicabilidadee de eficácia do próprio frente ao contexto atual. Testes de validação do Laboratório Remoto com o Ambiente Virtual de Aprendizagem pretendemos desenvolver em trabalhos futuros, como foi dito, em um possível estudo de caso. 8.1.1 Implementação e Testes de Funcionamento Pretendemos demonstrar, ao longo dos Resultados, etapas e imagens do 1) Experimento de Espectrofotômetro Remoto Automatizado, propriamente dito, demonstrando, antes, o 2) Contexto da Espectrofotometria em relação ao Ensino de Física Moderna, partindo para a 3) Programação no Arduino para o Espectrofotômetro Remoto Automatizado, até as 4) 4.1) Interfaces: de Visualização do Experimento; 4.2) de Controle Remoto para acionamento da lâmpada de LED, além das etapas de construção do 5) Ambiente Virtual de Aprendizagem, no qual estará contido o experimento, ou seja, o laboratório remoto. 8.1.2 Teste de Funcionamento do Experimento Além das etapas iniciais de demonstração da construção do protótipo, pretendemos demonstrar, também, 6) Teste de Funcionamento da Programação do Arduino; 7) Teste de Funcionamento da Programação de Acionamento da Lâmpada de LED; 8) Teste de Acionamento do Experimento e Coleta de Dados; etapas estas que evidenciam os códigos e resultados obtidos, necessários para uma análise mais aprofundada a posteriori. 8.2 Resultados Obtidos até o momento Até o momento, montamos a estrutura do experimento físico, bem como a programação no Arduino para controle de giro do motor, que aciona o giro da rede de difração a fim de fazer passar as raias do espectro pelo sensor de cor. Este por sua vez, coleta os dados de irradiância e de comprimento de onda, os quais são repassados via saída serial a interface de controle, a qual é acionada pelo usuário
  • 44. 44 remoto, o qual poderá observar os dados em um gráfico de Irradiância (W/m²) por Comprimento de onda (nm), ou em uma tabela com as respectivas colunas. Também está em fase de adequação às características de Ambiente Virtual de Aprendizagem, a interface de controle do experimento (como pode ser observada pela figura 07), a fim de possibilitar um maior suporte a uma aprendizagem mais interativa e significativa. Também está pronta a interface de controle de acionamento das cores da lâmpada de LED RGB, em php, a qual será inserida dentro da interface de controle do experimento. A programação e a imagem da interface (ANEXO 1), bem como a programação no arduino (em C++) – ANEXO 2 - que controla o envio de dados a interface de controle pela saída serial, além da imagem do experimento físico, propriamente dito (ANEXO 3), com a disposição dos componentes para geração do espectro, estão na sessão de anexo 8.3 Próximas Etapas Nas próximas etapas pretendemos: 1. findar a montagem do experimento físico, a. fixando cada um dos componentes, b. melhorando a resolução do espectro, c. melhorando o envio dos dados através da inserção de um novo sensor de cores (sensor de cores RGB TCS 3200), no lugar do conversor de frequência 2. Adequação da Programação no Arduino para enviar a coleta de dados e receber os comandos da interface de controle 3. Inserção com possíveis adequações da Interface de Controle Remoto (que aciona a mudança de cores da lâmpada de LED, conforme o usuário queira), na Interface de Controle do Experimento. 4. Adequação da Interface de Controle para torna-la mais apropriada para fins de um Ambiente Virtual de Aprendizagem: a. Incrementando a Interface de modo a permitir a colocação de chats, fóruns entre outros componentes dentro da interface que permita a troca
  • 45. 45 de informações, dentro de uma perspectiva semelhante ao ambiente disponível no Moodle. b. Colocando itens dentro da interface que permita uma interação maior com o usuário remoto, como por exemplo, hiperlyns que possam leva- lo a vídeos de demonstração de outros experimentos relacionados, simuladores dos conceitos advindo com o experimento demonstrado entre outras possibilidades. c. Melhorar o design da Interface de controle. Com essas atualizações a serem realizadas ou aperfeiçoadas pretendemos que este experimento fique já disponível para controle e verificação dos espectros pelo usuário remoto, além de poder ser usado efetivamente como um recurso para a aprendizagem do mesmo, e que seja significativa e interessante. Referências Bibliográficas AGUIAR, C.E.; LAUDARES, F. “Aquisição de Dados usando Logo e a Porta de Jogos do PC”. Revista Brasileira de Ensino de Física, 23, 4, 371-379, 2001. BANZI, M. “Primeiros Passos Com o Arduino”, São Paulo: Novatec, p1, 2011. BOTENTOUIT JUNIOR, J. B. “Laboratórios Baseados Na Internet: Desenvolvimento De Um Laboratório Virtual De Química Na Plataforma MOODLE”, Dissertação de Mestrado em Educação Multimídia. Orientadora: Dra. Clara Maria Pereira Coutinho. Universidade do Porto, Portugal, 2007. BRASIL. Senado Federal. Lei de Diretrizes e Bases da Educação Nacional: nº 9394/96; art. 32- II. Brasília, 1996. BRASIL. Secretaria de Educação Média e Tecnológica. PCN+ Ensino Médio: orientações educacionais complementares aos Parâmetros Curriculares Nacionais. Ciências da Natureza, Matemática e suas Tecnologias. Brasília: MEC, SEMTEC, 2002. CAVALCANTE, M.A. “O projeto Webduino”. Acesso em 16 de Julho de 2014, disponível em http://webduino.blogspot.com.br/ CAVALCANTE, M.A.; BONIZZIA, A.; GOMES, L.C.P. “Aquisição de dados em laboratórios de Física; um método simples, fácil e de baixo custo”, Revista Brasileira de Ensino de Física, 30,2, 2501- 2506, 2008. CAVALCANTE, M.A.; BONIZZIA, A.; GOMES, L.C.P. “O ensino e aprendizagem de física no Século XXI: sistemas de aquisição de dados nas escolas brasileiras, uma possibilidade real”, Revis ta Brasileira de Ensino de Física 31,4, 4501-4506, 2009. CAVALCANTE, M.A.; STABILE, B. S.; FONTES, M. M.; ALMEIDA JUNIOR, J. N.; REBOUÇAS, H. C. “Webduino: um laboratório de Sensoriamento Remoto para o ensino e Aprendizagem de Ciências”, em fase de revisão, 2012 CAVALCANTE, M.A.; SILVA, E.; PRADO, R.; HAAG, R. “O Estudo de Colisões através do Som”, Revista Brasileira de Ensino de Física 24, 2, 150-157, 2002. CAVALCANTE, M.A.; TAVOLARO, C.R.C. “Medindo a Velocidade do Som”, Física na Escola, 4, 1, 29 – 30, 2003.
  • 46. 46 CAVALCANTE, M.A., TAVOLARO, C.R.C.; MOLISANI, E. “Física com Arduíno para Iniciantes”, Revista Brasileira de Ensino de Física, 33,4,4053- 4053-8, 2011. CETIC.BR, Pesquisa TIC Educação 2012 - Pesquisa sobre o uso das TIC nas escolas brasileiras, São Paulo, 2013. CLOUGH, M.P. “Using the Laboratory to Enhance Student Learning, Learning Science and the Science of Learning”, R.W. By-Bee, ed., pp. 85-97, Nat’l Science Teachers Assoc., 2002. COUTINHO, C. P.; CHAVES, J. H. “O estudo de caso na investigação em Tecnologia Educativa em Portugal”. Revista Portuguesa de Educação, Vol 15, nº 1, 221-244, 2002. DIONÍSIO, G. e MAGNO, C.W.; “Photogate de baixo custo com a porta de jogos do PC”, Revista Brasileira de Ensino de Física, 29,2, 287-293, 2007. ELTON,L. “Student Motivation and Achievement,” Studies in Higher Education, vol. 13, no. 2, pp. 215-221, 1988 EVANS, G.R “Teaching.” Academics and the Real World, pp. 38-58, Soc. for Research into Higher Education & Open Univ. Press, 2002. HAAG, R. “Utilizando a Placa de Som do Micro PC no Laboratório Didático de Física”, Revista Brasileira de Ensino de Física, 23, 2, 176-183, 2001. HANSON, B.; CULMER, P.; GALLAGHER, J.; PAGE, K.; READ, E.; WEIGHTMAN, A.; LEVESLEY, M. “ReLOAD: Real Laboratories Operated at a Distance”, IEEE Transactions on Learning Technologies, vol. 2, no. 4, October-December 2009 INTER-UNIVERSITY. “Teaching and Its Funding in the UK”, Univ. of Cambridge, United Kingdom, Mar., 2008 LOURENÇO, R. S. “Laboratórios Remotos – Um Estudo para a PUC-Rio”, Relatório de Pesquisa, Departamento de Engenharia Elétrica (DEE) – PUC-Rio, 31 de Julho de 2014. LUKAS, J. F.; SANTIAGO, K. “Evaluación Educativa”. Madrid: Alianza Editorial, 2004. MAGNO, C. W.; MONTARROYOS, E. “Decodificando o Controle Remoto com a Placa de Som do PC”. Revista Brasileira de Ensino de Física, 24, 4, 497- 499, 2002. MARGOLIS, M. “Arduíno Cookbook”. Sebastopol, CA, USA: O'Rilley Media, p1, 2011. MEDEIROS, A.; MEDEIROS, C. F. “Possibilidades e Limitações das Simulações Computacionais no Ensino da Física”, Rev. Bras. Ensino Fís., v.24, n.2, p.77-86, junho 2002. MENDES, M. A.; FIALHO, F. A. P. Experimentação Tecnológica Prática a Distância. In: Congresso Internacional de Educação a Distância, 12., 2005. Florianópolis. Atas do XII Congresso Internacional de Educação a Distância. Florianópolis: ABED, 2005. Disponível em: http://www.abed.org.br/congresso2005/por/pdf/132tcc2.pdf . Acesso em: 14 jan. 2009. MONTARROYOS, E.; MAGNO, C.W. “Aquisição de Dados com a Placa de Som do Computador”, Revista Brasileira de Ensino de Física, 23, 1, 57 – 62, 2001. MOREIRA, M.A. “Teorias de Aprendizagem.”, 2. ed., São Paulo: EPU, 2011. MORIN, E. “A cabeça bem-feita: repensar a reforma, reformar o pensamento.”, 8ª ed. Rio de Janeiro: Bertrand Brasil, 2003. NEDIC, Z.; MACHOTKA, J.; NAFALSKI, A. “Remote Laboratories Versus Virtual and Real Laboratories”, 33rd ASEE/IEEE Frontiers in Education Conference. Boulder, CO – USA, Novembro, 2003. NERSESSIAN, N.J. “Conceptual Changes in Science and Science Education,”, History, Philosophy and Science Teaching, pp. 133-148, OISE Press, 1992. PAPERT, S. “A Máquina das Crianças: repensando a escola na era da informática.” Editora Artmed – edição revisada, 2008. REIS, S.R.; SANTOS, F.A.S.; TAVARES, J.A.V. “O Uso Das TICs em Sala de Aula: Uma Reflexão sobre o seu Uso no Colégio Vinícius de Moraes/São Cristóvão”, p. 216, em Anais do 3º Simpósio Educação e Comunicação, 2012.
  • 47. 47 SÉRÉ, M. G.; COELHO, S. M.; NUNES, A. N. “O Papel Da Experimentação No Ensino Da Física”. Caderno Brasileiro de Ensino de Física, v. 20, n. 1, p. 31-43, 2003. SIEVERS JUNIOR, F.; GERMANO, J. S. E.; OLIVEIRA, J. M. P. “WebLab - Um ambiente de laboratórios de acesso remoto educacional”, em Anais do 23º Simpósio Brasileiro de Informática na Educação (SBIE 2012), Rio de Janeiro, novembro 2012 SILVA, J. B. “A Utilização Da Experimentação Remota Como Suporte Para Ambientes Colaborativos De Aprendizagem”. Tese de Doutorado, Orientador: Prof. João Bosco da Mota Alves, Dr., UFSC, Florianópolis, 2006. SOUZA, A.R.; PAIXÃO, A.C.; UZÊDA, D.D; DIAS, M.A.; DUARTE, S. e AMORIM, H.S. “A placa Arduíno: uma opção de baixo custo para experiências de Física assistidas pelo PC”, Revista Brasileira de Ensino de Física, v.33, n.1, p.1702-1705, 2011. SOUZA, D. F.; SARTORI, J.; BELL, M.J.; NUNES, L.A. “Aquisição de dados e Aplicações Simples Usando a Porta Paralela do Micro PC.”, Revista Brasileira de Ensino de Física, v.20, n.4, p.413 - 422, 1998. STABILE, B.S.; CAVALCANTE, M.A. “Desenvolvimento de interface padrão de comando com reconhecimento de voz para diferentes dispositivos e experimentos didáticos monitorados e controlados remotamente”, III Webcurriculo, PUC/SP, Brasil, novembro de 2012. (acesso disponível em: http://zip.net/bbljlT ). STUDART, N.; RIPOSATI, A.; MIRANDA, M. “Objetos de aprendizagem no ensino de física: usando simulações do PhET”, Revista Física na Escola, v.11, n.1, p.27-31, março 2010. UFES, Minicurso ARDUÍNO – ERUS Equipe de Robótica UFES. Disponível em http://www.inf.ufes.br/~erus/arquivos/ERUS_minicurso%20Arduíno.pdf., 2012. UNESCO. Padrões De Competência Em TIC para Professores – Diretrizes de Implementação v1.0, PARIS, UNESCO, 2008. UNIVERSIDADE DE DEUSTO. WebLab-Deusto Research Group. Informações retiradas do site, utilizando Git Hub. Acesso em 20 de Maio de 2015, disponível em https://www.weblab.deusto.es/web/ VAN DEN AKKEN, J.; NIEVEEN, N.; BRANCH, R. M.; GUSTAFSON, K.; PLOMP, T. (Eds). “Design Methodology and Developmental Research in Education and Training”. Netherlands: Kluwer Academic, 1999. WEBDUINO. Google Code. Acesso em 22 de Outubro de 2014, disponível em Project Hosting: http://code.google.com/p/weblabduino WORLD WIDE WEB CONSORCIUM (W3C – Escritório Brasil), Uso de Padrões Web (Palestra), Maio/2009.
  • 48. 48 ANEXO ANEXO 1 Interface de Controle Remoto Esta é a imagem da interface de controle remoto, em primeira versão, de como deve aparecer na tela ao usuário remoto. Pretendemos inseri-la com possíveis adequações a interface de controle do experimento. Fig. A1 – Interface de Controle Remoto (Aciona as cores da Lâmpada de LED) Programação para a Interface de Controle Remoto Esta é a programação utilizada pela interface de controle remoto, a qual faz o acionamento das Cores na lâmpada de LED.
  • 49. 49 <?php $tecla = $_REQUEST['tecla']; if ($tecla != "") { switch ($tecla) { case "aumentarbrilho" : $acao = "1"; break; case "diminuirbrilho" : $acao = "0"; break; case "desligar" : $acao = "D"; break; case "ligar" : $acao = "L"; break; case "vermelho" : $acao = "R"; break; case "verde" : $acao = "G"; break; case "azul" : $acao = "B"; break; case "branco" : $acao = "W"; break; case "laranja" : $acao = "o"; break; case "verdeclaro" : $acao = "g"; break; case "azulmedio" : $acao = "b"; break; case "flash" : $acao = "F"; break; case "laranjaescuro" : $acao = "O"; break; case "azulclaro" : $acao = "z"; break; case "roxo" : $acao = "x"; break; case "estrobo" : $acao = "S"; break; case "amareloescuro" : $acao = "y"; break; case "azulesverdeado" : $acao = "c"; break; case "violeta" : $acao = "V"; break; case "fadein" : $acao = "<"; break; case "amarelo" : $acao = "Y"; break; case "azulesverdeadoescuro" : $acao = "C"; break; case "violetaclaro" : $acao = "P"; break; case "smooth" : $acao = "-"; break; } $portAdress = fopen("COM6","w+"); sleep(1); fwrite($portAdress, $acao); sleep(1); //echo fgets($portAdress); fclose($portAdress); } ?> <style type="text/css"> .utf8sans { font-family:"Lucida Grande","Arial Unicode MS", sans-serif; } h1{ alignment-adjust:after-edge; animation:ease-in-out; font-family: "Lucida Sans Unicode", "Lucida Grande", sans-serif; font-size:30px; display: run-in; padding: 10px 20px; text-decoration: blink; border-color:transparent; border: 10px; background-image: linear-gradient(to top, #FFC, rgba(0,0,0,.07)); background: ; color: #111; }