SlideShare ist ein Scribd-Unternehmen logo
1 von 28
Downloaden Sie, um offline zu lesen
Assessment of projected changes in seasonal
precipitation extremes in the Czech Republic
             with a non-stationary index-flood model



                Martin Hanel, Adri Buishand

                       Technical University in Liberec (TUL)
             Royal Netherlands Meteorological Institute (KNMI), De Bilt


      Non-stationary extreme value modelling in climatology
                       2012/02/16 Liberec
OUTLINE




     1. Introduction, study area & data
     2. Statistical model
     3. Evaluation for present climate & projected changes
     4. Model diagnostics
     5. Conclusions
INTRODUCTION




       Work iniciated within the ENSEMBLES project - WP5.4
       Evaluation of extreme events in observational and RCM data

       Questions:
         - are the precipitation extremes properly represented in the RCM
           simulations?
         - what are the projected changes in precipitation extremes?
         - how large is the uncertainty associated with the estimation of
           precipitation extremes and their changes in the climate model
           data?
       statistical model developed to answer these questions
CASE STUDIES



   Statistical model applied to assess
            1-day summer and 5-day winter precipitation extremes in the
            Rhine basin




   54




   52
            5
                4
   50
                        2
                3
   48



                    1
   46

        4   6       8   10   12
CASE STUDIES



   Statistical model applied to assess
       1-day summer and 5-day winter precipitation extremes in the
       Rhine basin
       1-day and 1-hour annual precipitation extremes in the
       Netherlands
CASE STUDIES



   Statistical model applied to assess
       1-day summer and 5-day winter precipitation extremes in the
       Rhine basin
       1-day and 1-hour annual precipitation extremes in the
       Netherlands
       1-, 3-, 5-, 7-, 10-, 15-, 20- and 30-day precipitation extremes for
       all seasons in the Czech Republic
DATA

 RCM DATA
  model                  acronym          source            period

                         --- ECHAM5 driven ---
  RACMO                  RACMO_EH5        KNMI              1950-2100
  REMO                   REMO_EH5         MPI               1951-2100
  RCA                    RCA_EH5          SMHI              1951-2100
  RegCM                  RegCM_EH5        ICTP              1951-2100
  HIRHAM                 HIR_EH5          DMI               1951-2100

             --- HadCM3Q0, HadCM3Q3, HadCM3Q16 driven ---
  HadRM                  HadRM_Q0       Hadley Centre       1951-2099
  CLM                    CLM_Q0         ETHZ                1951-2099   ≈ 25 km × 25 km
  HadRM                  HadRM_Q3       Hadley Centre       1951-2099
  RCA                    RCA_Q3         SMHI                1951-2099
  HadRM                  HadRM_Q16      Hadley Centre       1951-2099
                                                                        SRES A1B
  RCA                    RCA_Q16        C4I                 1951-2099
                                                                        transient
                          --- ARPEGE driven ---
  HIRHAM                 HIR_ARP           DMI              1951-2100   simulations
  CNRM-RM                CNRM_ARP          CNRM             1951-2100
  ALADIN-CLIMATE/CZ      ALA_ARP           CHMI             1961-2100

                           --- BCM driven ---
  RCA                    RCA_BCM           SMHI             1961-2100


 OBSERVATIONAL DATA (≈ 25 km x 25 km)
  acronym       source    period
  CHMI_OBS      CHMI      1950-2007
GEV DISTRIBUTION FUNCTION



                                                      −1 
                                                         
                                    
                                            x−ξ       κ
                         F(x) = exp − 1 + κ              ,                                  κ     0
                                                         
                                    
                                             α           
                                                          
                                                    x−ξ
                           F(x) = exp − exp −                 ,                               κ=0
                                                     α



                                                                                                  PROBABILITY DENSITY FUNCTION



     ξ ... location parameter




                                                                                        0.3
                                                          dgev(seq(−3, 10, 0.1), 0, 1, 0)
                                                                        0.2
The GEV parameters can
     vary over the region (spatial heterogeneity)           0.1

     vary with time (climate change)
                                                                             0.0




                                                                                              −2        0   2    4     6     8   10
GEV DISTRIBUTION FUNCTION



                                                      −1 
                                                         
                                    
                                            x−ξ       κ
                         F(x) = exp − 1 + κ              ,                                  κ     0
                                                         
                                    
                                             α           
                                                          
                                                    x−ξ
                             F(x) = exp − exp −               ,                               κ=0
                                                     α



                                                                                                  PROBABILITY DENSITY FUNCTION



     ξ ... location parameter




                                                                                        0.3
                                                          dgev(seq(−3, 10, 0.1), 0, 1, 0)
     α ... scale parameter




                                                                        0.2
The GEV parameters can
     vary over the region (spatial heterogeneity)           0.1

     vary with time (climate change)
                                                                             0.0




                                                                                              −2        0   2    4     6     8   10
GEV DISTRIBUTION FUNCTION



                                                      −1 
                                                         
                                    
                                            x−ξ       κ
                         F(x) = exp − 1 + κ              ,                                  κ     0
                                                         
                                    
                                             α           
                                                          
                                                    x−ξ
                             F(x) = exp − exp −               ,                               κ=0
                                                     α



                                                                                                  PROBABILITY DENSITY FUNCTION



     ξ ... location parameter




                                                                                        0.3
                                                          dgev(seq(−3, 10, 0.1), 0, 1, 0)
     α ... scale parameter
     κ ... shape parameter



                                                                        0.2
The GEV parameters can
     vary over the region (spatial heterogeneity)           0.1

     vary with time (climate change)
                                                                                                                     +
                                                                                                            −
                                                                             0.0




                                                                                              −2        0   2    4       6   8   10
STATISTICAL MODEL



       Index flood method assumes that precipitation maxima over a region
       are identically distributed after scaling with a site-specific factor

   SPATIAL HETEROGENEITY
       ξ varies over the region
                α
       κ, γ =   ξ   are constant over the region
       γ is the dispersion coefficient analogous to the coefficient of variation
       T-year quantile at any site s can be represented as
                                                                             1   −κ
                                                             1 − − log 1 −   T
                      QT (s) = µ(s) · qT ,    qT = 1 − γ ·
                                                                      κ
        where qT is a common dimensionless quantile function (growth curve) and µ(s) is a
       site-specific scaling factor ("index flood")

       it is convenient to set µ(s) = ξ(s)
STATISTICAL MODEL


   NON-STATIONARITY
       location parameter varies over the region, but with common trend

                               ξ(s, t) = ξ0 (s) · exp [ξ1 · I(t)]

        where I(t) is the time indicator

       dispersion coefficient and shape parameter are constant over the
       region, but vary with time

                                 γ(t) = exp [γ0 + γ1 · I(t)]

                                    κ(t) = κ0 + κ1 · I(t)

   UNCERTAINTY
       assessed by a bootstrap procedure (1000 samples for each RCM
       simulation, season and duration)
RELATIVE CHANGES


       T-year quantile in time t and location s:

                                QT (s, t) = ξ(s, t) · qT (t)

       Relative change between t2 and t1 (t2 > t1 ) is:

                              QT (s, t2 )   ξ(s, t2 ) qT (t2 )
                                          =          ·
                              QT (s, t1 )   ξ(s, t1 ) qT (t1 )

                                                ξ(s, t2 )
         ξ(s, t) = ξ0 (s) · exp [ξ1 · I(t)] ⇒             = exp ξ1 · [I(t2 ) − I(t1 )]
                                                ξ(s, t1 )
RELATIVE CHANGES


       T-year quantile in time t and location s:

                                  QT (s, t) = ξ(s, t) · qT (t)

       Relative change between t2 and t1 (t2 > t1 ) is:

                                QT (s, t2 )   ξ(s, t2 ) qT (t2 )
                                            =          ·
                                QT (s, t1 )   ξ(s, t1 ) qT (t1 )

                                                 ξ(s, t2 )
          ξ(s, t) = ξ0 (s) · exp [ξ1 · I(t)] ⇒             = exp ξ1 · [I(t2 ) − I(t1 )]
                                                 ξ(s, t1 )

    ⇒ the relative change in quantiles can be written as

                       QT (s, t2 )                                qT (t2 )
                                   = exp ξ1 · [I(t2 ) − I(t1 )] ·
                       QT (s, t1 )                                qT (t1 )

       which does not depend on s.
TIME INDICATOR




Various choices for I(t) are possible:
     year t
                                                      CHANGE IN PRECIPITATION
     e.g., I(t) = t, but more complicated functions
     are needed

     temperature/ temperature anomaly



We use:
     seasonal global temperature anomaly
     of the driving GCM
TIME INDICATOR




Various choices for I(t) are possible:
                                                      SEASONAL GLOBAL TEMPERATURE ANOMALY
                                                                                                    JJA

     year t




                                                                            3
                                                                                        ECHAM5
                                                                                        HadCM3Q0




                                                      temperature anomaly
                                                                                        HadCM3Q3




                                                                            2
                                                                                        HadCM3Q16
     e.g., I(t) = t, but more complicated functions                                     ARPEGE




                                                                            1
                                                                                        BCM
                                                                                        CGCM

     are needed




                                                                            0
                                                                            −1
     temperature/ temperature anomaly




                                                                            −2
                                                                                 1950        2000           2050         2100
                                                                                                     DJF
                                                                                                    Index




                                                                            3
                                                      temperature anomaly
                                                                            2
                                                                            1
                                                                                                                   ECHAM5




                                                                            0
We use:                                                                                                            HadCM3Q0




                                                                            −1
                                                                                                                   HadCM3Q3
                                                                                                                   HadCM3Q16
                                                                                                                   ARPEGE




                                                                            −2
                                                                                                                   BCM

     seasonal global temperature anomaly                                                                           CGCM




                                                                            −3
                                                                                 1950        2000           2050         2100

     of the driving GCM
IDENTIFICATION OF HOMOGENEOUS REGIONS


   For each RCM simulation and season we assessed
       the grid box estimates of the GEV parameters for the period
       1961-1990 and 2070-2099
       their changes between these two periods
       focus mainly on the dispersion coefficient and changes in location
       parameter and dispersion coefficient
       formation of homogeneous regions common for all RCM simulations
       and seasons is challenging
IDENTIFICATION OF HOMOGENEOUS REGIONS


   For each RCM simulation and season we assessed
          the grid box estimates of the GEV parameters for the period
          1961-1990 and 2070-2099
          their changes between these two periods
          focus mainly on the dispersion coefficient and changes in location
          parameter and dispersion coefficient
          formation of homogeneous regions common for all RCM simulations
          and seasons is challenging




    JJA               SON                DJF              MAM
IDENTIFICATION OF HOMOGENEOUS REGIONS


   For each RCM simulation and season we assessed
       the grid box estimates of the GEV parameters for the period
       1961-1990 and 2070-2099
       their changes between these two periods
       focus mainly on the dispersion coefficient and changes in location
       parameter and dispersion coefficient
       formation of homogeneous regions common for all RCM simulations
       and seasons is challenging
IDENTIFICATION OF HOMOGENEOUS REGIONS

       obviously it is not possible to identify strictly homogeneous regions
       common for all RCM simulations and seasons
         - however, regional frequency analysis is more accurate than the
            at-site analysis even in not strictly homogeneous regions
         - allowing more heterogeneity of precipitation maxima in the
            statistical model improves goodness-of-fit, however, the
            estimated changes are not much different when compared to
            the standard model
       it turned out that the regions could be acceptably based on the areas
       of the eight river basin districts in the Czech Republic
       different groupings of the river basin districts were examined with
       respect to the lack-of-fit of the statistical model
EVALUATION FOR CONTROL CLIMATE

   Relative bias in quantiles
                           0.4




                                                                                               0.4




                                                                                                                                                                   0.4




                                                                                                                                                                                                                                       0.4
                                              areal mean JJA                                                      areal mean DJF                                                      areal mean MAM                                                      areal mean SON                                    50
        0.0 0.1 0.2 0.3




                                                                            0.0 0.1 0.2 0.3




                                                                                                                                                0.0 0.1 0.2 0.3




                                                                                                                                                                                                                    0.0 0.1 0.2 0.3
                                                                                                                                                                                                                                                                                                            40
    relative bias [% x 100]




                                                                        relative bias [% x 100]




                                                                                                                                            relative bias [% x 100]




                                                                                                                                                                                                                relative bias [% x 100]




                                                                                                                                                                                                                                                                                    return period [years]
                                                                                                                                                                                                                                                                                                            30

                                                                                                                                                                                                                                                                                                            20

                                                                                                                                                                                                                                                                                                            10

                                                                                                                                                                                                                                                                                                            5
                           −0.2




                                                                                               −0.2




                                                                                                                                                                   −0.2




                                                                                                                                                                                                                                       −0.2
                                                                                                                                                                                                                                                                                                            2
                                              1 5 10        20     30                                             1 5 10        20     30                                             1 5 10        20     30                                             1 5 10        20     30
                                                 duration [days]                                                     duration [days]                                                     duration [days]                                                     duration [days]


   Relative (ξ, γ) and absolute (κ) bias in parameters
    relative [% x 100] or absolute [−] bias




                                                                        relative [% x 100] or absolute [−] bias




                                                                                                                                            relative [% x 100] or absolute [−] bias




                                                                                                                                                                                                                relative [% x 100] or absolute [−] bias
                                                areal mean JJA                                                      areal mean DJF                                                     areal mean MAM                                                      areal mean SON                                    ξ
                                    0.4




                                                                                                        0.4




                                                                                                                                                                            0.4




                                                                                                                                                                                                                                                0.4
                                                                                                                                                                                                                                                                                                             γ
                                                                                                                                                                                                                                                                                                             κ
                             0.2




                                                                                                 0.2




                                                                                                                                                                     0.2




                                                                                                                                                                                                                                         0.2
      −0.4 −0.2 0.0




                                                                          −0.4 −0.2 0.0




                                                                                                                                              −0.4 −0.2 0.0




                                                                                                                                                                                                                  −0.4 −0.2 0.0
                                              1 5 10        20     30                                             1 5 10        20     30                                             1 5 10        20     30                                             1 5 10        20     30
                                                 duration [days]                                                     duration [days]                                                     duration [days]                                                     duration [days]
CHANGES BETWEEN 1961-1990 AND 2070-2099

   Relative changes in quantiles
                            0.4




                                                                                                  0.4




                                                                                                                                                                        0.4




                                                                                                                                                                                                                                              0.4
                                                areal mean JJA                                                        areal mean DJF                                                        areal mean MAM                                                        areal mean SON                                    50
          0.0 0.1 0.2 0.3




                                                                                0.0 0.1 0.2 0.3




                                                                                                                                                      0.0 0.1 0.2 0.3




                                                                                                                                                                                                                            0.0 0.1 0.2 0.3
    relative change [% x 100]




                                                                          relative change [% x 100]




                                                                                                                                                relative change [% x 100]




                                                                                                                                                                                                                      relative change [% x 100]
                                                                                                                                                                                                                                                                                                                    40




                                                                                                                                                                                                                                                                                            return period [years]
                                                                                                                                                                                                                                                                                                                    30

                                                                                                                                                                                                                                                                                                                    20

                                                                                                                                                                                                                                                                                                                    10

                                                                                                                                                                                                                                                                                                                    5
                            −0.2




                                                                                                  −0.2




                                                                                                                                                                        −0.2




                                                                                                                                                                                                                                              −0.2
                                                                                                                                                                                                                                                                                                                    2
                                                1 5 10        20     30                                               1 5 10        20     30                                               1 5 10        20     30                                               1 5 10        20     30
                                                   duration [days]                                                       duration [days]                                                       duration [days]                                                       duration [days]


   Relative (ξ, γ) and absolute (κ) changes in parameters
    relative [% x 100] or absolute [−] change




                                                                          relative [% x 100] or absolute [−] change




                                                                                                                                                relative [% x 100] or absolute [−] change




                                                                                                                                                                                                                      relative [% x 100] or absolute [−] change
                                         0.3




                                                                                                               0.3




                                                                                                                                                                                     0.3




                                                                                                                                                                                                                                                           0.3
                                                  areal mean JJA                                                        areal mean DJF                                                       areal mean MAM                                                        areal mean SON                                    ξ
                                                                                                                                                                                                                                                                                                                     γ
                                                                                                                                                                                                                                                                                                                     κ
                                0.2




                                                                                                      0.2




                                                                                                                                                                            0.2




                                                                                                                                                                                                                                                  0.2
                       0.1




                                                                                             0.1




                                                                                                                                                                   0.1




                                                                                                                                                                                                                                         0.1
               0.0




                                                                                     0.0




                                                                                                                                                           0.0




                                                                                                                                                                                                                                 0.0
    −0.1




                                                                          −0.1




                                                                                                                                                −0.1




                                                                                                                                                                                                                      −0.1
                                                1 5 10        20     30                                               1 5 10        20     30                                               1 5 10        20     30                                               1 5 10        20     30
                                                   duration [days]                                                       duration [days]                                                       duration [days]                                                       duration [days]
MODEL DIAGNOSTICS

   For each grid box we calculate the residuals:
        we transform the seasonal maxima Xt to:
                                                ˆ
                                                                    
                                 1             ξ(t)    Xt           
                           Xt =      · log 1 +      ·     −1        ,
                                                                    
                                ˆ               ˆ(t) ˆ(t)
                                                                    
                                ξ(t)
                                               γ      µ             

        which should have a standard Gumbel distribution;
                               Pr{Xt ≤ x} = exp [− exp(−x)]

        if the model is true.
        these residuals can be inspected visually and/or e.g. by the
        Anderson-Darling statistics:
                                       ∞
                                           [FN (x) − F(x)]2
                             A2 = N                         dF(x),
                                      −∞    F(x)[1 − F(x)]

        where FN (x) is the empirical distribution function of Xt and F(x)
        standard Gumble distribution function.
        critical values can be derived using simulation
        Xt can be further transformed to have a standard normal distribution:
                      normal residuals: Φ−1 exp[− exp(Xt )] ∼ N(0, 1)
MODEL DIAGNOSTICS


                             2                                                                                                                  Switzerland

                                                     loess smoohter (span=0.3)
                                                                                                                                                                                                                                                                  q



                                                              q
                                                                                      q
                                                                                                                       q
   average normal residual




                                                                                                                                                                                              q                                                      q
                                    q                                                                                                                               q
                                                                                                                                                                                                      q
                             1




                                                                                                                                                                                                                                                                                  q
                                                                  q                        q                                                                                q       q                                                                         q                                   q           q
                                                                              q                                                                             q                                                                                                                                             q
                                                                                      q
                                    q                                                                                                                                                                                                                                                 q
                                        q                                                                                                                                                                                                                               q
                                                                                                                                           q
                                                                                                                                                                                                                                            q
                                                                                                                               q                                    q                                                               q                         q
                                                         q                                                             q                                                                          q
                                            q                                                                                                                   q
                                                                      qq                                                   q                                                                              q                                                                   q
                                                                                                                                                                                                                                                                                          q
                                                                                                                                                                        q
                                                q        q                                                                                                                                   q                                                            q
                                                                                                               q                                q                                                                                                                   q                                 q
                                                 q                              q q                                                            q                                                                                        q                                                         q
                                                                              q                                                                                                                                    q
                                                                          q                                                                             q                                                     q
                                        q                     q                                                                                     q
                                                                                                                                           q                                    q         q               q            q                                                                  q
                             0




                                                             q                                                                                                                                                                                                            q                   q
                                                  qq                                               q               q                                                                     q                                      q                     q
                                                 q                                                                             q       q            q                                                                  q                             q
                                                                                                                                                        q                                                                      q
                                                                                                           q                                                                                          q                                         qq                                    q q
                                                                                                                                                                                                                           q                             q      q
                                                                                               q                                                                                                                                    q
                                                                                  q                            q                   q                                                                                                                         q q            q
                                                                                          qq                                                    q           q
                                            q                                                          q                                                                    q                                      q
                                                                      q                                                                                                                  q                                              q
                                                                                                                                                                                                                  q                                                             q q
                                                                                                       q                                                                                q
                                                                                                                                                                        q                                                  q q                                                                            q
                                                                                  q                                                                             q
                                                                                                   q                                                                                                          q                                                                   q
                                                                                                                                                                                                 qq                                             qq
                             −1




                                                                  q                                                                                                                                                                         q                                                 q
                                                                                                           q                                                                    q
                                                                                                                                   q                                                                                                                                                                  q
                                                                                               q                           q                                                                                                                                          q

                                                                                                                                                                                    q
                                                                                                                                       q
                                                     q
                                                                                                                   q
                             −2




                                  1950                                                                             2000                                                                                           2050                                                                                2100
MODEL DIAGNOSTICS


                                                                                       Switzerland
   average autocorrelation of normal residuals
                                                 1.0

                                                           0.05 critical values
                                                 0.8
                                                 0.6
                                                 0.4
                                                 0.2
                                                 0.0




                                                       0           10             20       30        40   50   60
                                                                                           lag
MODEL DIAGNOSTICS


                                2.5
                                2.0                                           Switzerland
   Anderson−Darling statistic




                                          global 0.1 critical value ≈ pointwise 0.0017 critical value
                                1.5




                                          pointwise 0.1 critical value
                                          gridbox value
                                1.0
                                0.5




                                      0        10              20               30               40     50   60

                                                                                 gridbox
CONCLUSIONS



       Regional GEV modelling provides an informative summary of
       changes in parameters and various quantiles (rather than a single
       quantile only).
       Taking ξ and γ constant over a region strongly reduces standard
       errors.
       A negative ensemble mean bias decreasing (in absolute value) with
       duration is found in summer (6–17%)
       The bias is mostly small for short duration precipitation extremes in
       the other seasons (-5–2%), however, as the duration gets longer, the
       bias is increasing, especially in winter (more than 20%)
       The average relative changes in the quantiles of the distribution are
       positive for all seasons and durations.
       The magnitude of the changes depends on duration only for
       summer precipitation extremes and large quantiles in autumn
Thank you for attention

Weitere ähnliche Inhalte

Was ist angesagt?

Light Scattering by Nonspherical Particles
Light Scattering by Nonspherical ParticlesLight Scattering by Nonspherical Particles
Light Scattering by Nonspherical Particlesavinokurov
 
Fitting polynomial data
Fitting polynomial dataFitting polynomial data
Fitting polynomial dataBart Lauwers
 
DETECTION OF MOVING OBJECT
DETECTION OF MOVING OBJECTDETECTION OF MOVING OBJECT
DETECTION OF MOVING OBJECTAM Publications
 
Lesson 15: Diagonalization
Lesson 15: DiagonalizationLesson 15: Diagonalization
Lesson 15: DiagonalizationMatthew Leingang
 
Generic parallelization strategies for data assimilation
Generic parallelization strategies for data assimilationGeneric parallelization strategies for data assimilation
Generic parallelization strategies for data assimilationnilsvanvelzen
 
Lesson14: Eigenvalues And Eigenvectors
Lesson14: Eigenvalues And EigenvectorsLesson14: Eigenvalues And Eigenvectors
Lesson14: Eigenvalues And EigenvectorsMatthew Leingang
 
Chapter 5 Thomas 9 Ed F 2008
Chapter 5 Thomas 9 Ed F 2008Chapter 5 Thomas 9 Ed F 2008
Chapter 5 Thomas 9 Ed F 2008angelovedamla
 
Recent developments in control, power electronics and renewable energy by Dr ...
Recent developments in control, power electronics and renewable energy by Dr ...Recent developments in control, power electronics and renewable energy by Dr ...
Recent developments in control, power electronics and renewable energy by Dr ...Qing-Chang Zhong
 

Was ist angesagt? (8)

Light Scattering by Nonspherical Particles
Light Scattering by Nonspherical ParticlesLight Scattering by Nonspherical Particles
Light Scattering by Nonspherical Particles
 
Fitting polynomial data
Fitting polynomial dataFitting polynomial data
Fitting polynomial data
 
DETECTION OF MOVING OBJECT
DETECTION OF MOVING OBJECTDETECTION OF MOVING OBJECT
DETECTION OF MOVING OBJECT
 
Lesson 15: Diagonalization
Lesson 15: DiagonalizationLesson 15: Diagonalization
Lesson 15: Diagonalization
 
Generic parallelization strategies for data assimilation
Generic parallelization strategies for data assimilationGeneric parallelization strategies for data assimilation
Generic parallelization strategies for data assimilation
 
Lesson14: Eigenvalues And Eigenvectors
Lesson14: Eigenvalues And EigenvectorsLesson14: Eigenvalues And Eigenvectors
Lesson14: Eigenvalues And Eigenvectors
 
Chapter 5 Thomas 9 Ed F 2008
Chapter 5 Thomas 9 Ed F 2008Chapter 5 Thomas 9 Ed F 2008
Chapter 5 Thomas 9 Ed F 2008
 
Recent developments in control, power electronics and renewable energy by Dr ...
Recent developments in control, power electronics and renewable energy by Dr ...Recent developments in control, power electronics and renewable energy by Dr ...
Recent developments in control, power electronics and renewable energy by Dr ...
 

Andere mochten auch

Andere mochten auch (9)

Zdroje Dat
Zdroje DatZdroje Dat
Zdroje Dat
 
Gis 5 vystup_2012
Gis 5 vystup_2012Gis 5 vystup_2012
Gis 5 vystup_2012
 
Rektifikace
RektifikaceRektifikace
Rektifikace
 
End
EndEnd
End
 
2 dpz uvod_fyzikalni_metody_2011
2 dpz uvod_fyzikalni_metody_20112 dpz uvod_fyzikalni_metody_2011
2 dpz uvod_fyzikalni_metody_2011
 
Google Mapy (Jaroslav Bengl)
Google Mapy (Jaroslav Bengl)Google Mapy (Jaroslav Bengl)
Google Mapy (Jaroslav Bengl)
 
Introduction
IntroductionIntroduction
Introduction
 
4 gnss 2011
4 gnss 20114 gnss 2011
4 gnss 2011
 
3 dpz metody_2011
3 dpz metody_20113 dpz metody_2011
3 dpz metody_2011
 

Ähnlich wie Martin Hanel, Adri Buishand: Assessment of projected changes in seasonal precipitation extremes in the Czech Republic

The lattice Boltzmann equation: background, boundary conditions, and Burnett-...
The lattice Boltzmann equation: background, boundary conditions, and Burnett-...The lattice Boltzmann equation: background, boundary conditions, and Burnett-...
The lattice Boltzmann equation: background, boundary conditions, and Burnett-...Tim Reis
 
Bloco2 produtos gerados_pelo_inpe
Bloco2 produtos gerados_pelo_inpeBloco2 produtos gerados_pelo_inpe
Bloco2 produtos gerados_pelo_inpeDafmet Ufpel
 
2009 Mr Pooled Fund Study
2009 Mr Pooled Fund Study2009 Mr Pooled Fund Study
2009 Mr Pooled Fund StudyDragos Andrei
 
HETEROGENEOUS CLUTTER MODEL FOR HIGH RESOLUTION POLARIMETRIC SAR DATA PROCESSING
HETEROGENEOUS CLUTTER MODEL FOR HIGH RESOLUTION POLARIMETRIC SAR DATA PROCESSINGHETEROGENEOUS CLUTTER MODEL FOR HIGH RESOLUTION POLARIMETRIC SAR DATA PROCESSING
HETEROGENEOUS CLUTTER MODEL FOR HIGH RESOLUTION POLARIMETRIC SAR DATA PROCESSINGgrssieee
 
computational stochastic phase-field
computational stochastic phase-fieldcomputational stochastic phase-field
computational stochastic phase-fieldcerniagigante
 
Aerospace Engineering Seminar Series
Aerospace Engineering Seminar SeriesAerospace Engineering Seminar Series
Aerospace Engineering Seminar Seriestrumanellis
 
Atmospheric aberrations in coherent laser systems
Atmospheric aberrations in coherent laser systemsAtmospheric aberrations in coherent laser systems
Atmospheric aberrations in coherent laser systemswtyru1989
 
Theme 5
Theme 5Theme 5
Theme 5aks29
 
D Gonzalez Diaz Optimization Mstip R P Cs
D Gonzalez Diaz  Optimization Mstip R P CsD Gonzalez Diaz  Optimization Mstip R P Cs
D Gonzalez Diaz Optimization Mstip R P CsMiguel Morales
 
D Gonzalez Diaz Optimization Mstip Rp Cs
D Gonzalez Diaz Optimization Mstip Rp CsD Gonzalez Diaz Optimization Mstip Rp Cs
D Gonzalez Diaz Optimization Mstip Rp CsMiguel Morales
 
Meteocast: a real time nowcasting system
Meteocast: a real time nowcasting systemMeteocast: a real time nowcasting system
Meteocast: a real time nowcasting systemAlessandro Staniscia
 
Deformation 1
Deformation 1Deformation 1
Deformation 1anashalim
 
Bayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse ProblemsBayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse ProblemsMatt Moores
 
Second Order Perturbations During Inflation Beyond Slow-roll
Second Order Perturbations During Inflation Beyond Slow-rollSecond Order Perturbations During Inflation Beyond Slow-roll
Second Order Perturbations During Inflation Beyond Slow-rollIan Huston
 
Transmission line By Lipun
Transmission line By LipunTransmission line By Lipun
Transmission line By LipunNanigopal Jena
 

Ähnlich wie Martin Hanel, Adri Buishand: Assessment of projected changes in seasonal precipitation extremes in the Czech Republic (20)

Reflection Data Analysis
Reflection Data AnalysisReflection Data Analysis
Reflection Data Analysis
 
The lattice Boltzmann equation: background, boundary conditions, and Burnett-...
The lattice Boltzmann equation: background, boundary conditions, and Burnett-...The lattice Boltzmann equation: background, boundary conditions, and Burnett-...
The lattice Boltzmann equation: background, boundary conditions, and Burnett-...
 
Bloco2 produtos gerados_pelo_inpe
Bloco2 produtos gerados_pelo_inpeBloco2 produtos gerados_pelo_inpe
Bloco2 produtos gerados_pelo_inpe
 
10.1.1.2.9988
10.1.1.2.998810.1.1.2.9988
10.1.1.2.9988
 
2009 Mr Pooled Fund Study
2009 Mr Pooled Fund Study2009 Mr Pooled Fund Study
2009 Mr Pooled Fund Study
 
HETEROGENEOUS CLUTTER MODEL FOR HIGH RESOLUTION POLARIMETRIC SAR DATA PROCESSING
HETEROGENEOUS CLUTTER MODEL FOR HIGH RESOLUTION POLARIMETRIC SAR DATA PROCESSINGHETEROGENEOUS CLUTTER MODEL FOR HIGH RESOLUTION POLARIMETRIC SAR DATA PROCESSING
HETEROGENEOUS CLUTTER MODEL FOR HIGH RESOLUTION POLARIMETRIC SAR DATA PROCESSING
 
computational stochastic phase-field
computational stochastic phase-fieldcomputational stochastic phase-field
computational stochastic phase-field
 
Aerospace Engineering Seminar Series
Aerospace Engineering Seminar SeriesAerospace Engineering Seminar Series
Aerospace Engineering Seminar Series
 
Atmospheric aberrations in coherent laser systems
Atmospheric aberrations in coherent laser systemsAtmospheric aberrations in coherent laser systems
Atmospheric aberrations in coherent laser systems
 
Theme 5
Theme 5Theme 5
Theme 5
 
D Gonzalez Diaz Optimization Mstip R P Cs
D Gonzalez Diaz  Optimization Mstip R P CsD Gonzalez Diaz  Optimization Mstip R P Cs
D Gonzalez Diaz Optimization Mstip R P Cs
 
D Gonzalez Diaz Optimization Mstip Rp Cs
D Gonzalez Diaz Optimization Mstip Rp CsD Gonzalez Diaz Optimization Mstip Rp Cs
D Gonzalez Diaz Optimization Mstip Rp Cs
 
Meteocast: a real time nowcasting system
Meteocast: a real time nowcasting systemMeteocast: a real time nowcasting system
Meteocast: a real time nowcasting system
 
Deformation 1
Deformation 1Deformation 1
Deformation 1
 
Bayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse ProblemsBayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse Problems
 
Second Order Perturbations During Inflation Beyond Slow-roll
Second Order Perturbations During Inflation Beyond Slow-rollSecond Order Perturbations During Inflation Beyond Slow-roll
Second Order Perturbations During Inflation Beyond Slow-roll
 
Electromagnetic waves
Electromagnetic wavesElectromagnetic waves
Electromagnetic waves
 
Wais to wais
Wais to waisWais to wais
Wais to wais
 
Transmission line By Lipun
Transmission line By LipunTransmission line By Lipun
Transmission line By Lipun
 
Final Project
Final ProjectFinal Project
Final Project
 

Mehr von Jiří Šmída

Gisday2012 pgd cyklodoprava_liberec_1
Gisday2012 pgd cyklodoprava_liberec_1Gisday2012 pgd cyklodoprava_liberec_1
Gisday2012 pgd cyklodoprava_liberec_1Jiří Šmída
 
Trends in daily rainfall erosivity in relation with NAO, MO and WeMO for Spai...
Trends in daily rainfall erosivity in relation with NAO, MO and WeMO for Spai...Trends in daily rainfall erosivity in relation with NAO, MO and WeMO for Spai...
Trends in daily rainfall erosivity in relation with NAO, MO and WeMO for Spai...Jiří Šmída
 
Beranova, Kysely: Links between the NAO Index and temperatures in Europe in c...
Beranova, Kysely: Links between the NAO Index and temperatures in Europe in c...Beranova, Kysely: Links between the NAO Index and temperatures in Europe in c...
Beranova, Kysely: Links between the NAO Index and temperatures in Europe in c...Jiří Šmída
 
Martin Roth: A spatial peaks-over-threshold model in a nonstationary climate
Martin Roth: A spatial peaks-over-threshold model in a nonstationary climateMartin Roth: A spatial peaks-over-threshold model in a nonstationary climate
Martin Roth: A spatial peaks-over-threshold model in a nonstationary climateJiří Šmída
 
Eva Plavcová, Jan Kyselý, Petr Štěpánek: Links between circulation indices/ty...
Eva Plavcová, Jan Kyselý, Petr Štěpánek: Links between circulation indices/ty...Eva Plavcová, Jan Kyselý, Petr Štěpánek: Links between circulation indices/ty...
Eva Plavcová, Jan Kyselý, Petr Štěpánek: Links between circulation indices/ty...Jiří Šmída
 
Jan Picek, Martin Schindler, Jan Kyselý, Romana Beranová: Statistical aspects...
Jan Picek, Martin Schindler, Jan Kyselý, Romana Beranová: Statistical aspects...Jan Picek, Martin Schindler, Jan Kyselý, Romana Beranová: Statistical aspects...
Jan Picek, Martin Schindler, Jan Kyselý, Romana Beranová: Statistical aspects...Jiří Šmída
 
Jozef Pecho: POT and block-maxima analysis of precipitation extremes at selec...
Jozef Pecho: POT and block-maxima analysis of precipitation extremes at selec...Jozef Pecho: POT and block-maxima analysis of precipitation extremes at selec...
Jozef Pecho: POT and block-maxima analysis of precipitation extremes at selec...Jiří Šmída
 
J. Ignacio López-Moreno: Effects of NAO on combined temperature and precipita...
J. Ignacio López-Moreno: Effects of NAO on combined temperature and precipita...J. Ignacio López-Moreno: Effects of NAO on combined temperature and precipita...
J. Ignacio López-Moreno: Effects of NAO on combined temperature and precipita...Jiří Šmída
 
Jan Kyselý, Jan Picek, Romana Beranová: Estimating extremes in climate model ...
Jan Kyselý, Jan Picek, Romana Beranová: Estimating extremes in climate model ...Jan Kyselý, Jan Picek, Romana Beranová: Estimating extremes in climate model ...
Jan Kyselý, Jan Picek, Romana Beranová: Estimating extremes in climate model ...Jiří Šmída
 
Santiágo Beguería: Covariate-dependent modeling of extreme events by non-stat...
Santiágo Beguería: Covariate-dependent modeling of extreme events by non-stat...Santiágo Beguería: Covariate-dependent modeling of extreme events by non-stat...
Santiágo Beguería: Covariate-dependent modeling of extreme events by non-stat...Jiří Šmída
 
Jules Beersma: Advanced delta change method for time series transformation
Jules Beersma: Advanced delta change method for time series transformationJules Beersma: Advanced delta change method for time series transformation
Jules Beersma: Advanced delta change method for time series transformationJiří Šmída
 
Liberec pod lupou - sborník zpráv o řešení projektů
Liberec pod lupou - sborník zpráv o řešení projektůLiberec pod lupou - sborník zpráv o řešení projektů
Liberec pod lupou - sborník zpráv o řešení projektůJiří Šmída
 
Dny GIS Liberec 2011 - program
Dny GIS Liberec 2011 - programDny GIS Liberec 2011 - program
Dny GIS Liberec 2011 - programJiří Šmída
 
Staré mapy Liberecka a Jizerských hor
Staré mapy Liberecka a Jizerských horStaré mapy Liberecka a Jizerských hor
Staré mapy Liberecka a Jizerských horJiří Šmída
 
KGE/GIS: přednáška 1 - úvod do problematiky
KGE/GIS: přednáška 1 - úvod do problematikyKGE/GIS: přednáška 1 - úvod do problematiky
KGE/GIS: přednáška 1 - úvod do problematikyJiří Šmída
 

Mehr von Jiří Šmída (19)

Gisday2012 pgd cyklodoprava_liberec_1
Gisday2012 pgd cyklodoprava_liberec_1Gisday2012 pgd cyklodoprava_liberec_1
Gisday2012 pgd cyklodoprava_liberec_1
 
Trends in daily rainfall erosivity in relation with NAO, MO and WeMO for Spai...
Trends in daily rainfall erosivity in relation with NAO, MO and WeMO for Spai...Trends in daily rainfall erosivity in relation with NAO, MO and WeMO for Spai...
Trends in daily rainfall erosivity in relation with NAO, MO and WeMO for Spai...
 
Beranova, Kysely: Links between the NAO Index and temperatures in Europe in c...
Beranova, Kysely: Links between the NAO Index and temperatures in Europe in c...Beranova, Kysely: Links between the NAO Index and temperatures in Europe in c...
Beranova, Kysely: Links between the NAO Index and temperatures in Europe in c...
 
Workshop programme
Workshop programmeWorkshop programme
Workshop programme
 
Martin Roth: A spatial peaks-over-threshold model in a nonstationary climate
Martin Roth: A spatial peaks-over-threshold model in a nonstationary climateMartin Roth: A spatial peaks-over-threshold model in a nonstationary climate
Martin Roth: A spatial peaks-over-threshold model in a nonstationary climate
 
Eva Plavcová, Jan Kyselý, Petr Štěpánek: Links between circulation indices/ty...
Eva Plavcová, Jan Kyselý, Petr Štěpánek: Links between circulation indices/ty...Eva Plavcová, Jan Kyselý, Petr Štěpánek: Links between circulation indices/ty...
Eva Plavcová, Jan Kyselý, Petr Štěpánek: Links between circulation indices/ty...
 
Jan Picek, Martin Schindler, Jan Kyselý, Romana Beranová: Statistical aspects...
Jan Picek, Martin Schindler, Jan Kyselý, Romana Beranová: Statistical aspects...Jan Picek, Martin Schindler, Jan Kyselý, Romana Beranová: Statistical aspects...
Jan Picek, Martin Schindler, Jan Kyselý, Romana Beranová: Statistical aspects...
 
Jozef Pecho: POT and block-maxima analysis of precipitation extremes at selec...
Jozef Pecho: POT and block-maxima analysis of precipitation extremes at selec...Jozef Pecho: POT and block-maxima analysis of precipitation extremes at selec...
Jozef Pecho: POT and block-maxima analysis of precipitation extremes at selec...
 
J. Ignacio López-Moreno: Effects of NAO on combined temperature and precipita...
J. Ignacio López-Moreno: Effects of NAO on combined temperature and precipita...J. Ignacio López-Moreno: Effects of NAO on combined temperature and precipita...
J. Ignacio López-Moreno: Effects of NAO on combined temperature and precipita...
 
Jan Kyselý, Jan Picek, Romana Beranová: Estimating extremes in climate model ...
Jan Kyselý, Jan Picek, Romana Beranová: Estimating extremes in climate model ...Jan Kyselý, Jan Picek, Romana Beranová: Estimating extremes in climate model ...
Jan Kyselý, Jan Picek, Romana Beranová: Estimating extremes in climate model ...
 
Santiágo Beguería: Covariate-dependent modeling of extreme events by non-stat...
Santiágo Beguería: Covariate-dependent modeling of extreme events by non-stat...Santiágo Beguería: Covariate-dependent modeling of extreme events by non-stat...
Santiágo Beguería: Covariate-dependent modeling of extreme events by non-stat...
 
Jules Beersma: Advanced delta change method for time series transformation
Jules Beersma: Advanced delta change method for time series transformationJules Beersma: Advanced delta change method for time series transformation
Jules Beersma: Advanced delta change method for time series transformation
 
Gis 3 databaze_2012
Gis 3 databaze_2012Gis 3 databaze_2012
Gis 3 databaze_2012
 
Gis 3 databaze_2012
Gis 3 databaze_2012Gis 3 databaze_2012
Gis 3 databaze_2012
 
Liberec pod lupou - sborník zpráv o řešení projektů
Liberec pod lupou - sborník zpráv o řešení projektůLiberec pod lupou - sborník zpráv o řešení projektů
Liberec pod lupou - sborník zpráv o řešení projektů
 
Dny GIS Liberec 2011 - program
Dny GIS Liberec 2011 - programDny GIS Liberec 2011 - program
Dny GIS Liberec 2011 - program
 
Staré mapy Liberecka a Jizerských hor
Staré mapy Liberecka a Jizerských horStaré mapy Liberecka a Jizerských hor
Staré mapy Liberecka a Jizerských hor
 
KGE/GIS: přednáška 1 - úvod do problematiky
KGE/GIS: přednáška 1 - úvod do problematikyKGE/GIS: přednáška 1 - úvod do problematiky
KGE/GIS: přednáška 1 - úvod do problematiky
 
Návrh geodatabáze
Návrh geodatabázeNávrh geodatabáze
Návrh geodatabáze
 

Kürzlich hochgeladen

Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesBoston Institute of Analytics
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessPixlogix Infotech
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...apidays
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 

Kürzlich hochgeladen (20)

Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation Strategies
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 

Martin Hanel, Adri Buishand: Assessment of projected changes in seasonal precipitation extremes in the Czech Republic

  • 1. Assessment of projected changes in seasonal precipitation extremes in the Czech Republic with a non-stationary index-flood model Martin Hanel, Adri Buishand Technical University in Liberec (TUL) Royal Netherlands Meteorological Institute (KNMI), De Bilt Non-stationary extreme value modelling in climatology 2012/02/16 Liberec
  • 2. OUTLINE 1. Introduction, study area & data 2. Statistical model 3. Evaluation for present climate & projected changes 4. Model diagnostics 5. Conclusions
  • 3. INTRODUCTION Work iniciated within the ENSEMBLES project - WP5.4 Evaluation of extreme events in observational and RCM data Questions: - are the precipitation extremes properly represented in the RCM simulations? - what are the projected changes in precipitation extremes? - how large is the uncertainty associated with the estimation of precipitation extremes and their changes in the climate model data? statistical model developed to answer these questions
  • 4. CASE STUDIES Statistical model applied to assess 1-day summer and 5-day winter precipitation extremes in the Rhine basin 54 52 5 4 50 2 3 48 1 46 4 6 8 10 12
  • 5. CASE STUDIES Statistical model applied to assess 1-day summer and 5-day winter precipitation extremes in the Rhine basin 1-day and 1-hour annual precipitation extremes in the Netherlands
  • 6. CASE STUDIES Statistical model applied to assess 1-day summer and 5-day winter precipitation extremes in the Rhine basin 1-day and 1-hour annual precipitation extremes in the Netherlands 1-, 3-, 5-, 7-, 10-, 15-, 20- and 30-day precipitation extremes for all seasons in the Czech Republic
  • 7. DATA RCM DATA model acronym source period --- ECHAM5 driven --- RACMO RACMO_EH5 KNMI 1950-2100 REMO REMO_EH5 MPI 1951-2100 RCA RCA_EH5 SMHI 1951-2100 RegCM RegCM_EH5 ICTP 1951-2100 HIRHAM HIR_EH5 DMI 1951-2100 --- HadCM3Q0, HadCM3Q3, HadCM3Q16 driven --- HadRM HadRM_Q0 Hadley Centre 1951-2099 CLM CLM_Q0 ETHZ 1951-2099 ≈ 25 km × 25 km HadRM HadRM_Q3 Hadley Centre 1951-2099 RCA RCA_Q3 SMHI 1951-2099 HadRM HadRM_Q16 Hadley Centre 1951-2099 SRES A1B RCA RCA_Q16 C4I 1951-2099 transient --- ARPEGE driven --- HIRHAM HIR_ARP DMI 1951-2100 simulations CNRM-RM CNRM_ARP CNRM 1951-2100 ALADIN-CLIMATE/CZ ALA_ARP CHMI 1961-2100 --- BCM driven --- RCA RCA_BCM SMHI 1961-2100 OBSERVATIONAL DATA (≈ 25 km x 25 km) acronym source period CHMI_OBS CHMI 1950-2007
  • 8. GEV DISTRIBUTION FUNCTION −1      x−ξ κ F(x) = exp − 1 + κ , κ 0     α   x−ξ F(x) = exp − exp − , κ=0 α PROBABILITY DENSITY FUNCTION ξ ... location parameter 0.3 dgev(seq(−3, 10, 0.1), 0, 1, 0) 0.2 The GEV parameters can vary over the region (spatial heterogeneity) 0.1 vary with time (climate change) 0.0 −2 0 2 4 6 8 10
  • 9. GEV DISTRIBUTION FUNCTION −1      x−ξ κ F(x) = exp − 1 + κ , κ 0     α   x−ξ F(x) = exp − exp − , κ=0 α PROBABILITY DENSITY FUNCTION ξ ... location parameter 0.3 dgev(seq(−3, 10, 0.1), 0, 1, 0) α ... scale parameter 0.2 The GEV parameters can vary over the region (spatial heterogeneity) 0.1 vary with time (climate change) 0.0 −2 0 2 4 6 8 10
  • 10. GEV DISTRIBUTION FUNCTION −1      x−ξ κ F(x) = exp − 1 + κ , κ 0     α   x−ξ F(x) = exp − exp − , κ=0 α PROBABILITY DENSITY FUNCTION ξ ... location parameter 0.3 dgev(seq(−3, 10, 0.1), 0, 1, 0) α ... scale parameter κ ... shape parameter 0.2 The GEV parameters can vary over the region (spatial heterogeneity) 0.1 vary with time (climate change) + − 0.0 −2 0 2 4 6 8 10
  • 11. STATISTICAL MODEL Index flood method assumes that precipitation maxima over a region are identically distributed after scaling with a site-specific factor SPATIAL HETEROGENEITY ξ varies over the region α κ, γ = ξ are constant over the region γ is the dispersion coefficient analogous to the coefficient of variation T-year quantile at any site s can be represented as 1 −κ 1 − − log 1 − T QT (s) = µ(s) · qT , qT = 1 − γ · κ where qT is a common dimensionless quantile function (growth curve) and µ(s) is a site-specific scaling factor ("index flood") it is convenient to set µ(s) = ξ(s)
  • 12. STATISTICAL MODEL NON-STATIONARITY location parameter varies over the region, but with common trend ξ(s, t) = ξ0 (s) · exp [ξ1 · I(t)] where I(t) is the time indicator dispersion coefficient and shape parameter are constant over the region, but vary with time γ(t) = exp [γ0 + γ1 · I(t)] κ(t) = κ0 + κ1 · I(t) UNCERTAINTY assessed by a bootstrap procedure (1000 samples for each RCM simulation, season and duration)
  • 13. RELATIVE CHANGES T-year quantile in time t and location s: QT (s, t) = ξ(s, t) · qT (t) Relative change between t2 and t1 (t2 > t1 ) is: QT (s, t2 ) ξ(s, t2 ) qT (t2 ) = · QT (s, t1 ) ξ(s, t1 ) qT (t1 ) ξ(s, t2 ) ξ(s, t) = ξ0 (s) · exp [ξ1 · I(t)] ⇒ = exp ξ1 · [I(t2 ) − I(t1 )] ξ(s, t1 )
  • 14. RELATIVE CHANGES T-year quantile in time t and location s: QT (s, t) = ξ(s, t) · qT (t) Relative change between t2 and t1 (t2 > t1 ) is: QT (s, t2 ) ξ(s, t2 ) qT (t2 ) = · QT (s, t1 ) ξ(s, t1 ) qT (t1 ) ξ(s, t2 ) ξ(s, t) = ξ0 (s) · exp [ξ1 · I(t)] ⇒ = exp ξ1 · [I(t2 ) − I(t1 )] ξ(s, t1 ) ⇒ the relative change in quantiles can be written as QT (s, t2 ) qT (t2 ) = exp ξ1 · [I(t2 ) − I(t1 )] · QT (s, t1 ) qT (t1 ) which does not depend on s.
  • 15. TIME INDICATOR Various choices for I(t) are possible: year t CHANGE IN PRECIPITATION e.g., I(t) = t, but more complicated functions are needed temperature/ temperature anomaly We use: seasonal global temperature anomaly of the driving GCM
  • 16. TIME INDICATOR Various choices for I(t) are possible: SEASONAL GLOBAL TEMPERATURE ANOMALY JJA year t 3 ECHAM5 HadCM3Q0 temperature anomaly HadCM3Q3 2 HadCM3Q16 e.g., I(t) = t, but more complicated functions ARPEGE 1 BCM CGCM are needed 0 −1 temperature/ temperature anomaly −2 1950 2000 2050 2100 DJF Index 3 temperature anomaly 2 1 ECHAM5 0 We use: HadCM3Q0 −1 HadCM3Q3 HadCM3Q16 ARPEGE −2 BCM seasonal global temperature anomaly CGCM −3 1950 2000 2050 2100 of the driving GCM
  • 17. IDENTIFICATION OF HOMOGENEOUS REGIONS For each RCM simulation and season we assessed the grid box estimates of the GEV parameters for the period 1961-1990 and 2070-2099 their changes between these two periods focus mainly on the dispersion coefficient and changes in location parameter and dispersion coefficient formation of homogeneous regions common for all RCM simulations and seasons is challenging
  • 18. IDENTIFICATION OF HOMOGENEOUS REGIONS For each RCM simulation and season we assessed the grid box estimates of the GEV parameters for the period 1961-1990 and 2070-2099 their changes between these two periods focus mainly on the dispersion coefficient and changes in location parameter and dispersion coefficient formation of homogeneous regions common for all RCM simulations and seasons is challenging JJA SON DJF MAM
  • 19. IDENTIFICATION OF HOMOGENEOUS REGIONS For each RCM simulation and season we assessed the grid box estimates of the GEV parameters for the period 1961-1990 and 2070-2099 their changes between these two periods focus mainly on the dispersion coefficient and changes in location parameter and dispersion coefficient formation of homogeneous regions common for all RCM simulations and seasons is challenging
  • 20. IDENTIFICATION OF HOMOGENEOUS REGIONS obviously it is not possible to identify strictly homogeneous regions common for all RCM simulations and seasons - however, regional frequency analysis is more accurate than the at-site analysis even in not strictly homogeneous regions - allowing more heterogeneity of precipitation maxima in the statistical model improves goodness-of-fit, however, the estimated changes are not much different when compared to the standard model it turned out that the regions could be acceptably based on the areas of the eight river basin districts in the Czech Republic different groupings of the river basin districts were examined with respect to the lack-of-fit of the statistical model
  • 21. EVALUATION FOR CONTROL CLIMATE Relative bias in quantiles 0.4 0.4 0.4 0.4 areal mean JJA areal mean DJF areal mean MAM areal mean SON 50 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 40 relative bias [% x 100] relative bias [% x 100] relative bias [% x 100] relative bias [% x 100] return period [years] 30 20 10 5 −0.2 −0.2 −0.2 −0.2 2 1 5 10 20 30 1 5 10 20 30 1 5 10 20 30 1 5 10 20 30 duration [days] duration [days] duration [days] duration [days] Relative (ξ, γ) and absolute (κ) bias in parameters relative [% x 100] or absolute [−] bias relative [% x 100] or absolute [−] bias relative [% x 100] or absolute [−] bias relative [% x 100] or absolute [−] bias areal mean JJA areal mean DJF areal mean MAM areal mean SON ξ 0.4 0.4 0.4 0.4 γ κ 0.2 0.2 0.2 0.2 −0.4 −0.2 0.0 −0.4 −0.2 0.0 −0.4 −0.2 0.0 −0.4 −0.2 0.0 1 5 10 20 30 1 5 10 20 30 1 5 10 20 30 1 5 10 20 30 duration [days] duration [days] duration [days] duration [days]
  • 22. CHANGES BETWEEN 1961-1990 AND 2070-2099 Relative changes in quantiles 0.4 0.4 0.4 0.4 areal mean JJA areal mean DJF areal mean MAM areal mean SON 50 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 relative change [% x 100] relative change [% x 100] relative change [% x 100] relative change [% x 100] 40 return period [years] 30 20 10 5 −0.2 −0.2 −0.2 −0.2 2 1 5 10 20 30 1 5 10 20 30 1 5 10 20 30 1 5 10 20 30 duration [days] duration [days] duration [days] duration [days] Relative (ξ, γ) and absolute (κ) changes in parameters relative [% x 100] or absolute [−] change relative [% x 100] or absolute [−] change relative [% x 100] or absolute [−] change relative [% x 100] or absolute [−] change 0.3 0.3 0.3 0.3 areal mean JJA areal mean DJF areal mean MAM areal mean SON ξ γ κ 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 −0.1 −0.1 −0.1 −0.1 1 5 10 20 30 1 5 10 20 30 1 5 10 20 30 1 5 10 20 30 duration [days] duration [days] duration [days] duration [days]
  • 23. MODEL DIAGNOSTICS For each grid box we calculate the residuals: we transform the seasonal maxima Xt to: ˆ   1  ξ(t) Xt  Xt = · log 1 + · −1 ,   ˆ ˆ(t) ˆ(t)   ξ(t)  γ µ  which should have a standard Gumbel distribution; Pr{Xt ≤ x} = exp [− exp(−x)] if the model is true. these residuals can be inspected visually and/or e.g. by the Anderson-Darling statistics: ∞ [FN (x) − F(x)]2 A2 = N dF(x), −∞ F(x)[1 − F(x)] where FN (x) is the empirical distribution function of Xt and F(x) standard Gumble distribution function. critical values can be derived using simulation Xt can be further transformed to have a standard normal distribution: normal residuals: Φ−1 exp[− exp(Xt )] ∼ N(0, 1)
  • 24. MODEL DIAGNOSTICS 2 Switzerland loess smoohter (span=0.3) q q q q average normal residual q q q q q 1 q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0 q q q qq q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q qq qq −1 q q q q q q q q q q q q q q −2 1950 2000 2050 2100
  • 25. MODEL DIAGNOSTICS Switzerland average autocorrelation of normal residuals 1.0 0.05 critical values 0.8 0.6 0.4 0.2 0.0 0 10 20 30 40 50 60 lag
  • 26. MODEL DIAGNOSTICS 2.5 2.0 Switzerland Anderson−Darling statistic global 0.1 critical value ≈ pointwise 0.0017 critical value 1.5 pointwise 0.1 critical value gridbox value 1.0 0.5 0 10 20 30 40 50 60 gridbox
  • 27. CONCLUSIONS Regional GEV modelling provides an informative summary of changes in parameters and various quantiles (rather than a single quantile only). Taking ξ and γ constant over a region strongly reduces standard errors. A negative ensemble mean bias decreasing (in absolute value) with duration is found in summer (6–17%) The bias is mostly small for short duration precipitation extremes in the other seasons (-5–2%), however, as the duration gets longer, the bias is increasing, especially in winter (more than 20%) The average relative changes in the quantiles of the distribution are positive for all seasons and durations. The magnitude of the changes depends on duration only for summer precipitation extremes and large quantiles in autumn
  • 28. Thank you for attention