SlideShare ist ein Scribd-Unternehmen logo
1 von 74
Disentangling Dark Matter Dynamics


                     Jay Wacker
                            SLAC
         Boston University Theory Seminar
                September 29, 2009

    with Philip Schuster, Daniele Alves, Siavosh Behbahbani
                         arXiv: 0903.3945

                    with Mariangela Lisanti
                    arXiv: 0910.xxxx, 0910.xxxx
Status of Dark Matter
Not your grandfather’s DM Candidate

                  DAMA
                 PAMELA
                   ATIC
                  FERMI
                WMAP Haze
                INTEGRAL

      Hints at non-trivial interactions
Plan of Talk
DAMA & Inelastic Dark Matter
   Composite dark matter models


   Experimental Prospects
     Uncertainties in halo profile

          Direct Detection

  Directional Detection Experiments

         Collider Signatures
DAMA
                  WIMP wind
                                                Annual modulation in WIMP signal
  winter
                        ⊙
                        v                                  Φwimp = σv
                                   E
                                   v
       E
       v
                                    summer       Modulation amplitude ~2.5% for
                                                        elastic scattering
v ≤ vesc + |vE − v⊙ |
                      v ≤ vesc + |vE + v⊙ |
Direct Detection
Dark matter scatters off nuclei in detectors
     Measure recoil energy of nuclei


             spin-independent
                 (χχ)(¯q)
                  ¯ q
            χ                 q



            χ                 q

 DM Coherently acts with entire nucleus
          σSI ∝ A2 µ2 ∼ A4

     Limits always stated in terms of
        cross section per nucleon
Elastic nuclear scattering
                  A Bestiary of Experiments

                                    WIMP
                                                             CDMS
                 Ge        10% energy
                                                    Ge, Si
                      Ionization


ZEPLIN2
ZEPLIN3   Liquid Xe        Target                     Heat           Al2O3, LiF

XENON10                                                       100% energy
                                                              slowest
                                                              cryogenics
                            Light
                               1% energy              CaWO4, BGO
                 NaI, Xe       fastest
                               no surface effects
                                                    WIMP
                                                                       CRESST
      DAMA


                                                             From: Véronique Sanglard (La Thuille 2005)
Direct Detection
         Experiments optimized to look for elastic scattering recoil spectrum



                                                         Signal Window          Exposure
                                  Experiment   Element                 # Events
                                                             (keV)              (kg day)

                                   CDMS          Ge         10-100        2       170
            dRel
                 ∝ e−ER            XENON         Xe         4.5-45        24      300
            dER
Rate




                                  ZEPLIN 2       Xe         14-56         29      200

                                  ZEPLIN 3       Xe         11-31         7       150

                                   CRESST        W          10-100        7        30

       Recoil Energy (keV)
                                               DAMA 0.82 Ton Years!
Current Limits
                                                      -5
                               10                                                         http://dmtools.brown.edu/


             Cross-section [pb] (normalised to nucleon)
                                                                              DAMA        Gaitskell,Mandic,Filippini

                                                                                                           N   2
                                                                                                      P LI
                                                                                                   ZE
                                                                                                     T
                                                                                                  SS
                                                                                                RE
                                                      -6
                               10                                                             C

                                                                        ZE
                                                                          PL
                                                                            IN3
                                                               -5
                                                           XE




                                                       10
                                                      -7                                                S
                                                                                                http://dmtools.brown.edu/
                                                                                                    DM
[pb] (normalised to nucleon)




                               10
                                                               NO




                                                                                                  C
                                                                                                Gaitskell,Mandic,Filippini
                                                                    N




                                                               -6
                                                       10
                                                      -8 090913122401                     spin-independent
                               10                          1                          2                                3
                                                          10                       10                              10
                                                                             WIMP Mass [GeV/c2]

                                                               -7
                                                          10
DAMA
                                                  Spectrum for DAMA modulation amplitude
                                                  Scattering off Na or I - w or w/o quenching
                                                                                                                  Chang, Pierce, Weiner (2008)
                                    Suppressed at low recoil energy
                                                                                                  0.07

                                                                                                  0.06            2 GeV
                      0.04
                         0.04




                                                                                         Sm countskgday
                                                                                                  0.05

                                                                                                  0.04            7 GeV
Rate (cpd/kg/keVee)




                      0.03
                         0.03
                                                                                                  0.03
    Rate cpdkgkeVee




                                                                                                  0.02                     77 GeV
                                                                                                  0.01                                  12 GeV
                      0.02
                         0.02


                                                                                                              2      3      4       5       6
                                                                                                                                                keVee

                      0.01
                         0.01                                                              FIG. 2: We show the modulation spectra for the best fit
                                                                                               39.0                                                 
                                                                                           point where scattering off iodine dominates, mχ = 77 GeV
                                                                                           (dot-dashed orange), and three points where scattering off of
                                                                                           sodium dominates. The best fit point off sodium is mχ = 12
                                                                                               39.5                                                 
                      0.00
                         0.00                                                              GeV (solid red). We also show mχ = 2 GeV (dashed green)
                                                                                           and mχ = 7 GeV (dotted blue). The points with error bars
                            0
                                0
                                         2
                                         2
                                                         4 keVee
                                                         4

                                               Recoil Energy
                                                                      6
                                                                      6
                                                                                   8
                                                                                   8
                                                                                               40.0
                                                                                           are the published DAMA/LIBRA data.                        
                                              Recoil Energy (keVee)




                                                                                                                                                logΣn  cm2 
                                                                                        logΣn  cm2 
                                                                                               40.5
                                                                                                                                                        
                                                                                           higher mass, say 20 GeV, this approach does not succeed.
                                                                                           As 41.0 mass moves above 12 GeV, a AMATotal
                                                                                               the                             D contribution coming
                                                    arXiv:0804.2741, Bernabei et. al.      from iodine scattering begins to move into the low end of
                                                                                           the41.5
                                                                                                observed energy region, spoiling the fit. Also plotted
                                                                                           in Fig. 2 are spectra for WIMP SSi
                                                                                                                         CDM masses of 2 and 7 GeV
                                                                                           for comparison.                                          
                                                                                               42.0     XENON
                                                                                              The 68%, 90%, and 99% CL (∆χ  2.3, 4.61, 9.21)
                                                                                                                                  2

                                                                                           contours consistent with our nine bin DAMA/LIBRA χ      2

                                                                                           function are shown in Fig. 1. Both regions shrink dra-
                                                                                           matically compared to the Χ GeV χ2 . In the left panel,
                                                                                                     0    20     40     60      80     100    120

                                                                                                                     m two bin
                                                                                           the ∆χ2 is with respect to the global best fit point at 77
Inelastic Dark Matter

Dark matter has two nearly
                                    Threshold velocity necessary
    degenerate states
                                      to scatter with energy ER
    δm ∼ (100 keV)
                                                                          
   χ2                q                   1              mN ER
                             vmin   = √                       + δm
                                       2mN ER             µ


   χ1                q          Lighter nuclei, higher threshold




                                         Tucker-Smith and Weiner, hep-ph/0101138.
Inelastic Dark Matter
                   Threshold behavior
                            µv 2 ∼ 100 keV




            Rate
                      Recoil Energy (keV)


                      3 Consequences

(1) Scatters off of heavier nuclei -- CDMS ineffective

(2) Large recoil energy -- ZEPLIN3  XENON didn’t look

(3) Large modulation fraction -- absolute signal is smaller
Standard Halo Model

                                                           Scattering rate depends on halo profile
                                                                              vesc
                 3.5                                            dR                               dσ
                                                                   ∝                  d vf (v)v
                                                                                       3
                  3
                 3.0                                           dER           vmin               dER
v 2 f (v)/10−4




                 2.5

                  2
                 2.0                 v0
                                                                    inelastic scattering sensitive to
                 1.5
                                                                           tail of distribution
                  1
                 1.0

                 0.5
                                                                    vesc
                  00
                 0.0
                        100    200          300      400      500      600
                   0   100    200          300       400      500      600
                                          velocity
Larger Modulation Fraction
                               Smaller rate
                      One reason for apparent tension

             1



                                               2.5% modulation
           0.75
Rate




            0.5




           0.25


                                               50% modulation
             0          0.25        0.5          0.75      1
                        Dec. 2nd
       June 2nd




                                   Time
Inelastic Dark Matter
   A new number to explain:
          δm
             ∼ 10−6
           m

 Sign of dark sector dynamics?
       First of many splittings
    New interactions to discover
Changes which questions are interesting
Form-Factor Suppression
            Can suppress low energy scattering
                     Fdm (q 2 ) = c0 + c1 q 2 + c2 q 4 + · · ·
                                q 2  mN E R
χ   Fdm (q 2 )
                                                                 dRel
                 N                                                    ∝ (ER )n e−ER
                                                                 dER




                                             Rate
                 N
χ

                                                     Recoil Energy (keV)
Form-Factor Suppression
                                                        Can suppress low energy scattering
                                                                  Fdm (q 2 ) = c0 + c1 q 2 + c2 q 4 + · · ·
                                                                                       q 2  mN E R
                 χ                          Fdm (q 2 )
                                                                                                                                     dRel
                                                            N                                                                             ∝ (ER )n e−ER
                                                                                                                                     dER




                                                                                                              Rate
                                                            N
                 χ

                                Best case scenarios                                                              5    Recoil Energy (keV)
                                                                    32
               35.5

                                                                                     c0 = c1 = 0
                                                                    33
               36.0
                                                             logΣ p  cm2 
        logΣ p  cm2 




                                                                    34


               36.5

                                                                    35
                                                                                                                                    Pospelov  Ritz (2003)
               37.0
                                                                                                                           Chang, Pierce, and Weiner (2009).
                                                                    36


                                                                                                                       Feldstein, Fitzpatrick, and Katz (2009).
               37.5                                                37


                                m Χ GeV                                            m Χ GeV
                       0   20      40        60    80                     0     20      40       60     80

        a)                                                  b)

 IG. 3: Plots of the SD-proton cross section σp vs DM mass mχ without (a) and with q 4 suppression (b). The colored
egions show the 68, 90, and 99% CL regions for the best DAMA fit. The 90% exclusions limits are PICASSO (gray
Plan of Talk
DAMA  Inelastic Dark Matter
   Composite dark matter models


   Experimental Prospects
     Uncertainties in halo profile

          Direct Detection

  Directional Detection Experiments

         Collider Signatures
Composite Inelastic Dark Matter
                                 Alves, Behbahani, Schuster, Wacker, 0903.3945.

                1
     Ldark   = − Tr G2 + q iD q + m¯q
                         ¯        q
                2    µν

    New SU(Nc) gauge sector confines at scale Λd
                                    
                               2π
           Λdark ∼ exp −
                            b0 αdark

             Two dark quarks   qH qL
                  mH  Λdark , mL
             No flavor changing effects
Composite Inelastic Dark Matter
                                   Alves, Behbahani, Schuster, Wacker, 0903.3945.

                1
     Ldark   = − Tr G2 + q iD q + m¯q
                         ¯        q
                2    µν

    New SU(Nc) gauge sector confines at scale Λd
                                    
                               2π
           Λdark ∼ exp −
                            b0 αdark

             Two dark quarks    qH qL
                  mH  Λdark , mL
             No flavor changing effects

      Meson  Baryon Low Energy Stable States
                            ¯        ¯
                            qL · · · qL                     Mesons
    qH · · · qH           NH asymmetric
    NH asymmetric              qL · · · qL
                                                            Baryons
                         Nc − NH asymmetric
Cosmology of CiDM
                           Alves, Behbahani, Schuster, Wacker: 0903.3945 + to appear



A primordial cosmological dark quark asymmetry
        (nH − nH ) = −(nL − nL ) = 0
               ¯             ¯




                                   ¯
When T  Λd , dark matter is in qH qL bound state
       Processing into multi-core hadrons can be slow
                Dominantly in NH = 1 mesons

                    nB
                        O(10−6 )
                    nM
Splitting of Ground State
               Mass difference in meson states arises from hyperfine splitting

                                                         Coulombic limit
                        mH
                                                          ¯
                                                          qL

                                                    qH                α4 m2
                                                                  δm ∼ d L
Energy




                        Λd                                             mH
                        mL                          For U(1): Atomic Dark Matter
                                         D. E. Kaplan, G. Z. Krnjaic, K. R. Rehermann, C.M. Wells (2009)


         spin 0      spin 1                                    Confined

                                                 qH
                                                       ¯
                                                       qL
                                                                          Λ2
                                                                           d
   dark pion dark rho                                                δm ∼
          πd           ρd                                                 mH
Spin Temperature
   Need to explain why iDM is in ground state

Self interaction keeps DM in equilibrium
               ρ d ρ d → πd πd

         Solves de-excitation problem
               Spin temperature low

            nρd
                 = exp(−δm/Tspin )
            n πd
Kinetically decouple late, smaller spin temperature

               Tspin  10 keV
                     ∼
Dark Matter Couplings
        Couples to a secluded U(1)
  Two choices for anomaly-free charges
            Vector Coupling
       µ
      Jd = qH γ µ qH − qL γ µ qL
           ¯           ¯

      Does not forbid quark masses


          Axial-Vector Coupling
    µ
   Jd = qH γ µ γ 5 qH − qL γ µ γ 5 qL
        ¯               ¯

 Forbids quark masses until U(1)d Higgsed
Coupling to Standard Model
                  Kinetically mix U(1)d with U(1)Y

                       U (1)d          U (1)Y
                DM                              SM
                                ψgut

           1 µν      1 µν     µν       1 µν         1 µν 
LU(1)   = − Fd Fdµν − B Bµν − Fd Bµν → −kineticFdµν − B Bµν
                                          F mixing
           4         4       2          4 d          4
Coupling to Standard Model
                   Kinetically mix U(1)d with U(1)Y

                        U (1)d          U (1)Y
                DM                               SM
                                 ψgut

           1 µν      1 µν     µν       1 µν         1 µν 
LU(1)   = − Fd Fdµν − B Bµν − Fd Bµν → −kineticFdµν − B Bµν
                                          F mixing
           4         4       2          4 d          4

                Higgs U(1)d near the electroweak scale
                 LHiggs = |Dµ φd |2 − V (φd ) → m2 A2
                                                 d d
                            md = 2gd vφ
Coupling to Standard Model
                   Kinetically mix U(1)d with U(1)Y

                        U (1)d          U (1)Y
                DM                               SM
                                 ψgut

           1 µν      1 µν     µν       1 µν         1 µν 
LU(1)   = − Fd Fdµν − B Bµν − Fd Bµν → −kineticFdµν − B Bµν
                                          F mixing
           4         4       2          4 d          4

                Higgs U(1)d near the electroweak scale
                 LHiggs = |Dµ φd |2 − V (φd ) → m2 A2
                                                 d d
                            md = 2gd vφ
                       Gives mass to fermions
               LYuk =            +c
                         yL q L q L φ            c †
                                         yH q H qH φ
                           mf = yf vφ
Coupling to Standard Model
             Kinetically mix U(1)d with U(1)Y

                   U (1)d          U (1)Y
            DM                              SM
                            ψgut

L = −Fd − FEM − Fd FEM + m2 A2 + JEM AEM + Jd Ad
      2    2
                           A d
Coupling to Standard Model
                Kinetically mix U(1)d with U(1)Y

                      U (1)d            U (1)Y
              DM                                 SM
                                 ψgut

L = −Fd − FEM − Fd FEM + m2 A2 + JEM AEM + Jd Ad
      2    2
                           A d

            redefine SM photon     AEM → AEM − Ad


    L = −Fd − FEM + m2 A2 + JEM (AEM − Ad ) + Jd Ad
          2    2
                     A d


                               µ
                      Lint ∝ Jem Adµ

  SM is milli-charged under dark U(1), DM is neutral under EM
Effective Field Theory
       Use EFT to describe interactions of mesons
                                           Dark Matter Scattering
          ¯
       qH qL                ρµ
                             d
mass




                            πd
                                           elastic       inelastic
                                           πd→πd          πd→ρd
                               †           2 †
                 Lfree   = ∂µ πd ∂ µ πd − Mπ πd πd
                             1 †
                           − ρd µν ρµν + Mρ ρ† µ ρµ
                                              2
                             2         d        d  d


                  spin 0 meson                spin 1 meson

                  πd → −πd                ρdµ → (−1)µ ρdµ

               Parity of new gauge boson determines the allowed
                     interactions in the effective Lagrangian
Axial Coupling

     Elastic                 Inelastic
      πd→πd                     πd→ρd

1 †            ˜ µν       1 † µ ν
   πd ∂µ πd ∂ν Fd            πd ∂ ρd Fdµν
Λ2
 d                        Λd

   dimension 6
velocity suppressed
Axial Coupling

     Elastic                                         Inelastic
      πd→πd                                           πd→ρd

1 †            ˜ µν                            1 † µ ν
   πd ∂µ πd ∂ν Fd                                 πd ∂ ρd Fdµν
Λ2
 d                                             Λd

   dimension 6
velocity suppressed

         Inelastic scattering dominates
                                                                 q 2 ∼ mN E R
                   q 2 vrel
                        2
                               1              2
                                          mN vrel
       a
      rel/in                         =               10−4                Λ2
                     Λ2       Fhalo       mπ Fhalo               ER ∼ δm =
                                                                           mπ

                   Nearly pure Inelastic
Size of Couplings
 DAMA cross section set by
                                     ρ        q
                        2
                   gd          1
    σDAMA ∝                   ≡ 4        gd   e
                  m2 d
                    A          feff
                                     π        q
           mAd vφ
    2
   feff   =           2
                   vEW
             
     Mass of DM given by
mDM = mH = yh vφ  vEW


  Sets mass of Dark Photon
      mAd   vEW
Current Limits on ε
     10-2                    aµ
                                         ϒ(3S)
     10-3   ae

                             DA MA
     10-4
            fixed target
     10-5

     10-6

     10-7
            supernova
     10-8

     10-9
                  10-2            10-1     1                  Pospelov, 0811.1030.
                                                      Reece and Wang, 0904.1743.
                           mAd (GeV)      Bjorken, Essig, Schuster, Toro, 0906.0580
Vector Coupling

       Elastic                          Inelastic
        πd→πd                             πd→ρd

  1 †             µν                1 † µ ν˜
     πd ∂µ πd ∂ν Fd                    πd ∂ ρd Fdµν
  Λ2
   d                                Λd

charge-radius scattering            velocity suppressed


                                       Rel
    Elastic scattering dominates:           108
                                       Rin

    Nearly pure Elastic: Not good for DAMA
CP-Violation
         Θ term in dark QCD sector                     ˜
                                        Lcpv = Θd TrGd Gd
                        Not necessarily small
                       Leads to mixing between
                       states of different parity
                             e.g. πd ↔ a0d
                                               In limit mL → 0
                 mH                     chiral rotation removes Θ term

                 mL
Energy




                                For heavy quarks, mixing given by
                                                                     Θd Λd
                  Λd                      sin θp =
                                                     πd |Hp |a0d 
                                                     ma0d − mπd
                                                                     2
                                                                     λd mL




                   CP effects vanish as mL →0, ∞
                    ...maximized when mL ≅ Λd
Effects of Parity Violation
             Admixture of vector and axial interactions
                                            θ µν        θ ˜ µν
     Can effectively substitute Fd → cos p Fd + sin p Fd
                                 µν
                                            2           2

               Elastic                                 Inelastic
        θp 1 †            ˜ µν                  θp 1 π † ∂ µ ρ ν F
    cos       πd ∂µ πd ∂ν Fd          +     cos                d dµν
                                                2 Λd
                                                      d
        2 Λ2d


        θp   1 †             µν                  θp   1 † µ ν˜
+   sin                                      sin         πd ∂ ρd Fdµν
        2    Λ2
                πd ∂µ πd ∂ν Fd        +          2    Λd
              d

         cel †                                   cin †
                         µν
           2 πd ∂µ πd ∂ν Fd
                                      +                         µν
                                                    πd ∂µ ρd ν Fd
         Λd                                      Λd
        Neither axial or vector, but elastic and inelastic interactions
            How to discover suppressed elastic scatterings?
Plan of Talk
DAMA  Inelastic Dark Matter
   Composite dark matter models


   Experimental Prospects
     Uncertainties in halo profile

  Directional Detection Experiments

         Collider Signatures
Simple Halo Model
                        N-body simulations indicate that density falls off more
                                       steeply at larger radii

                 3.5

                  3                                             Assume velocity distribution is:
                 3.0

                                                               isothermal, isotropic,  Gaussian
v 2 f (v)/10−4




                 2.5

                  2
                 2.0                  v0                                      2                2
                                                                                                    
                                                            f (v) ∝ e−(v/v0 ) − e−(vesc /v0 )        Θ(vesc − v)
                 1.5

                  1
                 1.0

                 0.5
                                                                     vesc
                  0
                 0.0
                    0    100    200          300      400      500       600
                   0    100    200          300       400      500       600
                                           velocity
Modified SHM
                                                                                     
                                                   −(v/v0 )2α        −(vesc /v0 )2α
                                   f (v) ∝ e                    −e                        Θ(vesc − v)



                 3.5
                                                                      α parameterizes variation in the
                  3
                 3.0     α=1.1                                             tail of the distribution
                               )
v 2 f (v)/10−4




                 2.5
                                                       α=0.8          captures qualitative behavior of
                  2
                 2.0                      v0              )                 N-body simulations
                 1.5

                  1
                 1.0

                 0.5                                                          600
                                                                            vesc
                  0
                 0.0
                    0    100        200          300      400         500       600
                   0    100        200          300       400         500       600
                                               velocity
Setting Limits on a Cross Section
    Usually set limits on cross section per nucleon
                Factor of A4 to translate


      iDM has non-trivial kinematics
          Light nuclei have no cross section


   Should use particle physics parameters

        Z 2 αEM                       m2 d
                                         A
     σ∝                         f2 
           f4                        cin gd
Marginalizing over Uncertainties
     How do current experiments constrain parameters?

                          “Unknowns”
                particle physics   astrophysics
                 mπd , δm, cin      v0 , vesc , α




  cin is coupling for inelastic            0.8 ≤ α ≤ 1.25
            operator
                                           200 ≤ v0 ≤ 300
  cel/cin = relative strength of          500 ≤ vesc ≤ 600
     elastic sub-component
Marginalizing over parameters
 Minimize χ2 over 6 parameters using results from direct
                detection experiments

                                      Nexp                       
                                                Xipred − Xiobs
 χ2 (mπd , δ, fi , v0 , vesc , α) =
                                      ı=1
                                                       σi



                Fit to DAMA recoil spectrum

         Require that theory predicts ≤ number of
          events seen by each null experiment
Parameter Space
   140
                                              cel/cin = 0.15

   120
                         mπd ∼ 70 GeV
                          δm ∼ 95 keV
∆m keV




   100



    80



    60

                     Dark Matter Mass GeV
           100     200      300       400        500       600
Parameter Space
                                                                800
                                                                  800
                                                                                                                    CDMS
                                                                               vesc + vE




                                             Minimum Velocity
                                                                700
                                                                  700
                                                                                                     ZEPLIN

                                                                600
                                                                  600                                               CRESST


                                                                500
                                                                  500


   140
                                                                        ZEP3
         CRESST                                                 400
                                                                  400
                                                                                         ZEP2
           ✖                                                                                                        CRESST
                                                                300
                                                                  300
   120                                                                  20
                                                                        20
                                                                                    40
                                                                                   40
                                                                                                60
                                                                                                60
                                                                                                               80
                                                                                                              80
                                                                                                                             100
                                                                                                                           100
                                                                                  Recoil Energy (keV)
∆m keV




   100



    80



    60

                    Dark Matter Mass GeV
           100    200      300       400                500             600
Parameter Space
                                                                800
                                                                  800

                                                                                vesc + vE




                                             Minimum Velocity
                                                                700
                                                                  700

                                                                                                                    CDMS

                                                                600
                                                                  600

                                                                                                                    CRESST
                                                                             ZEPLIN
                                                                500
                                                                  500


   140
                                                                        ZEP3
         CRESST                                                 400
                                                                  400
                                                                                            ZEP2
           ✖                                                                                                        CRESST
                                                                300
                                                                  300
   120                                                                  20
                                                                        20
                                                                                       40
                                                                                      40
                                                                                                    60
                                                                                                   60        80
                                                                                                               80            100
                                                                                                                           100
                                                                                      Recoil Energy (keV)
∆m keV




   100



    80


         ✖ ZEP3                                                                                    Zep2 efficiency, CRESST
    60                                                                                             exposure lower than

                    Dark Matter Mass GeV
           100    200      300       400                500             600                        Zep3
Parameter Space
                                                                800
                                                                  800

                                                                               vesc + vE




                                             Minimum Velocity
                                                                700
                                                                  700


                                                                                                             CDMS
                                                                600
                                                                  600


                                                                                                             ZEPLIN
                                                                500
                                                                  500


   140                                                                                                       CRESST
                                                                        ZEP3
         CRESST                                                 400
                                                                  400
                                                                                         ZEP2
           ✖                                                                                                 CRESST
                                                                300
                                                                  300
   120                                                                  20
                                                                        20
                                                                                    40
                                                                                   40
                                                                                                60
                                                                                                60   80
                                                                                                        80            100
                                                                                                                    100
                    ✖ ZEP2                                                        Recoil Energy (keV)
∆m keV




   100



    80


         ✖ ZEP3
    60

                    Dark Matter Mass GeV
           100    200        300     400                500             600
Parameter Space
                                                                800
                                                                  800

                                                                              vesc + vE




                                             Minimum Velocity
                                                                700
                                                                  700                                        CDMS
                                                                                        ZEP2
                                                                600
                                                                  600




                                                                500
                                                                  500                                       CDMS
   140
         CRESST                                                 400
                                                                  400
                                                                                                            ZEPLIN
           ✖
                                                                                                            CRESST
                                                                300
                                                                  300
   120                                                                  20
                                                                        20
                                                                                   40
                                                                                  40
                                                                                               60
                                                                                               60   80
                                                                                                       80            100
                                                                                                                    100
                    ✖ ZEP2                                                       Recoil Energy (keV)
∆m keV




   100



    80                                     ZEP2
                                      ✖
                                           CDMS
         ✖ ZEP3
    60

                    Dark Matter Mass GeV
           100    200        300     400                500             600
DAMA
                                         Best fits


                                     Modulation Amplitude

                      0.03                                        cel/cin=0

                                                                  cel/cin=0.15
countskgdaykeVee




                      0.02



                      0.01



                      0.00




                                      Recoil Energy keVee
                             0   2             4              6                  8
Correlations
                           The same model, but with different halo profiles...


                                                          cel/cin = 0.15                               v0 = 300
                0.03
                                                                                                       vesc = 500
                                                                                                       α = 0.95
 cpdkgkeVee




                0.02

                                                                                                       v0 = 220
                0.01                                                                                   vesc = 550
                                                                                                       α = 0.8
                0.00
                                                                                           Parameters consistent
                                                                                           with DAMA and null

                                  Recoil Energy keVee
                       0      2            4               6           8                       experiments
                                                                           32




                                                                           24




Challenge to distinguish astrophysical parameters                          16




                                                                           8




                                                                           0    50   100   150   200   250   300   350   400   450   500
LUX/Xenon100
                            100 kg Liquid Xe detectors (upgrade for Xenon10)
                                       Will see a large number of events


                                     Winter                                                         Summer
                                                                           0.20
            0.25

            0.20                                                           0.15
Frequency




                                                               Frequency
            0.15
                                                                           0.10
            0.10

                                                                           0.05
            0.05

            0.00                                                           0.00
                   0   20       40            60   80    100                      0   20       40            60   80    100
                       Total Number of Events Observed                                Total Number of Events Observed




                                                                              (1000 kg-day exposure ~ 1 month!)
            Tail down to small  5 events
LUX/Xenon100
                                Recoil Spectrum
                 5.00
                                                       1000 kg· day
                                                          : summer
                 1.00
                                                         : winter
                 0.50
    countskeV




                 0.10

                 0.05




                                Recoil Energy keV
                     0     20        40           60          80




Elastic subcomponent apparent beneath energy threshold,
          but inelastic kinematics get washed out
Plan of Talk
DAMA  Inelastic Dark Matter
   Composite dark matter models


   Experimental Prospects
     Uncertainties in halo profile

  Directional Detection Experiments

         Collider Signatures
Directional Detection
                     Experiments

     Detector
πd              πd      Good angular resolution requires
                        sufficiently long tracks (~1 mm)

                     Head-tail discrimination requires large
      1 mm
                         threshold energy (~50 keV)
Directional Detection
                             Experiments

         Detector
    πd              πd          Good angular resolution requires
                                sufficiently long tracks (~1 mm)

                             Head-tail discrimination requires large
          1 mm
                                 threshold energy (~50 keV)




CF4 : DMTPC, NEWAGE, MIMAC
         CS2 : DRIFT         }   Need heavier nuclei to see inelastic signal
                                    Iodine (A=127) or Xenon (A=131)



                                                 Finkbeiner, Lin, and Weiner, 0906.0002.
Directional Detection
                                     Motivation


                   Detector   6 am         Daily Modulation
                                           Wind direction changes every 12 hrs

                                           Large Amplitude
            45°(
 Detector




                                           Daily modulation amplitude ~ 100%
                                           Annual modulation amplitude ~ 5%
6 pm
                                           Smaller Backgrounds




                                                       Spergel, Phys. Rev D 37, 1353 (1988).
Directional Detection

                                                     )γ
          πd                      ¯
                                  vE                           ¯
                                                               vE
                                                          πd

  Different dynamics in dark matter sector result in different cosγ spectra


               iDM
                                                       vesc − vmin
  dR                                           cos γ ≤
                                                            vE
d cos γ
                                                                                    
                                                          1             mN ER
                                                vmin = √                      + δm
                                   eDM                  2mN ER            µ


                       cos γ
Directional Detection
                  0.020
                                                                  cel/cin = 0.15
                  0.010

                  0.005
countskgday




                                                          Cross over point
                  0.002

                  0.001
                           eDM FF
                      4
                5  10

                2  104
                                             iDM
                1  104
                      1.0     0.8   0.6         0.4    0.2       0.0          0.2
                                                   cosΓ
Directional Detection
                                    0.005
                                                                                  cel/cin = 0.15
                                    0.002
Cross over rate
                  countskgday




                                    0.001

                                  5  104


                                  2  104

                                  1  104 DMTPC 100 kg· y


                                        1.0     0.8        0.6          0.4    0.2        0.0
                                                                    CosΓ
Plan of Talk
DAMA  Inelastic Dark Matter
   Composite dark matter models


   Experimental Prospects
     Uncertainties in halo profile

  Directional Detection Experiments

         Collider Signatures
Collider Signatures

                 +
                         −
                                   +
                                                 Light mesons
                         ωD   ηD        −         √
                                   ωD                 s     ΛD
                                                    23-4/5-))'
                                                  0/-(*5506)'!-7')
      !#$%'()*#
       +*,'#-.               qD
     +!#*/01)0*/
                                                   √
                                                       s     ΛD
e−                                  e+            #*89+5:-;+'#0(5-
                                                       ''/)
                 ¯
                 qD
                                                                            γ

                                                  mA          ΛD
ωD
                     ωD                     Lepton Jets
                                                =**)'!-;#*!8()-
+
    −
        ωD                                        #'(*05-*-;+*)*/
                          −                                      ηD
         +   −       +                                                 ωD
New Tools
                  New Strong Signal Simulation
                                 (J. Wacker w/ S. Schumann, P. Richardson)




                                                Dark Showering
                                                   Sherpa  Herwig




Hadron Spectrum
  DarkSpecGen                                   Dark Hadronization
                                                        Sherpa  Herwig


Cascading to SM
   DarkSpecGen
Boosted Physics
        When high pT particles
       cascade to SM final states
    producing collimated final states




          “Lepton Jets”


A Challenging Environment
        Reconstruction is difficult
         Isolation cuts out signal
Cascades produce heterogeneous final states
1 Light Flavor Spectrum
         No light pions - Only eta prime
               No hadronic decays
         ~1 dozen quasi stable particles
2Λdark
         2++                          1−+          2−−
                      2   +−


                      1+−                          0−−
                                      0−+          1− −
Λdark    0
         ++

                      0+−




               J ++            J +−         J −+      J −−
   Only “weak” decays: quasi-stable particles
1 Light Flavor Spectrum
         No light pions - Only eta prime
               No hadronic decays
         ~1 dozen quasi stable particles
2Λdark
         2++                            1−+          2−−
                      2   +−


                      1+−                            0−−
                                        0−+          1− −
Λdark    0
         ++

                      0+−




               J ++            J +−           J −+        J −−
   Only “weak” decays: quasi-stable particles
                                !#$%''                        +$,#'%-+.)(
                ωD              #()*#!               ηD            $/0$,$1'-


                 A∗                                  A∗
1 Light Flavor Spectrum
         No light pions - Only eta prime
               No hadronic decays
         ~1 dozen quasi stable particles
2Λdark
         2++                            1−+          2−−
                      2   +−


                      1+−                            0−−
                                        0−+          1− −
Λdark    0
         ++

                      0+−




               J ++            J +−           J −+        J −−
   Only “weak” decays: quasi-stable particles
                                !#$%''                        +$,#'%-+.)(
                ωD              #()*#!               ηD            $/0$,$1'-


                 A∗                                  A∗
1 Light Flavor Spectrum
         No light pions - Only eta prime
               No hadronic decays
         ~1 dozen quasi stable particles
2Λdark
         2++                            1−+          2−−
                      2   +−


                      1+−                            0−−
                                        0−+          1− −
Λdark    0
         ++

                      0+−




               J ++            J +−           J −+        J −−
   Only “weak” decays: quasi-stable particles
                                !#$%''                        +$,#'%-+.)(
                ωD              #()*#!               ηD            $/0$,$1'-


                 A∗                                  A∗

             Some short-lived  Some long lived
                  Lots of visible particles
Multiple Light Flavor Spectrum
                                  
             Light pions      mπ = mq Λdark


              I=0                             I=1




Λdark




        J ++ J +− J −+ J −−          J ++ J +− J
                                                 −+
                                                    J −−
Multiple Light Flavor Spectrum
                                  
             Light pions      mπ = mq Λdark


              I=0                                I=1




Λdark
                                Decays to Dark Pions




        J ++ J +− J −+ J −−            J ++ J +− J
                                                   −+
                                                      J −−
Multiple Light Flavor Spectrum
                                      
              Light pions         mπ = mq Λdark


              I=0                                    I=1




Λdark
                                    Decays to Dark Pions




        J ++ J +− J −+ J −−                J ++ J +− J
                                                       −+
                                                          J −−
                             
              ¯
              qq qq¯   
             q q q q      
        π∼ ¯      ¯          
                         ..
                            .
Multiple Light Flavor Spectrum
                                      
              Light pions         mπ = mq Λdark


              I=0                                    I=1




Λdark
                                    Decays to Dark Pions




        J ++ J +− J −+ J −−                J ++ J +− J
                                                       −+
                                                          J −−
                             
              ¯
              qq qq¯   
             q q q q           Unstable O(NF )           few
        π∼ ¯      ¯                                        visible
                         ..
                            .         Stable O(NF )
                                                2
                                                            particles
No light flavors
       “Quirks” (Luty et al 2008)


Spectra similar to 1 light flavor
     (Lattice calculations available)



We don’t know how to hadronize
        (how to cut color lines)




  More theory work necessary
Two-Lepton Lepton Jets
            2 oppositely signed leptons in a small cone

                          + −                 + −

  ∆RSignal  0.1
           ∼                      Hadron
                                           Ad
0.1  ∆RIso  0.4
    ∼       ∼




                                      Hadron


    µ+ µ−
                                                    e+ e−
Four-Lepton Lepton Jet
                          Multistep cascade
     Decay Topology                     Relevant Parameters
                                                pT φ1
                                              mφ1 mφ2
        φ2    φ2                              cτφ1   cτφ2

             φ1                               Displaced Vertices




  ∆RSignal  0.1
                                     cτφ1
           ∼
0.1  ∆RIso  0.4
    ∼       ∼

                                                     cτφ2
Conclusions

Inelastic DM is an elegant explanation
 for DAMA vs the Rest of the World

 Discovery or Refutation Imminent

New scale to explain: New Dynamics

  New measurements are important
        Direct Detection  Colliders

Weitere ähnliche Inhalte

Mehr von Jay Wacker

The SIMP Miracle
The SIMP MiracleThe SIMP Miracle
The SIMP MiracleJay Wacker
 
Philosophy Of Simplified Models
Philosophy Of Simplified ModelsPhilosophy Of Simplified Models
Philosophy Of Simplified ModelsJay Wacker
 
Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011Jay Wacker
 
LHC Jets and MET
LHC Jets and METLHC Jets and MET
LHC Jets and METJay Wacker
 
Jets and Missing Energy at the LHC
Jets and Missing Energy at the LHCJets and Missing Energy at the LHC
Jets and Missing Energy at the LHCJay Wacker
 
Slac Summer Institute 2009
Slac Summer Institute 2009Slac Summer Institute 2009
Slac Summer Institute 2009Jay Wacker
 
Leptonic FInal State Boost Summary
Leptonic FInal State Boost SummaryLeptonic FInal State Boost Summary
Leptonic FInal State Boost SummaryJay Wacker
 
Composite Inelastic Dark Matter
Composite Inelastic Dark MatterComposite Inelastic Dark Matter
Composite Inelastic Dark MatterJay Wacker
 
Discovering the Higgs with Low Mass Muon Pairs
Discovering the Higgs with Low Mass Muon PairsDiscovering the Higgs with Low Mass Muon Pairs
Discovering the Higgs with Low Mass Muon PairsJay Wacker
 
Jets and Missing Energy at CDF
Jets and Missing Energy at CDFJets and Missing Energy at CDF
Jets and Missing Energy at CDFJay Wacker
 

Mehr von Jay Wacker (11)

The SIMP Miracle
The SIMP MiracleThe SIMP Miracle
The SIMP Miracle
 
Philosophy Of Simplified Models
Philosophy Of Simplified ModelsPhilosophy Of Simplified Models
Philosophy Of Simplified Models
 
Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011
 
LHC Jets and MET
LHC Jets and METLHC Jets and MET
LHC Jets and MET
 
Jets and Missing Energy at the LHC
Jets and Missing Energy at the LHCJets and Missing Energy at the LHC
Jets and Missing Energy at the LHC
 
Dark Forces
Dark ForcesDark Forces
Dark Forces
 
Slac Summer Institute 2009
Slac Summer Institute 2009Slac Summer Institute 2009
Slac Summer Institute 2009
 
Leptonic FInal State Boost Summary
Leptonic FInal State Boost SummaryLeptonic FInal State Boost Summary
Leptonic FInal State Boost Summary
 
Composite Inelastic Dark Matter
Composite Inelastic Dark MatterComposite Inelastic Dark Matter
Composite Inelastic Dark Matter
 
Discovering the Higgs with Low Mass Muon Pairs
Discovering the Higgs with Low Mass Muon PairsDiscovering the Higgs with Low Mass Muon Pairs
Discovering the Higgs with Low Mass Muon Pairs
 
Jets and Missing Energy at CDF
Jets and Missing Energy at CDFJets and Missing Energy at CDF
Jets and Missing Energy at CDF
 

Composite Inelastic Dark Matter

  • 1. Disentangling Dark Matter Dynamics Jay Wacker SLAC Boston University Theory Seminar September 29, 2009 with Philip Schuster, Daniele Alves, Siavosh Behbahbani arXiv: 0903.3945 with Mariangela Lisanti arXiv: 0910.xxxx, 0910.xxxx
  • 2. Status of Dark Matter Not your grandfather’s DM Candidate DAMA PAMELA ATIC FERMI WMAP Haze INTEGRAL Hints at non-trivial interactions
  • 3. Plan of Talk DAMA & Inelastic Dark Matter Composite dark matter models Experimental Prospects Uncertainties in halo profile Direct Detection Directional Detection Experiments Collider Signatures
  • 4. DAMA WIMP wind Annual modulation in WIMP signal winter ⊙ v Φwimp = σv E v E v summer Modulation amplitude ~2.5% for elastic scattering v ≤ vesc + |vE − v⊙ | v ≤ vesc + |vE + v⊙ |
  • 5. Direct Detection Dark matter scatters off nuclei in detectors Measure recoil energy of nuclei spin-independent (χχ)(¯q) ¯ q χ q χ q DM Coherently acts with entire nucleus σSI ∝ A2 µ2 ∼ A4 Limits always stated in terms of cross section per nucleon
  • 6. Elastic nuclear scattering A Bestiary of Experiments WIMP CDMS Ge 10% energy Ge, Si Ionization ZEPLIN2 ZEPLIN3 Liquid Xe Target Heat Al2O3, LiF XENON10 100% energy slowest cryogenics Light 1% energy CaWO4, BGO NaI, Xe fastest no surface effects WIMP CRESST DAMA From: Véronique Sanglard (La Thuille 2005)
  • 7. Direct Detection Experiments optimized to look for elastic scattering recoil spectrum Signal Window Exposure Experiment Element # Events (keV) (kg day) CDMS Ge 10-100 2 170 dRel ∝ e−ER XENON Xe 4.5-45 24 300 dER Rate ZEPLIN 2 Xe 14-56 29 200 ZEPLIN 3 Xe 11-31 7 150 CRESST W 10-100 7 30 Recoil Energy (keV) DAMA 0.82 Ton Years!
  • 8. Current Limits -5 10 http://dmtools.brown.edu/ Cross-section [pb] (normalised to nucleon) DAMA Gaitskell,Mandic,Filippini N 2 P LI ZE T SS RE -6 10 C ZE PL IN3 -5 XE 10 -7 S http://dmtools.brown.edu/ DM [pb] (normalised to nucleon) 10 NO C Gaitskell,Mandic,Filippini N -6 10 -8 090913122401 spin-independent 10 1 2 3 10 10 10 WIMP Mass [GeV/c2] -7 10
  • 9. DAMA Spectrum for DAMA modulation amplitude Scattering off Na or I - w or w/o quenching Chang, Pierce, Weiner (2008) Suppressed at low recoil energy 0.07 0.06 2 GeV 0.04 0.04 Sm countskgday 0.05 0.04 7 GeV Rate (cpd/kg/keVee) 0.03 0.03 0.03 Rate cpdkgkeVee 0.02 77 GeV 0.01 12 GeV 0.02 0.02 2 3 4 5 6 keVee 0.01 0.01 FIG. 2: We show the modulation spectra for the best fit 39.0 point where scattering off iodine dominates, mχ = 77 GeV (dot-dashed orange), and three points where scattering off of sodium dominates. The best fit point off sodium is mχ = 12 39.5 0.00 0.00 GeV (solid red). We also show mχ = 2 GeV (dashed green) and mχ = 7 GeV (dotted blue). The points with error bars 0 0 2 2 4 keVee 4 Recoil Energy 6 6 8 8 40.0 are the published DAMA/LIBRA data. Recoil Energy (keVee) logΣn cm2 logΣn cm2 40.5 higher mass, say 20 GeV, this approach does not succeed. As 41.0 mass moves above 12 GeV, a AMATotal the D contribution coming arXiv:0804.2741, Bernabei et. al. from iodine scattering begins to move into the low end of the41.5 observed energy region, spoiling the fit. Also plotted in Fig. 2 are spectra for WIMP SSi CDM masses of 2 and 7 GeV for comparison. 42.0 XENON The 68%, 90%, and 99% CL (∆χ 2.3, 4.61, 9.21) 2 contours consistent with our nine bin DAMA/LIBRA χ 2 function are shown in Fig. 1. Both regions shrink dra- matically compared to the Χ GeV χ2 . In the left panel, 0 20 40 60 80 100 120 m two bin the ∆χ2 is with respect to the global best fit point at 77
  • 10. Inelastic Dark Matter Dark matter has two nearly Threshold velocity necessary degenerate states to scatter with energy ER δm ∼ (100 keV) χ2 q 1 mN ER vmin = √ + δm 2mN ER µ χ1 q Lighter nuclei, higher threshold Tucker-Smith and Weiner, hep-ph/0101138.
  • 11. Inelastic Dark Matter Threshold behavior µv 2 ∼ 100 keV Rate Recoil Energy (keV) 3 Consequences (1) Scatters off of heavier nuclei -- CDMS ineffective (2) Large recoil energy -- ZEPLIN3 XENON didn’t look (3) Large modulation fraction -- absolute signal is smaller
  • 12. Standard Halo Model Scattering rate depends on halo profile vesc 3.5 dR dσ ∝ d vf (v)v 3 3 3.0 dER vmin dER v 2 f (v)/10−4 2.5 2 2.0 v0 inelastic scattering sensitive to 1.5 tail of distribution 1 1.0 0.5 vesc 00 0.0 100 200 300 400 500 600 0 100 200 300 400 500 600 velocity
  • 13. Larger Modulation Fraction Smaller rate One reason for apparent tension 1 2.5% modulation 0.75 Rate 0.5 0.25 50% modulation 0 0.25 0.5 0.75 1 Dec. 2nd June 2nd Time
  • 14. Inelastic Dark Matter A new number to explain: δm ∼ 10−6 m Sign of dark sector dynamics? First of many splittings New interactions to discover Changes which questions are interesting
  • 15. Form-Factor Suppression Can suppress low energy scattering Fdm (q 2 ) = c0 + c1 q 2 + c2 q 4 + · · · q 2 mN E R χ Fdm (q 2 ) dRel N ∝ (ER )n e−ER dER Rate N χ Recoil Energy (keV)
  • 16. Form-Factor Suppression Can suppress low energy scattering Fdm (q 2 ) = c0 + c1 q 2 + c2 q 4 + · · · q 2 mN E R χ Fdm (q 2 ) dRel N ∝ (ER )n e−ER dER Rate N χ Best case scenarios 5 Recoil Energy (keV) 32 35.5 c0 = c1 = 0 33 36.0 logΣ p cm2 logΣ p cm2 34 36.5 35 Pospelov Ritz (2003) 37.0 Chang, Pierce, and Weiner (2009). 36 Feldstein, Fitzpatrick, and Katz (2009). 37.5 37 m Χ GeV m Χ GeV 0 20 40 60 80 0 20 40 60 80 a) b) IG. 3: Plots of the SD-proton cross section σp vs DM mass mχ without (a) and with q 4 suppression (b). The colored egions show the 68, 90, and 99% CL regions for the best DAMA fit. The 90% exclusions limits are PICASSO (gray
  • 17. Plan of Talk DAMA Inelastic Dark Matter Composite dark matter models Experimental Prospects Uncertainties in halo profile Direct Detection Directional Detection Experiments Collider Signatures
  • 18. Composite Inelastic Dark Matter Alves, Behbahani, Schuster, Wacker, 0903.3945. 1 Ldark = − Tr G2 + q iD q + m¯q ¯ q 2 µν New SU(Nc) gauge sector confines at scale Λd 2π Λdark ∼ exp − b0 αdark Two dark quarks qH qL mH Λdark , mL No flavor changing effects
  • 19. Composite Inelastic Dark Matter Alves, Behbahani, Schuster, Wacker, 0903.3945. 1 Ldark = − Tr G2 + q iD q + m¯q ¯ q 2 µν New SU(Nc) gauge sector confines at scale Λd 2π Λdark ∼ exp − b0 αdark Two dark quarks qH qL mH Λdark , mL No flavor changing effects Meson Baryon Low Energy Stable States ¯ ¯ qL · · · qL Mesons qH · · · qH NH asymmetric NH asymmetric qL · · · qL Baryons Nc − NH asymmetric
  • 20. Cosmology of CiDM Alves, Behbahani, Schuster, Wacker: 0903.3945 + to appear A primordial cosmological dark quark asymmetry (nH − nH ) = −(nL − nL ) = 0 ¯ ¯ ¯ When T Λd , dark matter is in qH qL bound state Processing into multi-core hadrons can be slow Dominantly in NH = 1 mesons nB O(10−6 ) nM
  • 21. Splitting of Ground State Mass difference in meson states arises from hyperfine splitting Coulombic limit mH ¯ qL qH α4 m2 δm ∼ d L Energy Λd mH mL For U(1): Atomic Dark Matter D. E. Kaplan, G. Z. Krnjaic, K. R. Rehermann, C.M. Wells (2009) spin 0 spin 1 Confined qH ¯ qL Λ2 d dark pion dark rho δm ∼ πd ρd mH
  • 22. Spin Temperature Need to explain why iDM is in ground state Self interaction keeps DM in equilibrium ρ d ρ d → πd πd Solves de-excitation problem Spin temperature low nρd = exp(−δm/Tspin ) n πd Kinetically decouple late, smaller spin temperature Tspin 10 keV ∼
  • 23. Dark Matter Couplings Couples to a secluded U(1) Two choices for anomaly-free charges Vector Coupling µ Jd = qH γ µ qH − qL γ µ qL ¯ ¯ Does not forbid quark masses Axial-Vector Coupling µ Jd = qH γ µ γ 5 qH − qL γ µ γ 5 qL ¯ ¯ Forbids quark masses until U(1)d Higgsed
  • 24. Coupling to Standard Model Kinetically mix U(1)d with U(1)Y U (1)d U (1)Y DM SM ψgut 1 µν 1 µν µν 1 µν 1 µν LU(1) = − Fd Fdµν − B Bµν − Fd Bµν → −kineticFdµν − B Bµν F mixing 4 4 2 4 d 4
  • 25. Coupling to Standard Model Kinetically mix U(1)d with U(1)Y U (1)d U (1)Y DM SM ψgut 1 µν 1 µν µν 1 µν 1 µν LU(1) = − Fd Fdµν − B Bµν − Fd Bµν → −kineticFdµν − B Bµν F mixing 4 4 2 4 d 4 Higgs U(1)d near the electroweak scale LHiggs = |Dµ φd |2 − V (φd ) → m2 A2 d d md = 2gd vφ
  • 26. Coupling to Standard Model Kinetically mix U(1)d with U(1)Y U (1)d U (1)Y DM SM ψgut 1 µν 1 µν µν 1 µν 1 µν LU(1) = − Fd Fdµν − B Bµν − Fd Bµν → −kineticFdµν − B Bµν F mixing 4 4 2 4 d 4 Higgs U(1)d near the electroweak scale LHiggs = |Dµ φd |2 − V (φd ) → m2 A2 d d md = 2gd vφ Gives mass to fermions LYuk = +c yL q L q L φ c † yH q H qH φ mf = yf vφ
  • 27. Coupling to Standard Model Kinetically mix U(1)d with U(1)Y U (1)d U (1)Y DM SM ψgut L = −Fd − FEM − Fd FEM + m2 A2 + JEM AEM + Jd Ad 2 2 A d
  • 28. Coupling to Standard Model Kinetically mix U(1)d with U(1)Y U (1)d U (1)Y DM SM ψgut L = −Fd − FEM − Fd FEM + m2 A2 + JEM AEM + Jd Ad 2 2 A d redefine SM photon AEM → AEM − Ad L = −Fd − FEM + m2 A2 + JEM (AEM − Ad ) + Jd Ad 2 2 A d µ Lint ∝ Jem Adµ SM is milli-charged under dark U(1), DM is neutral under EM
  • 29. Effective Field Theory Use EFT to describe interactions of mesons Dark Matter Scattering ¯ qH qL ρµ d mass πd elastic inelastic πd→πd πd→ρd † 2 † Lfree = ∂µ πd ∂ µ πd − Mπ πd πd 1 † − ρd µν ρµν + Mρ ρ† µ ρµ 2 2 d d d spin 0 meson spin 1 meson πd → −πd ρdµ → (−1)µ ρdµ Parity of new gauge boson determines the allowed interactions in the effective Lagrangian
  • 30. Axial Coupling Elastic Inelastic πd→πd πd→ρd 1 † ˜ µν 1 † µ ν πd ∂µ πd ∂ν Fd πd ∂ ρd Fdµν Λ2 d Λd dimension 6 velocity suppressed
  • 31. Axial Coupling Elastic Inelastic πd→πd πd→ρd 1 † ˜ µν 1 † µ ν πd ∂µ πd ∂ν Fd πd ∂ ρd Fdµν Λ2 d Λd dimension 6 velocity suppressed Inelastic scattering dominates q 2 ∼ mN E R q 2 vrel 2 1 2 mN vrel a rel/in = 10−4 Λ2 Λ2 Fhalo mπ Fhalo ER ∼ δm = mπ Nearly pure Inelastic
  • 32. Size of Couplings DAMA cross section set by ρ q 2 gd 1 σDAMA ∝ ≡ 4 gd e m2 d A feff π q mAd vφ 2 feff = 2 vEW Mass of DM given by mDM = mH = yh vφ vEW Sets mass of Dark Photon mAd vEW
  • 33. Current Limits on ε 10-2 aµ ϒ(3S) 10-3 ae DA MA 10-4 fixed target 10-5 10-6 10-7 supernova 10-8 10-9 10-2 10-1 1 Pospelov, 0811.1030. Reece and Wang, 0904.1743. mAd (GeV) Bjorken, Essig, Schuster, Toro, 0906.0580
  • 34. Vector Coupling Elastic Inelastic πd→πd πd→ρd 1 † µν 1 † µ ν˜ πd ∂µ πd ∂ν Fd πd ∂ ρd Fdµν Λ2 d Λd charge-radius scattering velocity suppressed Rel Elastic scattering dominates: 108 Rin Nearly pure Elastic: Not good for DAMA
  • 35. CP-Violation Θ term in dark QCD sector ˜ Lcpv = Θd TrGd Gd Not necessarily small Leads to mixing between states of different parity e.g. πd ↔ a0d In limit mL → 0 mH chiral rotation removes Θ term mL Energy For heavy quarks, mixing given by Θd Λd Λd sin θp = πd |Hp |a0d ma0d − mπd 2 λd mL CP effects vanish as mL →0, ∞ ...maximized when mL ≅ Λd
  • 36. Effects of Parity Violation Admixture of vector and axial interactions θ µν θ ˜ µν Can effectively substitute Fd → cos p Fd + sin p Fd µν 2 2 Elastic Inelastic θp 1 † ˜ µν θp 1 π † ∂ µ ρ ν F cos πd ∂µ πd ∂ν Fd + cos d dµν 2 Λd d 2 Λ2d θp 1 † µν θp 1 † µ ν˜ + sin sin πd ∂ ρd Fdµν 2 Λ2 πd ∂µ πd ∂ν Fd + 2 Λd d cel † cin † µν 2 πd ∂µ πd ∂ν Fd + µν πd ∂µ ρd ν Fd Λd Λd Neither axial or vector, but elastic and inelastic interactions How to discover suppressed elastic scatterings?
  • 37. Plan of Talk DAMA Inelastic Dark Matter Composite dark matter models Experimental Prospects Uncertainties in halo profile Directional Detection Experiments Collider Signatures
  • 38. Simple Halo Model N-body simulations indicate that density falls off more steeply at larger radii 3.5 3 Assume velocity distribution is: 3.0 isothermal, isotropic, Gaussian v 2 f (v)/10−4 2.5 2 2.0 v0 2 2 f (v) ∝ e−(v/v0 ) − e−(vesc /v0 ) Θ(vesc − v) 1.5 1 1.0 0.5 vesc 0 0.0 0 100 200 300 400 500 600 0 100 200 300 400 500 600 velocity
  • 39. Modified SHM −(v/v0 )2α −(vesc /v0 )2α f (v) ∝ e −e Θ(vesc − v) 3.5 α parameterizes variation in the 3 3.0 α=1.1 tail of the distribution ) v 2 f (v)/10−4 2.5 α=0.8 captures qualitative behavior of 2 2.0 v0 ) N-body simulations 1.5 1 1.0 0.5 600 vesc 0 0.0 0 100 200 300 400 500 600 0 100 200 300 400 500 600 velocity
  • 40. Setting Limits on a Cross Section Usually set limits on cross section per nucleon Factor of A4 to translate iDM has non-trivial kinematics Light nuclei have no cross section Should use particle physics parameters Z 2 αEM m2 d A σ∝ f2 f4 cin gd
  • 41. Marginalizing over Uncertainties How do current experiments constrain parameters? “Unknowns” particle physics astrophysics mπd , δm, cin v0 , vesc , α cin is coupling for inelastic 0.8 ≤ α ≤ 1.25 operator 200 ≤ v0 ≤ 300 cel/cin = relative strength of 500 ≤ vesc ≤ 600 elastic sub-component
  • 42. Marginalizing over parameters Minimize χ2 over 6 parameters using results from direct detection experiments Nexp Xipred − Xiobs χ2 (mπd , δ, fi , v0 , vesc , α) = ı=1 σi Fit to DAMA recoil spectrum Require that theory predicts ≤ number of events seen by each null experiment
  • 43. Parameter Space 140 cel/cin = 0.15 120 mπd ∼ 70 GeV δm ∼ 95 keV ∆m keV 100 80 60 Dark Matter Mass GeV 100 200 300 400 500 600
  • 44. Parameter Space 800 800 CDMS vesc + vE Minimum Velocity 700 700 ZEPLIN 600 600 CRESST 500 500 140 ZEP3 CRESST 400 400 ZEP2 ✖ CRESST 300 300 120 20 20 40 40 60 60 80 80 100 100 Recoil Energy (keV) ∆m keV 100 80 60 Dark Matter Mass GeV 100 200 300 400 500 600
  • 45. Parameter Space 800 800 vesc + vE Minimum Velocity 700 700 CDMS 600 600 CRESST ZEPLIN 500 500 140 ZEP3 CRESST 400 400 ZEP2 ✖ CRESST 300 300 120 20 20 40 40 60 60 80 80 100 100 Recoil Energy (keV) ∆m keV 100 80 ✖ ZEP3 Zep2 efficiency, CRESST 60 exposure lower than Dark Matter Mass GeV 100 200 300 400 500 600 Zep3
  • 46. Parameter Space 800 800 vesc + vE Minimum Velocity 700 700 CDMS 600 600 ZEPLIN 500 500 140 CRESST ZEP3 CRESST 400 400 ZEP2 ✖ CRESST 300 300 120 20 20 40 40 60 60 80 80 100 100 ✖ ZEP2 Recoil Energy (keV) ∆m keV 100 80 ✖ ZEP3 60 Dark Matter Mass GeV 100 200 300 400 500 600
  • 47. Parameter Space 800 800 vesc + vE Minimum Velocity 700 700 CDMS ZEP2 600 600 500 500 CDMS 140 CRESST 400 400 ZEPLIN ✖ CRESST 300 300 120 20 20 40 40 60 60 80 80 100 100 ✖ ZEP2 Recoil Energy (keV) ∆m keV 100 80 ZEP2 ✖ CDMS ✖ ZEP3 60 Dark Matter Mass GeV 100 200 300 400 500 600
  • 48. DAMA Best fits Modulation Amplitude 0.03 cel/cin=0 cel/cin=0.15 countskgdaykeVee 0.02 0.01 0.00 Recoil Energy keVee 0 2 4 6 8
  • 49. Correlations The same model, but with different halo profiles... cel/cin = 0.15 v0 = 300 0.03 vesc = 500 α = 0.95 cpdkgkeVee 0.02 v0 = 220 0.01 vesc = 550 α = 0.8 0.00 Parameters consistent with DAMA and null Recoil Energy keVee 0 2 4 6 8 experiments 32 24 Challenge to distinguish astrophysical parameters 16 8 0 50 100 150 200 250 300 350 400 450 500
  • 50. LUX/Xenon100 100 kg Liquid Xe detectors (upgrade for Xenon10) Will see a large number of events Winter Summer 0.20 0.25 0.20 0.15 Frequency Frequency 0.15 0.10 0.10 0.05 0.05 0.00 0.00 0 20 40 60 80 100 0 20 40 60 80 100 Total Number of Events Observed Total Number of Events Observed (1000 kg-day exposure ~ 1 month!) Tail down to small 5 events
  • 51. LUX/Xenon100 Recoil Spectrum 5.00 1000 kg· day : summer 1.00 : winter 0.50 countskeV 0.10 0.05 Recoil Energy keV 0 20 40 60 80 Elastic subcomponent apparent beneath energy threshold, but inelastic kinematics get washed out
  • 52. Plan of Talk DAMA Inelastic Dark Matter Composite dark matter models Experimental Prospects Uncertainties in halo profile Directional Detection Experiments Collider Signatures
  • 53. Directional Detection Experiments Detector πd πd Good angular resolution requires sufficiently long tracks (~1 mm) Head-tail discrimination requires large 1 mm threshold energy (~50 keV)
  • 54. Directional Detection Experiments Detector πd πd Good angular resolution requires sufficiently long tracks (~1 mm) Head-tail discrimination requires large 1 mm threshold energy (~50 keV) CF4 : DMTPC, NEWAGE, MIMAC CS2 : DRIFT } Need heavier nuclei to see inelastic signal Iodine (A=127) or Xenon (A=131) Finkbeiner, Lin, and Weiner, 0906.0002.
  • 55. Directional Detection Motivation Detector 6 am Daily Modulation Wind direction changes every 12 hrs Large Amplitude 45°( Detector Daily modulation amplitude ~ 100% Annual modulation amplitude ~ 5% 6 pm Smaller Backgrounds Spergel, Phys. Rev D 37, 1353 (1988).
  • 56. Directional Detection )γ πd ¯ vE ¯ vE πd Different dynamics in dark matter sector result in different cosγ spectra iDM vesc − vmin dR cos γ ≤ vE d cos γ 1 mN ER vmin = √ + δm eDM 2mN ER µ cos γ
  • 57. Directional Detection 0.020 cel/cin = 0.15 0.010 0.005 countskgday Cross over point 0.002 0.001 eDM FF 4 5 10 2 104 iDM 1 104 1.0 0.8 0.6 0.4 0.2 0.0 0.2 cosΓ
  • 58. Directional Detection 0.005 cel/cin = 0.15 0.002 Cross over rate countskgday 0.001 5 104 2 104 1 104 DMTPC 100 kg· y 1.0 0.8 0.6 0.4 0.2 0.0 CosΓ
  • 59. Plan of Talk DAMA Inelastic Dark Matter Composite dark matter models Experimental Prospects Uncertainties in halo profile Directional Detection Experiments Collider Signatures
  • 60. Collider Signatures + − + Light mesons ωD ηD − √ ωD s ΛD 23-4/5-))' 0/-(*5506)'!-7') !#$%'()*# +*,'#-. qD +!#*/01)0*/ √ s ΛD e− e+ #*89+5:-;+'#0(5- ''/) ¯ qD γ mA ΛD ωD ωD Lepton Jets =**)'!-;#*!8()- + − ωD #'(*05-*-;+*)*/ − ηD + − + ωD
  • 61. New Tools New Strong Signal Simulation (J. Wacker w/ S. Schumann, P. Richardson) Dark Showering Sherpa Herwig Hadron Spectrum DarkSpecGen Dark Hadronization Sherpa Herwig Cascading to SM DarkSpecGen
  • 62. Boosted Physics When high pT particles cascade to SM final states producing collimated final states “Lepton Jets” A Challenging Environment Reconstruction is difficult Isolation cuts out signal Cascades produce heterogeneous final states
  • 63. 1 Light Flavor Spectrum No light pions - Only eta prime No hadronic decays ~1 dozen quasi stable particles 2Λdark 2++ 1−+ 2−− 2 +− 1+− 0−− 0−+ 1− − Λdark 0 ++ 0+− J ++ J +− J −+ J −− Only “weak” decays: quasi-stable particles
  • 64. 1 Light Flavor Spectrum No light pions - Only eta prime No hadronic decays ~1 dozen quasi stable particles 2Λdark 2++ 1−+ 2−− 2 +− 1+− 0−− 0−+ 1− − Λdark 0 ++ 0+− J ++ J +− J −+ J −− Only “weak” decays: quasi-stable particles !#$%'' +$,#'%-+.)( ωD #()*#! ηD $/0$,$1'- A∗ A∗
  • 65. 1 Light Flavor Spectrum No light pions - Only eta prime No hadronic decays ~1 dozen quasi stable particles 2Λdark 2++ 1−+ 2−− 2 +− 1+− 0−− 0−+ 1− − Λdark 0 ++ 0+− J ++ J +− J −+ J −− Only “weak” decays: quasi-stable particles !#$%'' +$,#'%-+.)( ωD #()*#! ηD $/0$,$1'- A∗ A∗
  • 66. 1 Light Flavor Spectrum No light pions - Only eta prime No hadronic decays ~1 dozen quasi stable particles 2Λdark 2++ 1−+ 2−− 2 +− 1+− 0−− 0−+ 1− − Λdark 0 ++ 0+− J ++ J +− J −+ J −− Only “weak” decays: quasi-stable particles !#$%'' +$,#'%-+.)( ωD #()*#! ηD $/0$,$1'- A∗ A∗ Some short-lived Some long lived Lots of visible particles
  • 67. Multiple Light Flavor Spectrum Light pions mπ = mq Λdark I=0 I=1 Λdark J ++ J +− J −+ J −− J ++ J +− J −+ J −−
  • 68. Multiple Light Flavor Spectrum Light pions mπ = mq Λdark I=0 I=1 Λdark Decays to Dark Pions J ++ J +− J −+ J −− J ++ J +− J −+ J −−
  • 69. Multiple Light Flavor Spectrum Light pions mπ = mq Λdark I=0 I=1 Λdark Decays to Dark Pions J ++ J +− J −+ J −− J ++ J +− J −+ J −−   ¯ qq qq¯  q q q q  π∼ ¯ ¯  .. .
  • 70. Multiple Light Flavor Spectrum Light pions mπ = mq Λdark I=0 I=1 Λdark Decays to Dark Pions J ++ J +− J −+ J −− J ++ J +− J −+ J −−   ¯ qq qq¯  q q q q  Unstable O(NF ) few π∼ ¯ ¯  visible .. . Stable O(NF ) 2 particles
  • 71. No light flavors “Quirks” (Luty et al 2008) Spectra similar to 1 light flavor (Lattice calculations available) We don’t know how to hadronize (how to cut color lines) More theory work necessary
  • 72. Two-Lepton Lepton Jets 2 oppositely signed leptons in a small cone + − + − ∆RSignal 0.1 ∼ Hadron Ad 0.1 ∆RIso 0.4 ∼ ∼ Hadron µ+ µ− e+ e−
  • 73. Four-Lepton Lepton Jet Multistep cascade Decay Topology Relevant Parameters pT φ1 mφ1 mφ2 φ2 φ2 cτφ1 cτφ2 φ1 Displaced Vertices ∆RSignal 0.1 cτφ1 ∼ 0.1 ∆RIso 0.4 ∼ ∼ cτφ2
  • 74. Conclusions Inelastic DM is an elegant explanation for DAMA vs the Rest of the World Discovery or Refutation Imminent New scale to explain: New Dynamics New measurements are important Direct Detection Colliders