SlideShare ist ein Scribd-Unternehmen logo
1 von 41
 
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
– +    Lead block Radioactive substance
– + Lead block
– +  Lead block Radioactive substance
– +  Lead block Radioactive substance
– +  Lead block Radioactive substance
– +    Lead block Radioactive substance
 
Atomic number  (Z) = number of protons in nucleus Mass number  (A) = number of protons + number of neutrons  =  atomic number (Z) + number of neutrons A Z 1 1 1 0 0 -1 0 +1 4 2 23.1 X A Z Mass Number   Atomic Number Element Symbol 1 p 1 1 H 1 or proton 1 n 0 neutron 0 e -1 0  -1 or electron 0 e +1 0  +1 or positron 4 He 2 4  2 or    particle
Balancing Nuclear Equations ,[object Object],The sum of protons plus neutrons in the products must equal the sum of protons plus neutrons in the reactants. 235 + 1 = 138 + 96 + 2x1 ,[object Object],The sum of nuclear charges in the products must equal the sum of nuclear charges in the reactants. 92 + 0 = 55 + 37 + 2x0 23.1 1 n 0 U 235 92 + Cs 138 55 Rb 96 37 1 n 0 + + 2 1 n 0 U 235 92 + Cs 138 55 Rb 96 37 1 n 0 + + 2
212 Po decays by alpha emission.  Write the balanced nuclear equation for the decay of  212 Po. 212 = 4 + A A = 208 84 = 2 + Z Z = 82 23.1 4 He 2 4  2 or alpha particle -  212 Po  4 He +  A X 84 2 Z 212 Po  4 He +  208 Pb 84 2 82
23.1
I. Nuclear Stability and Radioactive Decay
n/p too large beta decay n/p too small positron decay or electron capture 23.2 X Y
 
 
Predicting  the mode of decay ,[object Object],[object Object],[object Object]
II. Nuclear Transmutations ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Transuranium elements ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],c.  4 He 2 Pu 239 94 + Cm 242 96 1 n 0 + 1 n 0 U 238 92 + U 239 92 0  e -1 Pu 239 94 + Np 239 93 +  0 -1  e 14 N 7 U 238 92 + Es 247 99 1 n 0 + 5
III. Nuclear Energy Recall: Nucleus is composed of proton and neutron Then, is the mass of an atom equal to the total mass of all the proton plus the total mass of all the neutron? Example for a He atom: Total mass of the subatomic particles = mass of 2 p +  + mass of 2n 0 = 2 ( 1.00728 amu ) + 2 (1.00867 amu) = 4.03190 amu And atomic weight of He-4 is 4.00150 Why does the mass differ if the atomic mass = number of protons + number of neutrons?
Mass defect -mass difference due to the release of energy -this mass can be calculated using Einstein’s equation E =mc 2 2  1 1  H  + 2  2 0  H ->  4 2  He + energy Therefore: -energy is released upon the formation of a nucleus from the constituent protons and neutrons -the nucleus is lower in energy than the component parts. -The energy released is a measure of the stability of the nucleus. Taking the reverse of the equation: 4 2  He + energy -> 2  1 1  H  + 2  2 0  n
Therefore, -energy is released to break up the nucleus into its component parts. This is called the nuclear binding energy. -the higher the binding energy, the stable the nuclei. -isotopes with high binding energy and most stable are those in the mass range 50-60.
Nuclear binding energy per nucleon vs Mass number 23.2 nuclear binding energy nucleon nuclear stability
-The plot shows the use of nuclear reactions as source of energy. -energy is released in a process which goes from a higher energy state (less stable, low binding energy) to a low energy state (more stable, high binding energy). -Using the plot, there are two ways in which energy can be released in nuclear reactions: a. Fission – splitting of a heavy nucleus into smaller nuclei b. Fusion – combining of two light nuclei to form a heavier, more stable nucleus.
Nuclear binding energy (BE)  is the energy required to break up a nucleus into its component protons and neutrons. BE = 9 x (p mass) + 10 x (n mass) –  19 F mass E = mc 2 BE (amu)  = 9 x 1.007825 + 10 x 1.008665 – 18.9984 BE = 0.1587 amu 1 amu = 1.49 x 10 -10  J BE = 2.37 x 10 -11 J = 1.25 x 10 -12  J 23.2 BE +  19 F  9 1 p + 10 1 n 9 1 0 binding energy per nucleon =  binding energy number of nucleons =  2.37 x 10 -11  J 19 nucleons
23.3
Radiocarbon Dating t ½  = 5730 years Uranium-238 Dating t ½  = 4.51 x 10 9  years 23.3 14 N +  1 n  14 C +  1 H 7 1 6 0 14 C  14 N +  0   +   6 7 -1 238 U  206 Pb + 8  4   + 6  0  92 -1 82 2
Nuclear Transmutation 23.4 Cyclotron Particle Accelerator 14 N +  4    17 O +  1 p 7 2 8 1 27 Al +  4    30 P +  1 n 13 2 15 0 14 N +  1 p  11 C +  4  7 1 6 2
Nuclear Transmutation 23.4
Nuclear Fission 23.5 Energy = [mass  235 U + mass n – (mass  90 Sr + mass  143 Xe + 3 x mass n )] x c 2 Energy = 3.3 x 10 -11 J per  235 U = 2.0 x 10 13  J per mole  235 U Combustion of 1 ton of coal = 5 x 10 7  J 235 U +  1 n  90 Sr +  143 Xe + 3 1 n + Energy 92 54 38 0 0
Nuclear Fission 23.5 Representative  fission reaction 235 U +  1 n  90 Sr +  143 Xe + 3 1 n + Energy 92 54 38 0 0
Nuclear Fission 23.5 Nuclear chain reaction  is a self-sustaining sequence of nuclear fission reactions. The minimum mass of fissionable material required to generate a self-sustaining nuclear chain reaction is the  critical mass . Non-critical Critical
Nuclear Fission 23.5 Schematic diagram of a nuclear fission reactor
Annual Waste Production 23.5 Nuclear Fission 35,000 tons SO 2 4.5 x 10 6  tons CO 2 1,000 MW coal-fired power plant 3.5 x 10 6  ft 3  ash 1,000 MW nuclear power plant 70 ft 3  vitrified waste
23.5 Nuclear Fission Hazards of the radioactivities in spent fuel compared to uranium ore From “Science, Society and America’s Nuclear Waste,” DOE/RW-0361 TG
23.6 Nuclear Fusion Fusion Reaction Energy Released 6.3 x 10 -13  J 2.8 x 10 -12  J 3.6 x 10 -12  J Tokamak magnetic plasma confinement 2 H +  2 H  3 H +  1 H 1 1 1 1 2 H +  3 H  4 He +  1 n 1 1 2 0 6 Li +  2 H  2  4 He 3 1 2
23.7 Radioisotopes in Medicine ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Brain images with  123 I-labeled compound
Geiger-M ü ller Counter 23.7
23.8 Biological Effects of Radiation R adiation  a bsorbed  d ose ( rad ) 1 rad = 1 x 10 -5  J/g of material R oentgen  e quivalent for  m an ( rem ) 1 rem = 1 rad x Q Q uality Factor  -ray = 1    = 1    = 20
Chemistry In Action:  Food Irradiation Dosage Effect Up to 100 kilorad Inhibits sprouting of potatoes, onions, garlics. Inactivates trichinae in pork. Kills or prevents insects from reproducing in grains, fruits, and vegetables. 100 – 1000 kilorads  Delays spoilage of meat poultry and fish. Reduces salmonella. Extends shelf life of some fruit. 1000 to 10,000 kilorads Sterilizes meat, poultry and fish. Kills insects and microorganisms in spices and seasoning.

Weitere ähnliche Inhalte

Was ist angesagt?

Quntum Theory powerpoint
Quntum Theory powerpointQuntum Theory powerpoint
Quntum Theory powerpoint
Kris Ann Ferrer
 
Lect27 handout
Lect27 handoutLect27 handout
Lect27 handout
nomio0703
 
Ch18 z7e nuclear
Ch18 z7e nuclearCh18 z7e nuclear
Ch18 z7e nuclear
blachman
 

Was ist angesagt? (18)

Nuclear chemistry B.Sc.III
Nuclear chemistry B.Sc.III  Nuclear chemistry B.Sc.III
Nuclear chemistry B.Sc.III
 
Nuclear chemistry 2015-2016
Nuclear chemistry 2015-2016Nuclear chemistry 2015-2016
Nuclear chemistry 2015-2016
 
6 nuclear energy
6 nuclear energy6 nuclear energy
6 nuclear energy
 
Know the Properties of Nuclei Binding Energy - Envolta
  Know the Properties of Nuclei Binding Energy - Envolta  Know the Properties of Nuclei Binding Energy - Envolta
Know the Properties of Nuclei Binding Energy - Envolta
 
Nuclear chemistry
Nuclear chemistry Nuclear chemistry
Nuclear chemistry
 
11 Nuclear
11 Nuclear11 Nuclear
11 Nuclear
 
B sc_I_General chemistry U-I Nuclear chemistry
B sc_I_General chemistry U-I Nuclear chemistry B sc_I_General chemistry U-I Nuclear chemistry
B sc_I_General chemistry U-I Nuclear chemistry
 
Nuclei
NucleiNuclei
Nuclei
 
Nuclear Physics 1
Nuclear Physics 1Nuclear Physics 1
Nuclear Physics 1
 
Quntum Theory powerpoint
Quntum Theory powerpointQuntum Theory powerpoint
Quntum Theory powerpoint
 
Nuclear Basics Summer 2010
Nuclear Basics Summer 2010Nuclear Basics Summer 2010
Nuclear Basics Summer 2010
 
Binding energy
Binding energyBinding energy
Binding energy
 
nuclear binding energy
 nuclear binding energy nuclear binding energy
nuclear binding energy
 
Binding energy for Engineers
Binding energy for EngineersBinding energy for Engineers
Binding energy for Engineers
 
Nuclear chemistry by shubhram
Nuclear chemistry by shubhramNuclear chemistry by shubhram
Nuclear chemistry by shubhram
 
Atom
AtomAtom
Atom
 
Lect27 handout
Lect27 handoutLect27 handout
Lect27 handout
 
Ch18 z7e nuclear
Ch18 z7e nuclearCh18 z7e nuclear
Ch18 z7e nuclear
 

Andere mochten auch (12)

208564533 nuclear-reactors-types
208564533 nuclear-reactors-types208564533 nuclear-reactors-types
208564533 nuclear-reactors-types
 
95066866 types-of-nuclear-reactors
95066866 types-of-nuclear-reactors95066866 types-of-nuclear-reactors
95066866 types-of-nuclear-reactors
 
Types of Nuclear Reactors
Types of Nuclear ReactorsTypes of Nuclear Reactors
Types of Nuclear Reactors
 
Nuclear reactors copy
Nuclear reactors   copyNuclear reactors   copy
Nuclear reactors copy
 
Nuclear 2 by RANA SAIFULLAH KHAN
Nuclear  2 by RANA SAIFULLAH KHANNuclear  2 by RANA SAIFULLAH KHAN
Nuclear 2 by RANA SAIFULLAH KHAN
 
Nuclear energy
Nuclear energyNuclear energy
Nuclear energy
 
Nuclear power plant
Nuclear power plantNuclear power plant
Nuclear power plant
 
nuclear power plant
nuclear power plantnuclear power plant
nuclear power plant
 
Nuclear power plant
Nuclear power plantNuclear power plant
Nuclear power plant
 
Nuclear energy
Nuclear energyNuclear energy
Nuclear energy
 
Nuclear power plant
Nuclear power plantNuclear power plant
Nuclear power plant
 
Nuclear energy powerpoint.
Nuclear energy powerpoint.Nuclear energy powerpoint.
Nuclear energy powerpoint.
 

Ähnlich wie Nuclear Chemistry Powerpoint 2003

Nuclear fission and fusion
Nuclear fission and fusionNuclear fission and fusion
Nuclear fission and fusion
Yashu Chhabra
 
Ppt djy 2011 2 topic 7 and 13 nuclear reactions
Ppt djy 2011 2   topic 7 and 13 nuclear reactionsPpt djy 2011 2   topic 7 and 13 nuclear reactions
Ppt djy 2011 2 topic 7 and 13 nuclear reactions
David Young
 
New chm 152_unit_10_nuclear_chemistry_power_points-su13
New chm 152_unit_10_nuclear_chemistry_power_points-su13New chm 152_unit_10_nuclear_chemistry_power_points-su13
New chm 152_unit_10_nuclear_chemistry_power_points-su13
caneman1
 
Lect27 handout
Lect27 handoutLect27 handout
Lect27 handout
nomio0703
 
8m_ATOMS__NUCLEI.pdf chapter best notes preparation
8m_ATOMS__NUCLEI.pdf chapter best notes preparation8m_ATOMS__NUCLEI.pdf chapter best notes preparation
8m_ATOMS__NUCLEI.pdf chapter best notes preparation
30jayporwal
 
Radiobiology2
Radiobiology2Radiobiology2
Radiobiology2
zedan
 
10- Nuclear and particle.pptx
10- Nuclear and particle.pptx10- Nuclear and particle.pptx
10- Nuclear and particle.pptx
FaragAtef
 

Ähnlich wie Nuclear Chemistry Powerpoint 2003 (19)

Chapter_23_Nuclear_Chemistry.ppt
Chapter_23_Nuclear_Chemistry.pptChapter_23_Nuclear_Chemistry.ppt
Chapter_23_Nuclear_Chemistry.ppt
 
ch21-nuclear-chem.pptx
ch21-nuclear-chem.pptxch21-nuclear-chem.pptx
ch21-nuclear-chem.pptx
 
Norman John Brodeur Nuclear Physics.pdf
Norman John Brodeur Nuclear Physics.pdfNorman John Brodeur Nuclear Physics.pdf
Norman John Brodeur Nuclear Physics.pdf
 
Fission
FissionFission
Fission
 
Nuclear fission and fusion
Nuclear fission and fusionNuclear fission and fusion
Nuclear fission and fusion
 
Ch18z7enuclear 110115233000-phpapp01
Ch18z7enuclear 110115233000-phpapp01Ch18z7enuclear 110115233000-phpapp01
Ch18z7enuclear 110115233000-phpapp01
 
Nuclear chemistry and radiation
Nuclear chemistry and radiationNuclear chemistry and radiation
Nuclear chemistry and radiation
 
Ppt djy 2011 2 topic 7 and 13 nuclear reactions
Ppt djy 2011 2   topic 7 and 13 nuclear reactionsPpt djy 2011 2   topic 7 and 13 nuclear reactions
Ppt djy 2011 2 topic 7 and 13 nuclear reactions
 
New chm 152_unit_10_nuclear_chemistry_power_points-su13
New chm 152_unit_10_nuclear_chemistry_power_points-su13New chm 152_unit_10_nuclear_chemistry_power_points-su13
New chm 152_unit_10_nuclear_chemistry_power_points-su13
 
Lect27 handout
Lect27 handoutLect27 handout
Lect27 handout
 
Lect27 handout
Lect27 handoutLect27 handout
Lect27 handout
 
25.0 Nuclear Physics Sem 3.pptx
25.0 Nuclear Physics Sem 3.pptx25.0 Nuclear Physics Sem 3.pptx
25.0 Nuclear Physics Sem 3.pptx
 
Student ch 19 nuclear
Student ch 19 nuclearStudent ch 19 nuclear
Student ch 19 nuclear
 
8m_ATOMS__NUCLEI.pdf chapter best notes preparation
8m_ATOMS__NUCLEI.pdf chapter best notes preparation8m_ATOMS__NUCLEI.pdf chapter best notes preparation
8m_ATOMS__NUCLEI.pdf chapter best notes preparation
 
13 nuclear reactions
13 nuclear reactions13 nuclear reactions
13 nuclear reactions
 
Radiobiology2
Radiobiology2Radiobiology2
Radiobiology2
 
Notes for Atoms Molecules and Nuclei - Part III
Notes for Atoms Molecules and Nuclei - Part IIINotes for Atoms Molecules and Nuclei - Part III
Notes for Atoms Molecules and Nuclei - Part III
 
Nuclear physics
Nuclear physicsNuclear physics
Nuclear physics
 
10- Nuclear and particle.pptx
10- Nuclear and particle.pptx10- Nuclear and particle.pptx
10- Nuclear and particle.pptx
 

Kürzlich hochgeladen

Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
vu2urc
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
Earley Information Science
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
giselly40
 

Kürzlich hochgeladen (20)

Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 

Nuclear Chemistry Powerpoint 2003

  • 1.  
  • 2.
  • 3. – +    Lead block Radioactive substance
  • 4. – + Lead block
  • 5. – +  Lead block Radioactive substance
  • 6. – +  Lead block Radioactive substance
  • 7. – +  Lead block Radioactive substance
  • 8. – +    Lead block Radioactive substance
  • 9.  
  • 10. Atomic number (Z) = number of protons in nucleus Mass number (A) = number of protons + number of neutrons = atomic number (Z) + number of neutrons A Z 1 1 1 0 0 -1 0 +1 4 2 23.1 X A Z Mass Number Atomic Number Element Symbol 1 p 1 1 H 1 or proton 1 n 0 neutron 0 e -1 0  -1 or electron 0 e +1 0  +1 or positron 4 He 2 4  2 or  particle
  • 11.
  • 12. 212 Po decays by alpha emission. Write the balanced nuclear equation for the decay of 212 Po. 212 = 4 + A A = 208 84 = 2 + Z Z = 82 23.1 4 He 2 4  2 or alpha particle - 212 Po 4 He + A X 84 2 Z 212 Po 4 He + 208 Pb 84 2 82
  • 13. 23.1
  • 14. I. Nuclear Stability and Radioactive Decay
  • 15. n/p too large beta decay n/p too small positron decay or electron capture 23.2 X Y
  • 16.  
  • 17.  
  • 18.
  • 19.
  • 20.
  • 21. III. Nuclear Energy Recall: Nucleus is composed of proton and neutron Then, is the mass of an atom equal to the total mass of all the proton plus the total mass of all the neutron? Example for a He atom: Total mass of the subatomic particles = mass of 2 p + + mass of 2n 0 = 2 ( 1.00728 amu ) + 2 (1.00867 amu) = 4.03190 amu And atomic weight of He-4 is 4.00150 Why does the mass differ if the atomic mass = number of protons + number of neutrons?
  • 22. Mass defect -mass difference due to the release of energy -this mass can be calculated using Einstein’s equation E =mc 2 2 1 1 H + 2 2 0 H -> 4 2 He + energy Therefore: -energy is released upon the formation of a nucleus from the constituent protons and neutrons -the nucleus is lower in energy than the component parts. -The energy released is a measure of the stability of the nucleus. Taking the reverse of the equation: 4 2 He + energy -> 2 1 1 H + 2 2 0 n
  • 23. Therefore, -energy is released to break up the nucleus into its component parts. This is called the nuclear binding energy. -the higher the binding energy, the stable the nuclei. -isotopes with high binding energy and most stable are those in the mass range 50-60.
  • 24. Nuclear binding energy per nucleon vs Mass number 23.2 nuclear binding energy nucleon nuclear stability
  • 25. -The plot shows the use of nuclear reactions as source of energy. -energy is released in a process which goes from a higher energy state (less stable, low binding energy) to a low energy state (more stable, high binding energy). -Using the plot, there are two ways in which energy can be released in nuclear reactions: a. Fission – splitting of a heavy nucleus into smaller nuclei b. Fusion – combining of two light nuclei to form a heavier, more stable nucleus.
  • 26. Nuclear binding energy (BE) is the energy required to break up a nucleus into its component protons and neutrons. BE = 9 x (p mass) + 10 x (n mass) – 19 F mass E = mc 2 BE (amu) = 9 x 1.007825 + 10 x 1.008665 – 18.9984 BE = 0.1587 amu 1 amu = 1.49 x 10 -10 J BE = 2.37 x 10 -11 J = 1.25 x 10 -12 J 23.2 BE + 19 F 9 1 p + 10 1 n 9 1 0 binding energy per nucleon = binding energy number of nucleons = 2.37 x 10 -11 J 19 nucleons
  • 27. 23.3
  • 28. Radiocarbon Dating t ½ = 5730 years Uranium-238 Dating t ½ = 4.51 x 10 9 years 23.3 14 N + 1 n 14 C + 1 H 7 1 6 0 14 C 14 N + 0  +  6 7 -1 238 U 206 Pb + 8 4  + 6 0  92 -1 82 2
  • 29. Nuclear Transmutation 23.4 Cyclotron Particle Accelerator 14 N + 4  17 O + 1 p 7 2 8 1 27 Al + 4  30 P + 1 n 13 2 15 0 14 N + 1 p 11 C + 4  7 1 6 2
  • 31. Nuclear Fission 23.5 Energy = [mass 235 U + mass n – (mass 90 Sr + mass 143 Xe + 3 x mass n )] x c 2 Energy = 3.3 x 10 -11 J per 235 U = 2.0 x 10 13 J per mole 235 U Combustion of 1 ton of coal = 5 x 10 7 J 235 U + 1 n 90 Sr + 143 Xe + 3 1 n + Energy 92 54 38 0 0
  • 32. Nuclear Fission 23.5 Representative fission reaction 235 U + 1 n 90 Sr + 143 Xe + 3 1 n + Energy 92 54 38 0 0
  • 33. Nuclear Fission 23.5 Nuclear chain reaction is a self-sustaining sequence of nuclear fission reactions. The minimum mass of fissionable material required to generate a self-sustaining nuclear chain reaction is the critical mass . Non-critical Critical
  • 34. Nuclear Fission 23.5 Schematic diagram of a nuclear fission reactor
  • 35. Annual Waste Production 23.5 Nuclear Fission 35,000 tons SO 2 4.5 x 10 6 tons CO 2 1,000 MW coal-fired power plant 3.5 x 10 6 ft 3 ash 1,000 MW nuclear power plant 70 ft 3 vitrified waste
  • 36. 23.5 Nuclear Fission Hazards of the radioactivities in spent fuel compared to uranium ore From “Science, Society and America’s Nuclear Waste,” DOE/RW-0361 TG
  • 37. 23.6 Nuclear Fusion Fusion Reaction Energy Released 6.3 x 10 -13 J 2.8 x 10 -12 J 3.6 x 10 -12 J Tokamak magnetic plasma confinement 2 H + 2 H 3 H + 1 H 1 1 1 1 2 H + 3 H 4 He + 1 n 1 1 2 0 6 Li + 2 H 2 4 He 3 1 2
  • 38.
  • 39. Geiger-M ü ller Counter 23.7
  • 40. 23.8 Biological Effects of Radiation R adiation a bsorbed d ose ( rad ) 1 rad = 1 x 10 -5 J/g of material R oentgen e quivalent for m an ( rem ) 1 rem = 1 rad x Q Q uality Factor  -ray = 1  = 1  = 20
  • 41. Chemistry In Action: Food Irradiation Dosage Effect Up to 100 kilorad Inhibits sprouting of potatoes, onions, garlics. Inactivates trichinae in pork. Kills or prevents insects from reproducing in grains, fruits, and vegetables. 100 – 1000 kilorads Delays spoilage of meat poultry and fish. Reduces salmonella. Extends shelf life of some fruit. 1000 to 10,000 kilorads Sterilizes meat, poultry and fish. Kills insects and microorganisms in spices and seasoning.