SlideShare a Scribd company logo
1 of 6
ResearchArticle 
Safety analysisofdiscreteeventsystemsusingasimplified Petri 
net controller 
MeysamZareiee n, AbbasDideban,AliAsgharOrouji 
Electrical EngineeringDepartment,SemnanUniversity,Semnan,Iran 
a rticleinfo 
Article history: 
Received14June2013 
Receivedinrevisedform 
9 August2013 
Accepted4September2013 
Availableonline24September2013 
Keywords: 
Discreteeventsystem 
Supervisory control 
Controller synthesis 
Petri net 
a b s t r a c t 
This paperdealswiththeproblemofforbiddenstatesindiscreteeventsystemsbasedonPetrinet 
models. So,amethodispresentedtopreventthesystemfromenteringthesestatesbyconstructinga 
small numberofgeneralizedmutualexclusionconstraints.Thisgoalisachievedbysolvingthreetypesof 
IntegerLinearProgrammingproblems.Theproblemsaredesignedtoverifytheconstraintsthatsomeof 
them arerelatedtoverifyingauthorizedstatesandtheothersarerelatedtoavoidingforbiddenstates. 
The obtainedconstraintscanbeenforcedonthesystemusingasmallnumberofcontrolplaces. 
Moreover,thenumberofarcsrelatedtotheseplacesissmall,andthecontrollerafterconnectingthemis 
maximally permissive. 
& 2013ISA.PublishedbyElsevierLtd.Allrightsreserved. 
1. Introduction 
Discreteeventsystems(DESs)workbasedonchangingstates 
by occurringevents [1]. Supervisorycontrolisatheorywhich 
wantstorestrictthebehaviorofthesystemforobtainingdesired 
function [2,3]. Therestrictioncanbeperformedbydisablingsome 
events inspecialconditions [4]. DESscanbemodeledbyPetrinet 
(PN) whereitscompactstructure,modelingpowerandmathema- 
tical propertieshavemadeitsuitableformodelingthiskindof 
systems [5,6]. Moreover,thePNcanalsomodelalargerangeof 
systemssuchasdiscrete,continuousandhybridones [7,8]. 
In DESs,therearesomestateswhicharecalledforbiddenstates 
and thesystemshouldbepreventedfromenteringthem.The 
reachablestateswithoutforbiddenstatesarecalledauthorized 
states. Inrecentyears,alotofresearcheshavebeenaccomplished 
for avoidingtheforbiddenstates.Specifically,in flexiblemanu- 
facturing systems(FMS)wheredeadlocksaremajorproblems, 
a lotofmethodsbasedonPNmodelshavebeenproposedtodeal 
with deadlocks [9–16]. Someofthemgeneratecontrolplacesto 
preventthesystemfromenteringthedeadlockstates.Particularly, 
manyresearchersconstructgeneralizedmutualexclusioncon- 
straints (GMEC)andenforcethemonthesystemtosatisfyasafety 
specification thatspecifies whichevolutionsofthesystemshould 
not beallowed.However,achievingmaximallypermissivebeha- 
vior afterthisenforcementisimportant.Itmeansthatallthe 
authorized statesshouldbereachableandalltheforbiddenstates 
must beavoided.Giuaetal., [17] haveproposedamethodfor 
assigningGMECstoforbiddenstatesinsafePNswhichisdeveloped 
in [18] and [19] fornonsafePNs.Also,regiontheoryisauseful 
methodforgenerationofGMECs [20]. GMECscanbeenforcedon 
thesystemusingcontrolplaces [21].WhenthenumberofGMECsis 
large,alargenumberofcontrolplacesshouldbeaddedtothe 
systemwhichleadstoacomplicatedmodel.However,thenumber 
ofcontrolplacescanbereducedbyconsideringPNstructural 
properties [22–28]. Inalltheabovemethods,theconjunctionsof 
theGMECsareenforcedonthesystem,but,whenthesetof 
authorizedstatesisnonconvex,thedisjunctionsofconstraintscan 
be enforcedonthesystem [29]. 
In thispaper,theaimistodevelopthemethodin [25] for 
obtaining asmallnumberofcontrolplaceswithsmallnumberof 
arcsinsmallertime.Forthisreason,threetypesofIntegerLinear 
Programming(ILP)problemsaresolvedtoclassifytheforbidden 
statesinsmallnumberofsetswhereforeachoneofthesets, 
a GMECisassigned.The firsttypeproblemstrytoclassifythe 
forbiddenstatesinasmallnumberofsets.Foreachoneofthesesets, 
a GMECcanbeassignedbutthenumberofarcsrelatedtothecontrol 
places maybelarge(inthisstepthenumberofcontrolplacesisonly 
reduced).So,thesecondtypeofILPproblemsisdesignedtochange 
the setsofforbiddenstatesandobtainnewsets.Thisleadsto 
reducingthenumberofarcsofcontrolplaces.Attheend,bysolving 
thethirdtypeofILPproblems,aGMECisassignedtoeachoneofthe 
new sets.EnforcingtheseGMECsonthesystemleadstoamaximally 
permissivecontrollerwithsmallnumbersofcontrolplacesandarcs. 
So,thestructuralcomplexityofthecontrollerisreduced.Moreover, 
thehardwareandsoftwarecostsforimplementingthecontroller 
Contents listsavailableat ScienceDirect 
journalhomepage: www.elsevier.com/locate/isatrans 
ISATransactions 
0019-0578/$-seefrontmatter & 2013ISA.PublishedbyElsevierLtd.Allrightsreserved. 
http://dx.doi.org/10.1016/j.isatra.2013.09.006 
n Corresponding author.Tel.: þ98 2313354123;fax: þ98 2313366997. 
E-mail addresses: mzareiee@semnan.ac.ir, meisamzareiee@gmail.com 
(M. Zareiee), adideban@semnan.ac.ir (A.Dideban), aliaorouji@ieee.org 
(A.AsgharOrouji). 
ISA Transactions53(2014)44–49
maybereduced.Attheend,toshowtheadvantagesofthenew 
method,someexamplesareintroduced. 
The restofthispaperisasfollows.In Section 2, someimportant 
and basicconceptsareintroduced.Thenewmethodisexplained 
in Section 3. In Section 4, experimentalresultsareconsidered. 
Finally,conclusionsarepresentedin Section 5. 
2. Preliminarypresentation 
In thissection,basicconceptsandimportantdefinitions are 
presentedwhichwillbeusedlater.Itissupposedthatthereaderis 
familiar withthePNsbasis [30], andthetheoryofsupervisory 
control [2,3,31]. 
2.1.Petrinets 
A PNisrepresentedbyaquadruplet R¼{P, T, W, M0} where P is 
the setofplaces, T is thesetoftransitions, W is theincidence 
matrix and M0 is theinitialmarking.EachmarkingofthePNcan 
be shownbyavectorasfollows: 
MT 
¼ ½m1m2m3…mn ð1Þ 
where, mi is thenumberoftokensinplace pi and n is thenumberof 
places. MR denotesthesetofallreachablemarkingsandisdivided 
intotwosubsets:thesetofauthorizedstates MA andthesetof 
forbidden states MF. MF is separatedintotwogroups:(1)thesetof 
reachablestates(M′F) whicheitherdonotrespectthespecifications 
or aredeadlockstates.(2)Thesetofstatesforwhichtheoccurrenceof 
uncontrollableeventsleadstothestatesin M′F. Thesetofreachable 
stateswithoutforbiddenstatesisthesetofauthorizedstates. 
2.2. GMECsandenforcingthemonthesystemusingcontrolplaces 
GMECsaretheconstraintsthatrestricttheweightsumoftokens 
in someplaces.Theconstraintscanbeassignedtoforbiddenstates 
topreventthesystemfromenteringthesestates [17–19]. Control 
placescanbeconnectedtothesystemforenforcingGMECsonthe 
system.Inthiscase,foreachGMEC,acontrolplaceisaddedtothe 
system.Toexplainhowitispossibletocalculatethecontrolplaces, 
supposethattheincidencematrixandtheinitialmarkingofthe 
systemare WP and MP0 respectively.ThesetofGMECsisconsidered 
as LMPrb where MP is themarkingvector, L is a ncn matrix, b 
is a nc1 vector, nc is thenumberofGMECsand n is thenumberof 
places.ForeachGMEC,arowisaddedto WP. Theserowsare 
consideredinmatrix Wc andarecalculatedasfollows [21]: 
Wc ¼LWP ð2Þ 
So,theincidencematrixofthesystemafterconnectingthecontrol 
placesisinthefollowingform: 
W ¼ 
WP 
Wc 
 # 
ð3Þ 
Theinitialmarkingofthecontrolplacesarecalculatedasfollows: 
Mc0 ¼ bLMP0 ð4Þ 
Therefore,theinitialmarkingofthecontrolledsystemisinthe 
followingform: 
M0 ¼ 
MP0 
Mc0 
 # 
ð5Þ 
The setofplacesinaPNmodelofanFMSisclassified intothree 
groups:Idle,OperationandResource places, respectively.Tocalculate 
thesetofGMECs(controlplaces),themarkingsofoperationplaces 
should beonlyconsidered [13]. Thisconceptleadstoreducingthe 
numbersofstatesthatshouldbeverified orforbiddenbythe 
controller [19] whichsimplifies thecomputationsforconstructing 
the GMECs.Thereducedsetsofauthorizedandforbiddenstatesare 
denotedas MCA and MOF, respectively. 
When thenumberofGMECsislarge,alargenumberofcontrol 
placesshouldbeaddedtothesystemwhichcomplicatesthemodel. 
Inthenextsection,amethodisproposedforobtainingasmall 
numberofcontrolplaceswithsmallnumberofarcswhichis 
maximallypermissive. 
3. Newapproachforobtainingasmallnumber 
of controlplaceswithsmallnumberofarcs 
In thissection,theobjectiveistoobtainasmallnumberof 
simple GMECswhichenforcingthemonthesystemleadsto 
obtaining asmallnumberofcontrolplacesandsmallnumberof 
relatedarcs.So,theobjectiveistomodifythemethodin [25]. To 
do this,at first stepweconsiderasetofsafeconstraints(with 
unknownvariables)whereeachoneoftheseconstraintsarefor 
verifyinganauthorizedstate,andalsoasetofunsafeconstraints 
(with unknownvariables)atwhicheachoneoftheseconstraintsis 
for avoidingoneoftheforbiddenstates.Verifyingallthesafe 
constraintsleadstoverifyingalltheauthorizedstatesandverify- 
ing eachoneoftheunsafeconstraintsleadstoavoidingtherelated 
forbidden state.Then,wesolveanILPproblemtoobtainthe 
unknownvariablesbyverifyingallthesafeconstraintsandthe 
largestnumberofunsafeconstraintsandwesavetheanswerin 
a setlike W1. Next,theverified unsafeconstraintsshouldbe 
eliminated fromthesetofunsafeconstraintsandshouldbesaved 
in anewset(forexamplewecallthissetas R1). Ifthesetofunsafe 
constraintsisnotempty,werepeatthisstepagainforthe 
remainingunsafeconstraintsandsavetheanswerinasetlike 
W2 that verifyallthesafeconstraintsandthelargestnumberof 
remainingunsafeconstraints.Thenewverified unsafeconstraints 
should beeliminatedfromthesetofunsafeconstraintsandmust 
be consideredinanewset(wecallthissetas R2). Then,wesolve 
anotherILPproblemwhichverifies allthesafeconstraintsandall 
the unsafeconstraintsintheset R2 and thelargestnumberof 
unsafe constraintsin R1 and replacethisanswerbytheanswerin 
W2 (in thisILPproblemaconstraintisaddedthatdonotpermit 
the rightsideoftheobtainedGMECincreasemorethanbefore.For 
examplesupposethattheobtainedGMECinthisstepshouldbein 
this form: k1þk2þ…þknrx, andthenumberintherightsideof 
the obtainedGMECinthelaststepis5.So,theconstraints xr5 is 
added totheILPproblem.Thisconstraintcanbeleadtoreducing 
the numberofarcsandtheirweighs).Theverified unsafecon- 
straintsshouldbeeliminatedfrom R1 and shouldbeaddedto R2. If 
the setofunsafeconstraintsisnotempty,wedothesestepsforthe 
remainingunsafestates(inthiscase,ifweareinstep t, we 
consider R1[R2[…[Rt1 instead of R1). Whenthesetofunsafe 
constraintsisempty,foreachoneofthesets R1, R2, …, Rt1 (by 
considering thatthisisrepeated t times), otherILPproblems 
should besolvedtoverifyallthesafeconstraintsandallthe 
constraintsin Re (e¼1, 2, …, t1) andreplacetheanswerin We 
(e¼1, 2, …, t1). Thisconceptisformalizedandgeneralizedin 
Algorithm1. 
Algorithm1. Obtaining asmallnumberofcontrolplaceswith 
small numberofarcs 
Input: The setofauthorizedstates MA¼{[z11 z12 … z1n], …, [zr1 
zr2 … zrn]} andthesetofforbiddenstates MF¼{[B11 B12 … B1n], …, 
[Bt1 Bt2 … Byn]}. 
Output: The smallnumberofcontrolplaceswithsmallnumber 
of arcs. 
M. Zareieeetal./ISATransactions53(2014)44–49 45
Default: t is avariableandsupposethat t¼0, and Rt¼∅,Wt¼∅, 
Wt 
k¼∅ (8t, k), and Rt 
k¼∅ (8t, k) aresomesets. 
Step1. Consider agenericconstraintasfollows: 
k1m1þk2m2þ…þknmnrx ð6Þ 
where mi is thenumberoftokensinplace pi. 
Step2. Substitute themarkingsoftheauthorizedstatesinthe 
constraint (6) and considertheobtainedconstraintsasfollows: 
Σ n 
i ¼ 1 
zj; ikirx j¼ 1; 2; :::; r ð7Þ 
which arecalledsafeconstraints. 
Step3. Substitutethemarkingsoftheforbiddenstatesinthe 
constraint (6) and convertthesmallerequalsigntogreater 
sign. Considertheobtainedconstraintsasthefollowingform: 
Σ n 
i ¼ 1 
Bl; iki4x l¼ 1; 2; :::; y ð8Þ 
which arecalledunsafeconstraints.Thesetofunsafecon- 
straints isdenotedas H. 
Step4. t¼tþ1 
Step5. SolvethefollowingILPproblemandobtainthe 
constants x and ki (for i¼1, …, n) whichverifyallthesafe 
constraintsandthelargestnumberofunsafeconstraintsin 
H (this stepisdescribedin Remark3): 
min F ¼ Σ 
lANH 
f l ð9Þ 
Subject to 
Σ n 
i ¼ 1 
zj; ikixr0 j ¼ 1; 2; :::; r ð10Þ 
Σ n 
i ¼ 1 
Bl; ikix4Q  f l 8lANH ð11Þ 
f lAf0; 1g ð12Þ 
where Q is apositiveconstantthatshouldbeconsideredlarge 
enough and NH denotes 
lj Σ n 
i ¼ 1 
Bl; iki4x 
! 
AH 
( ) 
Step6. Savetheobtainedconstantsintheset Wt and then 
removetheverified unsafeconstraintsfrom H and substitute 
them intheset Rt (if fl¼0 intheILPprobleminstep5,the 
unsafe constraintnumber l is verified, elseitisnotverified). 
Step7. xt¼x (the obtained x). 
Step8. If t41, 
SolvethefollowingILPproblemandobtaintheconstants x and 
ki (for i¼1,…, n) whichverifyallthesafeconstraintsandallthe 
constraintsintheset Rt, andthebiggestnumberofunsafe 
constraintsintheset R1[R2[…[Rt1 (this isdescribedin 
Remark4): 
min F ¼ Σ 
lA N1 
R [N2 
R [:::[Nt1 
ð R Þ 
f l ð13Þ 
Subject to 
Σ n 
i ¼ 1 
zj; ikixr0 j ¼ 1; 2; :::; r ð14Þ 
Σ n 
i ¼ 1 
Bl; ikix40 8lANt 
R ð15Þ 
Σ n i ¼ 1 
Bl;i:kix4 Q  f l 8lAðN1 
R [ N2 
R [ ::: [ Nt1 
RÞ ð16Þ 
xrxt ð17Þ 
f lAf0; 1g ð18Þ 
where Q is apositiveconstantsthatshouldbeconsideredlarge 
enough and Nq 
R denotes 
lj Σ n 
i ¼ 1 
Bl; iki4x 
! 
ARq 
( ) 
Replacetheobtainedanswerwiththeanswerin Wt. 
Add theverified unsafeconstraintstotheset Rt. 
Removetheverified unsafeconstraintsfromthesets R1, R2, 
… Rt1. 
Step 9. If thesetofunsafeconstraintsisnotempty,gotostep4. 
Step 10. If t41,SolvethefollowingILPproblemforeachoneof 
the sets Re (e¼1, 2, …, t1) andreplacethenewanswerswith 
the answersinthesets W1, W2, …, Wt1 respectively(thisis 
described in Remark5). 
min X ¼ x ð19Þ 
Subject to 
Σ n 
i ¼ 1 
zj; ikixr0 j ¼ 1; 2; :::; r ð20Þ 
Σ n 
i ¼ 1 
Bl; ikix40 8lANe 
R ð21Þ 
where Ne 
R denotes 
l Σ n 
i ¼ 1 
Bl; iki4x 
! 
ARe 
 
( ) 
Step 11. Substitutetheanswersofthesets W1, W2, …, Wt in the 
constraint (6). Theseconstraintsarethesmallnumberof 
GMECs whichenforcingthemonthesystemleadstoobtaining 
a maximallypermissivecontrollerwithsmallnumbersof 
control placesandarcs. 
Remark1. In Algorithm 1, step2isconsideredbecauseifthe 
constraintsinthisstepareverified bythecontroller,allthe 
authorized statesarereachable. 
Remark2. In Algorithm 1, step3isconsideredbecauseverifying 
each oneoftheconstraintsinthisstepleadstoavoidingthe 
relatedforbiddenstate. 
Remark3. The ILPprobleminstep5of Algorithm1 is considered 
toobtain x and ki which verifyallthesafeconstraintsandthe 
largestnumberofunsafeconstraintsin H. Inthisproblem,the 
relation (10) showsverifyingallthesafeconstraintsby x and ki′s. 
fl′s (for l¼1, 2, …) representtherelationbetween lth unsafe 
constraintandtheobtainedconstants x and ki′s. fl¼0 meansthat 
lth unsafeconstraintin H is verified bytheobtainedconstants 
and fl¼1 meansthat lth unsafeconstraintisnotverified bythese 
constants. So,therelation (11) is consideredforverifyingthe 
largestnumberofunsafeconstraints.Therefore,theobjective 
function isconsideredas. 
min F ¼ Σ 
lANH 
f l 
Remark4. An ILPproblemsimilartostep5isconsideredinstep8 
of Algorithm 1for finding theconstants x and ki (for i¼1, …, n) 
which verifyallthesafeconstraintsandalltheconstraintsinthe 
set Rt, andthebiggestnumberofunsafeconstraintsintheprevious 
sets(R1, R2, … Rt1).Inthisproblem,therelation (15) is considered 
toverifyalltheunsafeconstraintsin Rt. Therelation (16) is 
M. Zareieeetal./ISATransactions53(2014)4446 –49
consideredforverifyingthelargestnumberofconstraintsintheset 
R1[R2[…[Rt1. Inthisstep,thegoalistoaddthelargestnumber 
ofunsafeconstraintsintheprevioussets(R1, R2, … Rt1) totheset 
Rt. But,addingtheseconstraintsmayleadtoincreasingthevalueof 
constant x thatmayleadtoincreasingthenumberofarcsrelatedto 
controlplaces.So,therelation (17) isconsideredtoprevent 
increasingthevalueof x. Addingthelargestunsafeconstraintsfrom 
previoussetsto Rt bythesame x reducesthenumberofunsafe 
constraintsinprevioussetswhichleadstoobtainingsimplerGMECs 
forthesesets(alsosomeofthesesetsmaygetempty).Moreover,the 
numbersofarcsrelatedtotheseGMECsmayreduce.By fixing x, the 
numberofarcsrelatedtotheGMECfor Rt (afteraddingtheunsafe 
constraints)canbe fixed. 
Remark5. In step10of Algorithm 1, anILPproblemisconsidered 
to find newanswersforthenewsets R1, R2, … Rt1. 
Algorithm1 is agoodmethodforobtainingasmallnumberof 
control placeswithsmallnumberofrelatedarcswhichconnecting 
them tothesystemleadstoobtainingmaximallypermissive 
behavior.Byusingthismethod,itispossibletogenerateasmall 
number ofGMECsinalotofkindsofsystems.Themostimportant 
result inthismethodisthenumberofarcsrelatedtothecontrol 
places whichissmall.Moreover,thesmallnumberofarcscanlead 
to thesmallimplementationcosts [32]. 
4. Experimentalresults 
In thissection,someFMSexamplesareconsideredtoshowthe 
experimentalresultsoftheproposedmethod.Inallexamples,the 
forbidden statesaredeadlockstatesorthestatesthatleadto 
deadlocks. Moreover,theresultsarecomparedwithsomeother 
methods in Tables1–3. Inthesetables, NCP, Narc and NRS are the 
numbers ofcontrolplaces,arcsandreachablestates,respectively. 
Consider thePNmodeloftheFMSin Fig. 1 which istakenfrom 
[19]. Thissystemconsistsof19placesand14transitions.Thesets 
of idle,resourceandoperationplacesare P0¼{p1, p8}, PR¼{p14 
p19} and PA¼{p2p7, p9p13}, respectively.Ithas282reachable 
stateswhere205onesareauthorizedand77onesareforbidden 
states.Thenumbersofstatesinthesets MCA and MOF are26 
and 8,respectively.Topreventthesystemfromenteringthe 
forbidden states, Algorithm1 is appliedtoitforgeneratinga 
small numberofGMECs.Byapplyingthismethod,twoGMECsare 
obtained asfollows: 
m2þ2m3þm4þ2m5þ2m6þ3m9þ3m10r9 ð22Þ 
m2þ2m3þm4þ2m11þ2m12r3 ð23Þ 
Enforcing thesetwoGMECsonthesystempreventsitfrom 
enteringtheforbiddenstates.Theincidencematrixandtheinitial 
tokensrelatedtotheseGMECsarerespectivelyasfollows: 
Wc ¼ 1 1 0 1 0 0 2 0 3 0 3000 
1 1 01200000 2 0 2 0 
  
; 
Mc0 ¼ 
9 
3 
  
ð24Þ 
As itisobviousfromtheincidencematrix,thenumbersof 
controlplacesandtherelatedarcsareefficient. Inthisexample, 
twocontrolplaceswith12arcsareobtained.So,byusing Algorithm 
1, itispossibletoobtainasmallnumberofcontrolplaceswithsmall 
numberofarcs.Theresultsarecomparedwithsomeconventional 
methodsin Table1. 
Now,considertheFMSin Fig. 2 taken from [15]. Thissystem 
contains 19placesand14transitions.Ithas168reachablestatesat 
which 96onesareauthorizedand72onesareforbiddenstates. 
The sets MCA and MOF have13and11states,respectively.After 
applying Algorithm1, 4GMECsareobtainedinthefollowingforms: 
3m3þ3m4þm6þm7þ5m12r5 ð25Þ 
4m7þm11þm13þ2m15þ2m16r5 ð26Þ 
m3þm4þm6þ2m11þm12þ2m13r4 ð27Þ 
m6þm15r1 ð28Þ 
The incidencematrixandinitialtokensoftheseGMECsare 
computed asfollows: 
Wc ¼ 
0 3 0 2 0 1 0 5 0 50000 
0 0 004 4 1 1 0 2 1 0 2 0 
0 1 00 1 0 2 1012000 
0 0 01 1 0000 
1 1 1 0 0 
2 
6664 
3 
7775 
Table1 
The resultsofsomemethodsonthesystemin Fig. 1. 
The methods [14][12][19][28][23][24][26] The proposedmethod 
NCP 9 6 832222 
Narc 42 32372112151512 
NRS 205 205205205205205205205 
Table2 
The resultsofsomemethodsonthesystemin Fig. 2. 
The methods [15][19][28][24][26] The proposedmethod 
NCP 9 116444 
Narc 444843262623 
NRS 96 9696969696 
Table3 
The resultsofsomemethodsonthesystemin Fig. 3. 
The 
method 
[11][13][19][28][23][24][26] The proposed 
method 
NCP 16 1917105666 
Narc 88 1121018955454545 
NRS 1265621562215812158121581215812158121581 
Fig. 1. The FMSwith282reachablestates. 
M. Zareieeetal./ISATransactions53(2014)44–49 47
Mc0 ¼ 
5 
5 
4 
1 
2 
6664 
3 
7775 
ð29Þ 
Hence, 4controlplaceswith23arcsareobtained.Theresults 
arecomparedwithsomemethodsin Table2. 
Finally,considerthePNmodelofanotherFMSin Fig. 3, taken 
from [19]. Thismodelcontains26placesand20transitions.There 
are26750reachablestateswhere21581onesareauthorizedstates 
and 5169onesareforbiddenstates.Thesets MCA and MOF have 
393 and34states,respectively.Topreventthesystemfrom 
entering theforbiddenstates, Algorithm1 generates6GMECsas 
follows: 
15m2þ15m3þ3m6þ3m7þ17m8þ17m9 
þ3m11þ47m12þ50m13þ50m15 
þ50m16þm17þ2m18r196 ð30Þ 
m2þm3þm8þm9þ27m11 
þ3m12þ3m13þ6m15þ9m16þ18m17r71 ð31Þ 
6m6þ6m7þm9þ6m11þm12þm15 
þm16þ5m17þ6m18r34 ð32Þ 
m2þm3þm8r2 ð33Þ 
m13þm15r2 ð34Þ 
m12þm16r2 ð35Þ 
The incidencematrixandinitialtokensoftheseGMECsare 
respectivelycalculatedasfollows: 
So, 6controlplaceswith45arcsareobtained.Theresultsare 
compared withsomemethodsin Table3. 
The methodsin [24,26] reduce thenumberofcontrolplaces 
and aresimpleinthecaseofcomputationalcomplexity.But,the 
numberoftheirarcscanbereduced.Themethodin [23] can 
generatethesmallnumbersofcontrolplacesbutithastheproblem 
ofcomputationalcomplexity.Asaninstance,forthesystemin Fig.3, 
it shouldsolveanILPproblemwith15640constraintsand1700 
variableswhichtakeslongtimewhilethemaximumnumbersof 
constraintsandvariablesintheILPproblemsoftheproposed 
methodforthissystemare427and51,respectively.Forthesystem 
in Fig.3, theproposedmethodgenerates6controlplaceswhichis 
onlyonegreaterthantheobtainednumberin [23]. Ontheother 
hand,theproposedmethodobtains45arcswhichis10lessthan 
theobtainednumberin [23]. Inthisexampletheproposedmethod 
andthemethodsin [24,26] obtainthesameanswer.Forthesystems 
in Figs.1 and 2, theproposedmethodandthemethodsin [24,26] 
obtainthesamenumberofcontrolplacesbutthenumberofarcsin 
theproposedmethodisthreelessthantheonesobtainedin [24,26]. 
Reducingthenumberofarcsmayleadtoreducingtheimplementa- 
tioncostsofthecontroller.Thecostsincludeintroductionofsensors 
andactuators,theconnectionlinks,softwaremodifications,etc., 
whichareaffectedbythenumberofarcsbetweenthecontrolplaces 
andthetransitions [32]. Forthearcsfromthetransitionstocontrol 
placesandfromthecontrolplacestotransitions,thesensorsand 
actuatorsfordetectinganddisablingthetransitionsshouldbe 
installed,respectively,iftheyarerequired.Forbothkindsofarcs 
goingfromorcomingtocontrolplaces,theconnectionlinksand 
softwaremodificationsshouldbeconsidered [32]. So,whenthe 
numberofthesearcsisreduced,theimplementationcostsmaybe 
reduced.Differentcostsofsensors,actuatorsandconnectionlinks 
leadtodifferentimplementationcosts.So,ifweconsiderthesame 
costfortheseparametersinalltransitions,itispossibletocompare 
theimplementationcostsofthemethodsin Tables1–3 by con- 
sideringthenumberofarcs.Inthiscase,theratiosbetweenthe 
numbersofthearcsindicatetheratiosbetweentheimplementation 
costsofthemethodsinthesetables.Weshouldmentionthatby 
changingthecostsofsensors,actuators,connectionlinksand,etc, 
theratiosmaychange. 
By using Algorithm1, itispossibletoobtainasmallnumberof 
controlplaceswithsmallnumberofarcs.So,thestructural 
Fig. 2. An FMSwith168reachablestates. 
Fig. 3. The FMSwith26750reachablestates. 
Wc ¼ 
3 0 14 01700 44 3 50 15 0150 50 049 1 2 0 
0 0 1 0 1 0 27 2403 1 0 1 0 6 3 9 1800 
6 0 6 1 1005100000 1 0 4 1 6 0 
0 0 1 1 0 00000 1 0 1 0 000000 
0 0 000000 1 1 0000 1 10000 
0 0 00000 1 1 0 00000 1 1 000 
2 
666666664 
3 
777777775 
; Mc0 ¼ 
196 
71 
34 
2 
2 
2 
2 
666666664 
3 
777777775 
ð36Þ 
48 M. Zareieeetal./ISATransactions53(2014)44–49
complexityofthePNmodelisreduced.Anotheradvantageofthis 
method isitscomputationalcomplexitywhichisrathersimple.We 
solveafewnumberofILPproblemsandeachILPproblemineach 
stepissimplerthantheprobleminpreviousstep.Becausewhen 
some unsafeconstraintsareverified, theyareeliminatedfromtheset 
of unsafeconstraintsandthenumberofbinaryvariables(fl) 
decreases. 
5. Conclusion 
This paperpresentsamethodforobtainingasmallnumberof 
control placeswithsmallnumberofarcs.Toachievethisgoal,the 
authorized andforbiddenstatesaregivenasinput.Then,some 
constraints withunknownvariablesareassignedtoauthorized 
states (whicharecalledsafeconstraints)andtheotherconstraints 
with unknownvariablesareassignedtoforbiddenstates(which 
arecalledunsafeconstraints).Verifyingthesafeconstraintsleads 
to verifyingtheauthorizedstatesandverifyingeachoneofthe 
unsafe constraintsleadstoavoidingtherelatedforbiddenstate. 
So, threetypesofILPproblemsaresolvedtoobtainasmall 
number ofgroups(andalsotheunknownvariables)atwhich 
each groupcontainssomeunsafeconstraintsthatcanbeverified 
by theobtainedvariables(theobtainedvariablesverifyallthesafe 
constraints). Then,foreachgroup,aGMECisassigned.Enforcing 
the obtainedGMECsonthesystemusingcontrolplacescausesa 
simple andmaximallypermissivecontroller. 
References 
[1] Cassandras CG,LafortuneS.Introductiontodiscreteeventsystems.USA: 
Springer;2008. 
[2] Ramadge PJ,WonhamWM.Modularfeedbacklogicfordiscreteeventsystems. 
SIAM JournalonControlandOptimization1987;25:1202–18. 
[3] Ramadge PJ,WonhamWM.Thecontrolofdiscreteeventsystems,dynamicsof 
discreteeventsystems.ProceedingsoftheIEEE1989;77:81–98. 
[4] Giua A.,Petrinetsasdiscreteeventmodelsforsupervisorycontrol,Ph.D. 
thesis, Troy,NewYork,1992. 
[5] Krogh BH,HollowayLE.Synthesisoffeedbackcontrollogicfordiscrete 
manufacturing systems.Automatica1991;27:641–51. 
[6] Moody JO,AntsaklisP.PetrinetsupervisorforDESwithuncontrollableand 
unobservabletransition.IEEETransactionsonAutomaticControl2000;45: 
462–76. 
[7] RenganathanK,BhaskarV.Anobserverbasedapproachforachievingfault 
diagnosis andfaulttolerantcontrolofsystemsmodeledashybridPetrinets. 
ISA Transactions2011;50:443–53. 
[8] Garg H.ReliabilityanalysisofrepairablesystemsusingPetrinetsandvague 
Lambda–Taumethodology.ISATransactions2013;52:6–18. 
[9] VisvanadhamN,NahariY,JohnsonTL.Deadlockpreventionanddeadlock 
avoidancein flexiblemanufacturingsystemsusingPetrinetmodels.IEEE 
RoboticsandAutomation1990;6:713–23. 
[10] Abdallah IB,El-MaraghyHA.DeadlockpreventionandavoidanceinFMS:A 
Petri netbasedapproach.InternationalJournalofAdvancedManufacturing 
Technology1998;14:704–15. 
[11] Huang YS,JengMD,XieXL,ChungSL.DeadlockpreventionbasedonPetrinets 
and siphons.InternationalJournalofProductionResearch2001;39:283–305. 
[12] Uzam M.Anoptimaldeadlockpreventionpolicyfor flexiblemanufacturing 
systemsusingPetrinetmodelswithresourcesandthetheoryofregions. 
InternationalJournalofAdvancedManufacturingTechnology2002;19:192–208. 
[13] Uzam M,ZhouMC.Animprovediterativesynthesismethodforliveness 
enforcing supervisorsof flexiblemanufacturingsystems.InternationalJournal 
of ProductionResearch2006;44:1987–2030. 
[14] Li ZW,ZhouMC,JengMD.Amaximallypermissivedeadlockpreventionpolicy 
for FMSbasedonPetrinetsiphoncontrolandthetheoryofregions.IEEE 
TransactionsonAutomationScienceandEngineering2008;5:182–8. 
[15] Guo J,LiZW.AnimprovedalgorithmforsupervisordesignforFMSusingthe 
theory ofregions.In:ProceedingsoftheIEEEinternationalconferenceon 
mechatronics andautomation;2010. 
[16] LefebvreD,LeclercqE.StochasticPetrinetidentification forthefaultdetection 
and isolationofdiscreteeventsystems.IEEETransactionsonSystems,Man, 
and Cybernetics—PartA:SystemsandHumans2011;41:213–25. 
[17] Giua A,DiCesareFM,SilvaM.Generalizedmutualexclusionconstraintson 
nets withuncontrollabletransitions.In:ProceedingsoftheIEEEinternational 
conference onIEEEtransactionsonsystems,man,andcybernetics;1992 
pp. 974–979. 
[18] ZareieeM,DidebanA,NazemzadehP.Fromforbiddenstatestolinear 
constraints.In:Proceedingsoftheinternationalconferenceonmodelingand 
simulation; 2011. 
[19] Chen Y,LiZW,KhalguiM,MosbahiO.Designofamaximallypermissive 
liveness-enforcingPetrinetsupervisorfor flexible manufacturingsystems. 
IEEE TransactionsonAutomationScienceandEngineering2011;8:374–93. 
[20] Ghaffari A,RezgN,XieXL.DesignofliveandmaximallypermissivePetrinet 
controller usingthetheoryofregions.IEEETransactionsonRoboticsand 
Automation2003;19:137–42. 
[21] YamalidouK,MoodyJ,LemmonM,AntsaklisP.FeedbackcontrolofPetrinets 
based onplaceinvariants.Automatica1996;32:15–28. 
[22] Dideban A,AllaH.Reductionofconstraintsforcontrollersynthesisbasedon 
safe Petrinets.Automatica2008;44:1697–706. 
[23] Chen YF,LiZW.Designofamaximallypermissiveliveness-enforcingsuper- 
visor withacompressedsupervisorystructurefor flexiblemanufacturing 
systems.Automatica2011;47:1028–34. 
[24] Nazeem A,ReveliotisS,WangY,LafortuneS.Designingcompactand 
maximally permissivedeadlockavoidancepoliciesforcomplexresource 
allocation systemsthroughclassification theory:thelinearcase.IEEETransac- 
tions onAutomaticControl2011;56:1818–33. 
[25] Zareiee M,DidebanA,OroujiAA,AllaH.Asimplepetrinetcontrollerin 
discreteeventsystems.In:Proceedingsofinformationcontrolproblemsin 
manufacturing, 2012,vol.14;pp.188–93. 
[26] Chen YF,LiZW,ZhouMC.Behaviorallyoptimalandstructurallysimple 
liveness-enforcingsupervisorsof flexiblemanufacturingsystems.IEEETrans- 
actions onSystems,Man,andCybernetics,PartA2012;42:615–29. 
[27] Dideban A,ZareieeM,AllaH.Controllersynthesiswithhighlysimplified linear 
constraints.AsianJournalofControl2013;15:80–94. 
[28] Zareiee M,DidebanA,OroujiAA,SoleymanpourHR.Simplification ofaPetri 
Net controllerinindustrialsystemsbyusinganoptimizationalgorithm. 
International JournalofIndustrialEngineeringandProductionResearch 
2013;24:59–70. 
[29] Chen Y,LiZW,ZhouMC.Optimalsupervisorycontrolof flexiblemanufactur- 
ing systemsbyPetrinets:asetclassification approach.IEEETransactionson 
AutomationScienceandEngineering(Inpress). 
[30] DavidR,AllaH.Discrete,continuous,andhybridPetrinets.Berlin,Germany: 
Springer;2005. 
[31] KumarR,HollowayLE.SupervisorycontrolofdeterministicPetrinetswith 
regular specification languages.IEEETransactionsonAutomaticControl 
1996;41:245–9. 
[32] Basile F,ChiacchioP,GiuaA.AnoptimizationapproachtoPetrinetmonitor 
design. IEEETransactionsonAutomaticControl2007;52:306–11. 
M. Zareieeetal./ISATransactions53(2014)44–49 49

More Related Content

More from ISA Interchange

An optimal general type-2 fuzzy controller for Urban Traffic Network
An optimal general type-2 fuzzy controller for Urban Traffic NetworkAn optimal general type-2 fuzzy controller for Urban Traffic Network
An optimal general type-2 fuzzy controller for Urban Traffic NetworkISA Interchange
 
Embedded intelligent adaptive PI controller for an electromechanical system
Embedded intelligent adaptive PI controller for an electromechanical  systemEmbedded intelligent adaptive PI controller for an electromechanical  system
Embedded intelligent adaptive PI controller for an electromechanical systemISA Interchange
 
State of charge estimation of lithium-ion batteries using fractional order sl...
State of charge estimation of lithium-ion batteries using fractional order sl...State of charge estimation of lithium-ion batteries using fractional order sl...
State of charge estimation of lithium-ion batteries using fractional order sl...ISA Interchange
 
Fractional order PID for tracking control of a parallel robotic manipulator t...
Fractional order PID for tracking control of a parallel robotic manipulator t...Fractional order PID for tracking control of a parallel robotic manipulator t...
Fractional order PID for tracking control of a parallel robotic manipulator t...ISA Interchange
 
Fuzzy logic for plant-wide control of biological wastewater treatment process...
Fuzzy logic for plant-wide control of biological wastewater treatment process...Fuzzy logic for plant-wide control of biological wastewater treatment process...
Fuzzy logic for plant-wide control of biological wastewater treatment process...ISA Interchange
 
Design and implementation of a control structure for quality products in a cr...
Design and implementation of a control structure for quality products in a cr...Design and implementation of a control structure for quality products in a cr...
Design and implementation of a control structure for quality products in a cr...ISA Interchange
 
Model based PI power system stabilizer design for damping low frequency oscil...
Model based PI power system stabilizer design for damping low frequency oscil...Model based PI power system stabilizer design for damping low frequency oscil...
Model based PI power system stabilizer design for damping low frequency oscil...ISA Interchange
 
A comparison of a novel robust decentralized control strategy and MPC for ind...
A comparison of a novel robust decentralized control strategy and MPC for ind...A comparison of a novel robust decentralized control strategy and MPC for ind...
A comparison of a novel robust decentralized control strategy and MPC for ind...ISA Interchange
 
Fault detection of feed water treatment process using PCA-WD with parameter o...
Fault detection of feed water treatment process using PCA-WD with parameter o...Fault detection of feed water treatment process using PCA-WD with parameter o...
Fault detection of feed water treatment process using PCA-WD with parameter o...ISA Interchange
 
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...ISA Interchange
 
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...ISA Interchange
 
An artificial intelligence based improved classification of two-phase flow patte...
An artificial intelligence based improved classification of two-phase flow patte...An artificial intelligence based improved classification of two-phase flow patte...
An artificial intelligence based improved classification of two-phase flow patte...ISA Interchange
 
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...ISA Interchange
 
Load estimator-based hybrid controller design for two-interleaved boost conve...
Load estimator-based hybrid controller design for two-interleaved boost conve...Load estimator-based hybrid controller design for two-interleaved boost conve...
Load estimator-based hybrid controller design for two-interleaved boost conve...ISA Interchange
 
Effects of Wireless Packet Loss in Industrial Process Control Systems
Effects of Wireless Packet Loss in Industrial Process Control SystemsEffects of Wireless Packet Loss in Industrial Process Control Systems
Effects of Wireless Packet Loss in Industrial Process Control SystemsISA Interchange
 
Fault Detection in the Distillation Column Process
Fault Detection in the Distillation Column ProcessFault Detection in the Distillation Column Process
Fault Detection in the Distillation Column ProcessISA Interchange
 
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank SystemNeural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank SystemISA Interchange
 
A KPI-based process monitoring and fault detection framework for large-scale ...
A KPI-based process monitoring and fault detection framework for large-scale ...A KPI-based process monitoring and fault detection framework for large-scale ...
A KPI-based process monitoring and fault detection framework for large-scale ...ISA Interchange
 
An adaptive PID like controller using mix locally recurrent neural network fo...
An adaptive PID like controller using mix locally recurrent neural network fo...An adaptive PID like controller using mix locally recurrent neural network fo...
An adaptive PID like controller using mix locally recurrent neural network fo...ISA Interchange
 
A method to remove chattering alarms using median filters
A method to remove chattering alarms using median filtersA method to remove chattering alarms using median filters
A method to remove chattering alarms using median filtersISA Interchange
 

More from ISA Interchange (20)

An optimal general type-2 fuzzy controller for Urban Traffic Network
An optimal general type-2 fuzzy controller for Urban Traffic NetworkAn optimal general type-2 fuzzy controller for Urban Traffic Network
An optimal general type-2 fuzzy controller for Urban Traffic Network
 
Embedded intelligent adaptive PI controller for an electromechanical system
Embedded intelligent adaptive PI controller for an electromechanical  systemEmbedded intelligent adaptive PI controller for an electromechanical  system
Embedded intelligent adaptive PI controller for an electromechanical system
 
State of charge estimation of lithium-ion batteries using fractional order sl...
State of charge estimation of lithium-ion batteries using fractional order sl...State of charge estimation of lithium-ion batteries using fractional order sl...
State of charge estimation of lithium-ion batteries using fractional order sl...
 
Fractional order PID for tracking control of a parallel robotic manipulator t...
Fractional order PID for tracking control of a parallel robotic manipulator t...Fractional order PID for tracking control of a parallel robotic manipulator t...
Fractional order PID for tracking control of a parallel robotic manipulator t...
 
Fuzzy logic for plant-wide control of biological wastewater treatment process...
Fuzzy logic for plant-wide control of biological wastewater treatment process...Fuzzy logic for plant-wide control of biological wastewater treatment process...
Fuzzy logic for plant-wide control of biological wastewater treatment process...
 
Design and implementation of a control structure for quality products in a cr...
Design and implementation of a control structure for quality products in a cr...Design and implementation of a control structure for quality products in a cr...
Design and implementation of a control structure for quality products in a cr...
 
Model based PI power system stabilizer design for damping low frequency oscil...
Model based PI power system stabilizer design for damping low frequency oscil...Model based PI power system stabilizer design for damping low frequency oscil...
Model based PI power system stabilizer design for damping low frequency oscil...
 
A comparison of a novel robust decentralized control strategy and MPC for ind...
A comparison of a novel robust decentralized control strategy and MPC for ind...A comparison of a novel robust decentralized control strategy and MPC for ind...
A comparison of a novel robust decentralized control strategy and MPC for ind...
 
Fault detection of feed water treatment process using PCA-WD with parameter o...
Fault detection of feed water treatment process using PCA-WD with parameter o...Fault detection of feed water treatment process using PCA-WD with parameter o...
Fault detection of feed water treatment process using PCA-WD with parameter o...
 
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
 
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
 
An artificial intelligence based improved classification of two-phase flow patte...
An artificial intelligence based improved classification of two-phase flow patte...An artificial intelligence based improved classification of two-phase flow patte...
An artificial intelligence based improved classification of two-phase flow patte...
 
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
 
Load estimator-based hybrid controller design for two-interleaved boost conve...
Load estimator-based hybrid controller design for two-interleaved boost conve...Load estimator-based hybrid controller design for two-interleaved boost conve...
Load estimator-based hybrid controller design for two-interleaved boost conve...
 
Effects of Wireless Packet Loss in Industrial Process Control Systems
Effects of Wireless Packet Loss in Industrial Process Control SystemsEffects of Wireless Packet Loss in Industrial Process Control Systems
Effects of Wireless Packet Loss in Industrial Process Control Systems
 
Fault Detection in the Distillation Column Process
Fault Detection in the Distillation Column ProcessFault Detection in the Distillation Column Process
Fault Detection in the Distillation Column Process
 
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank SystemNeural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
 
A KPI-based process monitoring and fault detection framework for large-scale ...
A KPI-based process monitoring and fault detection framework for large-scale ...A KPI-based process monitoring and fault detection framework for large-scale ...
A KPI-based process monitoring and fault detection framework for large-scale ...
 
An adaptive PID like controller using mix locally recurrent neural network fo...
An adaptive PID like controller using mix locally recurrent neural network fo...An adaptive PID like controller using mix locally recurrent neural network fo...
An adaptive PID like controller using mix locally recurrent neural network fo...
 
A method to remove chattering alarms using median filters
A method to remove chattering alarms using median filtersA method to remove chattering alarms using median filters
A method to remove chattering alarms using median filters
 

Recently uploaded

Planetary and Vedic Yagyas Bring Positive Impacts in Life
Planetary and Vedic Yagyas Bring Positive Impacts in LifePlanetary and Vedic Yagyas Bring Positive Impacts in Life
Planetary and Vedic Yagyas Bring Positive Impacts in LifeBhavana Pujan Kendra
 
1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdfShaun Heinrichs
 
20200128 Ethical by Design - Whitepaper.pdf
20200128 Ethical by Design - Whitepaper.pdf20200128 Ethical by Design - Whitepaper.pdf
20200128 Ethical by Design - Whitepaper.pdfChris Skinner
 
Horngren’s Financial & Managerial Accounting, 7th edition by Miller-Nobles so...
Horngren’s Financial & Managerial Accounting, 7th edition by Miller-Nobles so...Horngren’s Financial & Managerial Accounting, 7th edition by Miller-Nobles so...
Horngren’s Financial & Managerial Accounting, 7th edition by Miller-Nobles so...ssuserf63bd7
 
Unveiling the Soundscape Music for Psychedelic Experiences
Unveiling the Soundscape Music for Psychedelic ExperiencesUnveiling the Soundscape Music for Psychedelic Experiences
Unveiling the Soundscape Music for Psychedelic ExperiencesDoe Paoro
 
TriStar Gold Corporate Presentation - April 2024
TriStar Gold Corporate Presentation - April 2024TriStar Gold Corporate Presentation - April 2024
TriStar Gold Corporate Presentation - April 2024Adnet Communications
 
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptxGo for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptxRakhi Bazaar
 
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...ssuserf63bd7
 
WSMM Technology February.March Newsletter_vF.pdf
WSMM Technology February.March Newsletter_vF.pdfWSMM Technology February.March Newsletter_vF.pdf
WSMM Technology February.March Newsletter_vF.pdfJamesConcepcion7
 
Guide Complete Set of Residential Architectural Drawings PDF
Guide Complete Set of Residential Architectural Drawings PDFGuide Complete Set of Residential Architectural Drawings PDF
Guide Complete Set of Residential Architectural Drawings PDFChandresh Chudasama
 
Excvation Safety for safety officers reference
Excvation Safety for safety officers referenceExcvation Safety for safety officers reference
Excvation Safety for safety officers referencessuser2c065e
 
Fordham -How effective decision-making is within the IT department - Analysis...
Fordham -How effective decision-making is within the IT department - Analysis...Fordham -How effective decision-making is within the IT department - Analysis...
Fordham -How effective decision-making is within the IT department - Analysis...Peter Ward
 
Cyber Security Training in Office Environment
Cyber Security Training in Office EnvironmentCyber Security Training in Office Environment
Cyber Security Training in Office Environmentelijahj01012
 
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...Operational Excellence Consulting
 
Lucia Ferretti, Lead Business Designer; Matteo Meschini, Business Designer @T...
Lucia Ferretti, Lead Business Designer; Matteo Meschini, Business Designer @T...Lucia Ferretti, Lead Business Designer; Matteo Meschini, Business Designer @T...
Lucia Ferretti, Lead Business Designer; Matteo Meschini, Business Designer @T...Associazione Digital Days
 
Memorándum de Entendimiento (MoU) entre Codelco y SQM
Memorándum de Entendimiento (MoU) entre Codelco y SQMMemorándum de Entendimiento (MoU) entre Codelco y SQM
Memorándum de Entendimiento (MoU) entre Codelco y SQMVoces Mineras
 
Pitch Deck Teardown: Xpanceo's $40M Seed deck
Pitch Deck Teardown: Xpanceo's $40M Seed deckPitch Deck Teardown: Xpanceo's $40M Seed deck
Pitch Deck Teardown: Xpanceo's $40M Seed deckHajeJanKamps
 
How Generative AI Is Transforming Your Business | Byond Growth Insights | Apr...
How Generative AI Is Transforming Your Business | Byond Growth Insights | Apr...How Generative AI Is Transforming Your Business | Byond Growth Insights | Apr...
How Generative AI Is Transforming Your Business | Byond Growth Insights | Apr...Hector Del Castillo, CPM, CPMM
 
Entrepreneurship lessons in Philippines
Entrepreneurship lessons in  PhilippinesEntrepreneurship lessons in  Philippines
Entrepreneurship lessons in PhilippinesDavidSamuel525586
 

Recently uploaded (20)

Planetary and Vedic Yagyas Bring Positive Impacts in Life
Planetary and Vedic Yagyas Bring Positive Impacts in LifePlanetary and Vedic Yagyas Bring Positive Impacts in Life
Planetary and Vedic Yagyas Bring Positive Impacts in Life
 
1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf
 
20200128 Ethical by Design - Whitepaper.pdf
20200128 Ethical by Design - Whitepaper.pdf20200128 Ethical by Design - Whitepaper.pdf
20200128 Ethical by Design - Whitepaper.pdf
 
WAM Corporate Presentation April 12 2024.pdf
WAM Corporate Presentation April 12 2024.pdfWAM Corporate Presentation April 12 2024.pdf
WAM Corporate Presentation April 12 2024.pdf
 
Horngren’s Financial & Managerial Accounting, 7th edition by Miller-Nobles so...
Horngren’s Financial & Managerial Accounting, 7th edition by Miller-Nobles so...Horngren’s Financial & Managerial Accounting, 7th edition by Miller-Nobles so...
Horngren’s Financial & Managerial Accounting, 7th edition by Miller-Nobles so...
 
Unveiling the Soundscape Music for Psychedelic Experiences
Unveiling the Soundscape Music for Psychedelic ExperiencesUnveiling the Soundscape Music for Psychedelic Experiences
Unveiling the Soundscape Music for Psychedelic Experiences
 
TriStar Gold Corporate Presentation - April 2024
TriStar Gold Corporate Presentation - April 2024TriStar Gold Corporate Presentation - April 2024
TriStar Gold Corporate Presentation - April 2024
 
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptxGo for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
 
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
 
WSMM Technology February.March Newsletter_vF.pdf
WSMM Technology February.March Newsletter_vF.pdfWSMM Technology February.March Newsletter_vF.pdf
WSMM Technology February.March Newsletter_vF.pdf
 
Guide Complete Set of Residential Architectural Drawings PDF
Guide Complete Set of Residential Architectural Drawings PDFGuide Complete Set of Residential Architectural Drawings PDF
Guide Complete Set of Residential Architectural Drawings PDF
 
Excvation Safety for safety officers reference
Excvation Safety for safety officers referenceExcvation Safety for safety officers reference
Excvation Safety for safety officers reference
 
Fordham -How effective decision-making is within the IT department - Analysis...
Fordham -How effective decision-making is within the IT department - Analysis...Fordham -How effective decision-making is within the IT department - Analysis...
Fordham -How effective decision-making is within the IT department - Analysis...
 
Cyber Security Training in Office Environment
Cyber Security Training in Office EnvironmentCyber Security Training in Office Environment
Cyber Security Training in Office Environment
 
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
 
Lucia Ferretti, Lead Business Designer; Matteo Meschini, Business Designer @T...
Lucia Ferretti, Lead Business Designer; Matteo Meschini, Business Designer @T...Lucia Ferretti, Lead Business Designer; Matteo Meschini, Business Designer @T...
Lucia Ferretti, Lead Business Designer; Matteo Meschini, Business Designer @T...
 
Memorándum de Entendimiento (MoU) entre Codelco y SQM
Memorándum de Entendimiento (MoU) entre Codelco y SQMMemorándum de Entendimiento (MoU) entre Codelco y SQM
Memorándum de Entendimiento (MoU) entre Codelco y SQM
 
Pitch Deck Teardown: Xpanceo's $40M Seed deck
Pitch Deck Teardown: Xpanceo's $40M Seed deckPitch Deck Teardown: Xpanceo's $40M Seed deck
Pitch Deck Teardown: Xpanceo's $40M Seed deck
 
How Generative AI Is Transforming Your Business | Byond Growth Insights | Apr...
How Generative AI Is Transforming Your Business | Byond Growth Insights | Apr...How Generative AI Is Transforming Your Business | Byond Growth Insights | Apr...
How Generative AI Is Transforming Your Business | Byond Growth Insights | Apr...
 
Entrepreneurship lessons in Philippines
Entrepreneurship lessons in  PhilippinesEntrepreneurship lessons in  Philippines
Entrepreneurship lessons in Philippines
 

Safety analysis of discrete event systems using a simplified petri net controller

  • 1. ResearchArticle Safety analysisofdiscreteeventsystemsusingasimplified Petri net controller MeysamZareiee n, AbbasDideban,AliAsgharOrouji Electrical EngineeringDepartment,SemnanUniversity,Semnan,Iran a rticleinfo Article history: Received14June2013 Receivedinrevisedform 9 August2013 Accepted4September2013 Availableonline24September2013 Keywords: Discreteeventsystem Supervisory control Controller synthesis Petri net a b s t r a c t This paperdealswiththeproblemofforbiddenstatesindiscreteeventsystemsbasedonPetrinet models. So,amethodispresentedtopreventthesystemfromenteringthesestatesbyconstructinga small numberofgeneralizedmutualexclusionconstraints.Thisgoalisachievedbysolvingthreetypesof IntegerLinearProgrammingproblems.Theproblemsaredesignedtoverifytheconstraintsthatsomeof them arerelatedtoverifyingauthorizedstatesandtheothersarerelatedtoavoidingforbiddenstates. The obtainedconstraintscanbeenforcedonthesystemusingasmallnumberofcontrolplaces. Moreover,thenumberofarcsrelatedtotheseplacesissmall,andthecontrollerafterconnectingthemis maximally permissive. & 2013ISA.PublishedbyElsevierLtd.Allrightsreserved. 1. Introduction Discreteeventsystems(DESs)workbasedonchangingstates by occurringevents [1]. Supervisorycontrolisatheorywhich wantstorestrictthebehaviorofthesystemforobtainingdesired function [2,3]. Therestrictioncanbeperformedbydisablingsome events inspecialconditions [4]. DESscanbemodeledbyPetrinet (PN) whereitscompactstructure,modelingpowerandmathema- tical propertieshavemadeitsuitableformodelingthiskindof systems [5,6]. Moreover,thePNcanalsomodelalargerangeof systemssuchasdiscrete,continuousandhybridones [7,8]. In DESs,therearesomestateswhicharecalledforbiddenstates and thesystemshouldbepreventedfromenteringthem.The reachablestateswithoutforbiddenstatesarecalledauthorized states. Inrecentyears,alotofresearcheshavebeenaccomplished for avoidingtheforbiddenstates.Specifically,in flexiblemanu- facturing systems(FMS)wheredeadlocksaremajorproblems, a lotofmethodsbasedonPNmodelshavebeenproposedtodeal with deadlocks [9–16]. Someofthemgeneratecontrolplacesto preventthesystemfromenteringthedeadlockstates.Particularly, manyresearchersconstructgeneralizedmutualexclusioncon- straints (GMEC)andenforcethemonthesystemtosatisfyasafety specification thatspecifies whichevolutionsofthesystemshould not beallowed.However,achievingmaximallypermissivebeha- vior afterthisenforcementisimportant.Itmeansthatallthe authorized statesshouldbereachableandalltheforbiddenstates must beavoided.Giuaetal., [17] haveproposedamethodfor assigningGMECstoforbiddenstatesinsafePNswhichisdeveloped in [18] and [19] fornonsafePNs.Also,regiontheoryisauseful methodforgenerationofGMECs [20]. GMECscanbeenforcedon thesystemusingcontrolplaces [21].WhenthenumberofGMECsis large,alargenumberofcontrolplacesshouldbeaddedtothe systemwhichleadstoacomplicatedmodel.However,thenumber ofcontrolplacescanbereducedbyconsideringPNstructural properties [22–28]. Inalltheabovemethods,theconjunctionsof theGMECsareenforcedonthesystem,but,whenthesetof authorizedstatesisnonconvex,thedisjunctionsofconstraintscan be enforcedonthesystem [29]. In thispaper,theaimistodevelopthemethodin [25] for obtaining asmallnumberofcontrolplaceswithsmallnumberof arcsinsmallertime.Forthisreason,threetypesofIntegerLinear Programming(ILP)problemsaresolvedtoclassifytheforbidden statesinsmallnumberofsetswhereforeachoneofthesets, a GMECisassigned.The firsttypeproblemstrytoclassifythe forbiddenstatesinasmallnumberofsets.Foreachoneofthesesets, a GMECcanbeassignedbutthenumberofarcsrelatedtothecontrol places maybelarge(inthisstepthenumberofcontrolplacesisonly reduced).So,thesecondtypeofILPproblemsisdesignedtochange the setsofforbiddenstatesandobtainnewsets.Thisleadsto reducingthenumberofarcsofcontrolplaces.Attheend,bysolving thethirdtypeofILPproblems,aGMECisassignedtoeachoneofthe new sets.EnforcingtheseGMECsonthesystemleadstoamaximally permissivecontrollerwithsmallnumbersofcontrolplacesandarcs. So,thestructuralcomplexityofthecontrollerisreduced.Moreover, thehardwareandsoftwarecostsforimplementingthecontroller Contents listsavailableat ScienceDirect journalhomepage: www.elsevier.com/locate/isatrans ISATransactions 0019-0578/$-seefrontmatter & 2013ISA.PublishedbyElsevierLtd.Allrightsreserved. http://dx.doi.org/10.1016/j.isatra.2013.09.006 n Corresponding author.Tel.: þ98 2313354123;fax: þ98 2313366997. E-mail addresses: mzareiee@semnan.ac.ir, meisamzareiee@gmail.com (M. Zareiee), adideban@semnan.ac.ir (A.Dideban), aliaorouji@ieee.org (A.AsgharOrouji). ISA Transactions53(2014)44–49
  • 2. maybereduced.Attheend,toshowtheadvantagesofthenew method,someexamplesareintroduced. The restofthispaperisasfollows.In Section 2, someimportant and basicconceptsareintroduced.Thenewmethodisexplained in Section 3. In Section 4, experimentalresultsareconsidered. Finally,conclusionsarepresentedin Section 5. 2. Preliminarypresentation In thissection,basicconceptsandimportantdefinitions are presentedwhichwillbeusedlater.Itissupposedthatthereaderis familiar withthePNsbasis [30], andthetheoryofsupervisory control [2,3,31]. 2.1.Petrinets A PNisrepresentedbyaquadruplet R¼{P, T, W, M0} where P is the setofplaces, T is thesetoftransitions, W is theincidence matrix and M0 is theinitialmarking.EachmarkingofthePNcan be shownbyavectorasfollows: MT ¼ ½m1m2m3…mn ð1Þ where, mi is thenumberoftokensinplace pi and n is thenumberof places. MR denotesthesetofallreachablemarkingsandisdivided intotwosubsets:thesetofauthorizedstates MA andthesetof forbidden states MF. MF is separatedintotwogroups:(1)thesetof reachablestates(M′F) whicheitherdonotrespectthespecifications or aredeadlockstates.(2)Thesetofstatesforwhichtheoccurrenceof uncontrollableeventsleadstothestatesin M′F. Thesetofreachable stateswithoutforbiddenstatesisthesetofauthorizedstates. 2.2. GMECsandenforcingthemonthesystemusingcontrolplaces GMECsaretheconstraintsthatrestricttheweightsumoftokens in someplaces.Theconstraintscanbeassignedtoforbiddenstates topreventthesystemfromenteringthesestates [17–19]. Control placescanbeconnectedtothesystemforenforcingGMECsonthe system.Inthiscase,foreachGMEC,acontrolplaceisaddedtothe system.Toexplainhowitispossibletocalculatethecontrolplaces, supposethattheincidencematrixandtheinitialmarkingofthe systemare WP and MP0 respectively.ThesetofGMECsisconsidered as LMPrb where MP is themarkingvector, L is a ncn matrix, b is a nc1 vector, nc is thenumberofGMECsand n is thenumberof places.ForeachGMEC,arowisaddedto WP. Theserowsare consideredinmatrix Wc andarecalculatedasfollows [21]: Wc ¼LWP ð2Þ So,theincidencematrixofthesystemafterconnectingthecontrol placesisinthefollowingform: W ¼ WP Wc # ð3Þ Theinitialmarkingofthecontrolplacesarecalculatedasfollows: Mc0 ¼ bLMP0 ð4Þ Therefore,theinitialmarkingofthecontrolledsystemisinthe followingform: M0 ¼ MP0 Mc0 # ð5Þ The setofplacesinaPNmodelofanFMSisclassified intothree groups:Idle,OperationandResource places, respectively.Tocalculate thesetofGMECs(controlplaces),themarkingsofoperationplaces should beonlyconsidered [13]. Thisconceptleadstoreducingthe numbersofstatesthatshouldbeverified orforbiddenbythe controller [19] whichsimplifies thecomputationsforconstructing the GMECs.Thereducedsetsofauthorizedandforbiddenstatesare denotedas MCA and MOF, respectively. When thenumberofGMECsislarge,alargenumberofcontrol placesshouldbeaddedtothesystemwhichcomplicatesthemodel. Inthenextsection,amethodisproposedforobtainingasmall numberofcontrolplaceswithsmallnumberofarcswhichis maximallypermissive. 3. Newapproachforobtainingasmallnumber of controlplaceswithsmallnumberofarcs In thissection,theobjectiveistoobtainasmallnumberof simple GMECswhichenforcingthemonthesystemleadsto obtaining asmallnumberofcontrolplacesandsmallnumberof relatedarcs.So,theobjectiveistomodifythemethodin [25]. To do this,at first stepweconsiderasetofsafeconstraints(with unknownvariables)whereeachoneoftheseconstraintsarefor verifyinganauthorizedstate,andalsoasetofunsafeconstraints (with unknownvariables)atwhicheachoneoftheseconstraintsis for avoidingoneoftheforbiddenstates.Verifyingallthesafe constraintsleadstoverifyingalltheauthorizedstatesandverify- ing eachoneoftheunsafeconstraintsleadstoavoidingtherelated forbidden state.Then,wesolveanILPproblemtoobtainthe unknownvariablesbyverifyingallthesafeconstraintsandthe largestnumberofunsafeconstraintsandwesavetheanswerin a setlike W1. Next,theverified unsafeconstraintsshouldbe eliminated fromthesetofunsafeconstraintsandshouldbesaved in anewset(forexamplewecallthissetas R1). Ifthesetofunsafe constraintsisnotempty,werepeatthisstepagainforthe remainingunsafeconstraintsandsavetheanswerinasetlike W2 that verifyallthesafeconstraintsandthelargestnumberof remainingunsafeconstraints.Thenewverified unsafeconstraints should beeliminatedfromthesetofunsafeconstraintsandmust be consideredinanewset(wecallthissetas R2). Then,wesolve anotherILPproblemwhichverifies allthesafeconstraintsandall the unsafeconstraintsintheset R2 and thelargestnumberof unsafe constraintsin R1 and replacethisanswerbytheanswerin W2 (in thisILPproblemaconstraintisaddedthatdonotpermit the rightsideoftheobtainedGMECincreasemorethanbefore.For examplesupposethattheobtainedGMECinthisstepshouldbein this form: k1þk2þ…þknrx, andthenumberintherightsideof the obtainedGMECinthelaststepis5.So,theconstraints xr5 is added totheILPproblem.Thisconstraintcanbeleadtoreducing the numberofarcsandtheirweighs).Theverified unsafecon- straintsshouldbeeliminatedfrom R1 and shouldbeaddedto R2. If the setofunsafeconstraintsisnotempty,wedothesestepsforthe remainingunsafestates(inthiscase,ifweareinstep t, we consider R1[R2[…[Rt1 instead of R1). Whenthesetofunsafe constraintsisempty,foreachoneofthesets R1, R2, …, Rt1 (by considering thatthisisrepeated t times), otherILPproblems should besolvedtoverifyallthesafeconstraintsandallthe constraintsin Re (e¼1, 2, …, t1) andreplacetheanswerin We (e¼1, 2, …, t1). Thisconceptisformalizedandgeneralizedin Algorithm1. Algorithm1. Obtaining asmallnumberofcontrolplaceswith small numberofarcs Input: The setofauthorizedstates MA¼{[z11 z12 … z1n], …, [zr1 zr2 … zrn]} andthesetofforbiddenstates MF¼{[B11 B12 … B1n], …, [Bt1 Bt2 … Byn]}. Output: The smallnumberofcontrolplaceswithsmallnumber of arcs. M. Zareieeetal./ISATransactions53(2014)44–49 45
  • 3. Default: t is avariableandsupposethat t¼0, and Rt¼∅,Wt¼∅, Wt k¼∅ (8t, k), and Rt k¼∅ (8t, k) aresomesets. Step1. Consider agenericconstraintasfollows: k1m1þk2m2þ…þknmnrx ð6Þ where mi is thenumberoftokensinplace pi. Step2. Substitute themarkingsoftheauthorizedstatesinthe constraint (6) and considertheobtainedconstraintsasfollows: Σ n i ¼ 1 zj; ikirx j¼ 1; 2; :::; r ð7Þ which arecalledsafeconstraints. Step3. Substitutethemarkingsoftheforbiddenstatesinthe constraint (6) and convertthesmallerequalsigntogreater sign. Considertheobtainedconstraintsasthefollowingform: Σ n i ¼ 1 Bl; iki4x l¼ 1; 2; :::; y ð8Þ which arecalledunsafeconstraints.Thesetofunsafecon- straints isdenotedas H. Step4. t¼tþ1 Step5. SolvethefollowingILPproblemandobtainthe constants x and ki (for i¼1, …, n) whichverifyallthesafe constraintsandthelargestnumberofunsafeconstraintsin H (this stepisdescribedin Remark3): min F ¼ Σ lANH f l ð9Þ Subject to Σ n i ¼ 1 zj; ikixr0 j ¼ 1; 2; :::; r ð10Þ Σ n i ¼ 1 Bl; ikix4Q f l 8lANH ð11Þ f lAf0; 1g ð12Þ where Q is apositiveconstantthatshouldbeconsideredlarge enough and NH denotes lj Σ n i ¼ 1 Bl; iki4x ! AH ( ) Step6. Savetheobtainedconstantsintheset Wt and then removetheverified unsafeconstraintsfrom H and substitute them intheset Rt (if fl¼0 intheILPprobleminstep5,the unsafe constraintnumber l is verified, elseitisnotverified). Step7. xt¼x (the obtained x). Step8. If t41, SolvethefollowingILPproblemandobtaintheconstants x and ki (for i¼1,…, n) whichverifyallthesafeconstraintsandallthe constraintsintheset Rt, andthebiggestnumberofunsafe constraintsintheset R1[R2[…[Rt1 (this isdescribedin Remark4): min F ¼ Σ lA N1 R [N2 R [:::[Nt1 ð R Þ f l ð13Þ Subject to Σ n i ¼ 1 zj; ikixr0 j ¼ 1; 2; :::; r ð14Þ Σ n i ¼ 1 Bl; ikix40 8lANt R ð15Þ Σ n i ¼ 1 Bl;i:kix4 Q f l 8lAðN1 R [ N2 R [ ::: [ Nt1 RÞ ð16Þ xrxt ð17Þ f lAf0; 1g ð18Þ where Q is apositiveconstantsthatshouldbeconsideredlarge enough and Nq R denotes lj Σ n i ¼ 1 Bl; iki4x ! ARq ( ) Replacetheobtainedanswerwiththeanswerin Wt. Add theverified unsafeconstraintstotheset Rt. Removetheverified unsafeconstraintsfromthesets R1, R2, … Rt1. Step 9. If thesetofunsafeconstraintsisnotempty,gotostep4. Step 10. If t41,SolvethefollowingILPproblemforeachoneof the sets Re (e¼1, 2, …, t1) andreplacethenewanswerswith the answersinthesets W1, W2, …, Wt1 respectively(thisis described in Remark5). min X ¼ x ð19Þ Subject to Σ n i ¼ 1 zj; ikixr0 j ¼ 1; 2; :::; r ð20Þ Σ n i ¼ 1 Bl; ikix40 8lANe R ð21Þ where Ne R denotes l Σ n i ¼ 1 Bl; iki4x ! ARe ( ) Step 11. Substitutetheanswersofthesets W1, W2, …, Wt in the constraint (6). Theseconstraintsarethesmallnumberof GMECs whichenforcingthemonthesystemleadstoobtaining a maximallypermissivecontrollerwithsmallnumbersof control placesandarcs. Remark1. In Algorithm 1, step2isconsideredbecauseifthe constraintsinthisstepareverified bythecontroller,allthe authorized statesarereachable. Remark2. In Algorithm 1, step3isconsideredbecauseverifying each oneoftheconstraintsinthisstepleadstoavoidingthe relatedforbiddenstate. Remark3. The ILPprobleminstep5of Algorithm1 is considered toobtain x and ki which verifyallthesafeconstraintsandthe largestnumberofunsafeconstraintsin H. Inthisproblem,the relation (10) showsverifyingallthesafeconstraintsby x and ki′s. fl′s (for l¼1, 2, …) representtherelationbetween lth unsafe constraintandtheobtainedconstants x and ki′s. fl¼0 meansthat lth unsafeconstraintin H is verified bytheobtainedconstants and fl¼1 meansthat lth unsafeconstraintisnotverified bythese constants. So,therelation (11) is consideredforverifyingthe largestnumberofunsafeconstraints.Therefore,theobjective function isconsideredas. min F ¼ Σ lANH f l Remark4. An ILPproblemsimilartostep5isconsideredinstep8 of Algorithm 1for finding theconstants x and ki (for i¼1, …, n) which verifyallthesafeconstraintsandalltheconstraintsinthe set Rt, andthebiggestnumberofunsafeconstraintsintheprevious sets(R1, R2, … Rt1).Inthisproblem,therelation (15) is considered toverifyalltheunsafeconstraintsin Rt. Therelation (16) is M. Zareieeetal./ISATransactions53(2014)4446 –49
  • 4. consideredforverifyingthelargestnumberofconstraintsintheset R1[R2[…[Rt1. Inthisstep,thegoalistoaddthelargestnumber ofunsafeconstraintsintheprevioussets(R1, R2, … Rt1) totheset Rt. But,addingtheseconstraintsmayleadtoincreasingthevalueof constant x thatmayleadtoincreasingthenumberofarcsrelatedto controlplaces.So,therelation (17) isconsideredtoprevent increasingthevalueof x. Addingthelargestunsafeconstraintsfrom previoussetsto Rt bythesame x reducesthenumberofunsafe constraintsinprevioussetswhichleadstoobtainingsimplerGMECs forthesesets(alsosomeofthesesetsmaygetempty).Moreover,the numbersofarcsrelatedtotheseGMECsmayreduce.By fixing x, the numberofarcsrelatedtotheGMECfor Rt (afteraddingtheunsafe constraints)canbe fixed. Remark5. In step10of Algorithm 1, anILPproblemisconsidered to find newanswersforthenewsets R1, R2, … Rt1. Algorithm1 is agoodmethodforobtainingasmallnumberof control placeswithsmallnumberofrelatedarcswhichconnecting them tothesystemleadstoobtainingmaximallypermissive behavior.Byusingthismethod,itispossibletogenerateasmall number ofGMECsinalotofkindsofsystems.Themostimportant result inthismethodisthenumberofarcsrelatedtothecontrol places whichissmall.Moreover,thesmallnumberofarcscanlead to thesmallimplementationcosts [32]. 4. Experimentalresults In thissection,someFMSexamplesareconsideredtoshowthe experimentalresultsoftheproposedmethod.Inallexamples,the forbidden statesaredeadlockstatesorthestatesthatleadto deadlocks. Moreover,theresultsarecomparedwithsomeother methods in Tables1–3. Inthesetables, NCP, Narc and NRS are the numbers ofcontrolplaces,arcsandreachablestates,respectively. Consider thePNmodeloftheFMSin Fig. 1 which istakenfrom [19]. Thissystemconsistsof19placesand14transitions.Thesets of idle,resourceandoperationplacesare P0¼{p1, p8}, PR¼{p14 p19} and PA¼{p2p7, p9p13}, respectively.Ithas282reachable stateswhere205onesareauthorizedand77onesareforbidden states.Thenumbersofstatesinthesets MCA and MOF are26 and 8,respectively.Topreventthesystemfromenteringthe forbidden states, Algorithm1 is appliedtoitforgeneratinga small numberofGMECs.Byapplyingthismethod,twoGMECsare obtained asfollows: m2þ2m3þm4þ2m5þ2m6þ3m9þ3m10r9 ð22Þ m2þ2m3þm4þ2m11þ2m12r3 ð23Þ Enforcing thesetwoGMECsonthesystempreventsitfrom enteringtheforbiddenstates.Theincidencematrixandtheinitial tokensrelatedtotheseGMECsarerespectivelyasfollows: Wc ¼ 1 1 0 1 0 0 2 0 3 0 3000 1 1 01200000 2 0 2 0 ; Mc0 ¼ 9 3 ð24Þ As itisobviousfromtheincidencematrix,thenumbersof controlplacesandtherelatedarcsareefficient. Inthisexample, twocontrolplaceswith12arcsareobtained.So,byusing Algorithm 1, itispossibletoobtainasmallnumberofcontrolplaceswithsmall numberofarcs.Theresultsarecomparedwithsomeconventional methodsin Table1. Now,considertheFMSin Fig. 2 taken from [15]. Thissystem contains 19placesand14transitions.Ithas168reachablestatesat which 96onesareauthorizedand72onesareforbiddenstates. The sets MCA and MOF have13and11states,respectively.After applying Algorithm1, 4GMECsareobtainedinthefollowingforms: 3m3þ3m4þm6þm7þ5m12r5 ð25Þ 4m7þm11þm13þ2m15þ2m16r5 ð26Þ m3þm4þm6þ2m11þm12þ2m13r4 ð27Þ m6þm15r1 ð28Þ The incidencematrixandinitialtokensoftheseGMECsare computed asfollows: Wc ¼ 0 3 0 2 0 1 0 5 0 50000 0 0 004 4 1 1 0 2 1 0 2 0 0 1 00 1 0 2 1012000 0 0 01 1 0000 1 1 1 0 0 2 6664 3 7775 Table1 The resultsofsomemethodsonthesystemin Fig. 1. The methods [14][12][19][28][23][24][26] The proposedmethod NCP 9 6 832222 Narc 42 32372112151512 NRS 205 205205205205205205205 Table2 The resultsofsomemethodsonthesystemin Fig. 2. The methods [15][19][28][24][26] The proposedmethod NCP 9 116444 Narc 444843262623 NRS 96 9696969696 Table3 The resultsofsomemethodsonthesystemin Fig. 3. The method [11][13][19][28][23][24][26] The proposed method NCP 16 1917105666 Narc 88 1121018955454545 NRS 1265621562215812158121581215812158121581 Fig. 1. The FMSwith282reachablestates. M. Zareieeetal./ISATransactions53(2014)44–49 47
  • 5. Mc0 ¼ 5 5 4 1 2 6664 3 7775 ð29Þ Hence, 4controlplaceswith23arcsareobtained.Theresults arecomparedwithsomemethodsin Table2. Finally,considerthePNmodelofanotherFMSin Fig. 3, taken from [19]. Thismodelcontains26placesand20transitions.There are26750reachablestateswhere21581onesareauthorizedstates and 5169onesareforbiddenstates.Thesets MCA and MOF have 393 and34states,respectively.Topreventthesystemfrom entering theforbiddenstates, Algorithm1 generates6GMECsas follows: 15m2þ15m3þ3m6þ3m7þ17m8þ17m9 þ3m11þ47m12þ50m13þ50m15 þ50m16þm17þ2m18r196 ð30Þ m2þm3þm8þm9þ27m11 þ3m12þ3m13þ6m15þ9m16þ18m17r71 ð31Þ 6m6þ6m7þm9þ6m11þm12þm15 þm16þ5m17þ6m18r34 ð32Þ m2þm3þm8r2 ð33Þ m13þm15r2 ð34Þ m12þm16r2 ð35Þ The incidencematrixandinitialtokensoftheseGMECsare respectivelycalculatedasfollows: So, 6controlplaceswith45arcsareobtained.Theresultsare compared withsomemethodsin Table3. The methodsin [24,26] reduce thenumberofcontrolplaces and aresimpleinthecaseofcomputationalcomplexity.But,the numberoftheirarcscanbereduced.Themethodin [23] can generatethesmallnumbersofcontrolplacesbutithastheproblem ofcomputationalcomplexity.Asaninstance,forthesystemin Fig.3, it shouldsolveanILPproblemwith15640constraintsand1700 variableswhichtakeslongtimewhilethemaximumnumbersof constraintsandvariablesintheILPproblemsoftheproposed methodforthissystemare427and51,respectively.Forthesystem in Fig.3, theproposedmethodgenerates6controlplaceswhichis onlyonegreaterthantheobtainednumberin [23]. Ontheother hand,theproposedmethodobtains45arcswhichis10lessthan theobtainednumberin [23]. Inthisexampletheproposedmethod andthemethodsin [24,26] obtainthesameanswer.Forthesystems in Figs.1 and 2, theproposedmethodandthemethodsin [24,26] obtainthesamenumberofcontrolplacesbutthenumberofarcsin theproposedmethodisthreelessthantheonesobtainedin [24,26]. Reducingthenumberofarcsmayleadtoreducingtheimplementa- tioncostsofthecontroller.Thecostsincludeintroductionofsensors andactuators,theconnectionlinks,softwaremodifications,etc., whichareaffectedbythenumberofarcsbetweenthecontrolplaces andthetransitions [32]. Forthearcsfromthetransitionstocontrol placesandfromthecontrolplacestotransitions,thesensorsand actuatorsfordetectinganddisablingthetransitionsshouldbe installed,respectively,iftheyarerequired.Forbothkindsofarcs goingfromorcomingtocontrolplaces,theconnectionlinksand softwaremodificationsshouldbeconsidered [32]. So,whenthe numberofthesearcsisreduced,theimplementationcostsmaybe reduced.Differentcostsofsensors,actuatorsandconnectionlinks leadtodifferentimplementationcosts.So,ifweconsiderthesame costfortheseparametersinalltransitions,itispossibletocompare theimplementationcostsofthemethodsin Tables1–3 by con- sideringthenumberofarcs.Inthiscase,theratiosbetweenthe numbersofthearcsindicatetheratiosbetweentheimplementation costsofthemethodsinthesetables.Weshouldmentionthatby changingthecostsofsensors,actuators,connectionlinksand,etc, theratiosmaychange. By using Algorithm1, itispossibletoobtainasmallnumberof controlplaceswithsmallnumberofarcs.So,thestructural Fig. 2. An FMSwith168reachablestates. Fig. 3. The FMSwith26750reachablestates. Wc ¼ 3 0 14 01700 44 3 50 15 0150 50 049 1 2 0 0 0 1 0 1 0 27 2403 1 0 1 0 6 3 9 1800 6 0 6 1 1005100000 1 0 4 1 6 0 0 0 1 1 0 00000 1 0 1 0 000000 0 0 000000 1 1 0000 1 10000 0 0 00000 1 1 0 00000 1 1 000 2 666666664 3 777777775 ; Mc0 ¼ 196 71 34 2 2 2 2 666666664 3 777777775 ð36Þ 48 M. Zareieeetal./ISATransactions53(2014)44–49
  • 6. complexityofthePNmodelisreduced.Anotheradvantageofthis method isitscomputationalcomplexitywhichisrathersimple.We solveafewnumberofILPproblemsandeachILPproblemineach stepissimplerthantheprobleminpreviousstep.Becausewhen some unsafeconstraintsareverified, theyareeliminatedfromtheset of unsafeconstraintsandthenumberofbinaryvariables(fl) decreases. 5. Conclusion This paperpresentsamethodforobtainingasmallnumberof control placeswithsmallnumberofarcs.Toachievethisgoal,the authorized andforbiddenstatesaregivenasinput.Then,some constraints withunknownvariablesareassignedtoauthorized states (whicharecalledsafeconstraints)andtheotherconstraints with unknownvariablesareassignedtoforbiddenstates(which arecalledunsafeconstraints).Verifyingthesafeconstraintsleads to verifyingtheauthorizedstatesandverifyingeachoneofthe unsafe constraintsleadstoavoidingtherelatedforbiddenstate. So, threetypesofILPproblemsaresolvedtoobtainasmall number ofgroups(andalsotheunknownvariables)atwhich each groupcontainssomeunsafeconstraintsthatcanbeverified by theobtainedvariables(theobtainedvariablesverifyallthesafe constraints). Then,foreachgroup,aGMECisassigned.Enforcing the obtainedGMECsonthesystemusingcontrolplacescausesa simple andmaximallypermissivecontroller. References [1] Cassandras CG,LafortuneS.Introductiontodiscreteeventsystems.USA: Springer;2008. [2] Ramadge PJ,WonhamWM.Modularfeedbacklogicfordiscreteeventsystems. SIAM JournalonControlandOptimization1987;25:1202–18. [3] Ramadge PJ,WonhamWM.Thecontrolofdiscreteeventsystems,dynamicsof discreteeventsystems.ProceedingsoftheIEEE1989;77:81–98. [4] Giua A.,Petrinetsasdiscreteeventmodelsforsupervisorycontrol,Ph.D. thesis, Troy,NewYork,1992. [5] Krogh BH,HollowayLE.Synthesisoffeedbackcontrollogicfordiscrete manufacturing systems.Automatica1991;27:641–51. [6] Moody JO,AntsaklisP.PetrinetsupervisorforDESwithuncontrollableand unobservabletransition.IEEETransactionsonAutomaticControl2000;45: 462–76. [7] RenganathanK,BhaskarV.Anobserverbasedapproachforachievingfault diagnosis andfaulttolerantcontrolofsystemsmodeledashybridPetrinets. ISA Transactions2011;50:443–53. [8] Garg H.ReliabilityanalysisofrepairablesystemsusingPetrinetsandvague Lambda–Taumethodology.ISATransactions2013;52:6–18. [9] VisvanadhamN,NahariY,JohnsonTL.Deadlockpreventionanddeadlock avoidancein flexiblemanufacturingsystemsusingPetrinetmodels.IEEE RoboticsandAutomation1990;6:713–23. [10] Abdallah IB,El-MaraghyHA.DeadlockpreventionandavoidanceinFMS:A Petri netbasedapproach.InternationalJournalofAdvancedManufacturing Technology1998;14:704–15. [11] Huang YS,JengMD,XieXL,ChungSL.DeadlockpreventionbasedonPetrinets and siphons.InternationalJournalofProductionResearch2001;39:283–305. [12] Uzam M.Anoptimaldeadlockpreventionpolicyfor flexiblemanufacturing systemsusingPetrinetmodelswithresourcesandthetheoryofregions. InternationalJournalofAdvancedManufacturingTechnology2002;19:192–208. [13] Uzam M,ZhouMC.Animprovediterativesynthesismethodforliveness enforcing supervisorsof flexiblemanufacturingsystems.InternationalJournal of ProductionResearch2006;44:1987–2030. [14] Li ZW,ZhouMC,JengMD.Amaximallypermissivedeadlockpreventionpolicy for FMSbasedonPetrinetsiphoncontrolandthetheoryofregions.IEEE TransactionsonAutomationScienceandEngineering2008;5:182–8. [15] Guo J,LiZW.AnimprovedalgorithmforsupervisordesignforFMSusingthe theory ofregions.In:ProceedingsoftheIEEEinternationalconferenceon mechatronics andautomation;2010. [16] LefebvreD,LeclercqE.StochasticPetrinetidentification forthefaultdetection and isolationofdiscreteeventsystems.IEEETransactionsonSystems,Man, and Cybernetics—PartA:SystemsandHumans2011;41:213–25. [17] Giua A,DiCesareFM,SilvaM.Generalizedmutualexclusionconstraintson nets withuncontrollabletransitions.In:ProceedingsoftheIEEEinternational conference onIEEEtransactionsonsystems,man,andcybernetics;1992 pp. 974–979. [18] ZareieeM,DidebanA,NazemzadehP.Fromforbiddenstatestolinear constraints.In:Proceedingsoftheinternationalconferenceonmodelingand simulation; 2011. [19] Chen Y,LiZW,KhalguiM,MosbahiO.Designofamaximallypermissive liveness-enforcingPetrinetsupervisorfor flexible manufacturingsystems. IEEE TransactionsonAutomationScienceandEngineering2011;8:374–93. [20] Ghaffari A,RezgN,XieXL.DesignofliveandmaximallypermissivePetrinet controller usingthetheoryofregions.IEEETransactionsonRoboticsand Automation2003;19:137–42. [21] YamalidouK,MoodyJ,LemmonM,AntsaklisP.FeedbackcontrolofPetrinets based onplaceinvariants.Automatica1996;32:15–28. [22] Dideban A,AllaH.Reductionofconstraintsforcontrollersynthesisbasedon safe Petrinets.Automatica2008;44:1697–706. [23] Chen YF,LiZW.Designofamaximallypermissiveliveness-enforcingsuper- visor withacompressedsupervisorystructurefor flexiblemanufacturing systems.Automatica2011;47:1028–34. [24] Nazeem A,ReveliotisS,WangY,LafortuneS.Designingcompactand maximally permissivedeadlockavoidancepoliciesforcomplexresource allocation systemsthroughclassification theory:thelinearcase.IEEETransac- tions onAutomaticControl2011;56:1818–33. [25] Zareiee M,DidebanA,OroujiAA,AllaH.Asimplepetrinetcontrollerin discreteeventsystems.In:Proceedingsofinformationcontrolproblemsin manufacturing, 2012,vol.14;pp.188–93. [26] Chen YF,LiZW,ZhouMC.Behaviorallyoptimalandstructurallysimple liveness-enforcingsupervisorsof flexiblemanufacturingsystems.IEEETrans- actions onSystems,Man,andCybernetics,PartA2012;42:615–29. [27] Dideban A,ZareieeM,AllaH.Controllersynthesiswithhighlysimplified linear constraints.AsianJournalofControl2013;15:80–94. [28] Zareiee M,DidebanA,OroujiAA,SoleymanpourHR.Simplification ofaPetri Net controllerinindustrialsystemsbyusinganoptimizationalgorithm. International JournalofIndustrialEngineeringandProductionResearch 2013;24:59–70. [29] Chen Y,LiZW,ZhouMC.Optimalsupervisorycontrolof flexiblemanufactur- ing systemsbyPetrinets:asetclassification approach.IEEETransactionson AutomationScienceandEngineering(Inpress). [30] DavidR,AllaH.Discrete,continuous,andhybridPetrinets.Berlin,Germany: Springer;2005. [31] KumarR,HollowayLE.SupervisorycontrolofdeterministicPetrinetswith regular specification languages.IEEETransactionsonAutomaticControl 1996;41:245–9. [32] Basile F,ChiacchioP,GiuaA.AnoptimizationapproachtoPetrinetmonitor design. IEEETransactionsonAutomaticControl2007;52:306–11. M. Zareieeetal./ISATransactions53(2014)44–49 49