SlideShare ist ein Scribd-Unternehmen logo
1 von 10
Downloaden Sie, um offline zu lesen
International Journal of Mathematics and Statistics Invention (IJMSI)
E-ISSN: 2321 – 4767 || P-ISSN: 2321 - 4759
www.ijmsi.org || Volume 2 || Issue 1 || February - 2014 || PP-11-20

Formulations and proofs of optimal expressions for control index
matrices for a class of double – delay differential equations.
C. Ukwu and E.J.D. Garba
Department of Mathematics, University of Jos, P.M.B 2084, Jos, Nigeria

ABSTRACT: This paper derived the structure of the indices of control systems for a class of double – delay
autonomous linear differential equations on any given interval of length equal to the delay h for non –negative
time periods. The formulations and the development of the theorem relied on an earlier work by Ukwu (2013i)
on the interval [ t  4 h , t ] . The derivation of the associated solution matrices exploited the continuity of these
1

1

matrices for positive time periods, the method of steps and backward continuation recursions to obtain these
matrices on successive intervals of length equal to the delay h. The proofs were achieved using ingenious
combinations of summation notations, greatest integer functions and multiple integrals. The indices were
derived using the stage – wise algorithmic format, starting from the right – most interval of length h. Our results
globally extend the time scope of applications of these matrices to the solutions of terminal function problems
and rank conditions for controllability and cores of targets.

KEYWORDS: Index, Matrices, Recursions, Scalar, Structure.
I.

INTRODUCTION

The importance of indices of control systems matrices stems from the fact that they not only pave the
way for the derivation of determining matrices for the determination of Euclidean controllability and
compactness of cores of Euclidean targets but can be used independently for such determination. In sharp
contrasts to determining matrices the use of indices of control systems for the investigation of the Euclidean
controllability of systems can be quite computationally challenging; however this difficulty can be mitigated if
the coefficient matrix associated with the state variable at time t is diagonal. This paper pioneers the
development of the structure of these indices.
Literature on state space approach to control studies is replete with indices of control systems as key
components for the investigation of controllability. See Chukwu (1992), Gabsov and Kirillova (1976), Manitius
(1978), Tadmore (1984), and Ukwu (1987, 1992, 1996). Regrettably no author has made any attempt to obtain
general expressions for the associated matrices or special cases of such matrices involving the double delay h an d 2 h . Effort is usually focused on the single – delay mode with the usual approach being to start
from the interval [ t 1  h , t 1 ] and compute the index matrices for given problem instances; then the method of
steps and backward continuation recursive procedure are deployed to extend these to the intervals
[ t  ( k  1) h , t  k h ] , for positive integral k , not exceeding 2, for the most part. Such approach is rather
1

1

restrictive and doomed to failure in terms of structure for arbitrary k . In other words such approach fails to
address the issue of the structure of control index matrices. The need to address such short-comings has become
imperative; this is the major contribution of this paper, in the case the scalar counterparts, with its wide-ranging
implications for extensions to systems and holistic approach to controllability studies.

II.

PRELIMINARIES

Consider the system:



X

  ,t

 X

 , t  A0

for 0    t ,   t  k h , k  0 ,1, ...

 X



 h, t  A1  X



 2h, t  A 2

(1)

where

www.ijmsi.org

11 | P a g e
Derivation of an optimal expression for control index matrices…
 I ;  t
X  , t    n
0;   t


(2)

A 0 , A 1 , A 2 a r e n  n c o n s t a n t m a t r i c e s a n d   X (  , t ) ,   X (  , t  h ) a r e n  n m a t r i x f u n c t i o n s . See

Chukwu (1992), Hale (1977) and Tadmore (1984) for properties of X  t ,   . Of particular importance is the
fact that   X   , t  is analytic on the intervals  t
such

   t1 



j  1  h , t1  j h 

1





j  1  h , t 1  j h  , j  0 , 1, ...; t 1 



j  1 h  0

. Any

is called a regular point of   X  t ,   .

2.1 Definition
T h e e x p r e s s i o n c X ( , t 1 ) B
*

is called the index of a given control system, where c is an n -

dimensional constant column vector, X ( , t 1 ) is defined in (1 ), B is an
with the control system:

n m

constant matrix associated


x (t )  A 0 x (t )  A 1 x (t  h )  A 2 x (t  2 h )  B u (t )

and u ( .) is an m - vector admissible control function. Thus the control index matrix, X ( , t 1 ) determines the
structure of the index of a given control system.
We proceed to determine the structure of the above matrix. This will be achieved using the method of steps
and a Backward Continuation Recursive procedure.
Let K

j

  t 1  ( j  1) h , t 1  jh  ,  j : t 1  ( j  1) h  0 , a n d fix e d t1  0 .



Ukwu (2013i) obtained the following expressions for the control index matrices,
X ( , t 1 ) o n K j , f o r

j  {0 ,  , 3} :

A ( t  )

e 0 1
,  K 0 ;


 A0 ( t 1   )
A0 ( t 1  h  s 1 )
A0 ( s 1   )
e
  e
A1 e
d s1 ,   K 1 ;

t1h


s h


X ( , t 1 )   A ( t   )
A0 ( t 1  h  s 1 )
A0 ( s 1   )
0
1
e
  e
A1 e
d s1  


t 2h t h
t1h



A (t  2 h  s )
A ( s  )

  e 0 1
A2 e
d s3 , fo r   K 2 ;

t 2h


(2)

(3)

2

1

3

0

e

A0 ( t

1

hs

1

)

A1 e

A0 ( s

1

hs

2

)

A1 e

A0 ( s

2

 )

d s 1d s 2

1

(4)

3

1




 A0 ( t 1   )
A0 ( t 1  h  s 1 )
A0 ( s 1   )
A (t  h s )
A (s hs )
A ( s  )
e
  e
A1 e
d s1  
A1 e
A1 e
d s 1d s 2

 e
t 2h t h
t1h


s3  h
s h

A (t  h s )
A (s hs )
A ( s  h  s3 )
A ( s3  )


A1 e
A1 e
A1 e
d s 1d s 2 d s3
   e

t13h t 2h t h

X ( , t 1 )  
t1  h


A0 ( t 1  2 h  s 3 )
A 0 ( t 1  h  s1 )

A 0 ( s1  2 h  s 3 )
A ( s  )
A0 ( s 3   )
  e
A2 e
d s3 
A1 e
A2e 0 3
d s1 d s 3

 e

t12h
t13h
s3  2 h

t12h


A (t  2 h s )
A (s s h)
A ( s  )
 
A2 e
A1 e
d s2 d s3 ,  K 3
(5 )
  e

t13h s h

s2  h

0

1

1

1

0

1

2

0

2

1

2

0

1

1

1

0

1

2

0

2

0

1

0

2

3

0

1

2

0

3

3

He also interrogated some topological dispositions of the solution matrices and deduced that the solution
matrices are continuous on the interval [t1 – 4h, t1 ] but not analytic due to the break-down of analyticity for

www.ijmsi.org

12 | P a g e
Derivation of an optimal expression for control index matrices…
  { t 1 , t1  h , t 1  2 h , t 1  3 h } .

These results are consistent with the existing qualitative theory on X ( , t ).

See Chukwu (1992), Hale (1977), Tadmore (1984) and Ukwu (1987, 1996). See also analytic function (2010)
and Chidume (2007) for discussions on analytical functions and topology.
The objective of this paper is to formulate and prove a theorem on the general expression for
 0 , 1, 2 , 3  , by appropriating the above expression for

X ( , t 1 ) o n K j , f o r j 

X ( , t 1 ) , f o r t h e c a s e n  1,

where n is the dimension of the state space.

Let r0 , r1 , r2 be nonnegative integers and let P0  r

0

 , 1  r1  , 2 ( r2 )

denote the set of all permutations of

0 , 0 , ...0 1, 1, ...1 2 , 2 , ...2 : th e p e rm u ta tio n s o f th e o b je c ts 0 , 1, a n d 2 in w h ic h i a p p e a rs ri tim e s ,







r1 tim e s

r0 tim e s

r2 tim e s

i   0 , 1, 2  .

3. Theorem: Ukwu-Garba’s Control Index Formula for Autonomous, Double – Delay Linear Systems (1),
with state space dimension n  1 .
In ( 1 ) , s e t n  1, A 0  a , A 1  a 1  b , A 2  a 2  c . T h e n :


 a ( t  )
1
,   K 0;
e

i
j
 t 1  [  ih ]  a  t 1  [  ih ] 
 a ( t 1  )
i
X ( , t 1 )   e
  b
e
i!
i 1






 j 
 
 2  j 2 k

 
k 1

i

t

k

b c

1

 [  ( i  2 k ) h ] 

(6 )

ik

e



a t 1  [  ( i  2 k ) h ]



i!k !

i0

,  K j, j 1

(7 )

The third component:
 j 
 
 2  j 2k

 
k 1

i

b c

k

 [  ( i  2 k ) h ] 

i0

ik

e



a t 1  [  ( i  2 k ) h ]



i!k !

 
k 1

1

i0

 j 
 
 2  j 2 k



t


( v 1 ,v

2

, , v

av av  av
1

2

t

 [  ( i  2 k ) h ] 

1

ik

(i  k ) !

i k

i  k )P 1( i ) , 2 ( k )

e



a t 1  [  ( i  2 k ) h ]



(8 )

The equivalent form in (8) will be exploited to achieve the proof of the theorem.
Note that the formula can be rewritten in the form:

X ( , t 1 )  I n e

a ( t 1  )

j





b

i

t

1

 [  ih ] 



 
k 1

i0


( v 1 ,v

2

, , v i  k )  P
1( i ) , 2 ( k )

e



a t 1  [   ih ]



s g n (m a x {0 , j } )

i!

i 1
 j 
 2  j2k
 

i

av av  av
1

2

t
i k

1

 [  ( i  2 k ) h ]
(i  k ) !



ik

e



a t 1  [  ( i  2 k ) h ]



s g n (m a x { 0 , j  1} )

(9 )

Proof
First, we prove that the theorem is true for   K j , j  { 0 , 1, 2 , 3} by comparing the results with
expressions (2) through (5) above. Then we use induction to complete the proof:

www.ijmsi.org

13 | P a g e
Derivation of an optimal expression for control index matrices…
a ( t 1  )

t  K 0  X ( , t 1 )  e

a ( t 1  )

t  K 1  X ( , t 1 )  e

; ( 2 )  X ( , t 1 )  e

a ( t 1  )

 a (  h  t 1 )

 b (  h  t 1 ) e

;

 e

a ( t 1  )

 b ( t 1  [  h ] ) e



(3 )  X ( , t 1 )  e

a ( t 1  )





be

a ( t 1  [  h ])

ds  e

a ( t 1  )

 b ( t 1  [  h ] ) e

a ( t 1  [  h ] )

a ( t 1  [  h ] )

t1h

  K 2  X ( , t 1 )  e

t

2

a ( t 1  )





b

i

1

 [  ih ] 




v1

 X ( , t 1 )  e

t

2





i

b

1

a ( t 1  )





av

t

 [  ih ] 

e





a t 1  [   ih ]



a t 1    h 



 b  t 1    h   e



e

be

0 1

e

 c  t 1    2 h   e

a ( t 1  )

A0 ( s 1  h  s

2

)

b



a t 1    2 h 



be

A0 ( s

2

 )



d s 1d s2





e

a ( t 1  2 h  s3 )

ce

a ( s3  )

d s3

t1  2 h



a t 1    h 



 b  t 1    h   e



t

2





t12h t1h

 X ( , t 1 )  e



a t 1  [  ( 0  2 ) h ]

i

i!

A0 ( t 1  h  s 1 )



( 0  1) !

1

s2  h





 [  ( 0  2 ) h ]

1

 P 1 ( 0 ) , 2 (1 )

i 1

( 4 )  X ( , t 1 )  e



a t 1  [   ih ]

e

i!

i 1

a ( t 1  )

i

   h  



1



 c  t 1    2 h   e



 t 1    2 h  

2

e



a t 1    2 h 





2
 X ( , t 1 )  e

a ( t 1  )

2





b

i

t

    ih  

1



a t 1    ih 



e



i!

i 1

  K 3  X ( , t 1 )  e

i

a ( t 1  )

j





b

i

t

1

 [  ih ] 

 c  t 1    2 h   e

i



a t 1  [   ih ]

e

t

1





i  0 ( v 1 ,v

 X ( , t 1 )  e

a ( t 1  )

j





b

i

2

t

, , v

1



i!

i 1



 t 1    2 h  

av av  av
1

2

1

 [  ( i  2 ) h ]

i 1

( i  1) !

i 1 )  P 1 ( i ) , 2 ( 1 )

 [  ih ] 

  bc  cb 

t

1

i 1

e



a t 1  [  ( i  2 ) h ]



i

e

a t 1  [   ih ]









i!

i 1



 [  3 h ]

 c  t 1  [  2 h ]  e



a t 1  [  2 h ]



2

e

a t 1  [  3 h ]



2!

(5 )  X ( , t 1 )  e

a ( t 1  )

2





b

i

t

1

    ih  

t

1

   2 h 







e



a t 1    ih 



i!

i 1

 c  t 1    2 h   e

i

s3  h

s2  h







t13h t1 2h

e

A0 ( t 1  h  s 1 )

be

a(s1hs

2

)

be

a(s

2

 h  s3 )

be

a ( s3  )

d s 1d s 2 d s3

t1h

www.ijmsi.org

14 | P a g e
Derivation of an optimal expression for control index matrices…






e

a ( t 1  2 h  s3 )


a ( s3  )

ce

t1  2 h



t13h







a ( s1  2 h  s 3 )

e

be

a ( t 1  h  s1 )

ce

a ( s3  )

d s1 d s 3

s3  2 h

t1  2 h

t13h





d s3 

t1  h

s3  h

e

a ( s2  s3  h )

a ( t 1  2 h  s2 )

3

a ( t 1  )

 X ( , t 1 )  e

ce





b

i

t

1

A0 ( s 3   )

be

d s2 d s3

    ih  

i

e



a t 1    ih 



 c  t 1    2 h   e

i!

i 1

  bc  cb 

t

 [  3 h ]

1



t

1

   2 h 



2



a t 1  [  3 h ]

e



,

2!

n e e d le s s to s a y :

 bc

 cb 

t

1

 [  3 h ]



2

e



a t 1  [  3 h ]





 b c t 1  [  3 h ]

2!



2

e



a t 1  [  3 h ]



Therefore the theorem has been be verified for j  {0 ,1, 2 , 3} . Assume that the theorem is valid for
  K p , 4  p  j,

 , s j 1  K

for some integers

 t 1  [ j  1] h  K j ,

j 1

p an d j.

Then

s j 1  h  K

a n d s j 1  2 h  K

j

j 1

.

Hence:





X ( , t 1 )  X ( t 1  [ j  1] h , t 1 ) e

a ( t 1 [ j 1] h  )





X ( s j  1  h , t1 ) b e

a(s

j 1

 )

ds j

t 1  [ j 1]h







X ( s j  1  2 h , t1 ) c e

a(s

j 1

 )

d s j 1

(1 0 )

t 1 [ j 1]h

 e



a t 1 



j





b

i

 [ j  1  i ]h 

i0



a t 1    ih 



(1 1)

j2k

k 1



e

i!

i 1

 j 
 
 2 

i

 


( v 1 , v 2 , , v

i k

av av  av
1

)  P 1 ( i ),

 b  t 1     ( j  1) h   e



j





b

i 1

t

1




t 1  ( j 1) h

 j 
 2  j2k
 

 
k 1

i0


( v 1 ,v

2

av av  av
1

2

ik

(1 2 )

(i  k ) !

i k

 [ s j  1  ( i  1) h ] 

i

e



a t 1  [  ( i  1 ) h ]

i!

t 1  ( j 1) h i 1



j  1  i  2 k ]h 

2(k )

t
a ( t 1  )

2

[

t

1

 [ s j 1  (i  1  2 k ) h ]

i k

, , v i  k )  P
1( i ) , 2 ( k )

www.ijmsi.org

(i  k ) !





d s j 1

(1 3 )

ik

be



a t 1  [  ( i  1  2 k ) h ]



d s j  1 (1 4 )

15 | P a g e
Derivation of an optimal expression for control index matrices…


 c  t 1     ( j  1) h   e

a ( t 1  )







t

j
i

b c

1

 [ s j 1  ( i  2 ) h ] 

  j 1  
 2  j2 k



 





k 1

t 1  ( j 1) h



i0

( v 1 ,v

2

av av  av
1



a t 1  [  ( i  2 ) h ]

e



i!

t 1  ( j 1) h i 1



i

2

t

 [ s j 1  (i  2  2 k ) h ]

1



, , v i  k )  P
1(i ) , 2 ( k )

(1 5 )

ik

ce

(i  k ) !

i k

d s j 1



a t 1  [  ( i  2  2 k ) h ]



d s j  1 (1 6 )

The expression (13) yields:
b  t 1     ( j  1) h   e

j 1

a ( t 1  )





i

b

t

1

 [  ih ]



i

e



a t 1  [   ih ]

j1







i!

i2

[

i

b

j  1  i ]h 

i

e



a t 1  [   ih ]



(1 7 )

i!

i2

The expression (14) yields:

 j 
 
 2  j 2 k

 
k 1

i0



 
k 1

1

( v 1 , v 2 , , v i  k )  P

 j 
 2  j2k
 



av av  av

i0

2

1

 [  ( i  2 k ) h ] 

ik

be

(i  k ) !

i k



a t 1  [  ( i  2 k ) h ]



(1 8 )

1 ( i 1 ) , 2 ( k )


( v 1 ,v

2

t

av av  av
1

2

[

j  1  i  2 k ]h ] 

ik

be

(i  k ) !

i k

, , v i  k )  P
1 ( i 1 ) , 2 ( k )



a t 1  [  ( i  2 k ) h ]



(1 9 )

since the summations with i = 0 are infeasible and so may be equated to zero, yielding:
 j 
 
 2  j 2 k

 
k 1

i0



Av Av  Av
1

( v 1 , v 2 , , v i  k )  P

2

t

1

 [  ( i  2 k ) h ] 

ik

e

(i  k ) !

i k



a t 1  [  ( i  2 k ) h ]



,

(20)

1( i ) , 2 ( k )

( w ith a tr a ilin g a 2  c )
 j 
 
 2  j 2 k



 
k 1

i0


( v 1 , v 2 , , v i  k )  P

av av  av
1

2

[

j  1  i  2 k ]h 

ik

e

(i  k ) !

i k



a t 1  [  ( i  2 k ) h ]



,

( 2 1)

1( i ) , 2 ( k )

w ith a tr a ilin g a 2  c

The expression (15) yields:
c  t 1     ( j  1) h   e

a ( t 1  )

j 1





i

b c

t

1

 [  ( i  2 ) h ] 





e

( i  1) !

i 1
j 1

i 1

b c  [ j  1  i ]h 
i

i 1

( i  1) !

i 1

e



a t 1  [  ( i  2 ) h ]



a t 1  [  ( i  2 ) h ]





(22)

The expression (16)
yields:
  j 1  
  2   j 1 2 k







k2

i0


( v 1 ,v

2

, , v i  k )  P
1( i ) , 2 ( k )

av av  av
1

2

t
i k

1

 [  ( i  2 k ) h ]
(i  k ) !



ik

e



a t 1  [  ( i  2 k ) h ]



(2 3 )

(w ith a tra ilin g a 2  c )

www.ijmsi.org

16 | P a g e
Derivation of an optimal expression for control index matrices…
  j 1  


  2   j 1 2 k





k2



i0


( v 1 ,v

2

[

av av  av
1

j  1  i  2 k ]h 

, , v i  k )  P
1(i ) , 2 ( k )



a t 1  [  ( i  2 k ) h ]

e

(i  k ) !

i k

2

ik



(2 4 )

( w ith a tr a ilin g a 2  c )
  j 1  


  2   j 1 2 k





k 1





i0

av av  av
1

( v 1 , v 2 , , v i  k )  P

2

t

1

 [  ( i  2 k ) h ] 

ik

e

(i  k ) !

i k



a t 1  [  ( i  2 k ) h ]



(2 5 )

1( i ) , 2 ( k )

(w ith a tra ilin g a 2  c )
j 1





i

b c

t

 [  ( i  2 ) h ] 

1



a t 1  [  ( i  2 ) h ]

[

j 1 2 k





k 1



e

( i  1) !

i0

  j 1  


 2 

i 1



i0

( v 1 , v 2 , , v

i k

av av  av
1

)  P 1 ( i ),

2



(26)

ik

j  1  i  2 k ]h 

e

(i  k ) !

i k

2(k )



a t 1  [  ( i  2 k ) h ]



(27)

( w ith a tr a ilin g a 2  c )
j 1





i

b c

 [ j  1  i ]h 

i 1

e

( i  1) !

i0



a t 1  [  ( i  2 k ) h ]



(2 8 )

Therefore:
Y ( t )  (1 1)  (1 2 )  (1 7 )  ( 2 0 )  ( 2 1)  ( 2 2 )  ( 2 5 )  ( 2 6 )  ( 2 7 )  ( 2 8 )  ( 2 9 )  ( 3 0 )    ( 3 8 )

 e



a t 1 



j





i

b

[ j  1  i ]h 





e


i0


( v 1 , v 2 , , v

b  t 1     ( j  1) h   e

i k

av av  av
1

)  P 1 ( i ),

a ( t 1  )



b

i

t

1



k 1

i0


( v 1 , v 2 , , v

i k



i

e



a t 1  [   ih ]



j1



i!

av av  av
1

)  P 1 ( i ),

2 k ]h 

2

ik

e

(i  k ) !

i j

 [  ih ]



b

i



a t 1  [  ( i  2 k ) h ]

 [ j  1  i ]h 

1

 [  ( i  2 k ) h ] 

i k

2(k )

(i  k ) !

i

e



(3 0 )



a t 1  [   ih ]



(3 1)

i!

i 2

t

j 1 2 k



(29)

2(k)

j 1



2

i 2





[ j  1  i 

j 1 2 k

j 1

  j 1  


 2 



a t 1    ih 



i!

i 1

  j 1  


 2 

i

ik

e



a t 1  [  ( i  2 k ) h ]



(3 2 )

( w ith a le a d in g a 1  b )



 j 
 j 
 j 
 j  1
 1 a n d th e f a c t th a t 
 n o tin g th a t k e v e n           ; j o d d        

 2 
 2 
 2 
 2 



www.ijmsi.org

17 | P a g e
Derivation of an optimal expression for control index matrices…


 j  1
 j  1  2k  0 
 j odd, k   

 2 


  j 1  


 2 





k 1

i0


( v 1 , v 2 , , v

 w ith a le a d in g

i k

av av  av
1

)  P 1 ( i ),

a1  b

 c  t 1     ( j  1) h   e

2

t

j 1

a ( t 1  )





i

b c

1

 [  ( i  2 ) h ] 



b c  [ j  1  i ]h 
i



i0

( v 1 , v 2 , , v

( w ith a le a d in g a

j 1





i

b c

i0

  j 1  


 2 



2

i k

av av  av
1

)  P 1 ( i ),

2

e



a t 1  [  ( i  2 ) h ]



a t 1  [  ( i  2 ) h ]

2 j ]h 

(i  k ) !

i k

2(k )

 t  [i 

2 ]h 

i 1

( i  1) !



i0



a t 1  [  ( i  2 k ) h ]



(3 3 )

ik

e





(3 4 )



a t 1  [  ( i  2 k ) h ]



(3 5 )

 c)



j 1

e

 t  [i 

e



a t 1  [  ( i  2 ) h ]

( v 1 , v 2 , , v

i k

av av  av
1

)  P 1 ( i ),

2



(3 6 )

[

j 1 2 k



i 1

( i  1) !

j 1 2 k

k 1

e

i 1

( i  1) !

i 1



ik



(.) is a p p ro p ria te . 









2 k ]h 

(i  k ) !

i k

2(k)

j 1



k 1

[ j  1  i 

i 1

  j 1  


 2 



(.)  0 , b e in g in fe a s ib le. S o

i0

j 1 2 k





  j 1  


 2 

j 1 2 k

j  1  i  2 k ]h 

i k

2(k )

(i  k ) !

ik

e



a t 1  [  ( i  2 k ) h ]



(3 7 )

( w ith a le a d in g a 2  c )

j 1





i

b c

[

j  1  i ]h 

i0

( i  1) !

i 1

e



a t 1  [  ( i  2 ) h ]



(3 8 )

(29)+(31) yields:

www.ijmsi.org

18 | P a g e
Derivation of an optimal expression for control index matrices…

e

a ( t 1  )

j 1





i

b

t

1

 [  ih ]



i

e



a t 1  [   ih ]



(3 9 )

i!

i 1

(32) + (35)
  j 1  


 2 





k 1

yields:

t

j 1 2 k

i0



av av  av
1

( v 1 , v 2 , , v i  k )  P 1 ( i ),

2

1

 [  ( i  2 k ) h ] 
(i  k ) !

i k

2(k )

Expressions (30) + (33) + (37) yield zero; the expressions cancel out.
Expressions (34) + (34) + (38) yield zero; the expressions cancel out.
Therefore, on K j  1 , X ( , t 1 ) reduces to X ( , t )  e x p re s s io n (3 9 ) 
1

 X ( , t 1 )  e

a ( t 1  )

j 1



b

i

t

1

for   K




i0

j 1



a t 1  [  ( i  2 k ) h ]



(40)

e x p re s s io n (4 0 )

i

e



a t 1  [   ih ]



t

j 1 2 k

k 1





e

i!

i 1
  j 1  


 2 

 [  ih ]

ik


( v 1 , v 2 , , v i  k )  P 1 ( i ),

av av  av
1

2

1

 [  ( i  2 k ) h ] 

i k

2(k )

(i  k ) !

ik

e



a t 1  [  ( i  2 k ) h ]



( 4 1)

. This completes the proof of the theorem.

3.1 Corollary
If A 0  a  0 , t h e n



 1,   K 0 ;

i
j
 t 1  [  ih ] 

i
X ( , t 1 )   1   b
i!
i 1

  j 
ik
 
  2  j 2 k
 t 1  [  ( i  2 k ) h ] 
i k
,   Kj, j1
   b c
i! k !
k 1 i  0


(42)

(4 3)

Proof
T h e p ro o f is im m ed iate, n o tin g th at A 0  0  e

III.

a (.)

 1.

CONCLUSION

This paper relied greatly on the optimal deployment of combinatorial analysis and change of variables
technique, without which its development would be impossible. The paper has provided a sound basis for its
extension to more general systems. Such extension must of necessity rely on multinomial distributions, the
method of steps and backward continuation recursive procedure.

www.ijmsi.org

19 | P a g e
Derivation of an optimal expression for control index matrices…

REFERENCES
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]

Analytic function. (2010). Retrieved September 11, 2010 from http://en.wikipedia.org/wiki/Analytic_function.
Chidume, C. (2007). Applicable Functional Analysis. The Abdus Salam, International Centre for Theoretical Physics, Trieste, Italy.

Chukwu, E. N. (1992). Stability and Time-optimal control of hereditary systems. Academic Press, New York.
Gabasov, R. and Kirillova, F. (1976). The qualitative theory of optimal processes. Marcel Dekker Inc., New York.
Manitius, A. (1978). Control Theory and Topics in Functional Analysis. Vol. 3, Int. Atomic Energy Agency, Vienna.
Tadmore, G. (1984). Functional differential equations of retarded and neutral types: Analytical solutions and piecewise
continuous controls. J. Differential equations, Vol. 51, No. 2, Pp. 151-181.
Ukwu, C. (1987). Compactness of cores of targets for linear delay systems., J. Math. Analy. and Appl., Vol. 125, No. 2, August 1.
pp. 323-330.
Ukwu, C. (1992). Euclidean Controllability and Cores of Euclidean Targets for Differential difference systems Master of
Science Thesis in Applied Math. with O.R. (Unpublished), North Carolina State University, Raleigh, N. C. U.S.A.
Ukwu, C. (1996). An exposition on Cores and Controllability of differential difference systems, ABACUS Vol. 24, No. 2, pp.
276-285.
Ukwu, C. (2013a). On Determining Matrices, Controllability and Cores of Targets of Certain Classes of Autonomous Functional
Differential Systems with Software Development and Implementation. Doctor of Philosophy Thesis, UNIJOS (In progress)
Ukwu, C. (2013i). The structure of indices of control systems for a class of double – delay systems on the interval
[t

1

 4h,

t ].
1

(Manuscript).

www.ijmsi.org

20 | P a g e

Weitere ähnliche Inhalte

Was ist angesagt?

Regularity and complexity in dynamical systems
Regularity and complexity in dynamical systemsRegularity and complexity in dynamical systems
Regularity and complexity in dynamical systems
Springer
 
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
toukaigi
 

Was ist angesagt? (19)

On New Root Finding Algorithms for Solving Nonlinear Transcendental Equations
On New Root Finding Algorithms for Solving Nonlinear Transcendental EquationsOn New Root Finding Algorithms for Solving Nonlinear Transcendental Equations
On New Root Finding Algorithms for Solving Nonlinear Transcendental Equations
 
D025030035
D025030035D025030035
D025030035
 
Regularity and complexity in dynamical systems
Regularity and complexity in dynamical systemsRegularity and complexity in dynamical systems
Regularity and complexity in dynamical systems
 
A0280106
A0280106A0280106
A0280106
 
Ck4201578592
Ck4201578592Ck4201578592
Ck4201578592
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical System
 
A03401001005
A03401001005A03401001005
A03401001005
 
A05920109
A05920109A05920109
A05920109
 
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
 
ON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICESON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICES
 
B02609013
B02609013B02609013
B02609013
 
Common Fixed Theorems Using Random Implicit Iterative Schemes
Common Fixed Theorems Using Random Implicit Iterative SchemesCommon Fixed Theorems Using Random Implicit Iterative Schemes
Common Fixed Theorems Using Random Implicit Iterative Schemes
 
Entanglement Behavior of 2D Quantum Models
Entanglement Behavior of 2D Quantum ModelsEntanglement Behavior of 2D Quantum Models
Entanglement Behavior of 2D Quantum Models
 
Iu3515201523
Iu3515201523Iu3515201523
Iu3515201523
 
D04302031042
D04302031042D04302031042
D04302031042
 
Simple Exponential Observer Design for the Generalized Liu Chaotic System
Simple Exponential Observer Design for the Generalized Liu Chaotic SystemSimple Exponential Observer Design for the Generalized Liu Chaotic System
Simple Exponential Observer Design for the Generalized Liu Chaotic System
 
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
 
Introduction to mathematical control theory - Dr. Purnima Pandit
Introduction to mathematical control theory - Dr. Purnima PanditIntroduction to mathematical control theory - Dr. Purnima Pandit
Introduction to mathematical control theory - Dr. Purnima Pandit
 
On fixed point theorems in fuzzy metric spaces
On fixed point theorems in fuzzy metric spacesOn fixed point theorems in fuzzy metric spaces
On fixed point theorems in fuzzy metric spaces
 

Ähnlich wie International Journal of Mathematics and Statistics Invention (IJMSI)

The feedback-control-for-distributed-systems
The feedback-control-for-distributed-systemsThe feedback-control-for-distributed-systems
The feedback-control-for-distributed-systems
Cemal Ardil
 
Stability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-MetricStability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-Metric
Komal Goyal
 
Redundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systemsRedundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systems
Springer
 
Robust fuzzy-observer-design-for-nonlinear-systems
Robust fuzzy-observer-design-for-nonlinear-systemsRobust fuzzy-observer-design-for-nonlinear-systems
Robust fuzzy-observer-design-for-nonlinear-systems
Cemal Ardil
 

Ähnlich wie International Journal of Mathematics and Statistics Invention (IJMSI) (20)

F023064072
F023064072F023064072
F023064072
 
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
 
D028036046
D028036046D028036046
D028036046
 
C024015024
C024015024C024015024
C024015024
 
C023014030
C023014030C023014030
C023014030
 
C023014030
C023014030C023014030
C023014030
 
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
 
The Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar WaveletThe Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar Wavelet
 
The feedback-control-for-distributed-systems
The feedback-control-for-distributed-systemsThe feedback-control-for-distributed-systems
The feedback-control-for-distributed-systems
 
D024025032
D024025032D024025032
D024025032
 
Stability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-MetricStability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-Metric
 
Research on 4-dimensional Systems without Equilibria with Application
Research on 4-dimensional Systems without Equilibria with ApplicationResearch on 4-dimensional Systems without Equilibria with Application
Research on 4-dimensional Systems without Equilibria with Application
 
CH3-1.pdf
CH3-1.pdfCH3-1.pdf
CH3-1.pdf
 
LeastSquaresParameterEstimation.ppt
LeastSquaresParameterEstimation.pptLeastSquaresParameterEstimation.ppt
LeastSquaresParameterEstimation.ppt
 
The discrete quartic spline interpolation over non uniform mesh
The discrete  quartic spline interpolation over non uniform meshThe discrete  quartic spline interpolation over non uniform mesh
The discrete quartic spline interpolation over non uniform mesh
 
Redundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systemsRedundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systems
 
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
 
Robust fuzzy-observer-design-for-nonlinear-systems
Robust fuzzy-observer-design-for-nonlinear-systemsRobust fuzzy-observer-design-for-nonlinear-systems
Robust fuzzy-observer-design-for-nonlinear-systems
 
Common random fixed point theorems of contractions in
Common random fixed point theorems of contractions inCommon random fixed point theorems of contractions in
Common random fixed point theorems of contractions in
 
C02402023032
C02402023032C02402023032
C02402023032
 

Kürzlich hochgeladen

Kürzlich hochgeladen (20)

GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation Strategies
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Top 10 Most Downloaded Games on Play Store in 2024
Top 10 Most Downloaded Games on Play Store in 2024Top 10 Most Downloaded Games on Play Store in 2024
Top 10 Most Downloaded Games on Play Store in 2024
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 

International Journal of Mathematics and Statistics Invention (IJMSI)

  • 1. International Journal of Mathematics and Statistics Invention (IJMSI) E-ISSN: 2321 – 4767 || P-ISSN: 2321 - 4759 www.ijmsi.org || Volume 2 || Issue 1 || February - 2014 || PP-11-20 Formulations and proofs of optimal expressions for control index matrices for a class of double – delay differential equations. C. Ukwu and E.J.D. Garba Department of Mathematics, University of Jos, P.M.B 2084, Jos, Nigeria ABSTRACT: This paper derived the structure of the indices of control systems for a class of double – delay autonomous linear differential equations on any given interval of length equal to the delay h for non –negative time periods. The formulations and the development of the theorem relied on an earlier work by Ukwu (2013i) on the interval [ t  4 h , t ] . The derivation of the associated solution matrices exploited the continuity of these 1 1 matrices for positive time periods, the method of steps and backward continuation recursions to obtain these matrices on successive intervals of length equal to the delay h. The proofs were achieved using ingenious combinations of summation notations, greatest integer functions and multiple integrals. The indices were derived using the stage – wise algorithmic format, starting from the right – most interval of length h. Our results globally extend the time scope of applications of these matrices to the solutions of terminal function problems and rank conditions for controllability and cores of targets. KEYWORDS: Index, Matrices, Recursions, Scalar, Structure. I. INTRODUCTION The importance of indices of control systems matrices stems from the fact that they not only pave the way for the derivation of determining matrices for the determination of Euclidean controllability and compactness of cores of Euclidean targets but can be used independently for such determination. In sharp contrasts to determining matrices the use of indices of control systems for the investigation of the Euclidean controllability of systems can be quite computationally challenging; however this difficulty can be mitigated if the coefficient matrix associated with the state variable at time t is diagonal. This paper pioneers the development of the structure of these indices. Literature on state space approach to control studies is replete with indices of control systems as key components for the investigation of controllability. See Chukwu (1992), Gabsov and Kirillova (1976), Manitius (1978), Tadmore (1984), and Ukwu (1987, 1992, 1996). Regrettably no author has made any attempt to obtain general expressions for the associated matrices or special cases of such matrices involving the double delay h an d 2 h . Effort is usually focused on the single – delay mode with the usual approach being to start from the interval [ t 1  h , t 1 ] and compute the index matrices for given problem instances; then the method of steps and backward continuation recursive procedure are deployed to extend these to the intervals [ t  ( k  1) h , t  k h ] , for positive integral k , not exceeding 2, for the most part. Such approach is rather 1 1 restrictive and doomed to failure in terms of structure for arbitrary k . In other words such approach fails to address the issue of the structure of control index matrices. The need to address such short-comings has become imperative; this is the major contribution of this paper, in the case the scalar counterparts, with its wide-ranging implications for extensions to systems and holistic approach to controllability studies. II. PRELIMINARIES Consider the system:   X   ,t  X  , t  A0 for 0    t ,   t  k h , k  0 ,1, ...  X   h, t  A1  X   2h, t  A 2 (1) where www.ijmsi.org 11 | P a g e
  • 2. Derivation of an optimal expression for control index matrices…  I ;  t X  , t    n 0;   t  (2) A 0 , A 1 , A 2 a r e n  n c o n s t a n t m a t r i c e s a n d   X (  , t ) ,   X (  , t  h ) a r e n  n m a t r i x f u n c t i o n s . See Chukwu (1992), Hale (1977) and Tadmore (1984) for properties of X  t ,   . Of particular importance is the fact that   X   , t  is analytic on the intervals  t such    t1   j  1  h , t1  j h  1   j  1  h , t 1  j h  , j  0 , 1, ...; t 1   j  1 h  0 . Any is called a regular point of   X  t ,   . 2.1 Definition T h e e x p r e s s i o n c X ( , t 1 ) B * is called the index of a given control system, where c is an n - dimensional constant column vector, X ( , t 1 ) is defined in (1 ), B is an with the control system: n m constant matrix associated  x (t )  A 0 x (t )  A 1 x (t  h )  A 2 x (t  2 h )  B u (t ) and u ( .) is an m - vector admissible control function. Thus the control index matrix, X ( , t 1 ) determines the structure of the index of a given control system. We proceed to determine the structure of the above matrix. This will be achieved using the method of steps and a Backward Continuation Recursive procedure. Let K j   t 1  ( j  1) h , t 1  jh  ,  j : t 1  ( j  1) h  0 , a n d fix e d t1  0 .   Ukwu (2013i) obtained the following expressions for the control index matrices, X ( , t 1 ) o n K j , f o r j  {0 ,  , 3} : A ( t  ) e 0 1 ,  K 0 ;    A0 ( t 1   ) A0 ( t 1  h  s 1 ) A0 ( s 1   ) e   e A1 e d s1 ,   K 1 ;  t1h   s h   X ( , t 1 )   A ( t   ) A0 ( t 1  h  s 1 ) A0 ( s 1   ) 0 1 e   e A1 e d s1     t 2h t h t1h    A (t  2 h  s ) A ( s  )    e 0 1 A2 e d s3 , fo r   K 2 ;  t 2h  (2) (3) 2 1 3 0 e A0 ( t 1 hs 1 ) A1 e A0 ( s 1 hs 2 ) A1 e A0 ( s 2  ) d s 1d s 2 1 (4) 3 1    A0 ( t 1   ) A0 ( t 1  h  s 1 ) A0 ( s 1   ) A (t  h s ) A (s hs ) A ( s  ) e   e A1 e d s1   A1 e A1 e d s 1d s 2   e t 2h t h t1h   s3  h s h  A (t  h s ) A (s hs ) A ( s  h  s3 ) A ( s3  )   A1 e A1 e A1 e d s 1d s 2 d s3    e  t13h t 2h t h  X ( , t 1 )   t1  h   A0 ( t 1  2 h  s 3 ) A 0 ( t 1  h  s1 )  A 0 ( s1  2 h  s 3 ) A ( s  ) A0 ( s 3   )   e A2 e d s3  A1 e A2e 0 3 d s1 d s 3   e  t12h t13h s3  2 h  t12h   A (t  2 h s ) A (s s h) A ( s  )   A2 e A1 e d s2 d s3 ,  K 3 (5 )   e  t13h s h  s2  h 0 1 1 1 0 1 2 0 2 1 2 0 1 1 1 0 1 2 0 2 0 1 0 2 3 0 1 2 0 3 3 He also interrogated some topological dispositions of the solution matrices and deduced that the solution matrices are continuous on the interval [t1 – 4h, t1 ] but not analytic due to the break-down of analyticity for www.ijmsi.org 12 | P a g e
  • 3. Derivation of an optimal expression for control index matrices…   { t 1 , t1  h , t 1  2 h , t 1  3 h } . These results are consistent with the existing qualitative theory on X ( , t ). See Chukwu (1992), Hale (1977), Tadmore (1984) and Ukwu (1987, 1996). See also analytic function (2010) and Chidume (2007) for discussions on analytical functions and topology. The objective of this paper is to formulate and prove a theorem on the general expression for  0 , 1, 2 , 3  , by appropriating the above expression for X ( , t 1 ) o n K j , f o r j  X ( , t 1 ) , f o r t h e c a s e n  1, where n is the dimension of the state space. Let r0 , r1 , r2 be nonnegative integers and let P0  r 0  , 1  r1  , 2 ( r2 ) denote the set of all permutations of 0 , 0 , ...0 1, 1, ...1 2 , 2 , ...2 : th e p e rm u ta tio n s o f th e o b je c ts 0 , 1, a n d 2 in w h ic h i a p p e a rs ri tim e s ,    r1 tim e s r0 tim e s r2 tim e s i   0 , 1, 2  . 3. Theorem: Ukwu-Garba’s Control Index Formula for Autonomous, Double – Delay Linear Systems (1), with state space dimension n  1 . In ( 1 ) , s e t n  1, A 0  a , A 1  a 1  b , A 2  a 2  c . T h e n :   a ( t  ) 1 ,   K 0; e  i j  t 1  [  ih ]  a  t 1  [  ih ]   a ( t 1  ) i X ( , t 1 )   e   b e i! i 1       j     2  j 2 k   k 1 i t k b c 1  [  ( i  2 k ) h ]  (6 ) ik e  a t 1  [  ( i  2 k ) h ]  i!k ! i0 ,  K j, j 1 (7 ) The third component:  j     2  j 2k   k 1 i b c k  [  ( i  2 k ) h ]  i0 ik e  a t 1  [  ( i  2 k ) h ]  i!k !   k 1 1 i0  j     2  j 2 k  t  ( v 1 ,v 2 , , v av av  av 1 2 t  [  ( i  2 k ) h ]  1 ik (i  k ) ! i k i  k )P 1( i ) , 2 ( k ) e  a t 1  [  ( i  2 k ) h ]  (8 ) The equivalent form in (8) will be exploited to achieve the proof of the theorem. Note that the formula can be rewritten in the form: X ( , t 1 )  I n e a ( t 1  ) j   b i t 1  [  ih ]     k 1 i0  ( v 1 ,v 2 , , v i  k )  P 1( i ) , 2 ( k ) e  a t 1  [   ih ]  s g n (m a x {0 , j } ) i! i 1  j   2  j2k   i av av  av 1 2 t i k 1  [  ( i  2 k ) h ] (i  k ) !  ik e  a t 1  [  ( i  2 k ) h ]  s g n (m a x { 0 , j  1} ) (9 ) Proof First, we prove that the theorem is true for   K j , j  { 0 , 1, 2 , 3} by comparing the results with expressions (2) through (5) above. Then we use induction to complete the proof: www.ijmsi.org 13 | P a g e
  • 4. Derivation of an optimal expression for control index matrices… a ( t 1  ) t  K 0  X ( , t 1 )  e a ( t 1  ) t  K 1  X ( , t 1 )  e ; ( 2 )  X ( , t 1 )  e a ( t 1  )  a (  h  t 1 )  b (  h  t 1 ) e ;  e a ( t 1  )  b ( t 1  [  h ] ) e  (3 )  X ( , t 1 )  e a ( t 1  )   be a ( t 1  [  h ]) ds  e a ( t 1  )  b ( t 1  [  h ] ) e a ( t 1  [  h ] ) a ( t 1  [  h ] ) t1h   K 2  X ( , t 1 )  e t 2 a ( t 1  )   b i 1  [  ih ]    v1  X ( , t 1 )  e t 2   i b 1 a ( t 1  )   av t  [  ih ]  e   a t 1  [   ih ]  a t 1    h     b  t 1    h   e  e be 0 1 e  c  t 1    2 h   e a ( t 1  ) A0 ( s 1  h  s 2 ) b  a t 1    2 h   be A0 ( s 2  )  d s 1d s2   e a ( t 1  2 h  s3 ) ce a ( s3  ) d s3 t1  2 h  a t 1    h     b  t 1    h   e   t 2   t12h t1h  X ( , t 1 )  e  a t 1  [  ( 0  2 ) h ] i i! A0 ( t 1  h  s 1 )  ( 0  1) ! 1 s2  h    [  ( 0  2 ) h ] 1  P 1 ( 0 ) , 2 (1 ) i 1 ( 4 )  X ( , t 1 )  e  a t 1  [   ih ] e i! i 1 a ( t 1  ) i    h     1   c  t 1    2 h   e    t 1    2 h   2 e  a t 1    2 h     2  X ( , t 1 )  e a ( t 1  ) 2   b i t     ih   1  a t 1    ih    e  i! i 1   K 3  X ( , t 1 )  e i a ( t 1  ) j   b i t 1  [  ih ]   c  t 1    2 h   e i  a t 1  [   ih ] e t 1   i  0 ( v 1 ,v  X ( , t 1 )  e a ( t 1  ) j   b i 2 t , , v 1  i! i 1   t 1    2 h   av av  av 1 2 1  [  ( i  2 ) h ] i 1 ( i  1) ! i 1 )  P 1 ( i ) , 2 ( 1 )  [  ih ]    bc  cb  t 1 i 1 e  a t 1  [  ( i  2 ) h ]  i e a t 1  [   ih ]     i! i 1   [  3 h ]  c  t 1  [  2 h ]  e  a t 1  [  2 h ]  2 e a t 1  [  3 h ]  2! (5 )  X ( , t 1 )  e a ( t 1  ) 2   b i t 1     ih   t 1    2 h     e  a t 1    ih   i! i 1  c  t 1    2 h   e i s3  h s2  h    t13h t1 2h e A0 ( t 1  h  s 1 ) be a(s1hs 2 ) be a(s 2  h  s3 ) be a ( s3  ) d s 1d s 2 d s3 t1h www.ijmsi.org 14 | P a g e
  • 5. Derivation of an optimal expression for control index matrices…    e a ( t 1  2 h  s3 )  a ( s3  ) ce t1  2 h  t13h    a ( s1  2 h  s 3 ) e be a ( t 1  h  s1 ) ce a ( s3  ) d s1 d s 3 s3  2 h t1  2 h t13h   d s3  t1  h s3  h e a ( s2  s3  h ) a ( t 1  2 h  s2 ) 3 a ( t 1  )  X ( , t 1 )  e ce   b i t 1 A0 ( s 3   ) be d s2 d s3     ih   i e  a t 1    ih    c  t 1    2 h   e i! i 1   bc  cb  t  [  3 h ] 1  t 1    2 h   2  a t 1  [  3 h ] e  , 2! n e e d le s s to s a y :  bc  cb  t 1  [  3 h ]  2 e  a t 1  [  3 h ]    b c t 1  [  3 h ] 2!  2 e  a t 1  [  3 h ]  Therefore the theorem has been be verified for j  {0 ,1, 2 , 3} . Assume that the theorem is valid for   K p , 4  p  j,  , s j 1  K for some integers  t 1  [ j  1] h  K j , j 1 p an d j. Then s j 1  h  K a n d s j 1  2 h  K j j 1 . Hence:   X ( , t 1 )  X ( t 1  [ j  1] h , t 1 ) e a ( t 1 [ j 1] h  )   X ( s j  1  h , t1 ) b e a(s j 1  ) ds j t 1  [ j 1]h    X ( s j  1  2 h , t1 ) c e a(s j 1  ) d s j 1 (1 0 ) t 1 [ j 1]h  e  a t 1   j   b i  [ j  1  i ]h  i0  a t 1    ih   (1 1) j2k k 1  e i! i 1  j     2  i    ( v 1 , v 2 , , v i k av av  av 1 )  P 1 ( i ),  b  t 1     ( j  1) h   e  j   b i 1 t 1   t 1  ( j 1) h  j   2  j2k     k 1 i0  ( v 1 ,v 2 av av  av 1 2 ik (1 2 ) (i  k ) ! i k  [ s j  1  ( i  1) h ]  i e  a t 1  [  ( i  1 ) h ] i! t 1  ( j 1) h i 1  j  1  i  2 k ]h  2(k ) t a ( t 1  ) 2 [ t 1  [ s j 1  (i  1  2 k ) h ] i k , , v i  k )  P 1( i ) , 2 ( k ) www.ijmsi.org (i  k ) !   d s j 1 (1 3 ) ik be  a t 1  [  ( i  1  2 k ) h ]  d s j  1 (1 4 ) 15 | P a g e
  • 6. Derivation of an optimal expression for control index matrices…   c  t 1     ( j  1) h   e a ( t 1  )    t j i b c 1  [ s j 1  ( i  2 ) h ]    j 1    2  j2 k       k 1 t 1  ( j 1) h  i0 ( v 1 ,v 2 av av  av 1  a t 1  [  ( i  2 ) h ] e  i! t 1  ( j 1) h i 1  i 2 t  [ s j 1  (i  2  2 k ) h ] 1  , , v i  k )  P 1(i ) , 2 ( k ) (1 5 ) ik ce (i  k ) ! i k d s j 1  a t 1  [  ( i  2  2 k ) h ]  d s j  1 (1 6 ) The expression (13) yields: b  t 1     ( j  1) h   e j 1 a ( t 1  )   i b t 1  [  ih ]  i e  a t 1  [   ih ] j1    i! i2 [ i b j  1  i ]h  i e  a t 1  [   ih ]  (1 7 ) i! i2 The expression (14) yields:  j     2  j 2 k   k 1 i0    k 1 1 ( v 1 , v 2 , , v i  k )  P  j   2  j2k    av av  av i0 2 1  [  ( i  2 k ) h ]  ik be (i  k ) ! i k  a t 1  [  ( i  2 k ) h ]  (1 8 ) 1 ( i 1 ) , 2 ( k )  ( v 1 ,v 2 t av av  av 1 2 [ j  1  i  2 k ]h ]  ik be (i  k ) ! i k , , v i  k )  P 1 ( i 1 ) , 2 ( k )  a t 1  [  ( i  2 k ) h ]  (1 9 ) since the summations with i = 0 are infeasible and so may be equated to zero, yielding:  j     2  j 2 k   k 1 i0  Av Av  Av 1 ( v 1 , v 2 , , v i  k )  P 2 t 1  [  ( i  2 k ) h ]  ik e (i  k ) ! i k  a t 1  [  ( i  2 k ) h ]  , (20) 1( i ) , 2 ( k ) ( w ith a tr a ilin g a 2  c )  j     2  j 2 k    k 1 i0  ( v 1 , v 2 , , v i  k )  P av av  av 1 2 [ j  1  i  2 k ]h  ik e (i  k ) ! i k  a t 1  [  ( i  2 k ) h ]  , ( 2 1) 1( i ) , 2 ( k ) w ith a tr a ilin g a 2  c The expression (15) yields: c  t 1     ( j  1) h   e a ( t 1  ) j 1   i b c t 1  [  ( i  2 ) h ]    e ( i  1) ! i 1 j 1 i 1 b c  [ j  1  i ]h  i i 1 ( i  1) ! i 1 e  a t 1  [  ( i  2 ) h ]  a t 1  [  ( i  2 ) h ]   (22) The expression (16) yields:   j 1     2   j 1 2 k     k2 i0  ( v 1 ,v 2 , , v i  k )  P 1( i ) , 2 ( k ) av av  av 1 2 t i k 1  [  ( i  2 k ) h ] (i  k ) !  ik e  a t 1  [  ( i  2 k ) h ]  (2 3 ) (w ith a tra ilin g a 2  c ) www.ijmsi.org 16 | P a g e
  • 7. Derivation of an optimal expression for control index matrices…   j 1       2   j 1 2 k   k2  i0  ( v 1 ,v 2 [ av av  av 1 j  1  i  2 k ]h  , , v i  k )  P 1(i ) , 2 ( k )  a t 1  [  ( i  2 k ) h ] e (i  k ) ! i k 2 ik  (2 4 ) ( w ith a tr a ilin g a 2  c )   j 1       2   j 1 2 k   k 1   i0 av av  av 1 ( v 1 , v 2 , , v i  k )  P 2 t 1  [  ( i  2 k ) h ]  ik e (i  k ) ! i k  a t 1  [  ( i  2 k ) h ]  (2 5 ) 1( i ) , 2 ( k ) (w ith a tra ilin g a 2  c ) j 1   i b c t  [  ( i  2 ) h ]  1  a t 1  [  ( i  2 ) h ] [ j 1 2 k   k 1  e ( i  1) ! i0   j 1      2  i 1  i0 ( v 1 , v 2 , , v i k av av  av 1 )  P 1 ( i ), 2  (26) ik j  1  i  2 k ]h  e (i  k ) ! i k 2(k )  a t 1  [  ( i  2 k ) h ]  (27) ( w ith a tr a ilin g a 2  c ) j 1   i b c  [ j  1  i ]h  i 1 e ( i  1) ! i0  a t 1  [  ( i  2 k ) h ]  (2 8 ) Therefore: Y ( t )  (1 1)  (1 2 )  (1 7 )  ( 2 0 )  ( 2 1)  ( 2 2 )  ( 2 5 )  ( 2 6 )  ( 2 7 )  ( 2 8 )  ( 2 9 )  ( 3 0 )    ( 3 8 )  e  a t 1   j   i b [ j  1  i ]h    e  i0  ( v 1 , v 2 , , v b  t 1     ( j  1) h   e i k av av  av 1 )  P 1 ( i ), a ( t 1  )  b i t 1  k 1 i0  ( v 1 , v 2 , , v i k  i e  a t 1  [   ih ]  j1  i! av av  av 1 )  P 1 ( i ), 2 k ]h  2 ik e (i  k ) ! i j  [  ih ]  b i  a t 1  [  ( i  2 k ) h ]  [ j  1  i ]h  1  [  ( i  2 k ) h ]  i k 2(k ) (i  k ) ! i e  (3 0 )  a t 1  [   ih ]  (3 1) i! i 2 t j 1 2 k  (29) 2(k) j 1  2 i 2   [ j  1  i  j 1 2 k j 1   j 1      2   a t 1    ih    i! i 1   j 1      2  i ik e  a t 1  [  ( i  2 k ) h ]  (3 2 ) ( w ith a le a d in g a 1  b )    j   j   j   j  1  1 a n d th e f a c t th a t   n o tin g th a t k e v e n           ; j o d d           2   2   2   2    www.ijmsi.org 17 | P a g e
  • 8. Derivation of an optimal expression for control index matrices…    j  1  j  1  2k  0   j odd, k      2      j 1      2    k 1 i0  ( v 1 , v 2 , , v  w ith a le a d in g i k av av  av 1 )  P 1 ( i ), a1  b  c  t 1     ( j  1) h   e 2 t j 1 a ( t 1  )   i b c 1  [  ( i  2 ) h ]   b c  [ j  1  i ]h  i  i0 ( v 1 , v 2 , , v ( w ith a le a d in g a j 1   i b c i0   j 1      2   2 i k av av  av 1 )  P 1 ( i ), 2 e  a t 1  [  ( i  2 ) h ]  a t 1  [  ( i  2 ) h ] 2 j ]h  (i  k ) ! i k 2(k )  t  [i  2 ]h  i 1 ( i  1) !  i0  a t 1  [  ( i  2 k ) h ]  (3 3 ) ik e   (3 4 )  a t 1  [  ( i  2 k ) h ]  (3 5 )  c)  j 1 e  t  [i  e  a t 1  [  ( i  2 ) h ] ( v 1 , v 2 , , v i k av av  av 1 )  P 1 ( i ), 2  (3 6 ) [ j 1 2 k  i 1 ( i  1) ! j 1 2 k k 1 e i 1 ( i  1) ! i 1  ik   (.) is a p p ro p ria te .       2 k ]h  (i  k ) ! i k 2(k) j 1  k 1 [ j  1  i  i 1   j 1      2   (.)  0 , b e in g in fe a s ib le. S o i0 j 1 2 k     j 1      2  j 1 2 k j  1  i  2 k ]h  i k 2(k ) (i  k ) ! ik e  a t 1  [  ( i  2 k ) h ]  (3 7 ) ( w ith a le a d in g a 2  c ) j 1   i b c [ j  1  i ]h  i0 ( i  1) ! i 1 e  a t 1  [  ( i  2 ) h ]  (3 8 ) (29)+(31) yields: www.ijmsi.org 18 | P a g e
  • 9. Derivation of an optimal expression for control index matrices… e a ( t 1  ) j 1   i b t 1  [  ih ]  i e  a t 1  [   ih ]  (3 9 ) i! i 1 (32) + (35)   j 1      2    k 1 yields: t j 1 2 k i0  av av  av 1 ( v 1 , v 2 , , v i  k )  P 1 ( i ), 2 1  [  ( i  2 k ) h ]  (i  k ) ! i k 2(k ) Expressions (30) + (33) + (37) yield zero; the expressions cancel out. Expressions (34) + (34) + (38) yield zero; the expressions cancel out. Therefore, on K j  1 , X ( , t 1 ) reduces to X ( , t )  e x p re s s io n (3 9 )  1  X ( , t 1 )  e a ( t 1  ) j 1  b i t 1 for   K   i0 j 1  a t 1  [  ( i  2 k ) h ]  (40) e x p re s s io n (4 0 ) i e  a t 1  [   ih ]  t j 1 2 k k 1   e i! i 1   j 1      2   [  ih ] ik  ( v 1 , v 2 , , v i  k )  P 1 ( i ), av av  av 1 2 1  [  ( i  2 k ) h ]  i k 2(k ) (i  k ) ! ik e  a t 1  [  ( i  2 k ) h ]  ( 4 1) . This completes the proof of the theorem. 3.1 Corollary If A 0  a  0 , t h e n    1,   K 0 ;  i j  t 1  [  ih ]   i X ( , t 1 )   1   b i! i 1    j  ik     2  j 2 k  t 1  [  ( i  2 k ) h ]  i k ,   Kj, j1    b c i! k ! k 1 i  0  (42) (4 3) Proof T h e p ro o f is im m ed iate, n o tin g th at A 0  0  e III. a (.)  1. CONCLUSION This paper relied greatly on the optimal deployment of combinatorial analysis and change of variables technique, without which its development would be impossible. The paper has provided a sound basis for its extension to more general systems. Such extension must of necessity rely on multinomial distributions, the method of steps and backward continuation recursive procedure. www.ijmsi.org 19 | P a g e
  • 10. Derivation of an optimal expression for control index matrices… REFERENCES [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] Analytic function. (2010). Retrieved September 11, 2010 from http://en.wikipedia.org/wiki/Analytic_function. Chidume, C. (2007). Applicable Functional Analysis. The Abdus Salam, International Centre for Theoretical Physics, Trieste, Italy. Chukwu, E. N. (1992). Stability and Time-optimal control of hereditary systems. Academic Press, New York. Gabasov, R. and Kirillova, F. (1976). The qualitative theory of optimal processes. Marcel Dekker Inc., New York. Manitius, A. (1978). Control Theory and Topics in Functional Analysis. Vol. 3, Int. Atomic Energy Agency, Vienna. Tadmore, G. (1984). Functional differential equations of retarded and neutral types: Analytical solutions and piecewise continuous controls. J. Differential equations, Vol. 51, No. 2, Pp. 151-181. Ukwu, C. (1987). Compactness of cores of targets for linear delay systems., J. Math. Analy. and Appl., Vol. 125, No. 2, August 1. pp. 323-330. Ukwu, C. (1992). Euclidean Controllability and Cores of Euclidean Targets for Differential difference systems Master of Science Thesis in Applied Math. with O.R. (Unpublished), North Carolina State University, Raleigh, N. C. U.S.A. Ukwu, C. (1996). An exposition on Cores and Controllability of differential difference systems, ABACUS Vol. 24, No. 2, pp. 276-285. Ukwu, C. (2013a). On Determining Matrices, Controllability and Cores of Targets of Certain Classes of Autonomous Functional Differential Systems with Software Development and Implementation. Doctor of Philosophy Thesis, UNIJOS (In progress) Ukwu, C. (2013i). The structure of indices of control systems for a class of double – delay systems on the interval [t 1  4h, t ]. 1 (Manuscript). www.ijmsi.org 20 | P a g e