SlideShare ist ein Scribd-Unternehmen logo
1 von 9
Downloaden Sie, um offline zu lesen
SECTION 3.5

INVERSES OF MATRICES
The computational objective of this section is clearcut — to find the inverse of a given invertible
matrix. From a more general viewpoint, Theorem 7 on the properties of nonsingular matrices
summarizes most of the basic theory of this chapter.

In Problems 1-8 we first give the inverse matrix A −1 and then calculate the solution vector x.

                3 −2                    3 −2   5    3
1.      A −1 =       ;             x =         6  =  −2 
                −4 3                    −4 3         

                5 −7                    5 −7   −1    −26 
2.      A −1 =       ;             x =         3  =  11 
                −2 3                    −2 3             

                6 −7                    6 −7   2     33 
3.      A −1 =       ;             x =         −3 =  −28
                −5 6                    −5 6            

               17 −12                   17 −12  5    25 
4.      A −1 =        ;             x =         5 =  −10 
                −7 5                     −7 5            

                 1    4 −2                 1    4 −2   5  1  8 
5.      A −1 =        −5 3  ;       x =         −5 3  6  = 2  −7 
                 2                         2                  

                 1  6 −7                   1  6 −7  10  1  25 
        A −1 =                        x =                    =
                 3  −3 4                   3  −3 4   5  3  −10 
6.                          ;
                                                               

                 1    7 −9                 1    7 −9   3 1  3 
7.      A −1 =        −5 7  ;       x =         −5 7   2  = 4  −1
                 4                         4                   

                 1 10 −15                   1 10 −15 7  1  25 
        A −1 =                         x =                   =
                 5  −5 8                    5  −5 8   3 5  −11
8.                          ;
                                                              

In Problems 9-22 we give at least the first few steps in the reduction of the augmented matrix whose
right half is the identity matrix of appropriate size. We wind up with its echelon form, whose left
half is an identity matrix and whose right half is the desired inverse matrix.

        5 6 1 0          R1− R 2     1 1 1 −1          R 2− 4 R1   1 1 1 −1
9.      4 5 0 1           →         4 5 0 1              →         0 1 −4 5 
                                                                            
R1− R 2      1 0 5 −6                                5 −6 
          →           0 1 −4 5  ;               thus A −1 =       
                                                             −4 5 

      5 7 1 0           R1− R 2    1 1 1 −1               R 2− 4 R1   1 1 1 −1
10.   4 6 0 1            →         4 6 0 1                  →         0 2 −4 5 
                                                                               
        (1/ 2) R 2   1 1 1 −1                 R1− R 2   1 0 3 − 7                           1    6 −7 
          →          0 1 −2 5                  →        
                                                                     2
                                                                       ;       thus A −1 =          −4 5 
                            2                            0 1 −2 5 
                                                                   2                            2         

      1 5 1 1 0 0                 R 2− 2 R1
                                                  1 5 1 1 0 0 
11.   2 5 0 0 1 0                   →           0 −5 −2 −2 1 0 
                                                               
      2 7 1 0 0 1 
                                                2 7 1 0 0 1 
                                                                 

        R 3−2 R1
                      1 5 1 1 0 0                                   1 2 0 −1 0 1 
                                                            R1+ R3
           →          0 −5 −2 −2 1 0                       →        0 −5 −2 −2 1 0 
                                                                                     
                       0 −3 −1 − 2 0 1 
                                                                     0 −3 −1 − 2 0 1 
                                                                                       

        R 2− 2 R 3
                      1 2 0 −1 0 1                                      1 2 0 −1 0 1 
                                                              R 3+3 R 2
           →           0 1 0 2 1 −2                            →         0 1 0 2 1 −2 
                                                                                      
                      0 −3 −1 −2 0 1 
                                                                        0 0 −1 4 3 −5 
                                                                                        

        ( −1) R 3      R1−2 R 2
                                     1 0 0 −5 −2 5                                        − 5 −2 5 
          →             →           0 1 0 2 1 −2  ;                     thus A   −1
                                                                                         =  2 1 −2 
                                                                                                   
                                     0 0 1 −4 −3 5 
                                                                                          −4 −3 5 
                                                                                                     

      1 3 2 1 0 0                  R 2− 2 R1
                                                   1 3 2 1 0 0 
12.   2 8 3 0 1 0                    →           0 2 −1 −2 1 0 
                                                               
       3 10 6 0 0 1 
                                                  3 10 6 0 0 1 
                                                                 

        R 3−2 R1
                      1 3 2 1 0 0                                   1 3 2 1 0 0 
                                                          R 2− R 3
           →          0 2 −1 −2 1 0                       →         0 1 −1 1 1 −1
                                                                                  
                      0 1 0 −3 0 1 
                                                                     0 1 0 −3 0 1 
                                                                                    

                     1 3 2 1 0 0                         R1−3 R 2
                                                                          1 0 0 18 2 −7 
        R 3− R 2
          →          0 1 −1 1 1 −1                         →         → 0 1 0 −3 0 1  ;
                                                                                      
                     0 0 1 −4 −1 2 
                                                                        0 0 1 −4 −2 2 
                                                                                        

                       18 2 −7 
      thus A   −1
                     =  −3 0 1 
                                
                        −4 −1 2 
                                
2 7 3 1 0 0         SWAP ( R1, R 2)
                                              1 3 2 0 1 0 
13.   1 3 2 0 1 0              →            2 7 3 1 0 0
                                                        
      3 7 9 0 0 1 
                                            3 7 9 0 0 1 
                                                          

        R 2− 2 R1
                     1 3 2 0 1 0                          1 3 2 0 1 0 
                                               R 3−3 R1
          →           0 1 −1 1 −2 0            →           0 1 −1 1 −2 0 
                                                                         
                     3 7 9 0 0 1 
                                                          0 −2 3 0 −3 1 
                                                                           

                         1 0 0 −13 42 −5                                          −13 42 −5 
        R 3+ 2 R 2
          →           →  0 1 0 3 −9 1  ;
                                                              thus A      −1
                                                                                 =  3 −9 1 
                                                                                              
                         0 0 1 2 −7 1 
                                                                                  2 −7 1 
                                                                                              


      3 5 6 1 0 0                     1 1 3 1 −1 0 
                            R1− R 2
14.   2 4 3 0 1 0          →         2 4 3 0 1 0
                                                   
      2 3 5 0 0 1 
                                     2 3 5 0 0 1 
                                                     

                      1 1 3 1 −1 0                         1 1 3 1 −1 0 
        R 2− R 3                               R 3− 2 R1
          →           0 1 −2 0 1 −1            →          0 1 −2 0 1 −1
                                                                         
                     2 3 5 0 0 1 
                                                           0 1 −1 −2 2 1 
                                                                           

                         1 0 0 11 −7 −9                                       11 −7 −9 
        R 3− R 2
          →           →  0 1 0 −4 3 3  ;
                                                            thus A   −1
                                                                             =  −4 3 3 
                                                                                         
                          0 0 1 −2 1
                                     2                                       −2 1
                                                                                       2


      1 1 5 1 0 0                    1 1 5 1 0 0 
                             R 2− R1
15.   1 4 13 0 1 0          →         0 3 8 −1 1 0 
                                                   
      3 2 12 0 0 1 
                                     3 2 12 0 0 1 
                                                     

        R 3−3 R1
                     1 1 5 1 0 0                          1 1 5 1 0 0 
                                               R 2+ 2 R 3
          →           0 3 8 −1 1 0              →         0 1 2 −7 1 2 
                                                                         
                     0 −1 −3 −3 0 1 
                                                          0 −1 −3 −3 0 1 
                                                                           

                         1 0 0 −22 2 7                                            −22 2 7 
        R 3+ R 2
          →           → 0 1 0 −27 3 8  ;
                                                             thus A   −1
                                                                                 =  −27 3 8 
                                                                                            
                         0 0 1 10 −1 −3
                                                                                  10 −1 −3
                                                                                            
 1 −3 −3 1 0 0            R 2+ R1
                                             1 −3 −3 1 0 0 
16.    −1 1 2 0 1 0              →          0 −2 −1 1 1 0 
                                                          
       2 −3 −3 0 0 1 
                                            2 −3 −3 0 0 1 
                                                            

        R 3−2 R1
                       1 −3 −3 1 0 0                        1 −3 −3 1 0 0 
                                                R 2+ R 3
           →          0 −2 −1 1 1 0               →          0 1 2 −1 1 1 
                                                                          
                      0 3 3 −2 0 1 
                                                            0 3 3 −2 0 1 
                                                                            

        R 3−3 R 2
                       1 −3 − 3 1 0 0             ( −1/3( R 3)
                                                                    1 −3 − 3 1 0 0 
                      0 1 2 −1 1 1                                               
           →                                          →           0 1 2 −1 1 1 
                       0 0 −3 1 −3 −2 
                                                                 0 0 1 − 1 1 3 
                                                                              3
                                                                                  2
                                                                                    

        R1+3 R 2
                          1 0 0 −1 0 1                                         −3 0 3 
                                                                           =  −1 −3 −1
                                                                              1
          →           →  0 1 0 − 1 −1 − 1  ;
                                   3      3                    thus A   −1
                                                                                         
                                                                              3
                         0 0 1 − 1 1
                                  3
                                         2 
                                         3 
                                                                                 −1 3 2 
                                                                                        

       1 −3 0 1 0 0                         1 −3 0 1 0 0 
                                  R 2+ R1
                                 →          0 −1 −1 1 1 0 
17.    −1 2 −1 0 1 0                                      
       0 −2 2 0 0 1 
                                            0 −2 2 0 0 1 
                                                            

        ( −1) R 2
                      1 −3 0 1 0 0           R 3+ 2 R 2
                                                               1 −3 0 1 0 0
          →          0 1 1 −1 −1 0             →            0 1 1 −1 −1 0 
                                                                          
                     0 −2 2 0 0 1 
                                                            0 0 4 −2 −2 1 
                                                                            

        (1/ 4) R 3
                         1 0 0 − 1
                                  2            −2
                                                3
                                                      − 4
                                                        3
                                                                                      −2 −6 −3
                      → 0 1 0 − 1                   − 1;
                                                                                   1          
          →                      2            −1
                                                2       4         thus A    −1
                                                                                  =  −2 −2 −1
                                                                                   4
                         0 0 1 − 2
                         
                                  1
                                               −2
                                                1      1 
                                                       4 
                                                                                      −2 −2 1 
                                                                                              


      1 −2 2 1 0 0           R 2−3 R1
                                             1 −2 2 1 0 0 
                               →           0 6 −5 −3 1 0 
18.   3 0 1 0 1 0                                        
      1 −1 2 0 0 1 
                                           1 −1 2 0 0 1 
                                                           

                      1 −2 2 1 0 0           R 2−5 R 3
                                                               1 −2 2 1 0 0 
        R 3− R1
          →          0 6 −5 −3 1 0             →            0 1 −5 2 1 −5
                                                                          
                     0 1 0 −1 0 1 
                                                            0 1 0 −1 0 1 
                                                                            

                      1 −2 2 1 0 0                              1 0 0 1    2
                                                                                              − 5
                                                                                                2
        R 3− R 2                                                          5   5
                     0 1 −5 2 1 −5
                                                  (1/5) R 3
                                                                                              1 ;
          →                                       →          → 0 1 0 −1 0                     
                      0 0 5 −3 −1 6 
                                                                0 0 1 − 3 − 1
                                                                           5   5
                                                                                               6 
                                                                                               5 
 1 2 −2 
                    =  −5 0 5  .
               −1    1
      thus A                     
                     5
                        −3 −1 6 
                                


      1 4 3 1 0 0                        1 4 3 1 0 0
                                R 2− R1
19.   1 4 5 0 1 0              →          0 0 2 −1 1 0 
                                                       
      2 5 1 0 0 1 
                                         2 5 1 0 0 1 
                                                         

         SWAP ( R 2, R 3)
                            1 4 3 1 0 0            R 2− 2 R1
                                                                   1 4 3 1 0 0 
               →            2 5 1 0 0 1                  →       0 −3 −5 −2 0 1 
                                                                                
                             0 0 2 −1 1 0 
                                                                  0 0 2 −1 1 0 
                                                                                  

         ( −1/3) R 2
                       1 4 3 1 0 0                               1 0 0 − 72
                                                                                     11
                                                                                      6
                                                                                              4
                                                                                              3
                                                                                            − ;
                                                (1/ 2) R 3
            →          0 1 5 2 0 − 1             →            → 0 1 0 23
                                                                                 −      5         1
                            3  3    3                                                 6        3
                        0 0 2 −1 1 0 
                                                                 0 0 1 − 1
                                                                            2
                                                                                      1
                                                                                      2       0
                                                                                               

                        −21 11 8 
                    =  9 −5 −2 
               −1    1
      thus A                      
                     6
                        −3 3 0 
                                 


       2 0 −1 1 0 0                      1 0 −4 1 −1 0 
                                 R1− R 2
20.   1 0 3 0 1 0                →       1 0 3 0 1 0 
                                                       
      1 1 1 0 0 1 
                                         1 1 1 0 0 1 
                                                         

                     1 0 −4 1 −1 0                                1 0 −4 1 −1 0 
         R 3− R1                                SWAP ( R 2, R 3)
          →         1 0 3 0 1 0                     →             0 1 5 −1 1 1 
                                                                                
                    0 1 5 −1 1 0 
                                                                 1 0 3 0 1 0 
                                                                                  

                     1 0 −4 1 − 1 0                            1 0 0 73       1
                                                                                            0
         R 3− R1                                                                 7
                                    
                                               (1/7) R 3
                                                                                            
          →         0 1 5 −1 1 1               →            → 0 1 0 − 72
                                                                                 −   3
                                                                                     7      1 ;
                    0 0 7 −1 2 0 
                                                               0 0 1 − 1
                                                                          7
                                                                                 2
                                                                                 7          0
                                                                                             

                        3 1 0
                    =  −2 −3 7 
                     1
      thus A −1                 
                     7
                        −1 2 0 
                               
0    0    1      0     1    0       0       0                              1    0     0    0    0       1       0       0
        1    0    0      0     0    1       0       0          SWAP ( R1, R 2)     0    0     1    0    1       0       0       0
21.                                                                  →                                                           
        0    1    2      0     0    0       1       0                              0    1     2    0    0       0       1       0
                                                                                                                                 
        3    0    0      1     0    0       0       1                              3    0     0    1    0       0       0       1

                                    1       0       0       0     0    1      0     0               1       0       0       0    0 1      0   0
             SWAP ( R 2, R 3)       0       1       2       0     0    0      1     0   R 4 −3 R1   0       1       2       0    0 0      1   0
                   →                                                                        →                                                  
                                    0       0       1       0     1    0      0     0               0       0       1       0    1 0      0   0
                                                                                                                                               
                                    3       0       0       1     0    0      0     1               0       0       0       1    0 −3     0   1

                          1    0        0       0 0 1                     0    0                           0 1                   0   0
             R 2− 2 R 3   0    1        0       0 −2 0                    1    0                            −2 0                 1   0
               →                                                                ;       thus A −1        =                            
                          0    0        1       0 1 0                     0    0                           1 0                   0   0
                                                                                                                                      
                          0    0        0       1 0 −3                    0    1                            0 −3                 0   1


        4    0     1     1     1    0       0       0                        1 −1 −2           0   1 −1             0       0
        3    1     3     1     0    1       0       0          R1− R 2       3 1 3             1   0 1              0       0
22.                                                             →                                                            
        0    1     2     0     0    0       1       0                        0 1 2             0   0 0              1       0
                                                                                                                             
        3    2     4     1     0    0       0       1                        3 2 4             1   0 0              0       1

                    1 −1 −2                 0 1 −1                        0    0                1 −1 −2                 0 1 −1            0   0
        R 2−3 R1    0 4 9                   1 −3 4                        0    0    R 4−3 R1    0 4 9                   1 −3 4            0   0
          →                                                                             →                                                      
                    0 1 2                   0 0 0                         1    0                0 1 2                   0 0 0             1   0
                                                                                                                                               
                    3 2 4                   1 0 0                         0    1                 0 5 10                 1 −3 3            0   1

                   1 −1 −2                  0 1 −1 0                           0               1 −1 −2 0 1 −1 0                                0
        R 2−3 R3   0 1 3                    1 −3 4 −3                          0    R3− R 2    0 1 3 1 −3 4 −3                                 0
          →                                                                             →                                                       
                   0 1 2                    0 0 0 1                            0               0 0 −1 −1 3 −4 4                                0
                                                                                                                                                
                   0 5 10                   1 −3 3 0                           1               0 5 10 1 −3 3 0                                 1

                              1                 0       0       0 1 −1 1 0               1 −1 1 0 
             R 4−5 R 2        0                 1       0                   
                                                                 0 0 −2 −1 2              0 −2 −1 2 
               →           →                                                 ; thus A = 
                                                                                       −1             
                              0                 0       1       0 0 1 1 −1               0 1 1 −1
                                                                                                   
                              0                 0       0       1 −3 3 −5 1              −3 3 −5 1 

In Problems 23-28 we first give the inverse matrix A −1 and then calculate the solution matrix X.

                4 −3                            4 −3  1 3 −5       7 18 −35
23.     A −1 =       ;                     X =         −1 −2 5  =  −9 −23 45 
                −5 4                            −5 4                         
 7 −6                     7 −6   2 0 4    14 −30 46 
24.   A −1 =       ;              X =        0 5 −3 =  −16 35 −53
              −8 7                     −8 7                      

                  11 −9 4                    11 −9 4   1 0 3    7 −14 15 
25.   A   −1
               =  −2 2 −1 ;
                          
                                               −2 2 −1  0 2 2  =  −1 3 −2 
                                          X =                              
                  −2 1 0 
                                             −2 1 0   −1 1 0 
                                                                  −2 2 −4 
                                                                               

                  −16 3 11                     −16 3 11   2 0 1    −21 9 6 
26.   A   −1
               =  6 −1 −4  ;
                           
                                                 6 −1 −4   0 3 0  =  8 −3 −2
                                            X =                              
                  −13 2 9 
                                               −13 2 9  1 0 2 
                                                                     −17 6 5 
                                                                                 

                  7 −20 17        7 −20 17  0 0 1 1    17 −20 24 −13
27.   A   −1     0
               =     −1 1 ; X =  0         0 1 0 1  =  1
                                        −1 1                    −1 1   −1 
                                                                         
                  −2 6 −5 
                                  −2 6 −5   1 0 1 0 
                                                          −5 6 −7 4 
                                                                           

          −5 5   10         −5 5   10   2 1 0 2   −5 5    10  1 
28.       −8 8
      A =−1          ; X =  −8 8
                  15                      −1 3 5 0  =  −8 8
                                      15                       15  7 
                                                                    
          24 −23 −45
                            24 −23 −45  1 1 0 5   24 −23 −45 −13
                                                                  

29.   (a)    The fact that A–1 is the inverse of A means that AA −1 = A −1A = I. That is, that
      when A–1 is multiplied either on the right or on the left by A, the result is the identity
      matrix I. By the same token, this means that A is the inverse of A–1.
      (b)        A n ( A −1 ) n = A n −1 ⋅ AA −1 ⋅ ( A −1 ) n −1 = A n −1 ⋅ I ⋅ ( A −1 ) n −1 =  = I. Similarly,
      ( A −1 )n A n = I , so it follows that ( A −1 ) n is the inverse of A n .

30.   ABC ⋅ C−1B −1A −1 = AB ⋅ I ⋅ B −1A −1 = A ⋅ I ⋅ A −1 = I, and we see is a similar way that
      C−1B −1A −1 ⋅ ABC = I.

31.   Let p = − r  0, q = − s  0, and B = A −1. Then

                           A r A s = A − p A − q = ( A −1 ) p ( A −1 ) q
                                   = B pBq = B p+q             (because p, q  0)
                                   = ( A −1 ) p + q = A − p − q = A r + s

      as desired, and ( A r )s = ( A − p ) − q = (B p ) − q = B − pq = A pq = A rs similarly.

32.   Multiplication of AB = AC on the left by A–1 yields B = C.
33.   In particular, Ae j = e j where e j denotes the jth column vector of the identity matrix I.
      Hence it follows from Fact 2 that AI = I, and therefore A = I–1 = I.

34.   The invertibility of a diagonal matrix with nonzero diagonal elements follows immediately
      from the rule for multiplying diagonal matrices (Problem 27 in Section 3.4). The inverse of
      such a diagonal matrix is gotten simply by inverting each diagonal element.

35.   If the jth column of A is all zeros and B is any n × n matrix, then the jth column of BA is
      all zeros, so BA ≠ I. Hence A has no inverse matrix. Similarly, if the ith row of A is all
      zeros, then so is the ith row of AB.

36.   If ad – bc = 0, then it follows easily that one row of A is a multiple of the other. Hence the
                                                    * * 
      reduced echelon form of A is of the form            rather than the 2 × 2 identity matrix.
                                                    0 0 
      Therefore A is not invertible.

37.   Direct multiplication shows that AA −1 = A −1A = I.

           3 0   a b   3a 3b 
38.   EA =      c d  =  c d 
           0 1               

           1 0 0   a11       a12   a13     a11              a12         a13 
39.   EA = 0 1 0   a21
                             a22        =  a
                                      a23          21          a22         a23   
            2 0 1   a31
                             a32   a33 
                                              a31 + 2a11
                                                             a32 + a12   a33 + a13 
                                                                                    

           0 1 0   a11       a12   a13     a21   a22    a23 
40.   EA = 1 0 0   a21
                             a22        = a
                                      a23     11    a12    a13 
                                                                 
           0 0 1   a31
                             a32   a33 
                                              a31
                                                     a32    a33 
                                                                 

41.   This follows immediately from the fact that the ijth element of AB is the product of the ith
      row of A and the jth column of B.

42.   Let ei denote the ith row of I. Then ei B = B i , the ith row of B. Hence the result in
      Problem 41 yields

                            e1    e1B      B1 
                           e     e B      B 
                      IB =   B = 
                                      2 
                              2
                                            =  2  = B.
                                          
                                           
                           e m 
                                 e m B 
                                            B m 
                                               
43.   Let E1 , E2 ,  , Ek be the elementary matrices corresponding to the elementary row
      operations that reduce A to B. Then Theorem 5 gives B = Ek Ek −1  E2 E1A = GA where
      G = E k E k −1  E2 E1.

44.   This follows immediately from the result in Problem 43, because an invertible matrix is
      row-equivalent to the identity matrix.

45.   One can simply photocopy the portion of the proof of Theorem 7 that follows Equation (20).
      Starting only with the assumption that A and B are square matrices with AB = I, it is
      proved there that A and B are then invertible.

46.   If C = AB is invertible, so C–1 exists, then A(BC−1 ) = I and (C−1 A)B = I. Hence the
      fact that A and B are invertible follows immediately from Problem 45.

Weitere ähnliche Inhalte

Ähnlich wie Sect3 5

Determinants, Properties and IMT
Determinants, Properties and IMTDeterminants, Properties and IMT
Determinants, Properties and IMTPrasanth George
 
Tutorial 8 mth 3201
Tutorial 8 mth 3201Tutorial 8 mth 3201
Tutorial 8 mth 3201Drradz Maths
 
Systems of Linear Equations, RREF
Systems of Linear Equations, RREFSystems of Linear Equations, RREF
Systems of Linear Equations, RREFPrasanth George
 
solucionario de purcell 0
solucionario de purcell 0solucionario de purcell 0
solucionario de purcell 0José Encalada
 
001 matrices and_determinants
001 matrices and_determinants001 matrices and_determinants
001 matrices and_determinantsphysics101
 
Molecular mapping of an ATP insensitive Arabidopsis thaliana mutant
Molecular mapping of an ATP insensitive Arabidopsis thaliana mutantMolecular mapping of an ATP insensitive Arabidopsis thaliana mutant
Molecular mapping of an ATP insensitive Arabidopsis thaliana mutantBlake Stephens
 
College Algebra Chapters 1 and 2
College Algebra Chapters 1 and 2College Algebra Chapters 1 and 2
College Algebra Chapters 1 and 2jeanperryshields
 
Graph functions
Graph functionsGraph functions
Graph functionsdaisy_yani
 
Tutorial 5 mth 3201
Tutorial 5 mth 3201Tutorial 5 mth 3201
Tutorial 5 mth 3201Drradz Maths
 
Lesson 18: Geometric Representations of Functions
Lesson 18: Geometric Representations of FunctionsLesson 18: Geometric Representations of Functions
Lesson 18: Geometric Representations of FunctionsMatthew Leingang
 
Sheda esercizi n1 calcolo del dominio
Sheda esercizi n1   calcolo del dominioSheda esercizi n1   calcolo del dominio
Sheda esercizi n1 calcolo del dominioESmargiassi
 

Ähnlich wie Sect3 5 (20)

Sect3 3
Sect3 3Sect3 3
Sect3 3
 
0909 ch 9 day 9
0909 ch 9 day 90909 ch 9 day 9
0909 ch 9 day 9
 
Determinants, Properties and IMT
Determinants, Properties and IMTDeterminants, Properties and IMT
Determinants, Properties and IMT
 
Tutorial 8 mth 3201
Tutorial 8 mth 3201Tutorial 8 mth 3201
Tutorial 8 mth 3201
 
Matrix opt
Matrix optMatrix opt
Matrix opt
 
Systems of Linear Equations, RREF
Systems of Linear Equations, RREFSystems of Linear Equations, RREF
Systems of Linear Equations, RREF
 
Sol00
Sol00Sol00
Sol00
 
solucionario de purcell 0
solucionario de purcell 0solucionario de purcell 0
solucionario de purcell 0
 
001 matrices and_determinants
001 matrices and_determinants001 matrices and_determinants
001 matrices and_determinants
 
Echelon or not
Echelon or notEchelon or not
Echelon or not
 
Molecular mapping of an ATP insensitive Arabidopsis thaliana mutant
Molecular mapping of an ATP insensitive Arabidopsis thaliana mutantMolecular mapping of an ATP insensitive Arabidopsis thaliana mutant
Molecular mapping of an ATP insensitive Arabidopsis thaliana mutant
 
College Algebra Chapters 1 and 2
College Algebra Chapters 1 and 2College Algebra Chapters 1 and 2
College Algebra Chapters 1 and 2
 
Math11
Math11Math11
Math11
 
Graph functions
Graph functionsGraph functions
Graph functions
 
Matrix Inverse, IMT
Matrix Inverse, IMTMatrix Inverse, IMT
Matrix Inverse, IMT
 
Tutorial 5 mth 3201
Tutorial 5 mth 3201Tutorial 5 mth 3201
Tutorial 5 mth 3201
 
Maximum and minimum
Maximum and minimumMaximum and minimum
Maximum and minimum
 
Lesson 18: Geometric Representations of Functions
Lesson 18: Geometric Representations of FunctionsLesson 18: Geometric Representations of Functions
Lesson 18: Geometric Representations of Functions
 
IMT, col space again
IMT, col space againIMT, col space again
IMT, col space again
 
Sheda esercizi n1 calcolo del dominio
Sheda esercizi n1   calcolo del dominioSheda esercizi n1   calcolo del dominio
Sheda esercizi n1 calcolo del dominio
 

Mehr von inKFUPM (20)

Tb10
Tb10Tb10
Tb10
 
Tb18
Tb18Tb18
Tb18
 
Tb14
Tb14Tb14
Tb14
 
Tb13
Tb13Tb13
Tb13
 
Tb17
Tb17Tb17
Tb17
 
Tb16
Tb16Tb16
Tb16
 
Tb15
Tb15Tb15
Tb15
 
Tb12
Tb12Tb12
Tb12
 
Tb11
Tb11Tb11
Tb11
 
Tb09
Tb09Tb09
Tb09
 
Tb05
Tb05Tb05
Tb05
 
Tb07
Tb07Tb07
Tb07
 
Tb04
Tb04Tb04
Tb04
 
Tb02
Tb02Tb02
Tb02
 
Tb03
Tb03Tb03
Tb03
 
Tb06
Tb06Tb06
Tb06
 
Tb01
Tb01Tb01
Tb01
 
Tb08
Tb08Tb08
Tb08
 
21221
2122121221
21221
 
Sect5 6
Sect5 6Sect5 6
Sect5 6
 

Kürzlich hochgeladen

Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxhariprasad279825
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfMounikaPolabathina
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rick Flair
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxBkGupta21
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 

Kürzlich hochgeladen (20)

Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptx
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdf
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptx
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 

Sect3 5

  • 1. SECTION 3.5 INVERSES OF MATRICES The computational objective of this section is clearcut — to find the inverse of a given invertible matrix. From a more general viewpoint, Theorem 7 on the properties of nonsingular matrices summarizes most of the basic theory of this chapter. In Problems 1-8 we first give the inverse matrix A −1 and then calculate the solution vector x.  3 −2   3 −2   5  3 1. A −1 =  ; x =    6  =  −2   −4 3   −4 3       5 −7   5 −7   −1  −26  2. A −1 =  ; x =    3  =  11   −2 3   −2 3       6 −7   6 −7   2   33  3. A −1 =  ; x =    −3 =  −28  −5 6   −5 6      17 −12  17 −12  5  25  4. A −1 =  ; x =   5 =  −10   −7 5   −7 5      1  4 −2  1  4 −2   5  1  8  5. A −1 =  −5 3  ; x =  −5 3  6  = 2  −7  2   2      1  6 −7  1  6 −7  10  1  25  A −1 = x = = 3  −3 4  3  −3 4   5  3  −10  6. ;        1  7 −9  1  7 −9   3 1  3  7. A −1 =  −5 7  ; x =  −5 7   2  = 4  −1 4   4      1 10 −15 1 10 −15 7  1  25  A −1 = x = = 5  −5 8  5  −5 8   3 5  −11 8. ;        In Problems 9-22 we give at least the first few steps in the reduction of the augmented matrix whose right half is the identity matrix of appropriate size. We wind up with its echelon form, whose left half is an identity matrix and whose right half is the desired inverse matrix. 5 6 1 0 R1− R 2  1 1 1 −1 R 2− 4 R1 1 1 1 −1 9. 4 5 0 1  → 4 5 0 1  → 0 1 −4 5       
  • 2. R1− R 2 1 0 5 −6   5 −6  →  0 1 −4 5  ; thus A −1 =      −4 5  5 7 1 0 R1− R 2 1 1 1 −1 R 2− 4 R1 1 1 1 −1 10. 4 6 0 1  → 4 6 0 1  → 0 2 −4 5        (1/ 2) R 2 1 1 1 −1 R1− R 2 1 0 3 − 7  1  6 −7  → 0 1 −2 5  →  2 ; thus A −1 =  −4 5   2   0 1 −2 5  2 2   1 5 1 1 0 0  R 2− 2 R1 1 5 1 1 0 0  11. 2 5 0 0 1 0 → 0 −5 −2 −2 1 0      2 7 1 0 0 1    2 7 1 0 0 1    R 3−2 R1 1 5 1 1 0 0  1 2 0 −1 0 1  R1+ R3 → 0 −5 −2 −2 1 0  → 0 −5 −2 −2 1 0       0 −3 −1 − 2 0 1     0 −3 −1 − 2 0 1    R 2− 2 R 3 1 2 0 −1 0 1  1 2 0 −1 0 1  R 3+3 R 2 →  0 1 0 2 1 −2  →  0 1 0 2 1 −2      0 −3 −1 −2 0 1    0 0 −1 4 3 −5    ( −1) R 3 R1−2 R 2  1 0 0 −5 −2 5   − 5 −2 5  → →  0 1 0 2 1 −2  ; thus A −1 =  2 1 −2       0 0 1 −4 −3 5     −4 −3 5    1 3 2 1 0 0  R 2− 2 R1 1 3 2 1 0 0  12. 2 8 3 0 1 0  → 0 2 −1 −2 1 0       3 10 6 0 0 1     3 10 6 0 0 1    R 3−2 R1 1 3 2 1 0 0  1 3 2 1 0 0  R 2− R 3 → 0 2 −1 −2 1 0  → 0 1 −1 1 1 −1     0 1 0 −3 0 1     0 1 0 −3 0 1    1 3 2 1 0 0  R1−3 R 2 1 0 0 18 2 −7  R 3− R 2 → 0 1 −1 1 1 −1 → → 0 1 0 −3 0 1  ;     0 0 1 −4 −1 2    0 0 1 −4 −2 2    18 2 −7  thus A −1 =  −3 0 1     −4 −1 2   
  • 3. 2 7 3 1 0 0 SWAP ( R1, R 2) 1 3 2 0 1 0  13. 1 3 2 0 1 0 → 2 7 3 1 0 0     3 7 9 0 0 1    3 7 9 0 0 1    R 2− 2 R1 1 3 2 0 1 0  1 3 2 0 1 0  R 3−3 R1 →  0 1 −1 1 −2 0  →  0 1 −1 1 −2 0      3 7 9 0 0 1    0 −2 3 0 −3 1    1 0 0 −13 42 −5  −13 42 −5  R 3+ 2 R 2 → →  0 1 0 3 −9 1  ;   thus A −1 =  3 −9 1    0 0 1 2 −7 1     2 −7 1    3 5 6 1 0 0   1 1 3 1 −1 0  R1− R 2 14. 2 4 3 0 1 0  → 2 4 3 0 1 0     2 3 5 0 0 1    2 3 5 0 0 1     1 1 3 1 −1 0   1 1 3 1 −1 0  R 2− R 3 R 3− 2 R1 →  0 1 −2 0 1 −1 → 0 1 −2 0 1 −1     2 3 5 0 0 1     0 1 −1 −2 2 1    1 0 0 11 −7 −9   11 −7 −9  R 3− R 2 → →  0 1 0 −4 3 3  ;   thus A −1 =  −4 3 3     0 0 1 −2 1  2   −2 1  2 1 1 5 1 0 0  1 1 5 1 0 0  R 2− R1 15. 1 4 13 0 1 0  →  0 3 8 −1 1 0      3 2 12 0 0 1    3 2 12 0 0 1    R 3−3 R1 1 1 5 1 0 0  1 1 5 1 0 0  R 2+ 2 R 3 →  0 3 8 −1 1 0  → 0 1 2 −7 1 2      0 −1 −3 −3 0 1    0 −1 −3 −3 0 1    1 0 0 −22 2 7   −22 2 7  R 3+ R 2 → → 0 1 0 −27 3 8  ;   thus A −1 =  −27 3 8    0 0 1 10 −1 −3    10 −1 −3  
  • 4.  1 −3 −3 1 0 0  R 2+ R1 1 −3 −3 1 0 0  16.  −1 1 2 0 1 0  →  0 −2 −1 1 1 0       2 −3 −3 0 0 1     2 −3 −3 0 0 1    R 3−2 R1  1 −3 −3 1 0 0  1 −3 −3 1 0 0  R 2+ R 3 → 0 −2 −1 1 1 0 →  0 1 2 −1 1 1      0 3 3 −2 0 1    0 3 3 −2 0 1    R 3−3 R 2  1 −3 − 3 1 0 0  ( −1/3( R 3)  1 −3 − 3 1 0 0  0 1 2 −1 1 1    →   →  0 1 2 −1 1 1   0 0 −3 1 −3 −2    0 0 1 − 1 1 3   3 2  R1+3 R 2  1 0 0 −1 0 1   −3 0 3    =  −1 −3 −1 1 → →  0 1 0 − 1 −1 − 1  ; 3 3 thus A −1  3 0 0 1 − 1 1  3 2  3   −1 3 2     1 −3 0 1 0 0   1 −3 0 1 0 0  R 2+ R1   →  0 −1 −1 1 1 0  17.  −1 2 −1 0 1 0     0 −2 2 0 0 1     0 −2 2 0 0 1    ( −1) R 2  1 −3 0 1 0 0  R 3+ 2 R 2  1 −3 0 1 0 0 → 0 1 1 −1 −1 0  → 0 1 1 −1 −1 0      0 −2 2 0 0 1    0 0 4 −2 −2 1    (1/ 4) R 3 1 0 0 − 1 2 −2 3 − 4 3  −2 −6 −3 → 0 1 0 − 1 − 1; 1  →  2 −1 2 4 thus A −1 =  −2 −2 −1 4 0 0 1 − 2  1 −2 1 1  4   −2 −2 1    1 −2 2 1 0 0  R 2−3 R1  1 −2 2 1 0 0    →  0 6 −5 −3 1 0  18. 3 0 1 0 1 0    1 −1 2 0 0 1     1 −1 2 0 0 1     1 −2 2 1 0 0  R 2−5 R 3  1 −2 2 1 0 0  R 3− R1 → 0 6 −5 −3 1 0  → 0 1 −5 2 1 −5     0 1 0 −1 0 1    0 1 0 −1 0 1     1 −2 2 1 0 0  1 0 0 1 2 − 5 2 R 3− R 2 5 5 0 1 −5 2 1 −5 (1/5) R 3  1 ; →   → → 0 1 0 −1 0   0 0 5 −3 −1 6    0 0 1 − 3 − 1  5 5 6  5 
  • 5.  1 2 −2  =  −5 0 5  . −1 1 thus A  5  −3 −1 6    1 4 3 1 0 0  1 4 3 1 0 0 R 2− R1 19. 1 4 5 0 1 0  →  0 0 2 −1 1 0      2 5 1 0 0 1    2 5 1 0 0 1    SWAP ( R 2, R 3) 1 4 3 1 0 0  R 2− 2 R1 1 4 3 1 0 0  → 2 5 1 0 0 1  → 0 −3 −5 −2 0 1       0 0 2 −1 1 0     0 0 2 −1 1 0    ( −1/3) R 2 1 4 3 1 0 0  1 0 0 − 72 11 6 4 3  − ; (1/ 2) R 3 → 0 1 5 2 0 − 1  → → 0 1 0 23 − 5 1  3 3 3 6  3  0 0 2 −1 1 0    0 0 1 − 1  2 1 2 0   −21 11 8  =  9 −5 −2  −1 1 thus A  6  −3 3 0     2 0 −1 1 0 0  1 0 −4 1 −1 0  R1− R 2 20. 1 0 3 0 1 0  → 1 0 3 0 1 0      1 1 1 0 0 1    1 1 1 0 0 1     1 0 −4 1 −1 0   1 0 −4 1 −1 0  R 3− R1 SWAP ( R 2, R 3) → 1 0 3 0 1 0 →  0 1 5 −1 1 1      0 1 5 −1 1 0    1 0 3 0 1 0     1 0 −4 1 − 1 0  1 0 0 73 1 0 R 3− R1 7   (1/7) R 3   → 0 1 5 −1 1 1  → → 0 1 0 − 72 − 3 7 1 ; 0 0 7 −1 2 0    0 0 1 − 1  7 2 7 0   3 1 0 =  −2 −3 7  1 thus A −1  7  −1 2 0   
  • 6. 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 SWAP ( R1, R 2) 0 0 1 0 1 0 0 0 21.   →   0 1 2 0 0 0 1 0 0 1 2 0 0 0 1 0     3 0 0 1 0 0 0 1 3 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 SWAP ( R 2, R 3) 0 1 2 0 0 0 1 0 R 4 −3 R1 0 1 2 0 0 0 1 0 →   →   0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0     3 0 0 1 0 0 0 1 0 0 0 1 0 −3 0 1 1 0 0 0 0 1 0 0 0 1 0 0 R 2− 2 R 3 0 1 0 0 −2 0 1 0  −2 0 1 0 →  ; thus A −1 =   0 0 1 0 1 0 0 0 1 0 0 0     0 0 0 1 0 −3 0 1  0 −3 0 1 4 0 1 1 1 0 0 0 1 −1 −2 0 1 −1 0 0 3 1 3 1 0 1 0 0 R1− R 2 3 1 3 1 0 1 0 0 22.   →   0 1 2 0 0 0 1 0 0 1 2 0 0 0 1 0     3 2 4 1 0 0 0 1 3 2 4 1 0 0 0 1 1 −1 −2 0 1 −1 0 0 1 −1 −2 0 1 −1 0 0 R 2−3 R1 0 4 9 1 −3 4 0 0 R 4−3 R1 0 4 9 1 −3 4 0 0 →   →   0 1 2 0 0 0 1 0 0 1 2 0 0 0 1 0     3 2 4 1 0 0 0 1  0 5 10 1 −3 3 0 1 1 −1 −2 0 1 −1 0 0 1 −1 −2 0 1 −1 0 0 R 2−3 R3 0 1 3 1 −3 4 −3 0 R3− R 2 0 1 3 1 −3 4 −3 0 →   →   0 1 2 0 0 0 1 0 0 0 −1 −1 3 −4 4 0     0 5 10 1 −3 3 0 1 0 5 10 1 −3 3 0 1 1 0 0 0 1 −1 1 0   1 −1 1 0  R 4−5 R 2 0 1 0  0 0 −2 −1 2   0 −2 −1 2  → →  ; thus A =  −1  0 0 1 0 0 1 1 −1  0 1 1 −1     0 0 0 1 −3 3 −5 1   −3 3 −5 1  In Problems 23-28 we first give the inverse matrix A −1 and then calculate the solution matrix X.  4 −3   4 −3  1 3 −5  7 18 −35 23. A −1 =  ; X =    −1 −2 5  =  −9 −23 45   −5 4   −5 4     
  • 7.  7 −6   7 −6   2 0 4   14 −30 46  24. A −1 =  ; X =   0 5 −3 =  −16 35 −53  −8 7   −8 7       11 −9 4   11 −9 4   1 0 3   7 −14 15  25. A −1 =  −2 2 −1 ;    −2 2 −1  0 2 2  =  −1 3 −2  X =       −2 1 0     −2 1 0   −1 1 0      −2 2 −4     −16 3 11   −16 3 11   2 0 1   −21 9 6  26. A −1 =  6 −1 −4  ;    6 −1 −4   0 3 0  =  8 −3 −2 X =       −13 2 9     −13 2 9  1 0 2      −17 6 5     7 −20 17   7 −20 17  0 0 1 1  17 −20 24 −13 27. A −1 0 =  −1 1 ; X =  0  0 1 0 1  =  1 −1 1   −1 1 −1       −2 6 −5     −2 6 −5   1 0 1 0      −5 6 −7 4     −5 5 10   −5 5 10   2 1 0 2   −5 5 10 1  28.  −8 8 A =−1  ; X =  −8 8 15    −1 3 5 0  =  −8 8 15   15 7       24 −23 −45    24 −23 −45  1 1 0 5   24 −23 −45 −13      29. (a) The fact that A–1 is the inverse of A means that AA −1 = A −1A = I. That is, that when A–1 is multiplied either on the right or on the left by A, the result is the identity matrix I. By the same token, this means that A is the inverse of A–1. (b) A n ( A −1 ) n = A n −1 ⋅ AA −1 ⋅ ( A −1 ) n −1 = A n −1 ⋅ I ⋅ ( A −1 ) n −1 = = I. Similarly, ( A −1 )n A n = I , so it follows that ( A −1 ) n is the inverse of A n . 30. ABC ⋅ C−1B −1A −1 = AB ⋅ I ⋅ B −1A −1 = A ⋅ I ⋅ A −1 = I, and we see is a similar way that C−1B −1A −1 ⋅ ABC = I. 31. Let p = − r 0, q = − s 0, and B = A −1. Then A r A s = A − p A − q = ( A −1 ) p ( A −1 ) q = B pBq = B p+q (because p, q 0) = ( A −1 ) p + q = A − p − q = A r + s as desired, and ( A r )s = ( A − p ) − q = (B p ) − q = B − pq = A pq = A rs similarly. 32. Multiplication of AB = AC on the left by A–1 yields B = C.
  • 8. 33. In particular, Ae j = e j where e j denotes the jth column vector of the identity matrix I. Hence it follows from Fact 2 that AI = I, and therefore A = I–1 = I. 34. The invertibility of a diagonal matrix with nonzero diagonal elements follows immediately from the rule for multiplying diagonal matrices (Problem 27 in Section 3.4). The inverse of such a diagonal matrix is gotten simply by inverting each diagonal element. 35. If the jth column of A is all zeros and B is any n × n matrix, then the jth column of BA is all zeros, so BA ≠ I. Hence A has no inverse matrix. Similarly, if the ith row of A is all zeros, then so is the ith row of AB. 36. If ad – bc = 0, then it follows easily that one row of A is a multiple of the other. Hence the * *  reduced echelon form of A is of the form   rather than the 2 × 2 identity matrix. 0 0  Therefore A is not invertible. 37. Direct multiplication shows that AA −1 = A −1A = I. 3 0   a b  3a 3b  38. EA =   c d  =  c d  0 1      1 0 0   a11 a12 a13   a11 a12 a13  39. EA = 0 1 0   a21   a22  =  a a23   21 a22 a23    2 0 1   a31   a32 a33    a31 + 2a11  a32 + a12 a33 + a13   0 1 0   a11 a12 a13   a21 a22 a23  40. EA = 1 0 0   a21   a22  = a a23   11 a12 a13   0 0 1   a31   a32 a33    a31  a32 a33   41. This follows immediately from the fact that the ijth element of AB is the product of the ith row of A and the jth column of B. 42. Let ei denote the ith row of I. Then ei B = B i , the ith row of B. Hence the result in Problem 41 yields  e1   e1B   B1  e  e B  B  IB =   B =  2  2 =  2  = B.            e m    e m B    B m   
  • 9. 43. Let E1 , E2 , , Ek be the elementary matrices corresponding to the elementary row operations that reduce A to B. Then Theorem 5 gives B = Ek Ek −1 E2 E1A = GA where G = E k E k −1 E2 E1. 44. This follows immediately from the result in Problem 43, because an invertible matrix is row-equivalent to the identity matrix. 45. One can simply photocopy the portion of the proof of Theorem 7 that follows Equation (20). Starting only with the assumption that A and B are square matrices with AB = I, it is proved there that A and B are then invertible. 46. If C = AB is invertible, so C–1 exists, then A(BC−1 ) = I and (C−1 A)B = I. Hence the fact that A and B are invertible follows immediately from Problem 45.