SlideShare ist ein Scribd-Unternehmen logo
1 von 4
Downloaden Sie, um offline zu lesen
International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6



   Adjusment of a Braced Quadrilatral by Rigorous Method in Tabular
                                Form
                                                      Dr A. M. Chandra
                                 (Department of Civil Engineering, Sharda University, India)


Abstract
Adjusting a braced quadrilateral by rigorous method is a tedious and laborious job. This paper presents the step-by-step
computations of adjustment in a simplified manner by making use of a table designed by the author for the purpose.

1. Introduction
A braced quadrilateral being the strongest triangulation figure is preferred in any triangulation scheme unless field conditions
prohibit. When the work requires accuracy in results, the adjustment of the quadrilateral has to be done by rigorous method.
By manual computations in rigorous method of adjustment being tedious and laborious, one is liable to make mistakes in
computations and, therefore, the rigorous method is avoided unless the conditions demand. This paper presents a tabular form
of step-by step computations involved in the adjustment of a braced quadrilateral. The advantage of computations using a
table is that computations proceed mechanically without feeling any difficulty in remembering the steps of computations.
Some new notations have been used to make the method look simpler.

2. Rigorous method of adjustment
A braced quadrilateral has eight observed angles as shown in Fig. 1. There are four conditions which must be satisfied to
adjust the angles, excluding the one imposed by the least squares theory.

                                                       7 6    5
                                                                     4


                                                                          3
                                               8                    2
                                                 1




                                                      Fig. 1 Braced quadrilateral



Condition-1                               360  (1 + 2 +…..+ 8) = C1
Condition-2                                      (5 + 6)  (1 + 2) = C2
Condition-3                                      (7 + 8)  (3 + 4) = C3
Condition-4         [log sin (Left angles)  log sin (Right angles)]  107 = C4

where C1, C2, C3, and C4 are the total corrections given by each condition equation.
If c1, c2, ….c8 are the individual corrections to the observed angles 1, 2, ….8, respectively, then we have

                                 c1 + c2 +…..+ c8 = C1                                       …(1)
                              (c1 + c2)  (c5 + c6) = C2                                     …(2)
                              (c3 + c4)  (c7 + c8) = C3                                     …(3)
                            c1f1 + c2f2 +…..+ c8 f8 = C4                                     … (4)




Issn 2250-3005(online)                                                October| 2012                              Page 1
International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6



where f1, f2,…..f8 are log sin differences for 1 in the values of the respective angles multiplied by 10 7.

         The additional condition from the theory of least squares to be satisfied is

                             = c1  c 2  ....  c8 = a minimum.
                                   2     2           2
                                                                                                     …(5)
Since we have four condition equations (1) to (4) excluding equation (5), there will be four correlates 1, 2, 3, and
4 which are multiplied to the differentiated form of equations (1) to (4), respectively, and the results are added to the
differentiated form of equation (5). The resulting equation is

                   (c1  1 2  f14) c1 + (c2  1 2 + f24) c 2 + (c3  1 3  f34) c3
               + (c4  1 3 + f44) c 4 + (c5  1 +2  f54) c5 + (c6  1 +2 + f64) c6
               + (c7  1 +3  f74) c7 + (c8  1 +3 + f84) c8 = 0

Now equating the coefficients of c1 , c 2 , etc., to zero, we get

                            c1 = 1 +2 + f14
                            c2 = 1 +2  f24
                            c3 = 1 +3 + f34
                            c4 = 1 +3  f44
                            c5 = 1 2 + f54                                                       (6)
                            c6 = 1 2  f64
                            c7 = 1 3 + f74
                            c8 = 1 3  f84

Substituting the values of the above corrections in equations (1) to (4), we have

                                                              81  F4  C1  0
                                                    42  ( F12  F56 )4  C 2  0
                                                   43  ( F34  F78 )4  C3  0
   ( F12  F34  F56  F78 )1  ( F12  F56 )2  ( F34  F78 )3  F 24  C4  0

where    F = f1 + f2 +….+ f8
         F12 = f1  f2
         F34 = f3  f4
         F56 = f5  f6
         F78 = f7  f8
         F2 = f12 + f22 +……..+ f82.

Now taking

              F12  F56 = B
              F34  F78 = C
F12  F34  F56  F78 = A




Issn 2250-3005(online)                                             October| 2012                               Page 2
International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6



we have

                          81  F 4  C1  0
                          42  B4  C2  0
                          43  C4  C3  0
          A1  B2  C3  F 2 4  C 4  0 .

The solution of the above four equations yields the values of the correlates 1, 2, 3, and 4. The corrections c1, c2, ….c8 to the
angles are calculated from equations (6) by substituting the values of the correlates.

By adopting some new notations above and putting the entire calculations in tabular form as in Table-1, the author has tried
to make the above steps of calculations simpler and straight forward. It also gives various checks to have a check on the
computations.

To explain the use of Table-1, a braced quadrilateral shown in Fig. 1 having the following observed angles, has been
adjusted in Table-2.

                   1 = 400817.9,   2 = 444914.7
                   3 = 531123.7,   4 = 415109.9
                   5 = 612934.3,   6 = 232751.2
                   7 = 230637.3,   8 = 715549.0

Reference
Chandra A. M.: ‘Higher Surveying’, A text book published by New Age International Pvt. Ltd., Publishers, New Delhi,
(2002).
             Table-1: Chandra’s table for adjustment of a braced quadrilateral by rigorous method




Issn 2250-3005(online)                                             October| 2012                                   Page 3
International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6



              Table-2: Chandra’s table for adjustment of a braced quadrilateral by rigorous method




Issn 2250-3005(online)                                     October| 2012                              Page 4

Weitere ähnliche Inhalte

Was ist angesagt?

SPM Trial Kedah 2017 - Paper 1 Skema
SPM Trial Kedah 2017 - Paper 1 SkemaSPM Trial Kedah 2017 - Paper 1 Skema
SPM Trial Kedah 2017 - Paper 1 SkemaTuisyen Geliga
 
7 วิชา คณิต the brain
7 วิชา คณิต   the brain7 วิชา คณิต   the brain
7 วิชา คณิต the brainJamescoolboy
 
Kertas Percubaan SPM Kedah add-maths p2 2017
Kertas Percubaan SPM Kedah add-maths p2 2017Kertas Percubaan SPM Kedah add-maths p2 2017
Kertas Percubaan SPM Kedah add-maths p2 2017Tuisyen Geliga
 
Kertas Percubaan Matematik Tambahan Kedah Skema K2
Kertas Percubaan Matematik Tambahan Kedah Skema K2Kertas Percubaan Matematik Tambahan Kedah Skema K2
Kertas Percubaan Matematik Tambahan Kedah Skema K2Tuisyen Geliga
 
Format peperiksaan spm add math
Format peperiksaan spm add mathFormat peperiksaan spm add math
Format peperiksaan spm add mathSAADIAHNOR
 
College algebra 7th edition by blitzer solution manual
College algebra 7th edition by blitzer solution manualCollege algebra 7th edition by blitzer solution manual
College algebra 7th edition by blitzer solution manualrochidavander
 
Math quota-cmu-g-455
Math quota-cmu-g-455Math quota-cmu-g-455
Math quota-cmu-g-455Rungroj Ssan
 
Ma5 vector-u-s54
Ma5 vector-u-s54Ma5 vector-u-s54
Ma5 vector-u-s54S'kae Nfc
 
Lattice points on the homogeneous cone 5(x2+y2) 9xy=23z2
Lattice points on the homogeneous cone 5(x2+y2)  9xy=23z2Lattice points on the homogeneous cone 5(x2+y2)  9xy=23z2
Lattice points on the homogeneous cone 5(x2+y2) 9xy=23z2eSAT Journals
 
Jawapan modul 3 k1 mt jpnk 2015
Jawapan modul 3 k1 mt jpnk 2015Jawapan modul 3 k1 mt jpnk 2015
Jawapan modul 3 k1 mt jpnk 2015Mohd Basri Mohamed
 
Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltossialalsi
 
Potencias resueltas 1eso (1)
Potencias resueltas 1eso (1)Potencias resueltas 1eso (1)
Potencias resueltas 1eso (1)Lina Manriquez
 
Model Qes 2
Model Qes 2Model Qes 2
Model Qes 2shojan84
 
Mdel Question 1
Mdel Question 1Mdel Question 1
Mdel Question 1shojan84
 

Was ist angesagt? (18)

SPM Trial Kedah 2017 - Paper 1 Skema
SPM Trial Kedah 2017 - Paper 1 SkemaSPM Trial Kedah 2017 - Paper 1 Skema
SPM Trial Kedah 2017 - Paper 1 Skema
 
7 วิชา คณิต the brain
7 วิชา คณิต   the brain7 วิชา คณิต   the brain
7 วิชา คณิต the brain
 
Kertas Percubaan SPM Kedah add-maths p2 2017
Kertas Percubaan SPM Kedah add-maths p2 2017Kertas Percubaan SPM Kedah add-maths p2 2017
Kertas Percubaan SPM Kedah add-maths p2 2017
 
F2 t2 squares, square roots, cubes & cube roots
F2 t2   squares, square roots, cubes & cube rootsF2 t2   squares, square roots, cubes & cube roots
F2 t2 squares, square roots, cubes & cube roots
 
Kertas Percubaan Matematik Tambahan Kedah Skema K2
Kertas Percubaan Matematik Tambahan Kedah Skema K2Kertas Percubaan Matematik Tambahan Kedah Skema K2
Kertas Percubaan Matematik Tambahan Kedah Skema K2
 
Chapter 16
Chapter 16Chapter 16
Chapter 16
 
Format peperiksaan spm add math
Format peperiksaan spm add mathFormat peperiksaan spm add math
Format peperiksaan spm add math
 
College algebra 7th edition by blitzer solution manual
College algebra 7th edition by blitzer solution manualCollege algebra 7th edition by blitzer solution manual
College algebra 7th edition by blitzer solution manual
 
Math quota-cmu-g-455
Math quota-cmu-g-455Math quota-cmu-g-455
Math quota-cmu-g-455
 
008 math a-net
008 math a-net008 math a-net
008 math a-net
 
Ma5 vector-u-s54
Ma5 vector-u-s54Ma5 vector-u-s54
Ma5 vector-u-s54
 
Lattice points on the homogeneous cone 5(x2+y2) 9xy=23z2
Lattice points on the homogeneous cone 5(x2+y2)  9xy=23z2Lattice points on the homogeneous cone 5(x2+y2)  9xy=23z2
Lattice points on the homogeneous cone 5(x2+y2) 9xy=23z2
 
Jawapan modul 3 k1 mt jpnk 2015
Jawapan modul 3 k1 mt jpnk 2015Jawapan modul 3 k1 mt jpnk 2015
Jawapan modul 3 k1 mt jpnk 2015
 
Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltos
 
Potencias resueltas 1eso (1)
Potencias resueltas 1eso (1)Potencias resueltas 1eso (1)
Potencias resueltas 1eso (1)
 
Examens math
Examens mathExamens math
Examens math
 
Model Qes 2
Model Qes 2Model Qes 2
Model Qes 2
 
Mdel Question 1
Mdel Question 1Mdel Question 1
Mdel Question 1
 

Ähnlich wie International Journal of Computational Engineering Research(IJCER)

Solution of a Sangaku ``Tangency" Problem via Geometric Algebra
Solution of a Sangaku ``Tangency" Problem via Geometric AlgebraSolution of a Sangaku ``Tangency" Problem via Geometric Algebra
Solution of a Sangaku ``Tangency" Problem via Geometric AlgebraJames Smith
 
INTRODUCTION TO CIRCUIT THEORY (A PRACTICAL APPROACH)
INTRODUCTION TO CIRCUIT THEORY (A PRACTICAL APPROACH)INTRODUCTION TO CIRCUIT THEORY (A PRACTICAL APPROACH)
INTRODUCTION TO CIRCUIT THEORY (A PRACTICAL APPROACH)ENGR. KADIRI K. O. Ph.D
 
Analytic Geometry B Accelerated Week 5   Page 39 of 5.docx
Analytic Geometry B Accelerated Week 5   Page 39 of 5.docxAnalytic Geometry B Accelerated Week 5   Page 39 of 5.docx
Analytic Geometry B Accelerated Week 5   Page 39 of 5.docxLynellBull52
 
0580_s12_qp_41
0580_s12_qp_410580_s12_qp_41
0580_s12_qp_41King Ali
 
Exams in college algebra
Exams in college algebraExams in college algebra
Exams in college algebraRaymond Garcia
 
K means clustering
K means clusteringK means clustering
K means clusteringAhmedasbasb
 
Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...Alexander Litvinenko
 
Minor 1 11th paper.pdf
Minor 1 11th paper.pdfMinor 1 11th paper.pdf
Minor 1 11th paper.pdfssuser33d0b9
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONSCarlon Baird
 
Analytical solution of the relative orbital motion in unperturbed elliptic or...
Analytical solution of the relative orbital motion in unperturbed elliptic or...Analytical solution of the relative orbital motion in unperturbed elliptic or...
Analytical solution of the relative orbital motion in unperturbed elliptic or...IRJET Journal
 
Factoring perfect-square-trinomials
Factoring perfect-square-trinomialsFactoring perfect-square-trinomials
Factoring perfect-square-trinomialsAnnalizaTenioso
 
0580_w10_qp_43
0580_w10_qp_430580_w10_qp_43
0580_w10_qp_43King Ali
 
1.1.1C Midpoint and Distance Formulas
1.1.1C Midpoint and Distance Formulas1.1.1C Midpoint and Distance Formulas
1.1.1C Midpoint and Distance Formulassmiller5
 
1 College Algebra Final Examination---FHSU Math & C.S.docx
 1 College Algebra Final Examination---FHSU Math & C.S.docx 1 College Algebra Final Examination---FHSU Math & C.S.docx
1 College Algebra Final Examination---FHSU Math & C.S.docxjoyjonna282
 

Ähnlich wie International Journal of Computational Engineering Research(IJCER) (20)

0580 s12 qp_41
0580 s12 qp_410580 s12 qp_41
0580 s12 qp_41
 
Solution of a Sangaku ``Tangency" Problem via Geometric Algebra
Solution of a Sangaku ``Tangency" Problem via Geometric AlgebraSolution of a Sangaku ``Tangency" Problem via Geometric Algebra
Solution of a Sangaku ``Tangency" Problem via Geometric Algebra
 
INTRODUCTION TO CIRCUIT THEORY (A PRACTICAL APPROACH)
INTRODUCTION TO CIRCUIT THEORY (A PRACTICAL APPROACH)INTRODUCTION TO CIRCUIT THEORY (A PRACTICAL APPROACH)
INTRODUCTION TO CIRCUIT THEORY (A PRACTICAL APPROACH)
 
Analytic Geometry B Accelerated Week 5   Page 39 of 5.docx
Analytic Geometry B Accelerated Week 5   Page 39 of 5.docxAnalytic Geometry B Accelerated Week 5   Page 39 of 5.docx
Analytic Geometry B Accelerated Week 5   Page 39 of 5.docx
 
Beam.pdf
Beam.pdfBeam.pdf
Beam.pdf
 
0580_s12_qp_41
0580_s12_qp_410580_s12_qp_41
0580_s12_qp_41
 
Exams in college algebra
Exams in college algebraExams in college algebra
Exams in college algebra
 
K means clustering
K means clusteringK means clustering
K means clustering
 
Ix class
Ix classIx class
Ix class
 
Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...
 
Negative numbers
Negative numbersNegative numbers
Negative numbers
 
Minor 1 11th paper.pdf
Minor 1 11th paper.pdfMinor 1 11th paper.pdf
Minor 1 11th paper.pdf
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
 
Analytical solution of the relative orbital motion in unperturbed elliptic or...
Analytical solution of the relative orbital motion in unperturbed elliptic or...Analytical solution of the relative orbital motion in unperturbed elliptic or...
Analytical solution of the relative orbital motion in unperturbed elliptic or...
 
Factoring perfect-square-trinomials
Factoring perfect-square-trinomialsFactoring perfect-square-trinomials
Factoring perfect-square-trinomials
 
0606 m18 2_2_qp
0606 m18 2_2_qp0606 m18 2_2_qp
0606 m18 2_2_qp
 
0580_w10_qp_43
0580_w10_qp_430580_w10_qp_43
0580_w10_qp_43
 
1.1.1C Midpoint and Distance Formulas
1.1.1C Midpoint and Distance Formulas1.1.1C Midpoint and Distance Formulas
1.1.1C Midpoint and Distance Formulas
 
Efoom 2020
Efoom 2020Efoom 2020
Efoom 2020
 
1 College Algebra Final Examination---FHSU Math & C.S.docx
 1 College Algebra Final Examination---FHSU Math & C.S.docx 1 College Algebra Final Examination---FHSU Math & C.S.docx
1 College Algebra Final Examination---FHSU Math & C.S.docx
 

International Journal of Computational Engineering Research(IJCER)

  • 1. International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6 Adjusment of a Braced Quadrilatral by Rigorous Method in Tabular Form Dr A. M. Chandra (Department of Civil Engineering, Sharda University, India) Abstract Adjusting a braced quadrilateral by rigorous method is a tedious and laborious job. This paper presents the step-by-step computations of adjustment in a simplified manner by making use of a table designed by the author for the purpose. 1. Introduction A braced quadrilateral being the strongest triangulation figure is preferred in any triangulation scheme unless field conditions prohibit. When the work requires accuracy in results, the adjustment of the quadrilateral has to be done by rigorous method. By manual computations in rigorous method of adjustment being tedious and laborious, one is liable to make mistakes in computations and, therefore, the rigorous method is avoided unless the conditions demand. This paper presents a tabular form of step-by step computations involved in the adjustment of a braced quadrilateral. The advantage of computations using a table is that computations proceed mechanically without feeling any difficulty in remembering the steps of computations. Some new notations have been used to make the method look simpler. 2. Rigorous method of adjustment A braced quadrilateral has eight observed angles as shown in Fig. 1. There are four conditions which must be satisfied to adjust the angles, excluding the one imposed by the least squares theory. 7 6 5 4 3 8 2 1 Fig. 1 Braced quadrilateral Condition-1 360  (1 + 2 +…..+ 8) = C1 Condition-2 (5 + 6)  (1 + 2) = C2 Condition-3 (7 + 8)  (3 + 4) = C3 Condition-4 [log sin (Left angles)  log sin (Right angles)]  107 = C4 where C1, C2, C3, and C4 are the total corrections given by each condition equation. If c1, c2, ….c8 are the individual corrections to the observed angles 1, 2, ….8, respectively, then we have c1 + c2 +…..+ c8 = C1 …(1) (c1 + c2)  (c5 + c6) = C2 …(2) (c3 + c4)  (c7 + c8) = C3 …(3) c1f1 + c2f2 +…..+ c8 f8 = C4 … (4) Issn 2250-3005(online) October| 2012 Page 1
  • 2. International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6 where f1, f2,…..f8 are log sin differences for 1 in the values of the respective angles multiplied by 10 7. The additional condition from the theory of least squares to be satisfied is  = c1  c 2  ....  c8 = a minimum. 2 2 2 …(5) Since we have four condition equations (1) to (4) excluding equation (5), there will be four correlates 1, 2, 3, and 4 which are multiplied to the differentiated form of equations (1) to (4), respectively, and the results are added to the differentiated form of equation (5). The resulting equation is (c1  1 2  f14) c1 + (c2  1 2 + f24) c 2 + (c3  1 3  f34) c3 + (c4  1 3 + f44) c 4 + (c5  1 +2  f54) c5 + (c6  1 +2 + f64) c6 + (c7  1 +3  f74) c7 + (c8  1 +3 + f84) c8 = 0 Now equating the coefficients of c1 , c 2 , etc., to zero, we get c1 = 1 +2 + f14 c2 = 1 +2  f24 c3 = 1 +3 + f34 c4 = 1 +3  f44 c5 = 1 2 + f54 (6) c6 = 1 2  f64 c7 = 1 3 + f74 c8 = 1 3  f84 Substituting the values of the above corrections in equations (1) to (4), we have 81  F4  C1  0 42  ( F12  F56 )4  C 2  0 43  ( F34  F78 )4  C3  0 ( F12  F34  F56  F78 )1  ( F12  F56 )2  ( F34  F78 )3  F 24  C4  0 where F = f1 + f2 +….+ f8 F12 = f1  f2 F34 = f3  f4 F56 = f5  f6 F78 = f7  f8 F2 = f12 + f22 +……..+ f82. Now taking F12  F56 = B F34  F78 = C F12  F34  F56  F78 = A Issn 2250-3005(online) October| 2012 Page 2
  • 3. International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6 we have 81  F 4  C1  0 42  B4  C2  0 43  C4  C3  0 A1  B2  C3  F 2 4  C 4  0 . The solution of the above four equations yields the values of the correlates 1, 2, 3, and 4. The corrections c1, c2, ….c8 to the angles are calculated from equations (6) by substituting the values of the correlates. By adopting some new notations above and putting the entire calculations in tabular form as in Table-1, the author has tried to make the above steps of calculations simpler and straight forward. It also gives various checks to have a check on the computations. To explain the use of Table-1, a braced quadrilateral shown in Fig. 1 having the following observed angles, has been adjusted in Table-2. 1 = 400817.9, 2 = 444914.7 3 = 531123.7, 4 = 415109.9 5 = 612934.3, 6 = 232751.2 7 = 230637.3, 8 = 715549.0 Reference Chandra A. M.: ‘Higher Surveying’, A text book published by New Age International Pvt. Ltd., Publishers, New Delhi, (2002). Table-1: Chandra’s table for adjustment of a braced quadrilateral by rigorous method Issn 2250-3005(online) October| 2012 Page 3
  • 4. International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6 Table-2: Chandra’s table for adjustment of a braced quadrilateral by rigorous method Issn 2250-3005(online) October| 2012 Page 4