SlideShare ist ein Scribd-Unternehmen logo
1 von 38
Trabajo  y energía
[object Object],[object Object],[object Object],[object Object]
¿ Físicamente en qué se diferencian o asemejan ambas realizaciones? V 0  = 0 V = 0 V 0  = 0  t = s / V V = 0  t = h / V
Energía Medida cuantitativa del movimiento en todas sus formas.
Trabajo Medida cuantitativa de la transferencia de movimiento ordenado de un cuerpo a otro mediante la acción de una fuerza Cambio de posición, desplazamiento Relación geométrica entre el desplazamiento y la fuerza
Trabajo de una fuerza 1 2
En los tramos donde cita  < 9 0 o  el trabajo es motor En los tramos donde cita  >   9 0 o  el trabajo es resistivo En los tramos en que cita = 90 el trabajo es nulo El trabajo es un escalar Escalar [J]
Trabajo realizado por una fuerza constantee
X 1 X2 X ¿CUÁL SERA EL TRABAJO EFECTUADO POR LA FUERZA F? F X  =  X 2   -  X 1
Fuerza constante y desplazamiento rectilíneo mov  x F
F ES UNA FUERZA CONSTANTE W  =  F  X  COS
Trayectoria   RECTILÍNEA   y F  es   una   FUERZA CONSTANTE
EL TRABAJO REALIZADO POR UNA   FUERZA CONSTANTE   ES IGUAL AL PRODUCTO DE LA COMPONENTE DE LA FUERZA A LO LARGO DE LA DIRECCION DEL DESPLAZAMIENTO POR EL DESPLAZAMIENTO EL TRABAJO REALIZADO POR UNA   FUERZA CONSTANTE   ES IGUAL AL PRODUCTO ESCALAR DEL VECTOR FUERZA POR EL DEZPLAZAMIENTO
X 1 X 2 W X(m)
EN TODA GRAFICA  FUERZA  vs  DESPLAZAMIENTO   EL AREA BAJO LA CURVA NOS DA ELTRABAJO REALIZADO POR LA FUERZA PARALELA AL DEZPLAZAMIENTO
 0 <   <  /2 Como  Entonces el trabajo es positivo cos     > 0 F  X
   =   /2 Como  Entonces las fuerzas perpendiculares al desplazamiento no realizan trabajo cos     = 0 F  X
    /2 <   <  Como  Entonces el trabajo es negativo cos    <0 F  X
T ds W T = 0 W N = 0 mov  x N Fg W Fg = 0 W Fr <  0 Fr mov  x  Fg W Fg  > 0 N W N = 0
Ejemplo 1: Una masa m unida a una cuerda se encuentra girando en un plano Horizontal con una rapidez constante de 40m/s, hallar el trabajo efectuado por la cuerda, en una vuelta completa R
Ejemplo 2: en el sistema mostrado determinese el trabajo realizado por cada una de las fuerzas que actúa sobre m (   =53) 37   F = 100N    = 0,5
F Diagrama de cuerpo libre de m: mg = 100N N Fr   Y X 
FUERZA VARIABLE , Desplazamiento  rectilíneo   F F x W  =  F x X i i i
Área neta bajo la curva W
Un cuerpo se mueve desde  x= 0 hasta x = 6, bajo la acción de una fuerza tal como se indica , hallar el trabajo realizado 5 6 X(m) F x (N)
Expresión general  para el trabajo F r C F : Fuerza C : trayectoria
Esta es la llamada integral de línea W  =   F.dr =   ( F x  dx +F y dy + F z dz)   donde:F x , F y , F z : componentes de  F y además la curva C está definida a través de:  y =f(x),  z =f(x) C C El  trabajo efectuado por F   cuando el cuerpo se mueve  a  través de la curva  C  esta dada por la  expresión  :
En sistema mostrado determínese  el trabajo efectuado por la fuerza a a través del camino   a) C1  b) C2 y x 10 5
El trabajo es una magnitud aditiva 1 2 C F i F R © © ©
Problema Se arrastra una caja por un piso áspero aplicando una fuerza constante de magnitud 50N. La fuerza forma un ángulo de 37 o  arriba de la horizontal . Una fuerza de rozamiento de 10 N retarda el movimiento y  la caja se desplaza una distancia de 3m hacia la derecha  a) calculese el trabajo realizado por F  b) el trabajo realizado por la fricción  c) el trabajo, neto efectuado sobre la caja por todas las fuerzas que actúan sobre ella
Problema Una partícula que se mueve en el plano xy experimenta un desplazamiento: s  = ( 2 i  +3 j ) [m] según una trayectoria rectilínea. Mientras que una fuerza constante dada por  F  = ( 5 i  +3 j ) [N] actúa sobre ella. a) calcúlese la magnitud el desplazamiento y de la fuerza b) el trabajo realizado por F c) el ángulo que la fuerza forma con el desplazamiento
Potencia:  trabajo realizado por una fuerza, por unidad de tiempo [W] Se define  como el trabajo efectuado por unidad de  tiempo P  =   W/  t  :  Potencia  Promedio P = lim     W/  t  =  dW/dt     t    0 dW = F.dr entonces la potencia instantánea también se puede expresar como: P  = F.dr/dt = F.V Donde V es la velocidad  instantánea
Problema: Un elevador tiene una masa de 1000Kg y lleva una carga de 800Kg. Una fuerza de rozamiento constante de 4000N retarda su  movimiento hacia arriba.  a) cual debe ser la potencia que debe entregar el motor para levantar el elevador a una rapidez constante de 3m/s? b) que potencia debe entregar el motor en cualquier instante para proporcionar una aceleración hacia arriba de  1m/s 2 ?
Motor T Mg f
Teorema del W y la Energía cinética © © © © © v 1 v 2
v 1 v 2
Se define la energía cinética como : K= mV 2 /2 C omo la energía asociada  al Movimiento mecánico de un cuerpo, luego: E l  trabajo efectuado por la fuerza resultante   o el  trabajo total  es igual al cambio en la  energía cinética de la particula
Ejemplo 1: Un automóvil que viaja  a 48Km/h , se puede detener en una distancia mínima de 40 m al aplicar los frenos . Si el mismo auto se encuentra viajando a 96Km/h, Cual es la distancia mínima para detenerse? V i d V f  =0

Weitere ähnliche Inhalte

Was ist angesagt?

Problemas sobre de física ii ley de coulomb campo electrico
Problemas sobre de física ii ley de coulomb campo electricoProblemas sobre de física ii ley de coulomb campo electrico
Problemas sobre de física ii ley de coulomb campo electricoJulio Barreto Garcia
 
MAS vertical. Periodo y frecuencia del MAS. Velocidad y aceleración
MAS vertical. Periodo y frecuencia del MAS. Velocidad y aceleraciónMAS vertical. Periodo y frecuencia del MAS. Velocidad y aceleración
MAS vertical. Periodo y frecuencia del MAS. Velocidad y aceleraciónYuri Milachay
 
Semana 14 cantidad de movimiento unac 2009 b
Semana 14 cantidad de movimiento unac 2009 bSemana 14 cantidad de movimiento unac 2009 b
Semana 14 cantidad de movimiento unac 2009 bWalter Perez Terrel
 
Campo+Electrico23
Campo+Electrico23Campo+Electrico23
Campo+Electrico23efren1985
 
Energía rotacional y momentum angular
Energía rotacional y momentum angularEnergía rotacional y momentum angular
Energía rotacional y momentum angularYuri Milachay
 
Colisiones
ColisionesColisiones
ColisionesAlan H
 
Resolucion de problema 27-4
Resolucion de problema 27-4Resolucion de problema 27-4
Resolucion de problema 27-4Zulma Medrano
 
DINAMICA LINEAL.pptx
DINAMICA LINEAL.pptxDINAMICA LINEAL.pptx
DINAMICA LINEAL.pptxKramerCaiza
 
Ejercicios resueltos dinamica
Ejercicios resueltos dinamicaEjercicios resueltos dinamica
Ejercicios resueltos dinamicaJonathan Pañi
 
TRABAJO MECANICO
TRABAJO MECANICOTRABAJO MECANICO
TRABAJO MECANICO4009017780
 
Trabajo y-energia grupo 4
Trabajo y-energia  grupo 4Trabajo y-energia  grupo 4
Trabajo y-energia grupo 4etubay
 
Deducción ecuación movimiento armónico simple (MAS)
Deducción ecuación movimiento armónico simple (MAS)Deducción ecuación movimiento armónico simple (MAS)
Deducción ecuación movimiento armónico simple (MAS)Martín de la Rosa Díaz
 
Momento lineal e Impulso
Momento lineal e ImpulsoMomento lineal e Impulso
Momento lineal e Impulsoicano7
 
Cantidad de movimiento diapositivas
Cantidad de movimiento diapositivasCantidad de movimiento diapositivas
Cantidad de movimiento diapositivasfisicageneral
 

Was ist angesagt? (20)

Problemas sobre de física ii ley de coulomb campo electrico
Problemas sobre de física ii ley de coulomb campo electricoProblemas sobre de física ii ley de coulomb campo electrico
Problemas sobre de física ii ley de coulomb campo electrico
 
Proyecto estatica
Proyecto estaticaProyecto estatica
Proyecto estatica
 
MAS vertical. Periodo y frecuencia del MAS. Velocidad y aceleración
MAS vertical. Periodo y frecuencia del MAS. Velocidad y aceleraciónMAS vertical. Periodo y frecuencia del MAS. Velocidad y aceleración
MAS vertical. Periodo y frecuencia del MAS. Velocidad y aceleración
 
Semana 14 cantidad de movimiento unac 2009 b
Semana 14 cantidad de movimiento unac 2009 bSemana 14 cantidad de movimiento unac 2009 b
Semana 14 cantidad de movimiento unac 2009 b
 
Campo+Electrico23
Campo+Electrico23Campo+Electrico23
Campo+Electrico23
 
Energía rotacional y momentum angular
Energía rotacional y momentum angularEnergía rotacional y momentum angular
Energía rotacional y momentum angular
 
Colisiones
ColisionesColisiones
Colisiones
 
Resolucion de problema 27-4
Resolucion de problema 27-4Resolucion de problema 27-4
Resolucion de problema 27-4
 
Leyes de newton
Leyes de newtonLeyes de newton
Leyes de newton
 
Lab 8 efecto joule
Lab 8 efecto jouleLab 8 efecto joule
Lab 8 efecto joule
 
DINAMICA LINEAL.pptx
DINAMICA LINEAL.pptxDINAMICA LINEAL.pptx
DINAMICA LINEAL.pptx
 
Ejercicios resueltos dinamica
Ejercicios resueltos dinamicaEjercicios resueltos dinamica
Ejercicios resueltos dinamica
 
TRABAJO MECANICO
TRABAJO MECANICOTRABAJO MECANICO
TRABAJO MECANICO
 
Mesa de fuerzas.docx
Mesa de fuerzas.docxMesa de fuerzas.docx
Mesa de fuerzas.docx
 
Trabajo y-energia grupo 4
Trabajo y-energia  grupo 4Trabajo y-energia  grupo 4
Trabajo y-energia grupo 4
 
Movimiento lineal-choques
Movimiento lineal-choquesMovimiento lineal-choques
Movimiento lineal-choques
 
Deducción ecuación movimiento armónico simple (MAS)
Deducción ecuación movimiento armónico simple (MAS)Deducción ecuación movimiento armónico simple (MAS)
Deducción ecuación movimiento armónico simple (MAS)
 
Momento lineal e Impulso
Momento lineal e ImpulsoMomento lineal e Impulso
Momento lineal e Impulso
 
Cantidad de movimiento diapositivas
Cantidad de movimiento diapositivasCantidad de movimiento diapositivas
Cantidad de movimiento diapositivas
 
Termologia y ondas mecanicas
Termologia y ondas mecanicasTermologia y ondas mecanicas
Termologia y ondas mecanicas
 

Ähnlich wie Trabajo Energia (20)

Trabajo y energia
Trabajo y energiaTrabajo y energia
Trabajo y energia
 
TRABAJO Y POTENCIA
TRABAJO Y POTENCIATRABAJO Y POTENCIA
TRABAJO Y POTENCIA
 
06 f1 com2
06 f1 com206 f1 com2
06 f1 com2
 
TRABAJO (1).pptx
TRABAJO (1).pptxTRABAJO (1).pptx
TRABAJO (1).pptx
 
Energía y trabajo
Energía y trabajoEnergía y trabajo
Energía y trabajo
 
PPT_05.pdf
PPT_05.pdfPPT_05.pdf
PPT_05.pdf
 
Física 3-trabajo mecánico-comprimido
Física 3-trabajo mecánico-comprimidoFísica 3-trabajo mecánico-comprimido
Física 3-trabajo mecánico-comprimido
 
10. ed capítulo x cinemática de la partícula_trabajo y energía
10. ed capítulo x cinemática de la partícula_trabajo y energía10. ed capítulo x cinemática de la partícula_trabajo y energía
10. ed capítulo x cinemática de la partícula_trabajo y energía
 
Cap5
Cap5Cap5
Cap5
 
Upn moo s06
Upn moo s06Upn moo s06
Upn moo s06
 
Trabajo, energía y potencia
Trabajo, energía y potenciaTrabajo, energía y potencia
Trabajo, energía y potencia
 
Semana 9
Semana 9Semana 9
Semana 9
 
1. trabajo, potencia y energia
1. trabajo, potencia y energia1. trabajo, potencia y energia
1. trabajo, potencia y energia
 
Marina
MarinaMarina
Marina
 
60 trabajo-y-energia-mecanica
60 trabajo-y-energia-mecanica60 trabajo-y-energia-mecanica
60 trabajo-y-energia-mecanica
 
Trabajo y energia (fisica)
Trabajo y energia (fisica)Trabajo y energia (fisica)
Trabajo y energia (fisica)
 
mecanica
mecanicamecanica
mecanica
 
Fuerza y energia
Fuerza y energiaFuerza y energia
Fuerza y energia
 
Fuerza y energia
Fuerza y energiaFuerza y energia
Fuerza y energia
 
Fuerza y energia
Fuerza y energiaFuerza y energia
Fuerza y energia
 

Mehr von IES MAR DE CADIZ (17)

Egiptoelartedelaeternidad b n
Egiptoelartedelaeternidad b nEgiptoelartedelaeternidad b n
Egiptoelartedelaeternidad b n
 
Monstruo de los_mares
Monstruo de los_maresMonstruo de los_mares
Monstruo de los_mares
 
Cuadro maquinas
Cuadro maquinasCuadro maquinas
Cuadro maquinas
 
Hidrodinamica
HidrodinamicaHidrodinamica
Hidrodinamica
 
Cavernoso
CavernosoCavernoso
Cavernoso
 
180 Una Mente Dos Cerebros1
180  Una  Mente Dos  Cerebros1180  Una  Mente Dos  Cerebros1
180 Una Mente Dos Cerebros1
 
Mis Sierras
Mis  SierrasMis  Sierras
Mis Sierras
 
Imagnes de Cadiz
Imagnes de CadizImagnes de Cadiz
Imagnes de Cadiz
 
Máquinas y Automatismos
Máquinas y AutomatismosMáquinas y Automatismos
Máquinas y Automatismos
 
Segundo Principio Termo
Segundo Principio TermoSegundo Principio Termo
Segundo Principio Termo
 
Ciclostermodinamicos
CiclostermodinamicosCiclostermodinamicos
Ciclostermodinamicos
 
Ciclos Otto Teorico
Ciclos Otto TeoricoCiclos Otto Teorico
Ciclos Otto Teorico
 
Maquinas Termicas
Maquinas  TermicasMaquinas  Termicas
Maquinas Termicas
 
Maderas
MaderasMaderas
Maderas
 
Cursosoftwarelibre
CursosoftwarelibreCursosoftwarelibre
Cursosoftwarelibre
 
Retos Quimica 2006
Retos Quimica 2006Retos Quimica 2006
Retos Quimica 2006
 
Estrategias Y Usos Del Ordenador Y Las Nuevas TecnologíAs(Iesmardecadiz)
Estrategias Y Usos Del Ordenador Y Las Nuevas TecnologíAs(Iesmardecadiz)Estrategias Y Usos Del Ordenador Y Las Nuevas TecnologíAs(Iesmardecadiz)
Estrategias Y Usos Del Ordenador Y Las Nuevas TecnologíAs(Iesmardecadiz)
 

Trabajo Energia

  • 1. Trabajo y energía
  • 2.
  • 3. ¿ Físicamente en qué se diferencian o asemejan ambas realizaciones? V 0 = 0 V = 0 V 0 = 0  t = s / V V = 0  t = h / V
  • 4. Energía Medida cuantitativa del movimiento en todas sus formas.
  • 5. Trabajo Medida cuantitativa de la transferencia de movimiento ordenado de un cuerpo a otro mediante la acción de una fuerza Cambio de posición, desplazamiento Relación geométrica entre el desplazamiento y la fuerza
  • 6. Trabajo de una fuerza 1 2
  • 7. En los tramos donde cita < 9 0 o el trabajo es motor En los tramos donde cita > 9 0 o el trabajo es resistivo En los tramos en que cita = 90 el trabajo es nulo El trabajo es un escalar Escalar [J]
  • 8. Trabajo realizado por una fuerza constantee
  • 9. X 1 X2 X ¿CUÁL SERA EL TRABAJO EFECTUADO POR LA FUERZA F? F X = X 2 - X 1
  • 10. Fuerza constante y desplazamiento rectilíneo mov  x F
  • 11. F ES UNA FUERZA CONSTANTE W = F X COS
  • 12. Trayectoria RECTILÍNEA y F es una FUERZA CONSTANTE
  • 13. EL TRABAJO REALIZADO POR UNA FUERZA CONSTANTE ES IGUAL AL PRODUCTO DE LA COMPONENTE DE LA FUERZA A LO LARGO DE LA DIRECCION DEL DESPLAZAMIENTO POR EL DESPLAZAMIENTO EL TRABAJO REALIZADO POR UNA FUERZA CONSTANTE ES IGUAL AL PRODUCTO ESCALAR DEL VECTOR FUERZA POR EL DEZPLAZAMIENTO
  • 14. X 1 X 2 W X(m)
  • 15. EN TODA GRAFICA FUERZA vs DESPLAZAMIENTO EL AREA BAJO LA CURVA NOS DA ELTRABAJO REALIZADO POR LA FUERZA PARALELA AL DEZPLAZAMIENTO
  • 16.  0 <  <  /2 Como Entonces el trabajo es positivo cos  > 0 F  X
  • 17. =  /2 Como Entonces las fuerzas perpendiculares al desplazamiento no realizan trabajo cos  = 0 F  X
  • 18.  /2 <  <  Como Entonces el trabajo es negativo cos  <0 F  X
  • 19. T ds W T = 0 W N = 0 mov  x N Fg W Fg = 0 W Fr < 0 Fr mov  x  Fg W Fg > 0 N W N = 0
  • 20. Ejemplo 1: Una masa m unida a una cuerda se encuentra girando en un plano Horizontal con una rapidez constante de 40m/s, hallar el trabajo efectuado por la cuerda, en una vuelta completa R
  • 21. Ejemplo 2: en el sistema mostrado determinese el trabajo realizado por cada una de las fuerzas que actúa sobre m (  =53) 37  F = 100N  = 0,5
  • 22. F Diagrama de cuerpo libre de m: mg = 100N N Fr   Y X 
  • 23. FUERZA VARIABLE , Desplazamiento rectilíneo F F x W = F x X i i i
  • 24. Área neta bajo la curva W
  • 25. Un cuerpo se mueve desde x= 0 hasta x = 6, bajo la acción de una fuerza tal como se indica , hallar el trabajo realizado 5 6 X(m) F x (N)
  • 26. Expresión general para el trabajo F r C F : Fuerza C : trayectoria
  • 27. Esta es la llamada integral de línea W =  F.dr =  ( F x dx +F y dy + F z dz) donde:F x , F y , F z : componentes de F y además la curva C está definida a través de: y =f(x), z =f(x) C C El trabajo efectuado por F cuando el cuerpo se mueve a través de la curva C esta dada por la expresión :
  • 28. En sistema mostrado determínese el trabajo efectuado por la fuerza a a través del camino a) C1 b) C2 y x 10 5
  • 29. El trabajo es una magnitud aditiva 1 2 C F i F R © © ©
  • 30. Problema Se arrastra una caja por un piso áspero aplicando una fuerza constante de magnitud 50N. La fuerza forma un ángulo de 37 o arriba de la horizontal . Una fuerza de rozamiento de 10 N retarda el movimiento y la caja se desplaza una distancia de 3m hacia la derecha a) calculese el trabajo realizado por F b) el trabajo realizado por la fricción c) el trabajo, neto efectuado sobre la caja por todas las fuerzas que actúan sobre ella
  • 31. Problema Una partícula que se mueve en el plano xy experimenta un desplazamiento: s = ( 2 i +3 j ) [m] según una trayectoria rectilínea. Mientras que una fuerza constante dada por F = ( 5 i +3 j ) [N] actúa sobre ella. a) calcúlese la magnitud el desplazamiento y de la fuerza b) el trabajo realizado por F c) el ángulo que la fuerza forma con el desplazamiento
  • 32. Potencia: trabajo realizado por una fuerza, por unidad de tiempo [W] Se define como el trabajo efectuado por unidad de tiempo P =  W/  t : Potencia Promedio P = lim   W/  t = dW/dt   t  0 dW = F.dr entonces la potencia instantánea también se puede expresar como: P = F.dr/dt = F.V Donde V es la velocidad instantánea
  • 33. Problema: Un elevador tiene una masa de 1000Kg y lleva una carga de 800Kg. Una fuerza de rozamiento constante de 4000N retarda su movimiento hacia arriba. a) cual debe ser la potencia que debe entregar el motor para levantar el elevador a una rapidez constante de 3m/s? b) que potencia debe entregar el motor en cualquier instante para proporcionar una aceleración hacia arriba de 1m/s 2 ?
  • 35. Teorema del W y la Energía cinética © © © © © v 1 v 2
  • 36. v 1 v 2
  • 37. Se define la energía cinética como : K= mV 2 /2 C omo la energía asociada al Movimiento mecánico de un cuerpo, luego: E l trabajo efectuado por la fuerza resultante o el trabajo total es igual al cambio en la energía cinética de la particula
  • 38. Ejemplo 1: Un automóvil que viaja a 48Km/h , se puede detener en una distancia mínima de 40 m al aplicar los frenos . Si el mismo auto se encuentra viajando a 96Km/h, Cual es la distancia mínima para detenerse? V i d V f =0