SlideShare ist ein Scribd-Unternehmen logo
1 von 8
Downloaden Sie, um offline zu lesen
INTERNATIONAL JOURNAL OF COMPUTER(IJCET), ISSN IAEME–
  International Journal of Computer Engineering and Technology
                                                                        ENGINEERING
  6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 1, January- February (2013), ©
                                                                                       0976

                             & TECHNOLOGY (IJCET)
ISSN 0976 – 6367(Print)
ISSN 0976 – 6375(Online)
Volume 4, Issue 1, January- February (2013), pp. 08-15
                                                                              IJCET
© IAEME: www.iaeme.com/ijcet.asp
Journal Impact Factor (2012): 3.9580 (Calculated by GISI)                  ©IAEME
www.jifactor.com




       FOURIER MELLIN TRANSFORM BASED FACE RECOGNITION

                            Sambhunath Biswas1, Amrita Biswas2
   System Analyst (GR-I), Machine Intelligence Unit, Indian Statistical Unit, Kolkata, India 1
  Associate Professor, Electronics & Communication Engineering, Sikkim Manipal Institute of
                                   Technology, Majitar, India2

  ABSTRACT
          Human face recognition is, indeed, a challenging task, especially under illumination
  and pose variations. We examine in the present paper effectiveness of a simple face
  recognition algorithm based on Fourier Mellin Transform. The algorithms convert 2-D gray
  level training face images into their respective depth maps or physical shape which are
  subsequently transformed by Fourier Mellin Transform. Experiments show that such
  transformed shape features are robust to illumination and pose variations. Classification for
  test face images is made through a k-NN classifier, based on L1 norm. Proposed algorithm
  has been tested on face images from the ORL database.
  Keywords: Face Recognition, Depth Map, Fourier Mellin Transform, Nearest Neighbour
           Classifier
  I.     INTRODUCTION

          Face Recognition problem has been studied extensively for more than twenty years
  but even now the problem is not fully solved. In particular, the problem still exists when
  illumination and pose vary significantly. Recently, some progress [1] has been made on the
  problems of face recognition, especially under conditions such as smallvariations in lighting
  and facial expressions or pose. Of the many algorithms for face recognition, so far developed,
  the traditional approaches are based on Principal Component Analysis (PCA). Hyeonjoon
  Moon et al. [2] implemented a generic modular PCA algorithm where the numerous design
  decisions have been stated explicitly. They experimented with changing the illumination
  normalization procedure and studied its effect through the performance of compressing
  images with JPEG and wavelet compression algorithms. For this, they varied the number of
  eigen vectors in the representation of face images and changed the similarity measure in the
  classification process. Kamran Etemad and Rama Chellappa in their discriminant analysis
  algorithm [3], made an objective evaluation of the significance ofvisual information in
  different parts (features) of a facefor identifying the human subject. LDA of faces provides a
  small set of features that carries the most relevant information for classification purposes. The
                                                 8
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 –
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 1, January- February (2013), © IAEME

features are obtained through eigen vector analysis of scatter matrices with the objective of
maximizing between-class variations and minimizing within-class variations. The algorithm
uses a projection based feature extraction procedure and an automatic classification scheme
for face recognition. A slightly different method, called the evolutionary pursuit method, for
face recognition was described by Chengjun Liu and Harry Wechsler [4]. Their method
processes images in a lower dimensional whitened PCA subspace. Directed but random
rotations of the basis vectors in this subspace are searched by Genetic Algorithm, where
evolution is driven by a fitness function defined in terms of performance accuracy and class
separation. Up to now, many face representation approaches have been introduced including
subspace based holistic features and local appearance features [17]. Typical holistic features
include the well-known principal component analysis (PCA) [18], linear discriminant
analysis [19], independent component analysis (ICA)[20] etc. Recently, information from
different sections, such as, scale, space and orientation, has been used for representation and
recognition of human faces by Zhen et al. [21]. This does not include the effect of
illumination change. Subspace based face recognition under the scenarios of misalignments
and/or image occlusions has been published by Shuicheng et al. [22]. We have not considered
image occlusions as our objective is different. The proposed research work addresses the
problem of face recognition to achieve high performance in the face recognition system. Face
Recognition method, [5] based on curvelet based PCA and tested on ORL Database, uses 5
images for training and has achieved 96.6% recognition rate and, using 8 images for training
on the Essex Grimace database, has achieved 100% recognition rate. Another algorithm [6],
based on wavelet transform, uses 5 images for training from the ORL Database has achieved
a recognition rate of 99.5%. But still more improvement is required to ensure that the face
recognition algorithms are robust, in particular to illumination and pose variation. A face
recognition algorithm mainly based on two dimensional graylevel images, in general, exhibits
poor performance when exposed to different lighting conditions. This is because the features
extracted for classification are not illumination invariant. To get rid of the illumination
problem, we have used the 3-dimensional depth images of the corresponding 2-dimensional
gray level face images. This is because the 3-D depth image depicts the physical surface of
the face and thus, provides the shape of human face. The primary reasonis that such a shape
depends on the gradient values of thephysical surface of the face, i.e., on the difference
ofintensity values and not on the absolute values of intensity. As a result, change in
illumination does not affect the feature set and so the decision also remains unaffected. Such
a shape can be obtained using a shape from shading algorithm and subsequently can be used
for feature extraction. 3-D face matching using isogeodesic stripes through a graph as
described in [23] is a different technique for face recognition. But it is computationally
expensive. However, it is also a different area of research. Xiaoyang and Triggs [24], on the
other hand, considered texture features for face recognition under difficult lighting
conditions. Their method needs to enhance local textures but how to select the local textures
or which local textures are adequate and need be considered are not discussed. The proposed
algorithm use the shape from shading algorithm [8], and Fourier Mellin transform
respectively to compute energy for feature extraction. We have used L1 norm distance to test
for classification. With this, the outline of the paper is described as follows: In section II, we
briefly review a shape from shading algorithm and in section III, the concepts of Fourier
Mellin Transform are briefly sketched. Section IV, depicts the proposed algorithm, while
experimental results are discussed in section V. Finally, conclusion is made in the last
section.

                                                9
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 –
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 1, January- February (2013), © IAEME

II.    EXTRACTION OF ILLUMINATION INDEPENDENT FEATURES

         The problem of recovering 3-D shape from a single monocular 2-D shaded image was
first addressed by B. K. P Horn [14]. He developed a method connecting the surface gradient
(p,q) with the brightness values for Lambertian objects. There result is known as the
reflectance map. Therefore, he computed the surface gradients (p,q) using the reflectance
map in order to get the shape. From (p,q), he also computed depth, Z. Since, orientation of
tangent planes is accompanied by the orientation of their normal vectors, say (nx,ny,nz),they
can also be effectively used to represent the surface shape.As the reflectance map, in general,
is non-linear, it is very difficult to find the gradient values in a straightforward way. Some
other researchers, such as, Bruss [15] and Pentland [16], to simplify the problem, thought of
local analysis to compute the shape. Thus, two different kinds of algorithms, e.g. global and
local emerged. In global methods, Horn showed the shape can be recovered by minimizing
some cost function involving constraints such as smoothness. He used variational calculus
approach to compute the shape in the continuous domain and its iterative discrete version in
the discrete domain. Bruss showed that no shape from shading technique can provide a
unique solution without additional constraint. Later on, P. S. Tsai and M. Shah [8] provided a
simple method to compute shape through linearization of Horn s nonlinear reflectance map.
                                                                 ‟
For our purpose, we have used the shape from shading algorithm described by P. S. Tsai and
M. Shah [8] for its simplicity and fastness. This approach employs discrete approximations
for p and q using finite differences, andlinearizes the reflectance in Z(x,y). The method is
fast, since each operation is purely local. In addition, itgives good results for the spherical
surfaces, unlike other linear methods. Note that the illumination change may be due to the
position change of the source keeping the strength of the source as it is or due to the change
in the source strength keeping the position of the source fixed. In either case, the gradient
values, p and q, of the surface do not change, i.e., they can be uniquely determined [14].
Hence, for the linear reflectance map, the illumination will have no effect on the depth map.
In other words, depth map will be illumination invariant.

III.   FEATURE EXTRACTION

        Number of methods are available for feature extraction. We have selected Fourier
Mellin Transform based Approach. The Fourier-Mellin transform is a useful mathematical
tool for image recognition because its resulting spectrum is invariant in rotation, translation
and scale. The Fourier Transform itself (FT) is translation invariant and its conversion to log-
polar coordinates converts the scale and rotation differences to vertical and horizontal offsets
that can be measured. A second FFT, called the Mellin transform (MT) gives a transform-
space image that is invariant to translation, rotation and scale.
The Standard Fourier–Mellin Transform is discussed in the following paragraph:
Let f denote a function representing a gray-level image. The standard Fourier–Mellin
transform of fis given by:


                                                                        (1)
Where Z denotes additive group of integers and R denotes additive group of the real line.
The FMT is a global transform and applies to all pixels the same way. Textured imagescannot
be taken into account directly and objects must first be localized and isolatedfrom the scene

                                              10
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 –
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 1, January- February (2013), © IAEME

to match one of the requirements regarding the existence of the integral inEq. (1).Due to the
singularity at the origin of coordinates, a solution generally adopted is tocancel the image over a small
disk around the origin [9]. However, this approximation has serious effects on the numerical
computation of the FMT because of the following reasons:
(1)Image values nearer the origin have a larger effect on the FMT than image valuesremote from the
centroid because of the 1/rweighting in the measure of the Fourier–Mellinintegrals. Hence, significant
information content of the image is lost in addition to removinga small disk in the image centroid.
(2)It may cause stretching problems when images are enlarged. How large must thedisk be if the
image is scaled by an unknown factor? By cancelling a disk of constant radiusfor every image,
different amounts of information are removed.
More recently, a rigorous approach has been introduced to tackle the difficulties describedabove.
Ghorbel[10] suggested computing the standard FMT offσ(r,θ)=rσf(r,θ) instead of f(r,θ), where σis a
fixed and strictly positive real number.Hence, the integral (1) exists and is called the AFMT of f,with
σ>0



                                                                                (2)
While the classical Fourier transform converts translation into a pure phase change, the AFMT
converts a similarity transformation in the original domaininto a complex multiplication in the
Fourier–Mellin domain. These relations can be seenas the shift theorem for the planar similarity group
and make the AFMT appropriate forextracting features that are invariant to scale and rotation
changes.[11]
The AFMT can be expressed according to theCartesiancoordinates of f as follows:




                                                                                (3)
In this case, no resampling of the discrete image is necessary and theAFMTcan be estimateddirectly
from the rectangular grid.TheCartesianAFMT(C-Afmt) approximationis computed by using sums in
place of integrals:




                                                                                (4)
The coordinates m and n correspond to a pixel position from the object centroid. Pmin, Pmax,
Qminand Qmaxindicate the coordinates, with respect to the image centroid, of the smallest rectangle
that fully contains the object. For the sake of compatibility with otherapproximations, we used the
trapezoidal integration rule. The discrete image is recovered directly in rectangular coordinates.




                                                   11
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 –
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 1, January- February (2013), © IAEME

IV.    PROPOSED APPROACH

       We discuss in this section the proposed approach using Fourier Mellin Transform:
Step1: Compute depths of all the training images using
       shape from shading method.
Step2: Compute the Fourier Mellin Transform of the depth image and take the FMT
       coefficients as feature vectors.
Step3: Classify the test images using the L1 norm distance measure.
Step4: Stop

V.     RESULTS AND DISCUSSION

        In order to test the proposed algorithms, we have used ORL. The ORL (AT and T)
database contains 10 different images (92 x 112), each of 40 different subjects. All images
were takenagainst a dark homogenous background with thesubjects in upright, frontal
position with some sidemovement. Sample images of the dataset are shown inFig. 3. The
depth map was computed for all the images in thetraining database assuming the reflectance
of the surface to be Lambertian. The obtained depth image has the same size as the original
image i.e. 92 x112.Depthimage computed by shape from shading algorithm for thefirst image
in ORL database is shown in Fig.1.The Fourier Mellin Transform of the depth map is
computed for feature extraction. The Cartesian approximation of AFMT of the first image of
the ORL database has been shown in Fig.2. To show the robustness of features against
orientation, wehave plottedthe relative error in distance measurement for all tenimages in six
classes (of ORL database) from theirrespective mean images shown in Fig.4. Note thatthis
distance is almost zero for all the images in a class and maintains excellent constancy. We
have tested the algorithm for different number of training images. Classification was
conducted using k-NN classifier based on L1 norm measure The results are shownin Table 1.

                                 TABLE I RESULTS TABLE
           Sl.No                  No.of Training Images                Recognition %
             1                              5                               100
             2                              4                               100
             3                              3                              95.7
             4                              2                               90




                                Fig. 1 Image and its depth map


                                             12
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 –
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 1, January- February (2013), © IAEME




 Fig. 2 Illustration of the Cartesian approximation of the AFMT of the original image in Fig.1




                        Fig. 3 Sample Images of the ORL Database




              Fig. 4 Relative error of images from the respective class mean

VI. CONCLUSION

       We have proposed a simple algorithm based on image depth map and Fourier Mellin
Transform. The results show that for 4 training images we get 100% recognition percentage
and for 3 training images we get a recognition percentage of 95.7%.This clearly shows that
despite the simplicity of the algorithm we get superior results and there is scope for further
improvement in the recognition percentage by resorting to some superior classification
techniques.
                                              13
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 –
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 1, January- February (2013), © IAEME

REFERENCES

[1] W. Zhao, R. Chellappa, P. J. Phillips, “A. Rosenfeld,FaceRecognition:A Literature
Survey”, ACM Computing Surveys, Vol. 35, No. 4, 2003,pp.399-458.
[2] Hyeonjoon Moon, P Jonathon Phillips, “Computational and Performance Aspects of PCA
Based Face Recognition Algorithms”, Perception 30(3),2001,pp.303 - 321
[3] Kamran Etemad and Rama Chellappa, “Discriminant Analysis for Recognition of Human
Face Images”, Proc. First Int. Conf. on Audio and Video Based Biometric Person
Authentication,Crans-Montana, Switzerland,Lecture Notes In Computer Science; Vol.1206,
August 1997,pp.127 - 142
[4] Chengjun Liu and Harry Wechsler, “Face Recognition using Evolutionary Pursuit”, Proc.
Fifth European Conf. on Computer Vision, ECCV’98,Freiburg, Germany, Vol II, 02-06 June
1998, pp.596-612.
[5] Tanaya Mandal and Q. M. Jonathan Wu, “Face Recognition Using Curvelet” Based PCA,
IEEE, Technical Report, 6/08, pp.978-1-4244-2175.
[6] ZhengDezhong Cui Fayi, ‘Face Recognition based on Wavelet Transform and Image
Comparison”, Proc. International Symposium on Computational Intelligence and Design,
Volume: 2, 2008, pp. 24-29.
[7] C.SydneyBurrus and A. Gopinath and HaitaoGuo, “Introduction to Wavelets and Wavelet
Transforms”, Prentice Hall, N.J 07458, USA, 1998.
[8] Ping-Sing Tsai and Mubarak Shah “Shape From Shading Using Linear Approximation”,
Image and Vision Computing, vol: 12, 1994, pp.487-498.
[9] P. E. Zwicke and Z. Kiss, A new implementation of the Mellin transform and its
application to radar classification, IEEE Trans. Pattern Anal. Mach. Intell. 5, 1983, 191–19
[10] F. Ghorbel, A complete invariant description for gray-level images by the harmonic
analysis approach, PatternRecog. Lett.15, 1994, 1043–1051.
[11] St´ephaneDerrode,Robust and Efficient Fourier–Mellin Transform Approximations for
Gray-Level Image Reconstruction and Complete Invariant escription Computer Vision and
Image Understanding 83, 57–78 (2001)
[12] Peter N. Belhumeur, Joao P. Hespanha and David J. Kriegman,
“EigenfacesvsFisherfaces:Recognition using Class Specific Linear Projection”,IEEE Trans.
on PAMI, July 1997.
[13] R. C. Gonzalez and R. E. woods,” Digital Image Processing”, Dorling Kindersley, India,
Pearson Prentice Hall, 2006.
[14] B.K.P Horn,” Robot Vision”, Cambridge, Massachusetts, USA , MIT Press,1986.
[15] A. R. Bruss, “The Image Irradiance Equation:Its Solution and Applicaion”,Technical
Report TR-623, MIT-AI, June 1981.
[16] A. P. Pentland, “Local Shading Analysis”, IEEE Trans. on PAMI, vol.6,no.2, March
1984, pp.170-187.
[17] S. Z. Li and A. K. Jain, “Handbook of Face Recognition”, New York,Springer-Verlag,
2005.
[18] M. A. Turk and A.P. Pentland, “Face Recognition using eigenfaces”, Proc.IEEE
Computer Society Conf. Comput.vs. Pattern Recognition, June 1991 pp. 586-591.
[19] P. Belhumeur. J. Hespanha and D. Kriegman, “Eigenfaces vs. fisherfaces:recognition
using class specific linear projection”, IEEE Trans. On Pattern Analysis and Machine
Intelligence, vol. 26, no. 9, Sept. 2004, pp.1222-1228.
[20] P. Conor, “Independent component analysis a new concept?”, Signal Processing, vol.
36,1994, pp. 287-314.
                                            14
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 –
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 1, January- February (2013), © IAEME

[21] Zhen Lei, Shengcai Liao, MattiPietikainen and Z. Li “Face recognition by exploring
information jointly in space, scale and orientation”, IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 20, no. 1, Jan. 2011, pp.247-256.
[22] Shuicheng Yan, jianzhuang Liu, Xiaoou Tang and Tomas S.Huang,”Misalignment-
robust face recognition”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 19,
no. 4, Aril2010, pp. 1087-1096.
[23] Stefano Berretti, Alberto Del Bimbo and Pietro Pala,” 3D face recognition using
isogeodesic stripes”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 32, no.
12,Dec. 2010, pp.2162-2177.
[24] Xiaoyang Tan and Bill Triggs,” Enhanced local texture features sets forface recognition
under difficult lighting conditions”, IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 19, no. 6, Jun.2010 pp.1635-1650.
[25] Abhishek Choubey and Girish D. Bonde, “Face Recognition Across Pose With
Estimation Of Pose Parameters” International journal of Electronics and Communication
Engineering &Technology (IJECET), Volume3, Issue1, 2012, pp. 311 - 316, Published by
IAEME
[26] Steven Lawrence Fernandes and Dr. G Josemin Bala, “Analysing Recognition Rate Of
Lda And Lpp Based Algorithms For Face Recognition” International journal of Computer
Engineering & Technology (IJCET), Volume3, Issue2, 2012, pp. 115 - 125, Published by
IAEME




                                            15

Weitere ähnliche Inhalte

Was ist angesagt?

Image Redundancy and Its Elimination
Image Redundancy and Its EliminationImage Redundancy and Its Elimination
Image Redundancy and Its EliminationIJMERJOURNAL
 
IRJET- Prediction of Facial Attribute without Landmark Information
IRJET-  	  Prediction of Facial Attribute without Landmark InformationIRJET-  	  Prediction of Facial Attribute without Landmark Information
IRJET- Prediction of Facial Attribute without Landmark InformationIRJET Journal
 
Local directional number pattern for face analysis face and expression recogn...
Local directional number pattern for face analysis face and expression recogn...Local directional number pattern for face analysis face and expression recogn...
Local directional number pattern for face analysis face and expression recogn...IEEEFINALYEARPROJECTS
 
FPGA ARCHITECTURE FOR FACIAL-FEATURES AND COMPONENTS EXTRACTION
FPGA ARCHITECTURE FOR FACIAL-FEATURES AND COMPONENTS EXTRACTIONFPGA ARCHITECTURE FOR FACIAL-FEATURES AND COMPONENTS EXTRACTION
FPGA ARCHITECTURE FOR FACIAL-FEATURES AND COMPONENTS EXTRACTIONijcseit
 
IRJET-Face Recognition using LDN Code
IRJET-Face Recognition using LDN CodeIRJET-Face Recognition using LDN Code
IRJET-Face Recognition using LDN CodeIRJET Journal
 
11.similarity of inference face matching on angle oriented face recognition
11.similarity of inference face matching on angle oriented face recognition11.similarity of inference face matching on angle oriented face recognition
11.similarity of inference face matching on angle oriented face recognitionAlexander Decker
 
similarity of inference face matching on angle oriented face recognition
similarity of inference face matching on angle oriented face recognitionsimilarity of inference face matching on angle oriented face recognition
similarity of inference face matching on angle oriented face recognitionAlexander Decker
 
Unimodal Multi-Feature Fusion and one-dimensional Hidden Markov Models for Lo...
Unimodal Multi-Feature Fusion and one-dimensional Hidden Markov Models for Lo...Unimodal Multi-Feature Fusion and one-dimensional Hidden Markov Models for Lo...
Unimodal Multi-Feature Fusion and one-dimensional Hidden Markov Models for Lo...IJECEIAES
 
Human’s facial parts extraction to recognize facial expression
Human’s facial parts extraction to recognize facial expressionHuman’s facial parts extraction to recognize facial expression
Human’s facial parts extraction to recognize facial expressionijitjournal
 

Was ist angesagt? (13)

Image Redundancy and Its Elimination
Image Redundancy and Its EliminationImage Redundancy and Its Elimination
Image Redundancy and Its Elimination
 
50120130406014
5012013040601450120130406014
50120130406014
 
Local Gray Code Pattern (LGCP): A Robust Feature Descriptor for Facial Expres...
Local Gray Code Pattern (LGCP): A Robust Feature Descriptor for Facial Expres...Local Gray Code Pattern (LGCP): A Robust Feature Descriptor for Facial Expres...
Local Gray Code Pattern (LGCP): A Robust Feature Descriptor for Facial Expres...
 
IRJET- Prediction of Facial Attribute without Landmark Information
IRJET-  	  Prediction of Facial Attribute without Landmark InformationIRJET-  	  Prediction of Facial Attribute without Landmark Information
IRJET- Prediction of Facial Attribute without Landmark Information
 
Local directional number pattern for face analysis face and expression recogn...
Local directional number pattern for face analysis face and expression recogn...Local directional number pattern for face analysis face and expression recogn...
Local directional number pattern for face analysis face and expression recogn...
 
FPGA ARCHITECTURE FOR FACIAL-FEATURES AND COMPONENTS EXTRACTION
FPGA ARCHITECTURE FOR FACIAL-FEATURES AND COMPONENTS EXTRACTIONFPGA ARCHITECTURE FOR FACIAL-FEATURES AND COMPONENTS EXTRACTION
FPGA ARCHITECTURE FOR FACIAL-FEATURES AND COMPONENTS EXTRACTION
 
IRJET-Face Recognition using LDN Code
IRJET-Face Recognition using LDN CodeIRJET-Face Recognition using LDN Code
IRJET-Face Recognition using LDN Code
 
11.similarity of inference face matching on angle oriented face recognition
11.similarity of inference face matching on angle oriented face recognition11.similarity of inference face matching on angle oriented face recognition
11.similarity of inference face matching on angle oriented face recognition
 
similarity of inference face matching on angle oriented face recognition
similarity of inference face matching on angle oriented face recognitionsimilarity of inference face matching on angle oriented face recognition
similarity of inference face matching on angle oriented face recognition
 
Unimodal Multi-Feature Fusion and one-dimensional Hidden Markov Models for Lo...
Unimodal Multi-Feature Fusion and one-dimensional Hidden Markov Models for Lo...Unimodal Multi-Feature Fusion and one-dimensional Hidden Markov Models for Lo...
Unimodal Multi-Feature Fusion and one-dimensional Hidden Markov Models for Lo...
 
Aa4102207210
Aa4102207210Aa4102207210
Aa4102207210
 
Human’s facial parts extraction to recognize facial expression
Human’s facial parts extraction to recognize facial expressionHuman’s facial parts extraction to recognize facial expression
Human’s facial parts extraction to recognize facial expression
 
20120140504019
2012014050401920120140504019
20120140504019
 

Ähnlich wie Fourier mellin transform based face recognition

2. 7698 8113-1-pb
2. 7698 8113-1-pb2. 7698 8113-1-pb
2. 7698 8113-1-pbIAESIJEECS
 
A survey on human face recognition invariant to illumination
A survey on human face recognition invariant to illuminationA survey on human face recognition invariant to illumination
A survey on human face recognition invariant to illuminationIAEME Publication
 
Face Recognition on Linear Motion-blurred Image
Face Recognition on Linear Motion-blurred ImageFace Recognition on Linear Motion-blurred Image
Face Recognition on Linear Motion-blurred ImageTELKOMNIKA JOURNAL
 
Volume 2-issue-6-2108-2113
Volume 2-issue-6-2108-2113Volume 2-issue-6-2108-2113
Volume 2-issue-6-2108-2113Editor IJARCET
 
EV-SIFT - An Extended Scale Invariant Face Recognition for Plastic Surgery Fa...
EV-SIFT - An Extended Scale Invariant Face Recognition for Plastic Surgery Fa...EV-SIFT - An Extended Scale Invariant Face Recognition for Plastic Surgery Fa...
EV-SIFT - An Extended Scale Invariant Face Recognition for Plastic Surgery Fa...IJECEIAES
 
A study of techniques for facial detection and expression classification
A study of techniques for facial detection and expression classificationA study of techniques for facial detection and expression classification
A study of techniques for facial detection and expression classificationIJCSES Journal
 
An Efficient Face Recognition Using Multi-Kernel Based Scale Invariant Featur...
An Efficient Face Recognition Using Multi-Kernel Based Scale Invariant Featur...An Efficient Face Recognition Using Multi-Kernel Based Scale Invariant Featur...
An Efficient Face Recognition Using Multi-Kernel Based Scale Invariant Featur...CSCJournals
 
An Assimilated Face Recognition System with effective Gender Recognition Rate
An Assimilated Face Recognition System with effective Gender Recognition RateAn Assimilated Face Recognition System with effective Gender Recognition Rate
An Assimilated Face Recognition System with effective Gender Recognition RateIRJET Journal
 
Model Based Emotion Detection using Point Clouds
Model Based Emotion Detection using Point CloudsModel Based Emotion Detection using Point Clouds
Model Based Emotion Detection using Point CloudsLakshmi Sarvani Videla
 
PERFORMANCE EVALUATION OF BLOCK-SIZED ALGORITHMS FOR MAJORITY VOTE IN FACIAL ...
PERFORMANCE EVALUATION OF BLOCK-SIZED ALGORITHMS FOR MAJORITY VOTE IN FACIAL ...PERFORMANCE EVALUATION OF BLOCK-SIZED ALGORITHMS FOR MAJORITY VOTE IN FACIAL ...
PERFORMANCE EVALUATION OF BLOCK-SIZED ALGORITHMS FOR MAJORITY VOTE IN FACIAL ...ijaia
 
PERFORMANCE EVALUATION OF BLOCK-SIZED ALGORITHMS FOR MAJORITY VOTE IN FACIAL ...
PERFORMANCE EVALUATION OF BLOCK-SIZED ALGORITHMS FOR MAJORITY VOTE IN FACIAL ...PERFORMANCE EVALUATION OF BLOCK-SIZED ALGORITHMS FOR MAJORITY VOTE IN FACIAL ...
PERFORMANCE EVALUATION OF BLOCK-SIZED ALGORITHMS FOR MAJORITY VOTE IN FACIAL ...gerogepatton
 
International Journal of Artificial Intelligence & Applications (IJAIA)
International Journal of Artificial Intelligence & Applications (IJAIA)International Journal of Artificial Intelligence & Applications (IJAIA)
International Journal of Artificial Intelligence & Applications (IJAIA)gerogepatton
 
International Journal of Computer Science, Engineering and Information Techno...
International Journal of Computer Science, Engineering and Information Techno...International Journal of Computer Science, Engineering and Information Techno...
International Journal of Computer Science, Engineering and Information Techno...IJCSEIT Journal
 
SYMMETRICAL WEIGHTED SUBSPACE HOLISTIC APPROACH FOR EXPRESSION RECOGNITION
SYMMETRICAL WEIGHTED SUBSPACE HOLISTIC APPROACH FOR EXPRESSION RECOGNITIONSYMMETRICAL WEIGHTED SUBSPACE HOLISTIC APPROACH FOR EXPRESSION RECOGNITION
SYMMETRICAL WEIGHTED SUBSPACE HOLISTIC APPROACH FOR EXPRESSION RECOGNITIONijcsit
 
Happiness Expression Recognition at Different Age Conditions
Happiness Expression Recognition at Different Age ConditionsHappiness Expression Recognition at Different Age Conditions
Happiness Expression Recognition at Different Age ConditionsEditor IJMTER
 
Single frontal face detection by finding dark pixel group and comparing xy
Single frontal face detection by  finding dark pixel group and  comparing xySingle frontal face detection by  finding dark pixel group and  comparing xy
Single frontal face detection by finding dark pixel group and comparing xyIAEME Publication
 
3-D Face Recognition Using Improved 3D Mixed Transform
3-D Face Recognition Using Improved 3D Mixed Transform3-D Face Recognition Using Improved 3D Mixed Transform
3-D Face Recognition Using Improved 3D Mixed TransformCSCJournals
 
A Novel Mathematical Based Method for Generating Virtual Samples from a Front...
A Novel Mathematical Based Method for Generating Virtual Samples from a Front...A Novel Mathematical Based Method for Generating Virtual Samples from a Front...
A Novel Mathematical Based Method for Generating Virtual Samples from a Front...CSCJournals
 

Ähnlich wie Fourier mellin transform based face recognition (20)

2. 7698 8113-1-pb
2. 7698 8113-1-pb2. 7698 8113-1-pb
2. 7698 8113-1-pb
 
A survey on human face recognition invariant to illumination
A survey on human face recognition invariant to illuminationA survey on human face recognition invariant to illumination
A survey on human face recognition invariant to illumination
 
Face Recognition on Linear Motion-blurred Image
Face Recognition on Linear Motion-blurred ImageFace Recognition on Linear Motion-blurred Image
Face Recognition on Linear Motion-blurred Image
 
Volume 2-issue-6-2108-2113
Volume 2-issue-6-2108-2113Volume 2-issue-6-2108-2113
Volume 2-issue-6-2108-2113
 
EV-SIFT - An Extended Scale Invariant Face Recognition for Plastic Surgery Fa...
EV-SIFT - An Extended Scale Invariant Face Recognition for Plastic Surgery Fa...EV-SIFT - An Extended Scale Invariant Face Recognition for Plastic Surgery Fa...
EV-SIFT - An Extended Scale Invariant Face Recognition for Plastic Surgery Fa...
 
A study of techniques for facial detection and expression classification
A study of techniques for facial detection and expression classificationA study of techniques for facial detection and expression classification
A study of techniques for facial detection and expression classification
 
50220130402003
5022013040200350220130402003
50220130402003
 
An Efficient Face Recognition Using Multi-Kernel Based Scale Invariant Featur...
An Efficient Face Recognition Using Multi-Kernel Based Scale Invariant Featur...An Efficient Face Recognition Using Multi-Kernel Based Scale Invariant Featur...
An Efficient Face Recognition Using Multi-Kernel Based Scale Invariant Featur...
 
An Assimilated Face Recognition System with effective Gender Recognition Rate
An Assimilated Face Recognition System with effective Gender Recognition RateAn Assimilated Face Recognition System with effective Gender Recognition Rate
An Assimilated Face Recognition System with effective Gender Recognition Rate
 
Model Based Emotion Detection using Point Clouds
Model Based Emotion Detection using Point CloudsModel Based Emotion Detection using Point Clouds
Model Based Emotion Detection using Point Clouds
 
PERFORMANCE EVALUATION OF BLOCK-SIZED ALGORITHMS FOR MAJORITY VOTE IN FACIAL ...
PERFORMANCE EVALUATION OF BLOCK-SIZED ALGORITHMS FOR MAJORITY VOTE IN FACIAL ...PERFORMANCE EVALUATION OF BLOCK-SIZED ALGORITHMS FOR MAJORITY VOTE IN FACIAL ...
PERFORMANCE EVALUATION OF BLOCK-SIZED ALGORITHMS FOR MAJORITY VOTE IN FACIAL ...
 
PERFORMANCE EVALUATION OF BLOCK-SIZED ALGORITHMS FOR MAJORITY VOTE IN FACIAL ...
PERFORMANCE EVALUATION OF BLOCK-SIZED ALGORITHMS FOR MAJORITY VOTE IN FACIAL ...PERFORMANCE EVALUATION OF BLOCK-SIZED ALGORITHMS FOR MAJORITY VOTE IN FACIAL ...
PERFORMANCE EVALUATION OF BLOCK-SIZED ALGORITHMS FOR MAJORITY VOTE IN FACIAL ...
 
International Journal of Artificial Intelligence & Applications (IJAIA)
International Journal of Artificial Intelligence & Applications (IJAIA)International Journal of Artificial Intelligence & Applications (IJAIA)
International Journal of Artificial Intelligence & Applications (IJAIA)
 
Lc3420022006
Lc3420022006Lc3420022006
Lc3420022006
 
International Journal of Computer Science, Engineering and Information Techno...
International Journal of Computer Science, Engineering and Information Techno...International Journal of Computer Science, Engineering and Information Techno...
International Journal of Computer Science, Engineering and Information Techno...
 
SYMMETRICAL WEIGHTED SUBSPACE HOLISTIC APPROACH FOR EXPRESSION RECOGNITION
SYMMETRICAL WEIGHTED SUBSPACE HOLISTIC APPROACH FOR EXPRESSION RECOGNITIONSYMMETRICAL WEIGHTED SUBSPACE HOLISTIC APPROACH FOR EXPRESSION RECOGNITION
SYMMETRICAL WEIGHTED SUBSPACE HOLISTIC APPROACH FOR EXPRESSION RECOGNITION
 
Happiness Expression Recognition at Different Age Conditions
Happiness Expression Recognition at Different Age ConditionsHappiness Expression Recognition at Different Age Conditions
Happiness Expression Recognition at Different Age Conditions
 
Single frontal face detection by finding dark pixel group and comparing xy
Single frontal face detection by  finding dark pixel group and  comparing xySingle frontal face detection by  finding dark pixel group and  comparing xy
Single frontal face detection by finding dark pixel group and comparing xy
 
3-D Face Recognition Using Improved 3D Mixed Transform
3-D Face Recognition Using Improved 3D Mixed Transform3-D Face Recognition Using Improved 3D Mixed Transform
3-D Face Recognition Using Improved 3D Mixed Transform
 
A Novel Mathematical Based Method for Generating Virtual Samples from a Front...
A Novel Mathematical Based Method for Generating Virtual Samples from a Front...A Novel Mathematical Based Method for Generating Virtual Samples from a Front...
A Novel Mathematical Based Method for Generating Virtual Samples from a Front...
 

Mehr von iaemedu

Tech transfer making it as a risk free approach in pharmaceutical and biotech in
Tech transfer making it as a risk free approach in pharmaceutical and biotech inTech transfer making it as a risk free approach in pharmaceutical and biotech in
Tech transfer making it as a risk free approach in pharmaceutical and biotech iniaemedu
 
Integration of feature sets with machine learning techniques
Integration of feature sets with machine learning techniquesIntegration of feature sets with machine learning techniques
Integration of feature sets with machine learning techniquesiaemedu
 
Effective broadcasting in mobile ad hoc networks using grid
Effective broadcasting in mobile ad hoc networks using gridEffective broadcasting in mobile ad hoc networks using grid
Effective broadcasting in mobile ad hoc networks using gridiaemedu
 
Effect of scenario environment on the performance of mane ts routing
Effect of scenario environment on the performance of mane ts routingEffect of scenario environment on the performance of mane ts routing
Effect of scenario environment on the performance of mane ts routingiaemedu
 
Adaptive job scheduling with load balancing for workflow application
Adaptive job scheduling with load balancing for workflow applicationAdaptive job scheduling with load balancing for workflow application
Adaptive job scheduling with load balancing for workflow applicationiaemedu
 
Survey on transaction reordering
Survey on transaction reorderingSurvey on transaction reordering
Survey on transaction reorderingiaemedu
 
Semantic web services and its challenges
Semantic web services and its challengesSemantic web services and its challenges
Semantic web services and its challengesiaemedu
 
Website based patent information searching mechanism
Website based patent information searching mechanismWebsite based patent information searching mechanism
Website based patent information searching mechanismiaemedu
 
Revisiting the experiment on detecting of replay and message modification
Revisiting the experiment on detecting of replay and message modificationRevisiting the experiment on detecting of replay and message modification
Revisiting the experiment on detecting of replay and message modificationiaemedu
 
Prediction of customer behavior using cma
Prediction of customer behavior using cmaPrediction of customer behavior using cma
Prediction of customer behavior using cmaiaemedu
 
Performance analysis of manet routing protocol in presence
Performance analysis of manet routing protocol in presencePerformance analysis of manet routing protocol in presence
Performance analysis of manet routing protocol in presenceiaemedu
 
Performance measurement of different requirements engineering
Performance measurement of different requirements engineeringPerformance measurement of different requirements engineering
Performance measurement of different requirements engineeringiaemedu
 
Mobile safety systems for automobiles
Mobile safety systems for automobilesMobile safety systems for automobiles
Mobile safety systems for automobilesiaemedu
 
Efficient text compression using special character replacement
Efficient text compression using special character replacementEfficient text compression using special character replacement
Efficient text compression using special character replacementiaemedu
 
Agile programming a new approach
Agile programming a new approachAgile programming a new approach
Agile programming a new approachiaemedu
 
Adaptive load balancing techniques in global scale grid environment
Adaptive load balancing techniques in global scale grid environmentAdaptive load balancing techniques in global scale grid environment
Adaptive load balancing techniques in global scale grid environmentiaemedu
 
A survey on the performance of job scheduling in workflow application
A survey on the performance of job scheduling in workflow applicationA survey on the performance of job scheduling in workflow application
A survey on the performance of job scheduling in workflow applicationiaemedu
 
A survey of mitigating routing misbehavior in mobile ad hoc networks
A survey of mitigating routing misbehavior in mobile ad hoc networksA survey of mitigating routing misbehavior in mobile ad hoc networks
A survey of mitigating routing misbehavior in mobile ad hoc networksiaemedu
 
A novel approach for satellite imagery storage by classify
A novel approach for satellite imagery storage by classifyA novel approach for satellite imagery storage by classify
A novel approach for satellite imagery storage by classifyiaemedu
 
A self recovery approach using halftone images for medical imagery
A self recovery approach using halftone images for medical imageryA self recovery approach using halftone images for medical imagery
A self recovery approach using halftone images for medical imageryiaemedu
 

Mehr von iaemedu (20)

Tech transfer making it as a risk free approach in pharmaceutical and biotech in
Tech transfer making it as a risk free approach in pharmaceutical and biotech inTech transfer making it as a risk free approach in pharmaceutical and biotech in
Tech transfer making it as a risk free approach in pharmaceutical and biotech in
 
Integration of feature sets with machine learning techniques
Integration of feature sets with machine learning techniquesIntegration of feature sets with machine learning techniques
Integration of feature sets with machine learning techniques
 
Effective broadcasting in mobile ad hoc networks using grid
Effective broadcasting in mobile ad hoc networks using gridEffective broadcasting in mobile ad hoc networks using grid
Effective broadcasting in mobile ad hoc networks using grid
 
Effect of scenario environment on the performance of mane ts routing
Effect of scenario environment on the performance of mane ts routingEffect of scenario environment on the performance of mane ts routing
Effect of scenario environment on the performance of mane ts routing
 
Adaptive job scheduling with load balancing for workflow application
Adaptive job scheduling with load balancing for workflow applicationAdaptive job scheduling with load balancing for workflow application
Adaptive job scheduling with load balancing for workflow application
 
Survey on transaction reordering
Survey on transaction reorderingSurvey on transaction reordering
Survey on transaction reordering
 
Semantic web services and its challenges
Semantic web services and its challengesSemantic web services and its challenges
Semantic web services and its challenges
 
Website based patent information searching mechanism
Website based patent information searching mechanismWebsite based patent information searching mechanism
Website based patent information searching mechanism
 
Revisiting the experiment on detecting of replay and message modification
Revisiting the experiment on detecting of replay and message modificationRevisiting the experiment on detecting of replay and message modification
Revisiting the experiment on detecting of replay and message modification
 
Prediction of customer behavior using cma
Prediction of customer behavior using cmaPrediction of customer behavior using cma
Prediction of customer behavior using cma
 
Performance analysis of manet routing protocol in presence
Performance analysis of manet routing protocol in presencePerformance analysis of manet routing protocol in presence
Performance analysis of manet routing protocol in presence
 
Performance measurement of different requirements engineering
Performance measurement of different requirements engineeringPerformance measurement of different requirements engineering
Performance measurement of different requirements engineering
 
Mobile safety systems for automobiles
Mobile safety systems for automobilesMobile safety systems for automobiles
Mobile safety systems for automobiles
 
Efficient text compression using special character replacement
Efficient text compression using special character replacementEfficient text compression using special character replacement
Efficient text compression using special character replacement
 
Agile programming a new approach
Agile programming a new approachAgile programming a new approach
Agile programming a new approach
 
Adaptive load balancing techniques in global scale grid environment
Adaptive load balancing techniques in global scale grid environmentAdaptive load balancing techniques in global scale grid environment
Adaptive load balancing techniques in global scale grid environment
 
A survey on the performance of job scheduling in workflow application
A survey on the performance of job scheduling in workflow applicationA survey on the performance of job scheduling in workflow application
A survey on the performance of job scheduling in workflow application
 
A survey of mitigating routing misbehavior in mobile ad hoc networks
A survey of mitigating routing misbehavior in mobile ad hoc networksA survey of mitigating routing misbehavior in mobile ad hoc networks
A survey of mitigating routing misbehavior in mobile ad hoc networks
 
A novel approach for satellite imagery storage by classify
A novel approach for satellite imagery storage by classifyA novel approach for satellite imagery storage by classify
A novel approach for satellite imagery storage by classify
 
A self recovery approach using halftone images for medical imagery
A self recovery approach using halftone images for medical imageryA self recovery approach using halftone images for medical imagery
A self recovery approach using halftone images for medical imagery
 

Fourier mellin transform based face recognition

  • 1. INTERNATIONAL JOURNAL OF COMPUTER(IJCET), ISSN IAEME– International Journal of Computer Engineering and Technology ENGINEERING 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 1, January- February (2013), © 0976 & TECHNOLOGY (IJCET) ISSN 0976 – 6367(Print) ISSN 0976 – 6375(Online) Volume 4, Issue 1, January- February (2013), pp. 08-15 IJCET © IAEME: www.iaeme.com/ijcet.asp Journal Impact Factor (2012): 3.9580 (Calculated by GISI) ©IAEME www.jifactor.com FOURIER MELLIN TRANSFORM BASED FACE RECOGNITION Sambhunath Biswas1, Amrita Biswas2 System Analyst (GR-I), Machine Intelligence Unit, Indian Statistical Unit, Kolkata, India 1 Associate Professor, Electronics & Communication Engineering, Sikkim Manipal Institute of Technology, Majitar, India2 ABSTRACT Human face recognition is, indeed, a challenging task, especially under illumination and pose variations. We examine in the present paper effectiveness of a simple face recognition algorithm based on Fourier Mellin Transform. The algorithms convert 2-D gray level training face images into their respective depth maps or physical shape which are subsequently transformed by Fourier Mellin Transform. Experiments show that such transformed shape features are robust to illumination and pose variations. Classification for test face images is made through a k-NN classifier, based on L1 norm. Proposed algorithm has been tested on face images from the ORL database. Keywords: Face Recognition, Depth Map, Fourier Mellin Transform, Nearest Neighbour Classifier I. INTRODUCTION Face Recognition problem has been studied extensively for more than twenty years but even now the problem is not fully solved. In particular, the problem still exists when illumination and pose vary significantly. Recently, some progress [1] has been made on the problems of face recognition, especially under conditions such as smallvariations in lighting and facial expressions or pose. Of the many algorithms for face recognition, so far developed, the traditional approaches are based on Principal Component Analysis (PCA). Hyeonjoon Moon et al. [2] implemented a generic modular PCA algorithm where the numerous design decisions have been stated explicitly. They experimented with changing the illumination normalization procedure and studied its effect through the performance of compressing images with JPEG and wavelet compression algorithms. For this, they varied the number of eigen vectors in the representation of face images and changed the similarity measure in the classification process. Kamran Etemad and Rama Chellappa in their discriminant analysis algorithm [3], made an objective evaluation of the significance ofvisual information in different parts (features) of a facefor identifying the human subject. LDA of faces provides a small set of features that carries the most relevant information for classification purposes. The 8
  • 2. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 – 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 1, January- February (2013), © IAEME features are obtained through eigen vector analysis of scatter matrices with the objective of maximizing between-class variations and minimizing within-class variations. The algorithm uses a projection based feature extraction procedure and an automatic classification scheme for face recognition. A slightly different method, called the evolutionary pursuit method, for face recognition was described by Chengjun Liu and Harry Wechsler [4]. Their method processes images in a lower dimensional whitened PCA subspace. Directed but random rotations of the basis vectors in this subspace are searched by Genetic Algorithm, where evolution is driven by a fitness function defined in terms of performance accuracy and class separation. Up to now, many face representation approaches have been introduced including subspace based holistic features and local appearance features [17]. Typical holistic features include the well-known principal component analysis (PCA) [18], linear discriminant analysis [19], independent component analysis (ICA)[20] etc. Recently, information from different sections, such as, scale, space and orientation, has been used for representation and recognition of human faces by Zhen et al. [21]. This does not include the effect of illumination change. Subspace based face recognition under the scenarios of misalignments and/or image occlusions has been published by Shuicheng et al. [22]. We have not considered image occlusions as our objective is different. The proposed research work addresses the problem of face recognition to achieve high performance in the face recognition system. Face Recognition method, [5] based on curvelet based PCA and tested on ORL Database, uses 5 images for training and has achieved 96.6% recognition rate and, using 8 images for training on the Essex Grimace database, has achieved 100% recognition rate. Another algorithm [6], based on wavelet transform, uses 5 images for training from the ORL Database has achieved a recognition rate of 99.5%. But still more improvement is required to ensure that the face recognition algorithms are robust, in particular to illumination and pose variation. A face recognition algorithm mainly based on two dimensional graylevel images, in general, exhibits poor performance when exposed to different lighting conditions. This is because the features extracted for classification are not illumination invariant. To get rid of the illumination problem, we have used the 3-dimensional depth images of the corresponding 2-dimensional gray level face images. This is because the 3-D depth image depicts the physical surface of the face and thus, provides the shape of human face. The primary reasonis that such a shape depends on the gradient values of thephysical surface of the face, i.e., on the difference ofintensity values and not on the absolute values of intensity. As a result, change in illumination does not affect the feature set and so the decision also remains unaffected. Such a shape can be obtained using a shape from shading algorithm and subsequently can be used for feature extraction. 3-D face matching using isogeodesic stripes through a graph as described in [23] is a different technique for face recognition. But it is computationally expensive. However, it is also a different area of research. Xiaoyang and Triggs [24], on the other hand, considered texture features for face recognition under difficult lighting conditions. Their method needs to enhance local textures but how to select the local textures or which local textures are adequate and need be considered are not discussed. The proposed algorithm use the shape from shading algorithm [8], and Fourier Mellin transform respectively to compute energy for feature extraction. We have used L1 norm distance to test for classification. With this, the outline of the paper is described as follows: In section II, we briefly review a shape from shading algorithm and in section III, the concepts of Fourier Mellin Transform are briefly sketched. Section IV, depicts the proposed algorithm, while experimental results are discussed in section V. Finally, conclusion is made in the last section. 9
  • 3. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 – 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 1, January- February (2013), © IAEME II. EXTRACTION OF ILLUMINATION INDEPENDENT FEATURES The problem of recovering 3-D shape from a single monocular 2-D shaded image was first addressed by B. K. P Horn [14]. He developed a method connecting the surface gradient (p,q) with the brightness values for Lambertian objects. There result is known as the reflectance map. Therefore, he computed the surface gradients (p,q) using the reflectance map in order to get the shape. From (p,q), he also computed depth, Z. Since, orientation of tangent planes is accompanied by the orientation of their normal vectors, say (nx,ny,nz),they can also be effectively used to represent the surface shape.As the reflectance map, in general, is non-linear, it is very difficult to find the gradient values in a straightforward way. Some other researchers, such as, Bruss [15] and Pentland [16], to simplify the problem, thought of local analysis to compute the shape. Thus, two different kinds of algorithms, e.g. global and local emerged. In global methods, Horn showed the shape can be recovered by minimizing some cost function involving constraints such as smoothness. He used variational calculus approach to compute the shape in the continuous domain and its iterative discrete version in the discrete domain. Bruss showed that no shape from shading technique can provide a unique solution without additional constraint. Later on, P. S. Tsai and M. Shah [8] provided a simple method to compute shape through linearization of Horn s nonlinear reflectance map. ‟ For our purpose, we have used the shape from shading algorithm described by P. S. Tsai and M. Shah [8] for its simplicity and fastness. This approach employs discrete approximations for p and q using finite differences, andlinearizes the reflectance in Z(x,y). The method is fast, since each operation is purely local. In addition, itgives good results for the spherical surfaces, unlike other linear methods. Note that the illumination change may be due to the position change of the source keeping the strength of the source as it is or due to the change in the source strength keeping the position of the source fixed. In either case, the gradient values, p and q, of the surface do not change, i.e., they can be uniquely determined [14]. Hence, for the linear reflectance map, the illumination will have no effect on the depth map. In other words, depth map will be illumination invariant. III. FEATURE EXTRACTION Number of methods are available for feature extraction. We have selected Fourier Mellin Transform based Approach. The Fourier-Mellin transform is a useful mathematical tool for image recognition because its resulting spectrum is invariant in rotation, translation and scale. The Fourier Transform itself (FT) is translation invariant and its conversion to log- polar coordinates converts the scale and rotation differences to vertical and horizontal offsets that can be measured. A second FFT, called the Mellin transform (MT) gives a transform- space image that is invariant to translation, rotation and scale. The Standard Fourier–Mellin Transform is discussed in the following paragraph: Let f denote a function representing a gray-level image. The standard Fourier–Mellin transform of fis given by: (1) Where Z denotes additive group of integers and R denotes additive group of the real line. The FMT is a global transform and applies to all pixels the same way. Textured imagescannot be taken into account directly and objects must first be localized and isolatedfrom the scene 10
  • 4. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 – 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 1, January- February (2013), © IAEME to match one of the requirements regarding the existence of the integral inEq. (1).Due to the singularity at the origin of coordinates, a solution generally adopted is tocancel the image over a small disk around the origin [9]. However, this approximation has serious effects on the numerical computation of the FMT because of the following reasons: (1)Image values nearer the origin have a larger effect on the FMT than image valuesremote from the centroid because of the 1/rweighting in the measure of the Fourier–Mellinintegrals. Hence, significant information content of the image is lost in addition to removinga small disk in the image centroid. (2)It may cause stretching problems when images are enlarged. How large must thedisk be if the image is scaled by an unknown factor? By cancelling a disk of constant radiusfor every image, different amounts of information are removed. More recently, a rigorous approach has been introduced to tackle the difficulties describedabove. Ghorbel[10] suggested computing the standard FMT offσ(r,θ)=rσf(r,θ) instead of f(r,θ), where σis a fixed and strictly positive real number.Hence, the integral (1) exists and is called the AFMT of f,with σ>0 (2) While the classical Fourier transform converts translation into a pure phase change, the AFMT converts a similarity transformation in the original domaininto a complex multiplication in the Fourier–Mellin domain. These relations can be seenas the shift theorem for the planar similarity group and make the AFMT appropriate forextracting features that are invariant to scale and rotation changes.[11] The AFMT can be expressed according to theCartesiancoordinates of f as follows: (3) In this case, no resampling of the discrete image is necessary and theAFMTcan be estimateddirectly from the rectangular grid.TheCartesianAFMT(C-Afmt) approximationis computed by using sums in place of integrals: (4) The coordinates m and n correspond to a pixel position from the object centroid. Pmin, Pmax, Qminand Qmaxindicate the coordinates, with respect to the image centroid, of the smallest rectangle that fully contains the object. For the sake of compatibility with otherapproximations, we used the trapezoidal integration rule. The discrete image is recovered directly in rectangular coordinates. 11
  • 5. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 – 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 1, January- February (2013), © IAEME IV. PROPOSED APPROACH We discuss in this section the proposed approach using Fourier Mellin Transform: Step1: Compute depths of all the training images using shape from shading method. Step2: Compute the Fourier Mellin Transform of the depth image and take the FMT coefficients as feature vectors. Step3: Classify the test images using the L1 norm distance measure. Step4: Stop V. RESULTS AND DISCUSSION In order to test the proposed algorithms, we have used ORL. The ORL (AT and T) database contains 10 different images (92 x 112), each of 40 different subjects. All images were takenagainst a dark homogenous background with thesubjects in upright, frontal position with some sidemovement. Sample images of the dataset are shown inFig. 3. The depth map was computed for all the images in thetraining database assuming the reflectance of the surface to be Lambertian. The obtained depth image has the same size as the original image i.e. 92 x112.Depthimage computed by shape from shading algorithm for thefirst image in ORL database is shown in Fig.1.The Fourier Mellin Transform of the depth map is computed for feature extraction. The Cartesian approximation of AFMT of the first image of the ORL database has been shown in Fig.2. To show the robustness of features against orientation, wehave plottedthe relative error in distance measurement for all tenimages in six classes (of ORL database) from theirrespective mean images shown in Fig.4. Note thatthis distance is almost zero for all the images in a class and maintains excellent constancy. We have tested the algorithm for different number of training images. Classification was conducted using k-NN classifier based on L1 norm measure The results are shownin Table 1. TABLE I RESULTS TABLE Sl.No No.of Training Images Recognition % 1 5 100 2 4 100 3 3 95.7 4 2 90 Fig. 1 Image and its depth map 12
  • 6. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 – 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 1, January- February (2013), © IAEME Fig. 2 Illustration of the Cartesian approximation of the AFMT of the original image in Fig.1 Fig. 3 Sample Images of the ORL Database Fig. 4 Relative error of images from the respective class mean VI. CONCLUSION We have proposed a simple algorithm based on image depth map and Fourier Mellin Transform. The results show that for 4 training images we get 100% recognition percentage and for 3 training images we get a recognition percentage of 95.7%.This clearly shows that despite the simplicity of the algorithm we get superior results and there is scope for further improvement in the recognition percentage by resorting to some superior classification techniques. 13
  • 7. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 – 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 1, January- February (2013), © IAEME REFERENCES [1] W. Zhao, R. Chellappa, P. J. Phillips, “A. Rosenfeld,FaceRecognition:A Literature Survey”, ACM Computing Surveys, Vol. 35, No. 4, 2003,pp.399-458. [2] Hyeonjoon Moon, P Jonathon Phillips, “Computational and Performance Aspects of PCA Based Face Recognition Algorithms”, Perception 30(3),2001,pp.303 - 321 [3] Kamran Etemad and Rama Chellappa, “Discriminant Analysis for Recognition of Human Face Images”, Proc. First Int. Conf. on Audio and Video Based Biometric Person Authentication,Crans-Montana, Switzerland,Lecture Notes In Computer Science; Vol.1206, August 1997,pp.127 - 142 [4] Chengjun Liu and Harry Wechsler, “Face Recognition using Evolutionary Pursuit”, Proc. Fifth European Conf. on Computer Vision, ECCV’98,Freiburg, Germany, Vol II, 02-06 June 1998, pp.596-612. [5] Tanaya Mandal and Q. M. Jonathan Wu, “Face Recognition Using Curvelet” Based PCA, IEEE, Technical Report, 6/08, pp.978-1-4244-2175. [6] ZhengDezhong Cui Fayi, ‘Face Recognition based on Wavelet Transform and Image Comparison”, Proc. International Symposium on Computational Intelligence and Design, Volume: 2, 2008, pp. 24-29. [7] C.SydneyBurrus and A. Gopinath and HaitaoGuo, “Introduction to Wavelets and Wavelet Transforms”, Prentice Hall, N.J 07458, USA, 1998. [8] Ping-Sing Tsai and Mubarak Shah “Shape From Shading Using Linear Approximation”, Image and Vision Computing, vol: 12, 1994, pp.487-498. [9] P. E. Zwicke and Z. Kiss, A new implementation of the Mellin transform and its application to radar classification, IEEE Trans. Pattern Anal. Mach. Intell. 5, 1983, 191–19 [10] F. Ghorbel, A complete invariant description for gray-level images by the harmonic analysis approach, PatternRecog. Lett.15, 1994, 1043–1051. [11] St´ephaneDerrode,Robust and Efficient Fourier–Mellin Transform Approximations for Gray-Level Image Reconstruction and Complete Invariant escription Computer Vision and Image Understanding 83, 57–78 (2001) [12] Peter N. Belhumeur, Joao P. Hespanha and David J. Kriegman, “EigenfacesvsFisherfaces:Recognition using Class Specific Linear Projection”,IEEE Trans. on PAMI, July 1997. [13] R. C. Gonzalez and R. E. woods,” Digital Image Processing”, Dorling Kindersley, India, Pearson Prentice Hall, 2006. [14] B.K.P Horn,” Robot Vision”, Cambridge, Massachusetts, USA , MIT Press,1986. [15] A. R. Bruss, “The Image Irradiance Equation:Its Solution and Applicaion”,Technical Report TR-623, MIT-AI, June 1981. [16] A. P. Pentland, “Local Shading Analysis”, IEEE Trans. on PAMI, vol.6,no.2, March 1984, pp.170-187. [17] S. Z. Li and A. K. Jain, “Handbook of Face Recognition”, New York,Springer-Verlag, 2005. [18] M. A. Turk and A.P. Pentland, “Face Recognition using eigenfaces”, Proc.IEEE Computer Society Conf. Comput.vs. Pattern Recognition, June 1991 pp. 586-591. [19] P. Belhumeur. J. Hespanha and D. Kriegman, “Eigenfaces vs. fisherfaces:recognition using class specific linear projection”, IEEE Trans. On Pattern Analysis and Machine Intelligence, vol. 26, no. 9, Sept. 2004, pp.1222-1228. [20] P. Conor, “Independent component analysis a new concept?”, Signal Processing, vol. 36,1994, pp. 287-314. 14
  • 8. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 – 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 1, January- February (2013), © IAEME [21] Zhen Lei, Shengcai Liao, MattiPietikainen and Z. Li “Face recognition by exploring information jointly in space, scale and orientation”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 20, no. 1, Jan. 2011, pp.247-256. [22] Shuicheng Yan, jianzhuang Liu, Xiaoou Tang and Tomas S.Huang,”Misalignment- robust face recognition”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 19, no. 4, Aril2010, pp. 1087-1096. [23] Stefano Berretti, Alberto Del Bimbo and Pietro Pala,” 3D face recognition using isogeodesic stripes”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 32, no. 12,Dec. 2010, pp.2162-2177. [24] Xiaoyang Tan and Bill Triggs,” Enhanced local texture features sets forface recognition under difficult lighting conditions”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 19, no. 6, Jun.2010 pp.1635-1650. [25] Abhishek Choubey and Girish D. Bonde, “Face Recognition Across Pose With Estimation Of Pose Parameters” International journal of Electronics and Communication Engineering &Technology (IJECET), Volume3, Issue1, 2012, pp. 311 - 316, Published by IAEME [26] Steven Lawrence Fernandes and Dr. G Josemin Bala, “Analysing Recognition Rate Of Lda And Lpp Based Algorithms For Face Recognition” International journal of Computer Engineering & Technology (IJCET), Volume3, Issue2, 2012, pp. 115 - 125, Published by IAEME 15