SlideShare a Scribd company logo
1 of 8
Download to read offline
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print),
ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME
240
INFORMATION HIDING IN EDGE LOCATION OF VIDEO USING
AMALGAMATE FFT AND CUBIC SPLINE
1
Dr. Hanaa M. A. Salman
Computer Science Department, University of Technology, Baghdad
ABSTRACT
This paper presents the concealment of information based on the use videos as a cover to hide
the existence of the secret message. The secret message is encrypted using RSA before being
embedded in the cover video. This encrypted secret message is then embedded in predetermine
locations using Lest Significant Bits (LSB), and real part of Fast Fourier Transform (FFT). Finally
inverse Discrete Fourier Transform (IDFT) is applied. The locations are cubic spline control points
which are derived from detection the edge upon using (prewitt and canny). These control points are
dynamically changed with each video frame to reduce the possibility of statistically identifying the
locations of the secret message bits, even if the original cover video is made available to the
interceptor. The proposed method is evaluated in terms of the Average Peak Signal to Noise Ratio
(APSNR), as well as the Average Mean Square Error (AMSE) measured between the original and
steganography video. Results show minimal degradation of the steganography video for secret
message.
Keywords: Video steganography, Edge detection, FFT, Cubic spline, PSNR, AMSE
1. INTRODUCTION
One of the most important challenges facing the process of sending and displaying the hidden
information, especially in public places is the presence of the intruder. The intruder starts to
processes such as Interruption, modification, fabrication and Interception. One of the solutions to this
problem is to use steganography. Steganography is a process of hiding information in cover media,
in a way to keep others from thinking that the information even exists. There are basically three
types[1] of steganography protocols used, these are: Pure Steganography, Secret Key Steganography,
Public Key Steganography. Steganography is mad of three parties: sender, receiver, and
communication channel. The sender performs the embedding process over the carrier by using the
secret information and the key to generate the stego-carrier. The receiver performs the extraction
process over the stego-carrier by using the key to extract the secret information. The channel, it
INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING &
TECHNOLOGY (IJCET)
ISSN 0976 – 6367(Print)
ISSN 0976 – 6375(Online)
Volume 4, Issue 4, July-August (2013), pp. 240-247
© IAEME: www.iaeme.com/ijcet.asp
Journal Impact Factor (2013): 6.1302 (Calculated by GISI)
www.jifactor.com
IJCET
© I A E M E
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print),
ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME
241
provides secure communicating between parties. Steganography [2] was normally combined with
cryptography to further add another layer of security.
A video file is generally a collection of images and sounds. The great advantages of video are
the large amount of data that can be hidden inside and the fact that it is a moving stream of images
and sounds. Therefore, any small but otherwise notice able distortions might go by unobserved by
humans because of the continuous flow of information [3].Video steganography methods are broadly
classified into (temporal domain and spatial domain), or (compressed video, and uncompressed
video).
Several researchers have addressed the problem of video steganography.
In [4] a comparative analysis between Picture (JPEG) steganography and Video (AVI)
steganography by quality and size was performed. The authors propose to increase the strength of the
key by using UTF-32 encoding in the swapping algorithm and lossless steganoraphic technique in
the AVI file. However, payload capacity is low.
In [5] an adaptive invertible information hiding method for Moving Picture Expert Group
(MPEG) video is proposed. Hidden data can be recovered without requiring the destination to have a
prior copy of the covert video and the original MPEG video data can be recovered if needed. This
technique works in frequency domain only. It has the advantages of low complexity and low visual
distortion for covert communication applications. However, it suffers from low payload capacity.
In[6], presents a steganoraphic model which utilizes cover video files to conceal the presence
of other sensitive data regardless of its format. The model presented is based on pixel-wise
manipulation of colored raw video files to embed the secret data. The secret message is segmented
into blocks prior to being embedded in the cover video. These blocks are then embedded in pseudo
random locations. The locations are derived from a re-orderings of a mutually agreed upon secret
key. Furthermore, the re-ordering is dynamically changed with each video frame to reduce the
possibility of statistically identifying the locations of the secret message blocks, even if the original
cover video is made available to the interceptor. The author also presents a quantitative evaluation of
the model using four types of secret data. The model is evaluated in terms of both the average
reduction in Peak Signal to Noise Ratio (PSNR) compared to the original cover video; as well as the
Mean Square Error (MSE) measured between the original and steganoraphic files averaged over all
video frames. Results show minimal degradation of the steganoraphic video file for all types of data,
and for various sizes of the secret messages. Finally, an estimate of the embedding capacity of a
video file is presented
In [7] authors search how the edges of the images can be used to hiding text message in gray
image. The authors tried to give the depth view of image steganography and Edge detection Filter
techniques.
In [8] authors proposed a new technique using the motion vector, to hide the data in the
moving objects. Moreover, to enhance the security of the data, the data is encrypted by using the
AES algorithm and then hided. The data is hided in the horizontal and the vertical components of the
moving objects. The PSNR value is calculated so that the quality of the video after the data hiding is
evaluated.
In [9] authors describe how motion vector can be used as a carrier to hide data. The secret
message bit stream is first encrypted by using RSA algorithm and the encrypted is embedded in the
least significant bit by using Least Significant Bit and also use edge detection mechanism for
selecting the pixel. The performance is calculated by using Peak to Signal Noise Ratio. The
performance analysis shows that the algorithm ensures better security against attackers
An amalgamate method of Parametric Spline and DFT for video steganography is applied,
instead of embedding secret information in all over the selected frame of video, an edge detection is
applied followed by a curve selection method is applied as positions where, the secret bits to be
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print),
ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME
242
embedding. Thus if the intruder knows the set of control points it may lead to discover the secret
message. An improvement is made by: 1. Extraction the intensity values of pixels for these control
points along the frame of video. 2. Applying the DFT for the result intensity vector values. 3.
Embedding information into the LSB's of the real part of DFT. 4. Apply IDFT. This paper is
organized as follows: Section 2 introduces the proposed video based steganoraphic algorithm, and
then presents the steps of embedding and extraction process. Section 3 presents the experimental
results and finally, conclusions and future work are presented in section 4.
2. PROPOSED ALGORITHM
The proposed video steganoraphic scheme is based on locations of the cubic spline
interpolation control points over the hybrid edge detection methods; the Prewitt and the Canny. This
proposed method consist of embedding phase as presented in section 3.1, and extraction phase as
presented in section 3.2
3.1 EMBEDING PHASE
The input to this phase is: secret message, video as cove media, and RSA public key of the
receiver, while the output is the stego video. The block diagram of the embedding phase is shown in
Figure (1), and the algorithm consists of the following steps described below.
Step1: Secret message processing: convert the secret message into digits using Table (1). Apply
RSAencryption algorithm as in [9].
Step2: Cover video processing: Split the cover video into a sequence of frames, each video frame
dimension is H ×W Pixels. For each randomly selected frame convert into grayscale frame, then
apply edge detection using (Prewitt and Canny) algorithm as in [8, 7, 9]. Apply cubic spline
interpolation algorithm as in [10] over the generated edge. Find control points to the generated cubic
spline curve. Determined pixels value that corresponding location of these control points over the
input frame.
Step3: Embed processing: While the extracted frame pixels is not empty get the extracted frame
byte .While the hidden message bits, is not empty get a bit and assigned it to the first bit of the real
part of the DFT of the frame byte. Apply the IDFT. End of while hidden message. End of while
extracted frame byte.
Step4: End.
Table 1 Number corresponds to each Litter
Litter Number Litter Number Litter Number Litter Number
A 00 H 07 O 14 V 21
B 01 I 08 P 15 W 22
C 02 J 09 Q 16 X 23
D 03 K 10 R 17 Y 24
E 04 L 11 S 18 Z 25
F 05 M 12 T 19 - 26
G 06 N 13 U 20
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print),
ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME
243
Figure 1: Schematic block diagram for the embedding process
3.2 EXTRACTION PHASE
The input to the extraction phase is the stego video, and RSA privet key of the receiver, while
the output is the hidden secret message. The block diagram of the extraction processes is shown in
Figure (2) and the algorithm consists of the following steps described below:
Step1: Stego video preprocessing: split the stego video into a sequence of frames, each stego video
frame dimension is H ×W Pixels. For each randomly selected frame convert into grayscale frame,
then apply edge detection using (Prewitt and Canny) algorithm. Apply cubic spline interpolation
algorithm over the generated edge. Find control points to the generated cubic spline curve.
Step2: Extract processing: Extract the stegovideo frame pixels in which the interplant curve pass
by. While the extracted stego video frame pixels are not empty, get the first bit of each byte. End of
while. End of frames.
Step3: Decrypted message processing: Combined each seven bits of the extracted bits into digital
number. Apply RSAdecryption Algorithm as in [9].Convert the result digit of size two into character
using Table (1). The result is the secret message.
Step4: END.
Stego Video
Secret
Message
Public Key
RSA
Encryption
Encrypted
Message
Cover Video
Split into
Frames
Frame
Canny Edge
Detection
RGB to
Grayscale
Prewitt Edge
Detection
Cubic Spline
Control
FFT
LSB
IFFT
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print),
ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME
244
Figure 2: Schematic block diagram for the extracting process
3. PERFORMANCE EVALUATION EXPERIMENTAL RESULTS
Steganography depends on the availability of two parameters, namely; imperceptibility and
capacity. The perceptual imperceptibility of the embedded information is measured by comparing the
original video to its stego counterpart so that their visual differences, if any, can be determined.
Additionally, as an objective measure, Average Peak Signal to Noise Ratio (APSNR) between the
cover and stego video may be calculated. These parameters are given by [6]:
,……………………….……… (1)
Where and are the pixel values at row i and column j of the cover frame and stego frame
respectively.
The Average Mean Square Error (AMSE) is given by:
,……………..………………………….……. (2)
Where N is the number of frames for each video
Secret Message
Cubic Spline Control Points
LSB Extraction RSA Decryption
RSA Secret Key
Prewitt Edge Detection
RGB to Grayscale
Canny Edge Detection
Frame
Split Frames
Stego Video
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print),
ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME
245
The Peak Signal to Noise Ratio (PSNR) defined as [6]:
,………………………...………………… (3)
Where L is the peak signal level (L = 255 for 8-bit gray scale frames).
The Average Peak Signal to Noise Ratio (APSNR) is given by:
,…………………...……………………….. (4)
Where N is the number of frames for each video
The maximum capacity of cover video file is given by[6]:
,…………………...…………………… (5)
The proposed algorithm has been implemented using Matlab, and Visual Basic, as shown in
Figure (3).For all tests contained in this paper, we used N = 256. The experiments were conducted on
4 Video to test the robustness of the proposed algorithm by imperceptibility. The Experimental
results show high imperceptibility where there is no noticeable difference between the stego video
and the original.
Figure 3 the proposed method implementation
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print),
ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME
246
Table (2) shows the calculate AMSE, and APSNR value between the original video and stego
video for applying the proposed method to four test video.
Table 2 AMSE and APSNR
Covervideo
Resolution
(W×H)
Frame
/sec.
No.of
frames
Size(MB)
Average
PSNR
Average
MSE
Video 1 288×352 15 167 48.4 71.61 0.31
Video 2 288×352 15 190 55.1 73.52 0.32
Video 3 288×352 15 190 55.1 72.29 0.29
Video 4 288×352 15 189 55.1 72.30 0.36
In all experiments, the APSNR is greater than 72dB and AMSE is below 0.30.
Therefore experimental results show that the proposed method is effective. It maintains the quality of
the video and no variation between the cover data and stego data that can be detected by the human
vision system.
4. CONCLUSIONS AND FUTURE WORK
We proposed a method to hide secret message inside the Video, in frequency domain and
without the need to have the original Video at the extraction phase. The sender encrypts the secret
message by the RSA public key of the recipient and then embedded it using LSB of the pixels that
located by the edge method (prewitt and canny) over the original video frame specified by the
control points of cubic spline interpolation method, after conversion it into DFT and then IDFT
applied to the real part of DFT, where the secret message is embedded using LSB insertion
method. This process is repeated for each selected frame of the cover video. The receiver extract
the LSB of the pixels that located by the edge method (prewitt, and canny) over the stego video
frame specified by the control points of cubic spline interpolation method. This process is repeated
for each selected frame of the stego cover video until all the embedded bits are extracted. The
receiver revel the encrypted secret message with his RSA secret key .The proposed method relies
on a set of parameters of secrecy, making it more resistant to attack by intruders. From these
parameters: RSA secret key, which is used to decrypt the encrypted secret message, the number of
control points which is used for each cubic spline that correspond to each edge in each used frame.
These parameters must be known to intruders to extract secret message from the stego video file
even he know the proposed algorithm. Future directions are: the use of other ways to find the edges,
the use of other interpolation methods, or the adoption of other places for embedding, the use of
wavelet transform.
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print),
ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME
247
REFERENCES
[1] Sheelu, BabitaAhuja, An Overview of Steganography, Journal of Computer Engineering,
Volume 11, Issue 1, PP 15-19,Jun. 2013.
[2] Ajit Singh Swati Malik,Securing Data by Using Cryptography with Steganography,
International Journal of Advanced Research in Computer Science and Software Engineering,
Volume 3, Issue 5, PP 404-409, May 2013.
[3] AyushiJuneja , Sunita , TarunAhuja, Dynamic Least Significant Bit (DLSB) Technique
forVideo Steganography, International Journal of Computer Science & Management Studies,
Vol. 13, Issue 05, PP 52-56, July 2013.
[4] R.Kavitha and A. Murugan, "Lossless Steganography on AVI File using Swapping
Algorithm", InternationalConference on Computational Intelligence and Multimedia
Applications, pp. 83-88, Sivakasi-TamilNadu, Dec. 2007
[5] Yueyun Shang, "A New Invertible Data Hiding in Compressed Videos or Images.", Third
International Conference on Natural Computation (ICNC 2007), Vol. 4,PP.576-580, Haikou,
Aug 2007.
[6] Amr A. Hanafy, Gouda I. Salama and Yahya Z. Mohasseb, "A Secure Covert
Communication Model Based on Video Steganography”, in Military Communications
Conference, 2008. MILCOM. IEEE on 16-19 Nov. 2008.
[7] NitinJain SachinMeshram ShikhaDubey, Image Steganography Using LSB and Edge
Detection Technique, International Journal of Soft Computing & Engineering, Volume: 2;
Issue: 3,PP. 217- ,2012.
[8] P. Paulpandi, Dr. T. Meyyappan, Hiding Messages Using Motion Vector Technique in Video
Steganography, International Journal of Engineering Trends and Technology, Volume3,
Issue3, 2012,
[9] P. SunithaKency Paul, P.FascaGilgy Mary, J. Dheeba, A Data Hiding scheme in motion
vector of videos by LSB Substitution., International Journal of Science, Engineering and
Technology Research (IJSETR) Volume 2, Issue 5, PP 1111-1118, May 2013.
[10] Shao-Hua Hong, Lin Wang, Trieu-Kien Truong, Tsung-Ching Lin, Lung-Jen Wang: Novel
Approaches to the Parametric Cubic-Spline Interpolation. IEEE Transactions on Image
Processing, Volume 22, Issue 3, PP: 1233-1241,March 2013.
[11] M. Nagaraju Naik and P. Rajesh Kumar, “Spectral Approach to Image Projection with Cubic
B-Spline Interpolation”, International Journal of Electronics and Communication Engineering
& Technology (IJECET), Volume 3, Issue 3, 2012, pp. 153 - 161, ISSN Print: 0976- 6464,
ISSN Online: 0976 –6472.
[12] Sonali Patil, Kapil Tajane and Janhavi Sirdeshpande, “Analysing Secure Image Secret
Sharing Schemes Based on Steganography”, International Journal of Computer Engineering
& Technology (IJCET), Volume 4, Issue 2, 2013, pp. 172 - 178, ISSN Print: 0976 – 6367,
ISSN Online: 0976 – 6375.
[13] Geetha C.R. and Dr.Puttamadappa C., “Modified Weighted Embedding Method for Image
Steganography”, International Journal of Electronics and Communication Engineering &
Technology (IJECET), Volume 4, Issue 3, 2013, pp. 154 - 161, ISSN Print: 0976- 6464,
ISSN Online: 0976 –6472.
[14] Vismita Nagrale, Ganesh Zambre and Aamir Agwani, “Image Stegano-Cryptography Based
on LSB Insertion & Symmetric Key Encryption”, International Journal of Electronics and
Communication Engineering & Technology (IJECET), Volume 2, Issue 1, 2011, pp. 35 - 42,
ISSN Print: 0976- 6464, ISSN Online: 0976 –6472.

More Related Content

What's hot

Information Hiding using LSB Technique based on Developed PSO Algorithm
Information Hiding using LSB Technique based on Developed PSO Algorithm Information Hiding using LSB Technique based on Developed PSO Algorithm
Information Hiding using LSB Technique based on Developed PSO Algorithm
IJECEIAES
 
Performance evluvation of chaotic encryption technique
Performance evluvation of chaotic encryption techniquePerformance evluvation of chaotic encryption technique
Performance evluvation of chaotic encryption technique
Ancy Mariam Babu
 
Steganography using Interpolation and LSB with Cryptography on Video Images -...
Steganography using Interpolation and LSB with Cryptography on Video Images -...Steganography using Interpolation and LSB with Cryptography on Video Images -...
Steganography using Interpolation and LSB with Cryptography on Video Images -...
Editor IJCATR
 

What's hot (19)

Audio-video Crypto Steganography using LSB substitution and advanced chaotic ...
Audio-video Crypto Steganography using LSB substitution and advanced chaotic ...Audio-video Crypto Steganography using LSB substitution and advanced chaotic ...
Audio-video Crypto Steganography using LSB substitution and advanced chaotic ...
 
Steganography
SteganographySteganography
Steganography
 
Design of an adaptive JPEG Steganalysis with UED
Design of an adaptive JPEG Steganalysis with UED Design of an adaptive JPEG Steganalysis with UED
Design of an adaptive JPEG Steganalysis with UED
 
Information Hiding using LSB Technique based on Developed PSO Algorithm
Information Hiding using LSB Technique based on Developed PSO Algorithm Information Hiding using LSB Technique based on Developed PSO Algorithm
Information Hiding using LSB Technique based on Developed PSO Algorithm
 
EVALUATING THE PERFORMANCE OF THE SECURE BLOCK PERMUTATION IMAGE STEGANOGRAPH...
EVALUATING THE PERFORMANCE OF THE SECURE BLOCK PERMUTATION IMAGE STEGANOGRAPH...EVALUATING THE PERFORMANCE OF THE SECURE BLOCK PERMUTATION IMAGE STEGANOGRAPH...
EVALUATING THE PERFORMANCE OF THE SECURE BLOCK PERMUTATION IMAGE STEGANOGRAPH...
 
A New Approach of Cryptographic Technique Using Simple ECC & ECF
A New Approach of Cryptographic Technique Using Simple ECC & ECFA New Approach of Cryptographic Technique Using Simple ECC & ECF
A New Approach of Cryptographic Technique Using Simple ECC & ECF
 
C010511420
C010511420C010511420
C010511420
 
Thesis Background
Thesis BackgroundThesis Background
Thesis Background
 
Performance evluvation of chaotic encryption technique
Performance evluvation of chaotic encryption techniquePerformance evluvation of chaotic encryption technique
Performance evluvation of chaotic encryption technique
 
IRJET-Data Embedding Method using Adaptive Pixel Pair Matching Algorithm
IRJET-Data Embedding Method using Adaptive Pixel Pair Matching AlgorithmIRJET-Data Embedding Method using Adaptive Pixel Pair Matching Algorithm
IRJET-Data Embedding Method using Adaptive Pixel Pair Matching Algorithm
 
Survey Paper on Steganography
Survey Paper on Steganography Survey Paper on Steganography
Survey Paper on Steganography
 
A SECURE STEGANOGRAPHY APPROACH FOR CLOUD DATA USING ANN ALONG WITH PRIVATE K...
A SECURE STEGANOGRAPHY APPROACH FOR CLOUD DATA USING ANN ALONG WITH PRIVATE K...A SECURE STEGANOGRAPHY APPROACH FOR CLOUD DATA USING ANN ALONG WITH PRIVATE K...
A SECURE STEGANOGRAPHY APPROACH FOR CLOUD DATA USING ANN ALONG WITH PRIVATE K...
 
F045033440
F045033440F045033440
F045033440
 
D010312230
D010312230D010312230
D010312230
 
Reversible Multiple Image Secret Sharing using Discrete Haar Wavelet Transform
Reversible Multiple Image Secret Sharing using Discrete Haar Wavelet Transform Reversible Multiple Image Secret Sharing using Discrete Haar Wavelet Transform
Reversible Multiple Image Secret Sharing using Discrete Haar Wavelet Transform
 
Multimedia Steganography
Multimedia SteganographyMultimedia Steganography
Multimedia Steganography
 
Implementation of LSB-Based Image Steganography Method for effectiveness of D...
Implementation of LSB-Based Image Steganography Method for effectiveness of D...Implementation of LSB-Based Image Steganography Method for effectiveness of D...
Implementation of LSB-Based Image Steganography Method for effectiveness of D...
 
G044082934
G044082934G044082934
G044082934
 
Steganography using Interpolation and LSB with Cryptography on Video Images -...
Steganography using Interpolation and LSB with Cryptography on Video Images -...Steganography using Interpolation and LSB with Cryptography on Video Images -...
Steganography using Interpolation and LSB with Cryptography on Video Images -...
 

Viewers also liked

Color image processing challenges zewail city workshop 7 march 2015
Color image processing challenges zewail city workshop  7 march 2015Color image processing challenges zewail city workshop  7 march 2015
Color image processing challenges zewail city workshop 7 march 2015
DrNoura Semary
 
QR code decoding and Image Preprocessing
QR code decoding and Image Preprocessing QR code decoding and Image Preprocessing
QR code decoding and Image Preprocessing
Hasini Weerathunge
 
Image pre processing - local processing
Image pre processing - local processingImage pre processing - local processing
Image pre processing - local processing
Ashish Kumar
 
Image pre processing
Image pre processingImage pre processing
Image pre processing
Ashish Kumar
 
Steganography Project
Steganography Project Steganography Project
Steganography Project
Jitu Choudhary
 

Viewers also liked (19)

An Enhanced Biometric System for Personal Authentication
An Enhanced Biometric System for Personal AuthenticationAn Enhanced Biometric System for Personal Authentication
An Enhanced Biometric System for Personal Authentication
 
Temporal aspects of vision
Temporal aspects of visionTemporal aspects of vision
Temporal aspects of vision
 
Color image processing challenges zewail city workshop 7 march 2015
Color image processing challenges zewail city workshop  7 march 2015Color image processing challenges zewail city workshop  7 march 2015
Color image processing challenges zewail city workshop 7 march 2015
 
QR code decoding and Image Preprocessing
QR code decoding and Image Preprocessing QR code decoding and Image Preprocessing
QR code decoding and Image Preprocessing
 
Display Technologies ,OLD,NEW,Next Generation technologies
Display Technologies ,OLD,NEW,Next Generation technologiesDisplay Technologies ,OLD,NEW,Next Generation technologies
Display Technologies ,OLD,NEW,Next Generation technologies
 
Introduction to OpenCV (with Java)
Introduction to OpenCV (with Java)Introduction to OpenCV (with Java)
Introduction to OpenCV (with Java)
 
File000133
File000133File000133
File000133
 
Image pre processing - local processing
Image pre processing - local processingImage pre processing - local processing
Image pre processing - local processing
 
Image Processing with OpenCV
Image Processing with OpenCVImage Processing with OpenCV
Image Processing with OpenCV
 
Steganography - The art of hiding data
Steganography - The art of hiding dataSteganography - The art of hiding data
Steganography - The art of hiding data
 
PPT (2)
PPT (2)PPT (2)
PPT (2)
 
Image pre processing
Image pre processingImage pre processing
Image pre processing
 
Image Steganography
Image SteganographyImage Steganography
Image Steganography
 
Image Processing Basics
Image Processing BasicsImage Processing Basics
Image Processing Basics
 
Steganography: Hiding your secrets with PHP
Steganography: Hiding your secrets with PHPSteganography: Hiding your secrets with PHP
Steganography: Hiding your secrets with PHP
 
Steganography Project
Steganography Project Steganography Project
Steganography Project
 
Digital Image Processing
Digital Image ProcessingDigital Image Processing
Digital Image Processing
 
Software design
Software designSoftware design
Software design
 
Displaying Data
Displaying DataDisplaying Data
Displaying Data
 

Similar to Information hiding in edge location of video using amalgamate fft and cubic spline 2

IMPROVED STEGANOGRAPHIC SECURITY BY APPLYING AN IRREGULAR IMAGE SEGMENTATION ...
IMPROVED STEGANOGRAPHIC SECURITY BY APPLYING AN IRREGULAR IMAGE SEGMENTATION ...IMPROVED STEGANOGRAPHIC SECURITY BY APPLYING AN IRREGULAR IMAGE SEGMENTATION ...
IMPROVED STEGANOGRAPHIC SECURITY BY APPLYING AN IRREGULAR IMAGE SEGMENTATION ...
IJNSA Journal
 

Similar to Information hiding in edge location of video using amalgamate fft and cubic spline 2 (20)

Conditional entrench spatial domain steganography
Conditional entrench spatial domain steganographyConditional entrench spatial domain steganography
Conditional entrench spatial domain steganography
 
A04020107
A04020107A04020107
A04020107
 
A Comparative Study And Literature Review Of Image Steganography Techniques
A Comparative Study And Literature Review Of Image Steganography TechniquesA Comparative Study And Literature Review Of Image Steganography Techniques
A Comparative Study And Literature Review Of Image Steganography Techniques
 
Conceptual design of edge adaptive steganography scheme based on advanced lsb...
Conceptual design of edge adaptive steganography scheme based on advanced lsb...Conceptual design of edge adaptive steganography scheme based on advanced lsb...
Conceptual design of edge adaptive steganography scheme based on advanced lsb...
 
A SECURE DATA COMMUNICATION SYSTEM USING CRYPTOGRAPHY AND STEGANOGRAPHY
A SECURE DATA COMMUNICATION SYSTEM USING CRYPTOGRAPHY AND STEGANOGRAPHY A SECURE DATA COMMUNICATION SYSTEM USING CRYPTOGRAPHY AND STEGANOGRAPHY
A SECURE DATA COMMUNICATION SYSTEM USING CRYPTOGRAPHY AND STEGANOGRAPHY
 
IMPROVED STEGANOGRAPHIC SECURITY BY APPLYING AN IRREGULAR IMAGE SEGMENTATION ...
IMPROVED STEGANOGRAPHIC SECURITY BY APPLYING AN IRREGULAR IMAGE SEGMENTATION ...IMPROVED STEGANOGRAPHIC SECURITY BY APPLYING AN IRREGULAR IMAGE SEGMENTATION ...
IMPROVED STEGANOGRAPHIC SECURITY BY APPLYING AN IRREGULAR IMAGE SEGMENTATION ...
 
A Survey of Image Steganography
A Survey of Image SteganographyA Survey of Image Steganography
A Survey of Image Steganography
 
Design and Implementation of Data Hiding Technique by Using MPEG Video with C...
Design and Implementation of Data Hiding Technique by Using MPEG Video with C...Design and Implementation of Data Hiding Technique by Using MPEG Video with C...
Design and Implementation of Data Hiding Technique by Using MPEG Video with C...
 
G017444651
G017444651G017444651
G017444651
 
A secure image steganography based on burrows wheeler transform and dynamic b...
A secure image steganography based on burrows wheeler transform and dynamic b...A secure image steganography based on burrows wheeler transform and dynamic b...
A secure image steganography based on burrows wheeler transform and dynamic b...
 
A NEW IMAGE STEGANOGRAPHY ALGORITHM BASED ON MLSB METHOD WITH RANDOM PIXELS S...
A NEW IMAGE STEGANOGRAPHY ALGORITHM BASED ON MLSB METHOD WITH RANDOM PIXELS S...A NEW IMAGE STEGANOGRAPHY ALGORITHM BASED ON MLSB METHOD WITH RANDOM PIXELS S...
A NEW IMAGE STEGANOGRAPHY ALGORITHM BASED ON MLSB METHOD WITH RANDOM PIXELS S...
 
IJSRED-V2I2P12
IJSRED-V2I2P12IJSRED-V2I2P12
IJSRED-V2I2P12
 
O017429398
O017429398O017429398
O017429398
 
A Comparitive Analysis Of Steganography Techniques
A Comparitive Analysis Of Steganography TechniquesA Comparitive Analysis Of Steganography Techniques
A Comparitive Analysis Of Steganography Techniques
 
Blind Key Steganography Based on Multilevel Wavelet and CSF
Blind Key Steganography Based on Multilevel Wavelet and CSF Blind Key Steganography Based on Multilevel Wavelet and CSF
Blind Key Steganography Based on Multilevel Wavelet and CSF
 
Lossless Encryption using BITPLANE and EDGEMAP Crypt Algorithms
Lossless Encryption using BITPLANE and EDGEMAP Crypt AlgorithmsLossless Encryption using BITPLANE and EDGEMAP Crypt Algorithms
Lossless Encryption using BITPLANE and EDGEMAP Crypt Algorithms
 
IRJET- An Overview of Hiding Information in H.264/Avc Compressed Video
IRJET- An Overview of Hiding Information in H.264/Avc Compressed VideoIRJET- An Overview of Hiding Information in H.264/Avc Compressed Video
IRJET- An Overview of Hiding Information in H.264/Avc Compressed Video
 
It3116411644
It3116411644It3116411644
It3116411644
 
IRJET- Hybrid Approach to Text & Image Steganography using AES and LSB Te...
IRJET-  	  Hybrid Approach to Text & Image Steganography using AES and LSB Te...IRJET-  	  Hybrid Approach to Text & Image Steganography using AES and LSB Te...
IRJET- Hybrid Approach to Text & Image Steganography using AES and LSB Te...
 
Image Steganography Method using Zero Order Hold Zooming and Reversible Data ...
Image Steganography Method using Zero Order Hold Zooming and Reversible Data ...Image Steganography Method using Zero Order Hold Zooming and Reversible Data ...
Image Steganography Method using Zero Order Hold Zooming and Reversible Data ...
 

More from IAEME Publication

A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
IAEME Publication
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
IAEME Publication
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICE
IAEME Publication
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
IAEME Publication
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
IAEME Publication
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
IAEME Publication
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
IAEME Publication
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
IAEME Publication
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
IAEME Publication
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
IAEME Publication
 

More from IAEME Publication (20)

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdf
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICE
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
 

Recently uploaded

Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
WSO2
 

Recently uploaded (20)

Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKSpring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
Cyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfCyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdf
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 

Information hiding in edge location of video using amalgamate fft and cubic spline 2

  • 1. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME 240 INFORMATION HIDING IN EDGE LOCATION OF VIDEO USING AMALGAMATE FFT AND CUBIC SPLINE 1 Dr. Hanaa M. A. Salman Computer Science Department, University of Technology, Baghdad ABSTRACT This paper presents the concealment of information based on the use videos as a cover to hide the existence of the secret message. The secret message is encrypted using RSA before being embedded in the cover video. This encrypted secret message is then embedded in predetermine locations using Lest Significant Bits (LSB), and real part of Fast Fourier Transform (FFT). Finally inverse Discrete Fourier Transform (IDFT) is applied. The locations are cubic spline control points which are derived from detection the edge upon using (prewitt and canny). These control points are dynamically changed with each video frame to reduce the possibility of statistically identifying the locations of the secret message bits, even if the original cover video is made available to the interceptor. The proposed method is evaluated in terms of the Average Peak Signal to Noise Ratio (APSNR), as well as the Average Mean Square Error (AMSE) measured between the original and steganography video. Results show minimal degradation of the steganography video for secret message. Keywords: Video steganography, Edge detection, FFT, Cubic spline, PSNR, AMSE 1. INTRODUCTION One of the most important challenges facing the process of sending and displaying the hidden information, especially in public places is the presence of the intruder. The intruder starts to processes such as Interruption, modification, fabrication and Interception. One of the solutions to this problem is to use steganography. Steganography is a process of hiding information in cover media, in a way to keep others from thinking that the information even exists. There are basically three types[1] of steganography protocols used, these are: Pure Steganography, Secret Key Steganography, Public Key Steganography. Steganography is mad of three parties: sender, receiver, and communication channel. The sender performs the embedding process over the carrier by using the secret information and the key to generate the stego-carrier. The receiver performs the extraction process over the stego-carrier by using the key to extract the secret information. The channel, it INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) ISSN 0976 – 6367(Print) ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), pp. 240-247 © IAEME: www.iaeme.com/ijcet.asp Journal Impact Factor (2013): 6.1302 (Calculated by GISI) www.jifactor.com IJCET © I A E M E
  • 2. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME 241 provides secure communicating between parties. Steganography [2] was normally combined with cryptography to further add another layer of security. A video file is generally a collection of images and sounds. The great advantages of video are the large amount of data that can be hidden inside and the fact that it is a moving stream of images and sounds. Therefore, any small but otherwise notice able distortions might go by unobserved by humans because of the continuous flow of information [3].Video steganography methods are broadly classified into (temporal domain and spatial domain), or (compressed video, and uncompressed video). Several researchers have addressed the problem of video steganography. In [4] a comparative analysis between Picture (JPEG) steganography and Video (AVI) steganography by quality and size was performed. The authors propose to increase the strength of the key by using UTF-32 encoding in the swapping algorithm and lossless steganoraphic technique in the AVI file. However, payload capacity is low. In [5] an adaptive invertible information hiding method for Moving Picture Expert Group (MPEG) video is proposed. Hidden data can be recovered without requiring the destination to have a prior copy of the covert video and the original MPEG video data can be recovered if needed. This technique works in frequency domain only. It has the advantages of low complexity and low visual distortion for covert communication applications. However, it suffers from low payload capacity. In[6], presents a steganoraphic model which utilizes cover video files to conceal the presence of other sensitive data regardless of its format. The model presented is based on pixel-wise manipulation of colored raw video files to embed the secret data. The secret message is segmented into blocks prior to being embedded in the cover video. These blocks are then embedded in pseudo random locations. The locations are derived from a re-orderings of a mutually agreed upon secret key. Furthermore, the re-ordering is dynamically changed with each video frame to reduce the possibility of statistically identifying the locations of the secret message blocks, even if the original cover video is made available to the interceptor. The author also presents a quantitative evaluation of the model using four types of secret data. The model is evaluated in terms of both the average reduction in Peak Signal to Noise Ratio (PSNR) compared to the original cover video; as well as the Mean Square Error (MSE) measured between the original and steganoraphic files averaged over all video frames. Results show minimal degradation of the steganoraphic video file for all types of data, and for various sizes of the secret messages. Finally, an estimate of the embedding capacity of a video file is presented In [7] authors search how the edges of the images can be used to hiding text message in gray image. The authors tried to give the depth view of image steganography and Edge detection Filter techniques. In [8] authors proposed a new technique using the motion vector, to hide the data in the moving objects. Moreover, to enhance the security of the data, the data is encrypted by using the AES algorithm and then hided. The data is hided in the horizontal and the vertical components of the moving objects. The PSNR value is calculated so that the quality of the video after the data hiding is evaluated. In [9] authors describe how motion vector can be used as a carrier to hide data. The secret message bit stream is first encrypted by using RSA algorithm and the encrypted is embedded in the least significant bit by using Least Significant Bit and also use edge detection mechanism for selecting the pixel. The performance is calculated by using Peak to Signal Noise Ratio. The performance analysis shows that the algorithm ensures better security against attackers An amalgamate method of Parametric Spline and DFT for video steganography is applied, instead of embedding secret information in all over the selected frame of video, an edge detection is applied followed by a curve selection method is applied as positions where, the secret bits to be
  • 3. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME 242 embedding. Thus if the intruder knows the set of control points it may lead to discover the secret message. An improvement is made by: 1. Extraction the intensity values of pixels for these control points along the frame of video. 2. Applying the DFT for the result intensity vector values. 3. Embedding information into the LSB's of the real part of DFT. 4. Apply IDFT. This paper is organized as follows: Section 2 introduces the proposed video based steganoraphic algorithm, and then presents the steps of embedding and extraction process. Section 3 presents the experimental results and finally, conclusions and future work are presented in section 4. 2. PROPOSED ALGORITHM The proposed video steganoraphic scheme is based on locations of the cubic spline interpolation control points over the hybrid edge detection methods; the Prewitt and the Canny. This proposed method consist of embedding phase as presented in section 3.1, and extraction phase as presented in section 3.2 3.1 EMBEDING PHASE The input to this phase is: secret message, video as cove media, and RSA public key of the receiver, while the output is the stego video. The block diagram of the embedding phase is shown in Figure (1), and the algorithm consists of the following steps described below. Step1: Secret message processing: convert the secret message into digits using Table (1). Apply RSAencryption algorithm as in [9]. Step2: Cover video processing: Split the cover video into a sequence of frames, each video frame dimension is H ×W Pixels. For each randomly selected frame convert into grayscale frame, then apply edge detection using (Prewitt and Canny) algorithm as in [8, 7, 9]. Apply cubic spline interpolation algorithm as in [10] over the generated edge. Find control points to the generated cubic spline curve. Determined pixels value that corresponding location of these control points over the input frame. Step3: Embed processing: While the extracted frame pixels is not empty get the extracted frame byte .While the hidden message bits, is not empty get a bit and assigned it to the first bit of the real part of the DFT of the frame byte. Apply the IDFT. End of while hidden message. End of while extracted frame byte. Step4: End. Table 1 Number corresponds to each Litter Litter Number Litter Number Litter Number Litter Number A 00 H 07 O 14 V 21 B 01 I 08 P 15 W 22 C 02 J 09 Q 16 X 23 D 03 K 10 R 17 Y 24 E 04 L 11 S 18 Z 25 F 05 M 12 T 19 - 26 G 06 N 13 U 20
  • 4. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME 243 Figure 1: Schematic block diagram for the embedding process 3.2 EXTRACTION PHASE The input to the extraction phase is the stego video, and RSA privet key of the receiver, while the output is the hidden secret message. The block diagram of the extraction processes is shown in Figure (2) and the algorithm consists of the following steps described below: Step1: Stego video preprocessing: split the stego video into a sequence of frames, each stego video frame dimension is H ×W Pixels. For each randomly selected frame convert into grayscale frame, then apply edge detection using (Prewitt and Canny) algorithm. Apply cubic spline interpolation algorithm over the generated edge. Find control points to the generated cubic spline curve. Step2: Extract processing: Extract the stegovideo frame pixels in which the interplant curve pass by. While the extracted stego video frame pixels are not empty, get the first bit of each byte. End of while. End of frames. Step3: Decrypted message processing: Combined each seven bits of the extracted bits into digital number. Apply RSAdecryption Algorithm as in [9].Convert the result digit of size two into character using Table (1). The result is the secret message. Step4: END. Stego Video Secret Message Public Key RSA Encryption Encrypted Message Cover Video Split into Frames Frame Canny Edge Detection RGB to Grayscale Prewitt Edge Detection Cubic Spline Control FFT LSB IFFT
  • 5. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME 244 Figure 2: Schematic block diagram for the extracting process 3. PERFORMANCE EVALUATION EXPERIMENTAL RESULTS Steganography depends on the availability of two parameters, namely; imperceptibility and capacity. The perceptual imperceptibility of the embedded information is measured by comparing the original video to its stego counterpart so that their visual differences, if any, can be determined. Additionally, as an objective measure, Average Peak Signal to Noise Ratio (APSNR) between the cover and stego video may be calculated. These parameters are given by [6]: ,……………………….……… (1) Where and are the pixel values at row i and column j of the cover frame and stego frame respectively. The Average Mean Square Error (AMSE) is given by: ,……………..………………………….……. (2) Where N is the number of frames for each video Secret Message Cubic Spline Control Points LSB Extraction RSA Decryption RSA Secret Key Prewitt Edge Detection RGB to Grayscale Canny Edge Detection Frame Split Frames Stego Video
  • 6. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME 245 The Peak Signal to Noise Ratio (PSNR) defined as [6]: ,………………………...………………… (3) Where L is the peak signal level (L = 255 for 8-bit gray scale frames). The Average Peak Signal to Noise Ratio (APSNR) is given by: ,…………………...……………………….. (4) Where N is the number of frames for each video The maximum capacity of cover video file is given by[6]: ,…………………...…………………… (5) The proposed algorithm has been implemented using Matlab, and Visual Basic, as shown in Figure (3).For all tests contained in this paper, we used N = 256. The experiments were conducted on 4 Video to test the robustness of the proposed algorithm by imperceptibility. The Experimental results show high imperceptibility where there is no noticeable difference between the stego video and the original. Figure 3 the proposed method implementation
  • 7. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME 246 Table (2) shows the calculate AMSE, and APSNR value between the original video and stego video for applying the proposed method to four test video. Table 2 AMSE and APSNR Covervideo Resolution (W×H) Frame /sec. No.of frames Size(MB) Average PSNR Average MSE Video 1 288×352 15 167 48.4 71.61 0.31 Video 2 288×352 15 190 55.1 73.52 0.32 Video 3 288×352 15 190 55.1 72.29 0.29 Video 4 288×352 15 189 55.1 72.30 0.36 In all experiments, the APSNR is greater than 72dB and AMSE is below 0.30. Therefore experimental results show that the proposed method is effective. It maintains the quality of the video and no variation between the cover data and stego data that can be detected by the human vision system. 4. CONCLUSIONS AND FUTURE WORK We proposed a method to hide secret message inside the Video, in frequency domain and without the need to have the original Video at the extraction phase. The sender encrypts the secret message by the RSA public key of the recipient and then embedded it using LSB of the pixels that located by the edge method (prewitt and canny) over the original video frame specified by the control points of cubic spline interpolation method, after conversion it into DFT and then IDFT applied to the real part of DFT, where the secret message is embedded using LSB insertion method. This process is repeated for each selected frame of the cover video. The receiver extract the LSB of the pixels that located by the edge method (prewitt, and canny) over the stego video frame specified by the control points of cubic spline interpolation method. This process is repeated for each selected frame of the stego cover video until all the embedded bits are extracted. The receiver revel the encrypted secret message with his RSA secret key .The proposed method relies on a set of parameters of secrecy, making it more resistant to attack by intruders. From these parameters: RSA secret key, which is used to decrypt the encrypted secret message, the number of control points which is used for each cubic spline that correspond to each edge in each used frame. These parameters must be known to intruders to extract secret message from the stego video file even he know the proposed algorithm. Future directions are: the use of other ways to find the edges, the use of other interpolation methods, or the adoption of other places for embedding, the use of wavelet transform.
  • 8. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME 247 REFERENCES [1] Sheelu, BabitaAhuja, An Overview of Steganography, Journal of Computer Engineering, Volume 11, Issue 1, PP 15-19,Jun. 2013. [2] Ajit Singh Swati Malik,Securing Data by Using Cryptography with Steganography, International Journal of Advanced Research in Computer Science and Software Engineering, Volume 3, Issue 5, PP 404-409, May 2013. [3] AyushiJuneja , Sunita , TarunAhuja, Dynamic Least Significant Bit (DLSB) Technique forVideo Steganography, International Journal of Computer Science & Management Studies, Vol. 13, Issue 05, PP 52-56, July 2013. [4] R.Kavitha and A. Murugan, "Lossless Steganography on AVI File using Swapping Algorithm", InternationalConference on Computational Intelligence and Multimedia Applications, pp. 83-88, Sivakasi-TamilNadu, Dec. 2007 [5] Yueyun Shang, "A New Invertible Data Hiding in Compressed Videos or Images.", Third International Conference on Natural Computation (ICNC 2007), Vol. 4,PP.576-580, Haikou, Aug 2007. [6] Amr A. Hanafy, Gouda I. Salama and Yahya Z. Mohasseb, "A Secure Covert Communication Model Based on Video Steganography”, in Military Communications Conference, 2008. MILCOM. IEEE on 16-19 Nov. 2008. [7] NitinJain SachinMeshram ShikhaDubey, Image Steganography Using LSB and Edge Detection Technique, International Journal of Soft Computing & Engineering, Volume: 2; Issue: 3,PP. 217- ,2012. [8] P. Paulpandi, Dr. T. Meyyappan, Hiding Messages Using Motion Vector Technique in Video Steganography, International Journal of Engineering Trends and Technology, Volume3, Issue3, 2012, [9] P. SunithaKency Paul, P.FascaGilgy Mary, J. Dheeba, A Data Hiding scheme in motion vector of videos by LSB Substitution., International Journal of Science, Engineering and Technology Research (IJSETR) Volume 2, Issue 5, PP 1111-1118, May 2013. [10] Shao-Hua Hong, Lin Wang, Trieu-Kien Truong, Tsung-Ching Lin, Lung-Jen Wang: Novel Approaches to the Parametric Cubic-Spline Interpolation. IEEE Transactions on Image Processing, Volume 22, Issue 3, PP: 1233-1241,March 2013. [11] M. Nagaraju Naik and P. Rajesh Kumar, “Spectral Approach to Image Projection with Cubic B-Spline Interpolation”, International Journal of Electronics and Communication Engineering & Technology (IJECET), Volume 3, Issue 3, 2012, pp. 153 - 161, ISSN Print: 0976- 6464, ISSN Online: 0976 –6472. [12] Sonali Patil, Kapil Tajane and Janhavi Sirdeshpande, “Analysing Secure Image Secret Sharing Schemes Based on Steganography”, International Journal of Computer Engineering & Technology (IJCET), Volume 4, Issue 2, 2013, pp. 172 - 178, ISSN Print: 0976 – 6367, ISSN Online: 0976 – 6375. [13] Geetha C.R. and Dr.Puttamadappa C., “Modified Weighted Embedding Method for Image Steganography”, International Journal of Electronics and Communication Engineering & Technology (IJECET), Volume 4, Issue 3, 2013, pp. 154 - 161, ISSN Print: 0976- 6464, ISSN Online: 0976 –6472. [14] Vismita Nagrale, Ganesh Zambre and Aamir Agwani, “Image Stegano-Cryptography Based on LSB Insertion & Symmetric Key Encryption”, International Journal of Electronics and Communication Engineering & Technology (IJECET), Volume 2, Issue 1, 2011, pp. 35 - 42, ISSN Print: 0976- 6464, ISSN Online: 0976 –6472.