SlideShare ist ein Scribd-Unternehmen logo
1 von 43
Sisteme de ecuaţii algebrice
          liniare

          Capitolul 3
Sisteme de ecuaţii algebrice liniare
   Forma generală a unui sistem de ecuaţii algebrice
    liniare este
     a 11 x 1 + a 12 x 2 +  + a 1n x n = b1
     a x + a x +  + a x = b
      21 1           22 2                 2n n            2
     
     ........................................................
     a n1 x 1 + a n 2 x 2 + a nn x n = b n
     
Forma matriceală a unui sistem de ecuaţii
algebrice liniare este
          AX = B
Systems of Linear Algebraic Equations

Systems of linear algebraic
 equations are used:
   directlyin mathematical models for
    electrical, structural and pipe
    networks;
   in computational methods for fitting
    curves to data
Systems of Linear Algebraic
Equations



 Direct methods
 Iterative methods
Systems of Linear Algebraic Equations


Direct methods
  the exact solution is obtained by applying a
  finite algorithm
  the solution is affected by round-off errors
  methods
   Cramer Rule
   Gauss Elimination Method

   Gauss-Jordan Method
Systems of Linear Algebraic Equations

Iterative methods
 the approximate solution is obtained after a
 number of steps of an infinite iterative
 procedure
 the solution is affected by round - off and
 truncation errors
 methods
   Jacobi Method
   Gauss-Seidel Method
Systems of Linear Algebraic Equations




3.1 Direct methods
a. Gauss Elimination Method
Gauss (1777- 1855)
Goal
 Toreduce the coefficients matrix to an
 upper triangular form

Stages
 Eliminationof the unknown parameters
 Back substitution
a. Gauss Elimination Method
                     example for n=3

The system of 3 equations is:

       a 11x1 + a 12 x 2 + a 13 x 3 = b1
       
       a 21x1 + a 22 x 2 + a 23 x 3 = b 2
       a x + a x + a x = b
        31 1 32 2            33 3       3


Stages
  Eliminationof the unknown parameters
  Back substitution
a. Gauss Elimination Method
                           example for n=3
1st stage
    Elimination        of the unknown parameters
   STEP 1
   Elimination of x1 from eqs.2 and 3
   Pivot line-1; pivot element a11
   After step 1, the system becomes:
     x1 + a 12) x 2 + a 13) x 3 = b11)
             (1           (1            (

     
         a (22) x 2 + a (23) x 3 = b (21)
              1            1

     
         a 32) x 2 + a 33) x 3 = b 31)
            (1           (1           (
a. Gauss Elimination Method
                           example for n=3
STEP 1
 Elements of the pivot line
                a1 j
    a 1j =
        (1)
                       , j = 1, 2, 3
                a 11
                b1
    b (1)
      1       =
                a 11
 Elements of the non-pivot lines
     a (ij1) = a ij − a i1a 11) , j = 1, 2, 3; i = 2, 3
                            (
                              j

     b i(1) = b i − a i1b11)
                         (
a. Gauss Elimination Method
               example for n=3
STEP 1
After Step1, the system can be written
 by matrices as:
       1 a12) a13)   x1  b11) 
            (1    (1                 (

                 (1)        = b (1) 
       0 a 22 a 23  ⋅  x 2   2 
            (1)


       0 a 32) a 33)   x 3  b 31) 
            (1    (1                 (
                         
a. Gauss Elimination Method
                           example for n=3
1st stage
    Elimination        of the unknown parameters
   STEP 2
   Elimination of x2 from eq.3
   Pivot line-2; pivot element a22(1)
   After step 2, the system becomes:
     x1 + a 12) x 2 + a 13) x 3 = b11)
             (1          (1          (

     
                x 2 + a (23) x 3 = b (22 )
                           2

     
                      a 33) x 3 = b 32 )
                         (2           (
a. Gauss Elimination Method
                           example for n=3
STEP 2
 Elements (of the pivot line
           1)
                  a 2j
     a 2j =
         ( 2)
                         , j = 2, 3
                  a 22
                 b (1)
     b   ( 2)
         2      = 2
                 a 22

 Elements of the non-pivot lines
     a (ij2 ) = a (ij1) − a (i1) a ( 2j) , j = 2, 3; i = 3
                              2    2

     b i( 2 ) = b i(1) − a (i1) b ( 2 )
                             2    2
a. Gauss Elimination Method
              example for n=3
STEP 2
After Step 2, the system can be written
 by matrices as:
      1 a12) a13)   x1   b11) 
           (1   (1               (

               ( 2)     = b ( 2 ) 
      0 1 a 23  ⋅  x 2   2 
      0 0 a 33)   x 3  b 32 ) 
                (2               (
                        
a. Gauss Elimination Method
                            example for n=3
STEP 3
The pivot line is the 3rd and the pivot element
 is a33(2).
The 1
  xsystem+becomes:
      + a 12) x 2 a 13) x 3 = b11)
          (1          (1          (

  
             x 2 + a (23) x 3 = b (22 )
                        2

  
                         x 3 = b 33)
                                  (




          b 32 )
            (
   b 33) = ( 2 )
     (
Where a
            33
a. Gauss Elimination Method
                example for n=3
STEP 3
After Step 3, the system can be written
 by matrices as:
      1 a12)
          (1
                a    x1   b11) 
                 (1)
                 13
                                   (

                      ( 2) 
      0 1      a  ⋅  x 2  = b 2 
                 ( 2)
                 23
      0 0           x 3   b 33) 
                 1            (
      
a. Gauss Elimination Method
                        example for n=3
2nd Stage
Backwards substitution
 x 3 = b 33)
           (

 
 x 2 = b 2 − a 23 x 3
            ( 2)   ( 2)

 
  x1 = b (21) − (a13) x 3 + a 12) x 2 )
                    (1         (1
Gauss Elimination Method
Elimination stage
   Step k – the elimination of xk from the last (n – k) equations
    (k = 1, 2, ... , n – 1)
   After step k, the system has the following form:
 1 a (1)    a 11)
                (
                         a 11k +1
                           ()
                                          a 11)   x 1   b (1) 
                                              (
    12           k         ,                   n                 1
 0 1        a ( 2)     a 2,k(+12)
                                            ( 2)     x   ( 2) 
                                           a 2n   2   b 2 
                2k
                                                  
                                              
 0 0                                        (k )             (k ) 
             1          a ( kk +1
                           k,
                               )
                                          a k ,n ⋅  x k  =  b k 
                                                  
 0 0             0    a ( k )1,k +1      (k )
                                          a k +1,n   x k +1  b ( k ) 
 
                          k+
                                                              k +1 
                                              
                                             (k )   x   (k ) 
 0 0             0     a ( kk +1 
                                )
                                           a nn   n   b n          
                           n,
Gauss Elimination Method
   The new elements of the matrices are:
        For the pivot row


    a ( k ) = 1,
     k ,k
     (k )       ( k −1)    ( k −1)
    a kj = a kj          a k , k , j = k + 1,..., n ,
     (k )        ( k −1)   ( k −1)
    b k = b k            a k ,k ,
    
Gauss Elimination Method
    For the non-pivot rows


 a ( k ) = 0,
 ik
 (k)        ( k −1)   ( k −1) ( k )
 a ij = a ij − a ik a kj , j = k + 1, ..., n , i = k + 1,..., n ,
 (k )
 b i = b i( k −1) − a ik −1) b ( k ) .

                       (k
                                k
Gauss Elimination Method
        Step n
 1 a (1)    a 11)
                (
                       a 11k +1
                         ()
                                      a 11)   x 1   b11) 
                                           (                      (
    12           k       ,                  n 
                                                    x   ( 2) 
 0 1        a ( 2)
                2k     a 2,k(+1 
                               2)         ( 2)
                                       a 2n   2   b 2 
                                               
                                               (k ) 
 0 0                                     (k )  ⋅  x  =
             1        a ( kk +1 
                         k,
                             )
                                       a k ,n       k   bk 
                                                
 0 0             0       1             ( k +1)
                                      a k +1,n    x k +1  b ( k +1) 
                                                           k +1 
                                               
                                           
                                                    x   (n ) 
 0 0
                0       0              1   n   bn 
                                                                      
      a ( n ) = 1,
       nn
where 
      b ( n ) = b ( n −1) a ( n −1)
       n           n        nn
Gauss Elimination Method

Back substitution

x n = b (n ) ,
        n
        (k )       n         (k )
xk =   bk      − ∑         a kj x j ,   k = n − 1,..., 1.
                 j= k +1
b. Metoda Gauss-Jordan
Marie Ennemond Camille Jordan (1821-1922)
Obiectivul metodei
   Matricea coeficienţilor, A, este adusă, prin transformări
    succesive, la forma unei matrice unitate.


La pasul k, necunoscuta xk este eliminată din
toate ecuaţiile sistemului, cu excepţia liniei pivot k.
După pasul k, sistemul devine:
Metoda Gauss-Jordan
1   0  0      a 1,k )+1
                  (
                                a 1n )   x 1   b ( k ) 
                                   (k
                   k                                 1k ) 
0   1  0          (k )
                a 2,k +1        a (k)   x 2   b ( 
                                                  
                                   2n                    2

                                    
0                                 (k )             (k) 
     0  1      a ( kk +1
                  k,
                     )
                                a k ,n ⋅  x k  =  b k 
                                        
0   0  0 a ( k )1, k +1        (k )
                                a k +1,n   x k +1  b ( k ) 

             k+
                                                    k +1 
                                    
                                   (k)   x   (k) 
0   0  0 a ( kk +1 
                   )
                                 a nn       n  bn         
              n,                        
Metoda Gauss-Jordan
• Noile elemente ale liniei pivot sunt:

 a ( k ) = 1,
   k ,k
  (k )       ( k −1)    ( k −1)
 a kj = a kj          a k ,k , j = k + 1,..., n ,
  (k )        ( k −1)   ( k −1)
 b k = b k            a k ,k ,
 
Gauss-Jordan Method
         Elementele liniilor ne-pivot sunt:

a ( k ) = 0,
 ik
 (k)
a ij = a ijk −1) − a ik −1) a ( k ) , j = k + 1, ..., n , i = 1,..., n , i ≠ k ,
            (         (k
                               kj
 (k )
b i = b i k −1) − a ik −1) b ( k ) .

             (        (k
                               k

         Pentru obţinerea soluţiei sistemului, se vor identifica valorile
          necunoscutelor cu termenii liberi obţinuţi după pasul n.
   x k = b (kn ) , k = 1, ..., n.
Sisteme de ecuaţii algebrice liniare




3.2 Metode iterative
a. Metoda iterativă Jacobi
Jacobi
Fiecare ecuaţie se va rezolva în raport cu o
necunoscută.
Se obţine următorul sistem echivalent de
ecuaţii:
x 1 =          t 1 + s12 x 2 +  + s1n x n
x = s x +                   t 2 +  + s 2n x n
 2         21 1

...................................................
x n = s n1 x 1 + s n 2 x 2 +  + t n

a. Metoda iterativă Jacobi
Unde,
s ii = 0, i = 1, 2, ..., n;
s ij = − a ij a ii , j = 1, 2,..., n , j ≠ i ;
t i = b i a ii .

Sitemul poate fi scris în formă matriceală
    X = T + SX
a. Metoda iterativă Jacobi
În continuare, sistemul se va rezolva prin
metoda aproximaţiilor succesive:
                      succesive

 X(0) = T
 X(1) = T + SX(0), ...



   X(k) = T + SX(k-1) , k = 1, 2,...
a. Metoda iterativă Jacobi
Relaţiile metodei Jacobi pot fi scrise explicit, astfel:

 x (0) = t i , i = 1, 2,..., n
  i
                  n
 x ( k ) = t + ∑ s x ( k −1) , k = 1, 2,...
  i         i         ij j
                  j=1
 
                 j≠ i

Procesul iterativ se va opri atunci când:
   max x i( k ) − x i( k −1) ≤ ε
     i
Procesul iterativ este convergent atunci când
matricea coeficienţilor, A, este diagonal dominantă,
adică:
   a ii > max a ij , i = 1, 2,..., n.
             j≠ i
a. Metoda iterativă Jacobi
Aplicaţie
   Să se rezolve sistemul de ecuaţii:


    2 x + 3y + z = 11
    
    2 x + y − 4z = −8
    3x − 2 y + z = 2
    
a. Metoda iterativă Jacobi
                Sistemul trebuie adus la o formă
                diagonal dominantă:


2 x + 3y + z = 11       3x − 2 y + z = 2
                        
2 x + y − 4z = −8       2 x + 3y + z = 11
3x − 2 y + z = 2        2 x + y − 4z = −8
                        
a. Metoda iterativă Jacobi
     Rezolvarea unui circuit electric

       R3                R8


V2          i2                i3
                    R5



       R2                R7


            i1                i4
V1                  R4



       R1                R6
a. Metoda iterativă Jacobi
Reţeaua este caracterizată prin:

 8 rezistenţe R1 ... R8;
 două surse de curent V1 and V2, în direcţiile din
  figură;
 intensităţile curentului prin cele patru bucle ale
  reţelei sunt i1 ... i4, considerate în orar.
a. Metoda iterativă Jacobi
The equations for the currents are derived
from Ohm’s Law and Kirchhoff’s Voltage
Law.
Legea lui Ohm – Tensiunea măsurată în
dreptul unei rezistenţe R este iR, considerată
în direcţia curentului i.
Legea lui Kirchhoff – Tensiunea într-o buclă
inchisă este zero.
   loop 1: i1R1 + (i1 – i4) R4 + (i1 – i2) R2 + V1 = 0;
   loop 2: (i2 - i1) R2 + (i2 – i3) R5 + i2 R3 – V2 = 0;
   loop 3: (i3 – i4) R7 + i3 R8 + (i3 – i2) R5 = 0;
   loop 4: i4R6 + (i4 – i3) R7 + (i4 – i1) R4 = 0.
              R3              R8


    V2             i2              i3
                         R5



              R2              R7


                   i1              i4
    V1                   R4



              R1              R6
a. Metoda iterativă Jacobi
The system may be written in a matrix form
                                 SI=V,
where
   R 1 + R 2 + R 4       −R2              0            −R4      
        −R2          R2 + R3 + R5       −R5              0      
S=                                                              
          0              − R5       R5 + R7 + R8       −R7      
                                                                
        −R4                0            −R7        R4 + R6 + R7 

    i1      − V1 
   i                        5; k = 1, 2, 3, 4    V1 = 3,45
              V        Rk = 
I=  2  V=    2            2; k = 5, 6, 7, 8    V2 = 9,96
   i 3       0 
                 
   i 4        0 
a. Metoda iterativă Jacobi
                  (
                            (
                i 1k ) = − 3,45 + 5i ( k −1) + 5i ( k −1) 15
                                     2            4                 )
                         = (9,96 + 5i                            ) 12
;   ;       .
                 ( k.)                  ( k −1)        ( k −1)
        ;
                i2                      1         + 2i 3

                  (
                           (
                i 3k ) = 2i ( k −1) + 2i ( k −1) 6
                            2            4          )
                  4        (
                i ( k ) = 5i 1k −1) + 2i 3k −1) 9
                             (           (
                                                        )
a. Metoda iterativă Jacobi
The exact solution is
i1 = 0,14; i2 = 0,95; i3 = 0,37; i4 = 0,16


The approximate solution, after 16 iterations
i1 = 0,139631 ; i2 = 0,949146 ;
i3 = 0,369631 ; i4 = 0,158861
b.Metoda Gauss-Seidel
                        (Philipp Ludwig von Seidel 1821-1896)


Principiul metodei este acelaşi ca al metodei Jacobi, dar la determinarea valorii
aproximative a necunoscutei xi la pasul k, se consideră deja valorile actualizate la
acest pas ale necunoscutelor x1...xi-1

     s ii = 0, i = 1, 2, ..., n;
     s ij = − a ij a ii , j = 1, 2,..., n , j ≠ i ;
     t i = b i a ii ,

    x ( 0) = t i , i = 1, 2,..., n
     i
     (k )           i −1             n
     x i = t i + ∑ s ij x j + ∑ s ij x (jk −1) , k = 1, 2,...
                              (k )

                     j=1           j=i +1
Gauss-Seidel Method
The exact solution is
i1 = 0,14; i2 = 0,95; i3 = 0,37; i4 = 0,16


The approximate solution, after 10 iterations
i1 = 0,139685 ; i2 = 0,949785 ;
i3 = 0,369767 ; i4 = 0,159773.

Weitere ähnliche Inhalte

Was ist angesagt?

Consolidated.m2-satyabama university
Consolidated.m2-satyabama universityConsolidated.m2-satyabama university
Consolidated.m2-satyabama universitySelvaraj John
 
Engineering Mathematics 2 questions & answers
Engineering Mathematics 2 questions & answersEngineering Mathematics 2 questions & answers
Engineering Mathematics 2 questions & answersMzr Zia
 
Maths assignment
Maths assignmentMaths assignment
Maths assignmentNtshima
 
Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009akabaka12
 
A family of implicit higher order methods for the numerical integration of se...
A family of implicit higher order methods for the numerical integration of se...A family of implicit higher order methods for the numerical integration of se...
A family of implicit higher order methods for the numerical integration of se...Alexander Decker
 
Integral table
Integral tableIntegral table
Integral tablebags07
 
Solve ODE - BVP through the Least Squares Method
Solve ODE - BVP through the Least Squares MethodSolve ODE - BVP through the Least Squares Method
Solve ODE - BVP through the Least Squares MethodSuddhasheel GHOSH, PhD
 
Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005akabaka12
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Kuan-Lun Wang
 
Spm Add Maths Formula List Form4
Spm Add Maths Formula List Form4Spm Add Maths Formula List Form4
Spm Add Maths Formula List Form4guest76f49d
 

Was ist angesagt? (14)

It 05104 digsig_1
It 05104 digsig_1It 05104 digsig_1
It 05104 digsig_1
 
Consolidated.m2-satyabama university
Consolidated.m2-satyabama universityConsolidated.m2-satyabama university
Consolidated.m2-satyabama university
 
Engineering Mathematics 2 questions & answers
Engineering Mathematics 2 questions & answersEngineering Mathematics 2 questions & answers
Engineering Mathematics 2 questions & answers
 
Numerical Methods Solving Linear Equations
Numerical Methods Solving Linear EquationsNumerical Methods Solving Linear Equations
Numerical Methods Solving Linear Equations
 
Maths assignment
Maths assignmentMaths assignment
Maths assignment
 
Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009
 
A family of implicit higher order methods for the numerical integration of se...
A family of implicit higher order methods for the numerical integration of se...A family of implicit higher order methods for the numerical integration of se...
A family of implicit higher order methods for the numerical integration of se...
 
Integral table
Integral tableIntegral table
Integral table
 
Solve ODE - BVP through the Least Squares Method
Solve ODE - BVP through the Least Squares MethodSolve ODE - BVP through the Least Squares Method
Solve ODE - BVP through the Least Squares Method
 
Semi-Magic Squares From Snake-Shaped Matrices
Semi-Magic Squares From Snake-Shaped MatricesSemi-Magic Squares From Snake-Shaped Matrices
Semi-Magic Squares From Snake-Shaped Matrices
 
Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20
 
tsoulkas_cumulants
tsoulkas_cumulantstsoulkas_cumulants
tsoulkas_cumulants
 
Spm Add Maths Formula List Form4
Spm Add Maths Formula List Form4Spm Add Maths Formula List Form4
Spm Add Maths Formula List Form4
 

Andere mochten auch

Arduino Neural Networks
Arduino Neural NetworksArduino Neural Networks
Arduino Neural NetworksTomáš Jukin
 
Autocontrolul prin metoda silva
Autocontrolul prin metoda silvaAutocontrolul prin metoda silva
Autocontrolul prin metoda silvaDaniela Dumitru
 
PET Speaking Guide
PET Speaking GuidePET Speaking Guide
PET Speaking Guidemsmary7th
 
Optical fiber communiction system
Optical fiber communiction systemOptical fiber communiction system
Optical fiber communiction systemrahulohlan14
 
Genres Of Literature
Genres Of LiteratureGenres Of Literature
Genres Of LiteratureACurd
 
Transmission of heat (ppt)
Transmission of heat (ppt)Transmission of heat (ppt)
Transmission of heat (ppt)Stanley Ang
 
Fibonacci Sequence and Golden Ratio
Fibonacci Sequence and Golden RatioFibonacci Sequence and Golden Ratio
Fibonacci Sequence and Golden Ratiovayappurathu
 
Technology powerpoint presentations
Technology powerpoint presentationsTechnology powerpoint presentations
Technology powerpoint presentationsismailraesha
 

Andere mochten auch (13)

Ss1
Ss1Ss1
Ss1
 
Arduino Neural Networks
Arduino Neural NetworksArduino Neural Networks
Arduino Neural Networks
 
Autocontrolul prin metoda silva
Autocontrolul prin metoda silvaAutocontrolul prin metoda silva
Autocontrolul prin metoda silva
 
Informatizarea invatamintului
Informatizarea invatamintuluiInformatizarea invatamintului
Informatizarea invatamintului
 
PET Speaking Guide
PET Speaking GuidePET Speaking Guide
PET Speaking Guide
 
Optical fiber communiction system
Optical fiber communiction systemOptical fiber communiction system
Optical fiber communiction system
 
Genres Of Literature
Genres Of LiteratureGenres Of Literature
Genres Of Literature
 
Modal Verbs
Modal VerbsModal Verbs
Modal Verbs
 
Transmission of heat (ppt)
Transmission of heat (ppt)Transmission of heat (ppt)
Transmission of heat (ppt)
 
Solar System Ppt
Solar System PptSolar System Ppt
Solar System Ppt
 
Fibonacci Sequence and Golden Ratio
Fibonacci Sequence and Golden RatioFibonacci Sequence and Golden Ratio
Fibonacci Sequence and Golden Ratio
 
Conic Section
Conic SectionConic Section
Conic Section
 
Technology powerpoint presentations
Technology powerpoint presentationsTechnology powerpoint presentations
Technology powerpoint presentations
 

Ähnlich wie Sisteme de ecuatii

Ch9-Gauss_Elimination4.pdf
Ch9-Gauss_Elimination4.pdfCh9-Gauss_Elimination4.pdf
Ch9-Gauss_Elimination4.pdfRahulUkhande
 
Linear Algebra- Gauss Elim-converted.pptx
Linear Algebra- Gauss Elim-converted.pptxLinear Algebra- Gauss Elim-converted.pptx
Linear Algebra- Gauss Elim-converted.pptxMazwan3
 
(Www.entrance exam.net)-sail placement sample paper 5
(Www.entrance exam.net)-sail placement sample paper 5(Www.entrance exam.net)-sail placement sample paper 5
(Www.entrance exam.net)-sail placement sample paper 5SAMEER NAIK
 
ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)CrackDSE
 
Gabarito completo anton_calculo_8ed_caps_01_08
Gabarito completo anton_calculo_8ed_caps_01_08Gabarito completo anton_calculo_8ed_caps_01_08
Gabarito completo anton_calculo_8ed_caps_01_08joseotaviosurdi
 
Solution of Differential Equations in Power Series by Employing Frobenius Method
Solution of Differential Equations in Power Series by Employing Frobenius MethodSolution of Differential Equations in Power Series by Employing Frobenius Method
Solution of Differential Equations in Power Series by Employing Frobenius MethodDr. Mehar Chand
 
Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)asghar123456
 
IIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY TrajectoryeducationIIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY TrajectoryeducationDev Singh
 
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...Tomoya Murata
 
Aieee 2003 maths solved paper by fiitjee
Aieee 2003 maths solved paper by fiitjeeAieee 2003 maths solved paper by fiitjee
Aieee 2003 maths solved paper by fiitjeeMr_KevinShah
 
Single page-integral-table
Single page-integral-tableSingle page-integral-table
Single page-integral-tableMonique Anderson
 

Ähnlich wie Sisteme de ecuatii (20)

Ch9-Gauss_Elimination4.pdf
Ch9-Gauss_Elimination4.pdfCh9-Gauss_Elimination4.pdf
Ch9-Gauss_Elimination4.pdf
 
Linear Algebra- Gauss Elim-converted.pptx
Linear Algebra- Gauss Elim-converted.pptxLinear Algebra- Gauss Elim-converted.pptx
Linear Algebra- Gauss Elim-converted.pptx
 
(Www.entrance exam.net)-sail placement sample paper 5
(Www.entrance exam.net)-sail placement sample paper 5(Www.entrance exam.net)-sail placement sample paper 5
(Www.entrance exam.net)-sail placement sample paper 5
 
Algebra formulas
Algebra formulas Algebra formulas
Algebra formulas
 
ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)
 
Gabarito completo anton_calculo_8ed_caps_01_08
Gabarito completo anton_calculo_8ed_caps_01_08Gabarito completo anton_calculo_8ed_caps_01_08
Gabarito completo anton_calculo_8ed_caps_01_08
 
Solution of Differential Equations in Power Series by Employing Frobenius Method
Solution of Differential Equations in Power Series by Employing Frobenius MethodSolution of Differential Equations in Power Series by Employing Frobenius Method
Solution of Differential Equations in Power Series by Employing Frobenius Method
 
Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)
 
Ecat math
Ecat mathEcat math
Ecat math
 
Mcq exemplar class 12
Mcq exemplar class 12Mcq exemplar class 12
Mcq exemplar class 12
 
Mcq exemplar class 12
Mcq exemplar class 12Mcq exemplar class 12
Mcq exemplar class 12
 
IIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY TrajectoryeducationIIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY Trajectoryeducation
 
12th mcq
12th mcq12th mcq
12th mcq
 
12th mcq
12th mcq12th mcq
12th mcq
 
Chapter 01
Chapter 01Chapter 01
Chapter 01
 
Single page-integral-table
Single page-integral-table Single page-integral-table
Single page-integral-table
 
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
 
Aieee 2003 maths solved paper by fiitjee
Aieee 2003 maths solved paper by fiitjeeAieee 2003 maths solved paper by fiitjee
Aieee 2003 maths solved paper by fiitjee
 
Maieee03
Maieee03Maieee03
Maieee03
 
Single page-integral-table
Single page-integral-tableSingle page-integral-table
Single page-integral-table
 

Sisteme de ecuatii

  • 1. Sisteme de ecuaţii algebrice liniare Capitolul 3
  • 2. Sisteme de ecuaţii algebrice liniare  Forma generală a unui sistem de ecuaţii algebrice liniare este a 11 x 1 + a 12 x 2 +  + a 1n x n = b1 a x + a x +  + a x = b  21 1 22 2 2n n 2  ........................................................ a n1 x 1 + a n 2 x 2 + a nn x n = b n  Forma matriceală a unui sistem de ecuaţii algebrice liniare este AX = B
  • 3. Systems of Linear Algebraic Equations Systems of linear algebraic equations are used:  directlyin mathematical models for electrical, structural and pipe networks;  in computational methods for fitting curves to data
  • 4. Systems of Linear Algebraic Equations Direct methods Iterative methods
  • 5. Systems of Linear Algebraic Equations Direct methods the exact solution is obtained by applying a finite algorithm the solution is affected by round-off errors methods  Cramer Rule  Gauss Elimination Method  Gauss-Jordan Method
  • 6. Systems of Linear Algebraic Equations Iterative methods the approximate solution is obtained after a number of steps of an infinite iterative procedure the solution is affected by round - off and truncation errors methods  Jacobi Method  Gauss-Seidel Method
  • 7. Systems of Linear Algebraic Equations 3.1 Direct methods
  • 8. a. Gauss Elimination Method Gauss (1777- 1855) Goal  Toreduce the coefficients matrix to an upper triangular form Stages  Eliminationof the unknown parameters  Back substitution
  • 9. a. Gauss Elimination Method example for n=3 The system of 3 equations is: a 11x1 + a 12 x 2 + a 13 x 3 = b1  a 21x1 + a 22 x 2 + a 23 x 3 = b 2 a x + a x + a x = b  31 1 32 2 33 3 3 Stages  Eliminationof the unknown parameters  Back substitution
  • 10. a. Gauss Elimination Method example for n=3 1st stage  Elimination of the unknown parameters STEP 1 Elimination of x1 from eqs.2 and 3 Pivot line-1; pivot element a11 After step 1, the system becomes: x1 + a 12) x 2 + a 13) x 3 = b11) (1 (1 (   a (22) x 2 + a (23) x 3 = b (21) 1 1   a 32) x 2 + a 33) x 3 = b 31) (1 (1 (
  • 11. a. Gauss Elimination Method example for n=3 STEP 1 Elements of the pivot line a1 j a 1j = (1) , j = 1, 2, 3 a 11 b1 b (1) 1 = a 11 Elements of the non-pivot lines a (ij1) = a ij − a i1a 11) , j = 1, 2, 3; i = 2, 3 ( j b i(1) = b i − a i1b11) (
  • 12. a. Gauss Elimination Method example for n=3 STEP 1 After Step1, the system can be written by matrices as: 1 a12) a13)   x1  b11)  (1 (1 (  (1)    = b (1)  0 a 22 a 23  ⋅  x 2   2  (1) 0 a 32) a 33)   x 3  b 31)  (1 (1 (      
  • 13. a. Gauss Elimination Method example for n=3 1st stage  Elimination of the unknown parameters STEP 2 Elimination of x2 from eq.3 Pivot line-2; pivot element a22(1) After step 2, the system becomes: x1 + a 12) x 2 + a 13) x 3 = b11) (1 (1 (   x 2 + a (23) x 3 = b (22 ) 2   a 33) x 3 = b 32 ) (2 (
  • 14. a. Gauss Elimination Method example for n=3 STEP 2 Elements (of the pivot line 1) a 2j a 2j = ( 2) , j = 2, 3 a 22 b (1) b ( 2) 2 = 2 a 22 Elements of the non-pivot lines a (ij2 ) = a (ij1) − a (i1) a ( 2j) , j = 2, 3; i = 3 2 2 b i( 2 ) = b i(1) − a (i1) b ( 2 ) 2 2
  • 15. a. Gauss Elimination Method example for n=3 STEP 2 After Step 2, the system can be written by matrices as: 1 a12) a13)   x1   b11)  (1 (1 (  ( 2)    = b ( 2 )  0 1 a 23  ⋅  x 2   2  0 0 a 33)   x 3  b 32 )  (2 (      
  • 16. a. Gauss Elimination Method example for n=3 STEP 3 The pivot line is the 3rd and the pivot element is a33(2). The 1 xsystem+becomes: + a 12) x 2 a 13) x 3 = b11) (1 (1 (   x 2 + a (23) x 3 = b (22 ) 2   x 3 = b 33) ( b 32 ) ( b 33) = ( 2 ) ( Where a 33
  • 17. a. Gauss Elimination Method example for n=3 STEP 3 After Step 3, the system can be written by matrices as: 1 a12) (1 a   x1   b11)  (1) 13 (      ( 2)  0 1 a  ⋅  x 2  = b 2  ( 2) 23 0 0   x 3   b 33)  1      ( 
  • 18. a. Gauss Elimination Method example for n=3 2nd Stage Backwards substitution x 3 = b 33) (  x 2 = b 2 − a 23 x 3 ( 2) ( 2)   x1 = b (21) − (a13) x 3 + a 12) x 2 ) (1 (1
  • 19. Gauss Elimination Method Elimination stage  Step k – the elimination of xk from the last (n – k) equations (k = 1, 2, ... , n – 1)  After step k, the system has the following form: 1 a (1)  a 11) ( a 11k +1 ()  a 11)   x 1   b (1)  (  12 k , n  1 0 1  a ( 2) a 2,k(+12)  ( 2)  x   ( 2)  a 2n   2   b 2  2k                 0 0 (k )     (k )   1 a ( kk +1 k, )  a k ,n ⋅  x k  =  b k    0 0  0 a ( k )1,k +1  (k ) a k +1,n   x k +1  b ( k )   k+     k +1                (k )   x   (k )  0 0  0 a ( kk +1  ) a nn   n   b n     n,
  • 20. Gauss Elimination Method  The new elements of the matrices are:  For the pivot row a ( k ) = 1,  k ,k  (k ) ( k −1) ( k −1) a kj = a kj a k , k , j = k + 1,..., n ,  (k ) ( k −1) ( k −1) b k = b k a k ,k , 
  • 21. Gauss Elimination Method  For the non-pivot rows  a ( k ) = 0,  ik  (k) ( k −1) ( k −1) ( k )  a ij = a ij − a ik a kj , j = k + 1, ..., n , i = k + 1,..., n ,  (k )  b i = b i( k −1) − a ik −1) b ( k ) .  (k k
  • 22. Gauss Elimination Method  Step n 1 a (1)  a 11) ( a 11k +1 ()  a 11)   x 1   b11)  ( (  12 k , n   x   ( 2)  0 1  a ( 2) 2k a 2,k(+1  2) ( 2) a 2n   2   b 2                   (k )  0 0 (k )  ⋅  x  =  1 a ( kk +1  k, ) a k ,n  k   bk     0 0 0 1 ( k +1) a k +1,n   x k +1  b ( k +1)      k +1                   x   (n )  0 0   0 0  1   n   bn     a ( n ) = 1,  nn where  b ( n ) = b ( n −1) a ( n −1)  n n nn
  • 23. Gauss Elimination Method Back substitution x n = b (n ) , n (k ) n (k ) xk = bk − ∑ a kj x j , k = n − 1,..., 1. j= k +1
  • 24. b. Metoda Gauss-Jordan Marie Ennemond Camille Jordan (1821-1922) Obiectivul metodei  Matricea coeficienţilor, A, este adusă, prin transformări succesive, la forma unei matrice unitate. La pasul k, necunoscuta xk este eliminată din toate ecuaţiile sistemului, cu excepţia liniei pivot k. După pasul k, sistemul devine:
  • 25. Metoda Gauss-Jordan 1 0  0 a 1,k )+1 (  a 1n )   x 1   b ( k )  (k  k   1k )  0 1  0 (k ) a 2,k +1  a (k)   x 2   b (     2n 2                0 (k )     (k)  0  1 a ( kk +1 k, )  a k ,n ⋅  x k  =  b k    0 0  0 a ( k )1, k +1  (k ) a k +1,n   x k +1  b ( k )   k+     k +1                (k)   x   (k)  0 0  0 a ( kk +1  ) a nn  n  bn    n, 
  • 26. Metoda Gauss-Jordan • Noile elemente ale liniei pivot sunt: a ( k ) = 1,  k ,k  (k ) ( k −1) ( k −1) a kj = a kj a k ,k , j = k + 1,..., n ,  (k ) ( k −1) ( k −1) b k = b k a k ,k , 
  • 27. Gauss-Jordan Method  Elementele liniilor ne-pivot sunt: a ( k ) = 0,  ik  (k) a ij = a ijk −1) − a ik −1) a ( k ) , j = k + 1, ..., n , i = 1,..., n , i ≠ k , ( (k kj  (k ) b i = b i k −1) − a ik −1) b ( k ) .  ( (k k  Pentru obţinerea soluţiei sistemului, se vor identifica valorile necunoscutelor cu termenii liberi obţinuţi după pasul n. x k = b (kn ) , k = 1, ..., n.
  • 28. Sisteme de ecuaţii algebrice liniare 3.2 Metode iterative
  • 29. a. Metoda iterativă Jacobi Jacobi Fiecare ecuaţie se va rezolva în raport cu o necunoscută. Se obţine următorul sistem echivalent de ecuaţii: x 1 = t 1 + s12 x 2 +  + s1n x n x = s x + t 2 +  + s 2n x n  2 21 1  ................................................... x n = s n1 x 1 + s n 2 x 2 +  + t n 
  • 30. a. Metoda iterativă Jacobi Unde, s ii = 0, i = 1, 2, ..., n; s ij = − a ij a ii , j = 1, 2,..., n , j ≠ i ; t i = b i a ii . Sitemul poate fi scris în formă matriceală X = T + SX
  • 31. a. Metoda iterativă Jacobi În continuare, sistemul se va rezolva prin metoda aproximaţiilor succesive: succesive  X(0) = T  X(1) = T + SX(0), ...  X(k) = T + SX(k-1) , k = 1, 2,...
  • 32. a. Metoda iterativă Jacobi Relaţiile metodei Jacobi pot fi scrise explicit, astfel: x (0) = t i , i = 1, 2,..., n  i  n x ( k ) = t + ∑ s x ( k −1) , k = 1, 2,...  i i ij j j=1   j≠ i Procesul iterativ se va opri atunci când: max x i( k ) − x i( k −1) ≤ ε i Procesul iterativ este convergent atunci când matricea coeficienţilor, A, este diagonal dominantă, adică: a ii > max a ij , i = 1, 2,..., n. j≠ i
  • 33. a. Metoda iterativă Jacobi Aplicaţie  Să se rezolve sistemul de ecuaţii: 2 x + 3y + z = 11  2 x + y − 4z = −8 3x − 2 y + z = 2 
  • 34. a. Metoda iterativă Jacobi Sistemul trebuie adus la o formă diagonal dominantă: 2 x + 3y + z = 11 3x − 2 y + z = 2   2 x + y − 4z = −8 2 x + 3y + z = 11 3x − 2 y + z = 2 2 x + y − 4z = −8  
  • 35. a. Metoda iterativă Jacobi Rezolvarea unui circuit electric R3 R8 V2 i2 i3 R5 R2 R7 i1 i4 V1 R4 R1 R6
  • 36. a. Metoda iterativă Jacobi Reţeaua este caracterizată prin:  8 rezistenţe R1 ... R8;  două surse de curent V1 and V2, în direcţiile din figură;  intensităţile curentului prin cele patru bucle ale reţelei sunt i1 ... i4, considerate în orar.
  • 37. a. Metoda iterativă Jacobi The equations for the currents are derived from Ohm’s Law and Kirchhoff’s Voltage Law. Legea lui Ohm – Tensiunea măsurată în dreptul unei rezistenţe R este iR, considerată în direcţia curentului i. Legea lui Kirchhoff – Tensiunea într-o buclă inchisă este zero.
  • 38. loop 1: i1R1 + (i1 – i4) R4 + (i1 – i2) R2 + V1 = 0;  loop 2: (i2 - i1) R2 + (i2 – i3) R5 + i2 R3 – V2 = 0;  loop 3: (i3 – i4) R7 + i3 R8 + (i3 – i2) R5 = 0;  loop 4: i4R6 + (i4 – i3) R7 + (i4 – i1) R4 = 0. R3 R8 V2 i2 i3 R5 R2 R7 i1 i4 V1 R4 R1 R6
  • 39. a. Metoda iterativă Jacobi The system may be written in a matrix form SI=V, where R 1 + R 2 + R 4 −R2 0 −R4   −R2 R2 + R3 + R5 −R5 0  S=    0 − R5 R5 + R7 + R8 −R7     −R4 0 −R7 R4 + R6 + R7   i1  − V1  i  5; k = 1, 2, 3, 4 V1 = 3,45 V  Rk =  I=  2  V=  2  2; k = 5, 6, 7, 8 V2 = 9,96 i 3   0      i 4   0 
  • 40. a. Metoda iterativă Jacobi ( ( i 1k ) = − 3,45 + 5i ( k −1) + 5i ( k −1) 15 2 4 ) = (9,96 + 5i ) 12 ; ; . ( k.) ( k −1) ( k −1) ; i2 1 + 2i 3 ( ( i 3k ) = 2i ( k −1) + 2i ( k −1) 6 2 4 ) 4 ( i ( k ) = 5i 1k −1) + 2i 3k −1) 9 ( ( )
  • 41. a. Metoda iterativă Jacobi The exact solution is i1 = 0,14; i2 = 0,95; i3 = 0,37; i4 = 0,16 The approximate solution, after 16 iterations i1 = 0,139631 ; i2 = 0,949146 ; i3 = 0,369631 ; i4 = 0,158861
  • 42. b.Metoda Gauss-Seidel (Philipp Ludwig von Seidel 1821-1896) Principiul metodei este acelaşi ca al metodei Jacobi, dar la determinarea valorii aproximative a necunoscutei xi la pasul k, se consideră deja valorile actualizate la acest pas ale necunoscutelor x1...xi-1 s ii = 0, i = 1, 2, ..., n; s ij = − a ij a ii , j = 1, 2,..., n , j ≠ i ; t i = b i a ii , x ( 0) = t i , i = 1, 2,..., n  i  (k ) i −1 n  x i = t i + ∑ s ij x j + ∑ s ij x (jk −1) , k = 1, 2,... (k )  j=1 j=i +1
  • 43. Gauss-Seidel Method The exact solution is i1 = 0,14; i2 = 0,95; i3 = 0,37; i4 = 0,16 The approximate solution, after 10 iterations i1 = 0,139685 ; i2 = 0,949785 ; i3 = 0,369767 ; i4 = 0,159773.