SlideShare ist ein Scribd-Unternehmen logo
1 von 21
Downloaden Sie, um offline zu lesen
CU06997 Fluid Dynamics
    Open channel flow 1
    5.1 Flow with a free surface (page 122)
    5.2 Flow classification (page 122, 123)
    5.3 Channels and their properties (page 123-125)
    5.4 Velocity distributions (page 126,127)
    5.5 Laminar and turbulent flow (page 127-129)
    5.6 Uniform flow (page 129 -138)




1
Flow with a free surface




1
Classification of flows, see part 2

    1. Steady uniform flow
      example: pipe with constant D and Q
      example: channel with constant A and Q
    2. Steady non-uniform flow
      example: pipe with different D and constant Q
      example: channel with different A and constant Q
    3. Unsteady uniform flow
      example: channel with constant A and different Q
    4. Unsteady non-uniform flow
      example; channel with different A and Q
2
Types of flow




2
Geometric properties




3
Velocity distributions




3
Velocity distributions




                     𝑄  𝑉1 𝐴1 + 𝑉2 𝐴2 + 𝑉3 𝐴3
         𝑉𝑎𝑣𝑒𝑟𝑎𝑔𝑒   = =
                     𝐴      𝐴1 + 𝐴2 + 𝐴3
    𝑄 𝑡𝑜𝑡𝑎𝑎𝑙 = 𝑄1 + 𝑄3 + 𝑄3 =𝑉1 𝐴1 + 𝑉2 𝐴2 + 𝑉3 𝐴3

3
Reynolds number, see part 3 𝑅𝑒 = 𝑉. 𝐷
                                            𝜈
 𝜇=  Absolute viscosity     [m2/s]         𝑉. 4𝑅
 𝜐=  Kinematic viscosity    [kg/ms]   𝑅𝑒 =
     water, 20°C= 1,00 ∙ 10−6                 𝜈
𝜌 = Density of liquid       [kg/m3]
𝑉 = Velocity                [m/s]
D = Hydraulic diameter      [m]
R=   Hydraulic Radius = D/4 [m]
𝑅𝑒 = Reynolds Number        [1]

 𝑹𝒆 > 𝟒𝟎𝟎𝟎 Turbulent flow
 𝑹𝒆 < 𝟐𝟎𝟎𝟎 Laminar flow


3 In this course we only look at turbulent flow
Open channel, with bed slope >0
           2              2
          𝑢1             𝑢2
𝑦1 + 𝑧1 +    = 𝑦2 + 𝑧2 +    + ∆𝐻1−2
          2𝑔             2𝑔
                                    Q  u1  A1  u2  A2

                                                   Head loss




                   Reference line

4
Open channel, with bed slope <= 0
                    2                 2
                   u              u
         y1  z1   1
                       y2  z2      H 1 2
                                      2
                   2g             2g
                                               Head loss [m]
          u12/2g                ΔH
                                               Total Head H [m]
          y1                 u22/2g            Velocity Head [m]
    P1
               u1                              Surfacelevel y +z [m]
          z1                              y2
                                 P2
                           u2             z2

4                                              Reference [m]
Chezy formula                               𝑉= 𝐶∙        𝑅 ∙ 𝑆𝑓

Chezy formula describes the mean velocity of uniform, turbulent flow

                                𝑉=     Mean Fluid Velocity [m/s]
                                R=     Hydraulic Radius    [m]
                                𝑆𝑓 =   Hydraulic gradient [1]
                                       8𝑔
                                 𝐶=         Chezy coefficient [m1/2/s]
                                        𝜆


                      ΔH
                 𝑆𝑓 =
                       𝐿
                                                         ΔH
5                    Length
Chezy coefficient


    In this course we assume a hydraulic rough boundary




    Boundary hydraulic rough                     12 R
                                      C  18 log      [m1/2/s]
                                                  k

    kS =   surface roughness    [m]

5
Surface roughness kS [m]
                                             Equivalent Sand Roughness,
                           Material                  (ft)             (mm)
                       Copper, brass     1x10-4 - 3x10-3      3.05x10-2 - 0.9
                       Wrought iron,
                                         1.5x10-4 - 8x10-3    4.6x10-2 - 2.4
                       steel
                       Asphalt-lined
                                         4x10-4 - 7x10-3      0.1 - 2.1
                       cast iron
                                         3.3x10-4 - 1.5x10-
                       Galvanized iron   2                    0.102 - 4.6

                       Cast iron         8x10-4 - 1.8x10-2    0.2 - 5.5
                       Concrete          10-3   -   10-2      0.3 - 3.0
                       Uncoated Cast
                                         7.4x10-4             0.226
                       Iron
                       Coated Cast Iron 3.3x10-4              0.102
                       Coated Spun
                                         1.8x10-4             5.6x10-2
                       Iron
                       Cement            1.3x10-3 - 4x10-3    0.4 - 1.2s
                       Wrought Iron      1.7x10-4             5x10-2
                       Uncoated Steel    9.2x10-5             2.8x10-2
                       Coated Steel      1.8x10-4             5.8x10-2
                       Wood Stave        6x10-4 - 3x10-3      0.2 - 0.9
                       PVC               5x10-6               1.5x10-3
                       Compiled from Lamont (1981), Moody (1944), and
                       Mays (1999)




5
Manning’s formula describes the
Manning’s formula                  mean velocity of uniform,
                                   turbulent flow

          2        1                 5
                                              1
         𝑅3   ∙   𝑆2        1       𝐴3
                                             𝑆2
                                                        1


    𝑉=
                   𝑓      𝑄= ∙           ∙            R 6

                             𝑛       2        𝑓    C
              𝑛                     𝑃3                n
𝑉=     Mean Fluid Velocity                   [m/s]
R=     Hydraulic Radius                      [m]
𝑆𝑓 =   Slope Total head                      [1]
𝐴=     Wetted Area                           [m2]
𝑃=     Wetter Perimeter                      [m]
𝑛=     Mannings roughness coefficient        [s/m1/3]



6
Manning's roughness coefficient




6
Mean boundary shear stress

       𝜏0 = 𝜌 ∙ 𝑔 ∙ 𝑅 ∙ 𝑆0

      τ0 =    shear stress at solid boundary [N/m2]
      R=      Hydraulic Radius        [m]
       𝑆0 =   Slope of channel bed [1]




7
Flowing water and energy
                       2
                   u
    H1  z1  y1      1
                      [m ]
                   2g
                             Total head H [m]
                  u12/2g     Velocity head [m]
                             Surface level [m]
                  y1         y = Pressure head [m]
    u1       P1
                  z1         z = Potential head [m]

                             Reference /datum [m]
Specific Energy
             𝑉2
    𝐸𝑠 = 𝑦 +
             2𝑔

 𝑉=         Mean Fluid Velocity           [m/s]
       p
 y=         = Pressure Head / water depth [m]
      ρ∙g
                      Total head H or Specific energy Es [m]

                          V2/2g          Velocity head [m]
                                         Surface level [m]

        V
                          y               y = Pressure head [m]
                                            = water depth [m]
8                                         Channel bed as datum [m]
Equilibrium / normal depth
                                          Discharge, cross-section, energy
                                          gradient and friction are constant
                yn

                                           𝑆0 = 𝑆 𝑓
    Side view



                                            𝑉= 𝐶∙          𝑅 ∙ 𝑆𝑜
                          yn

                                            A   b. y
                                          R          y
        Cross-section
                                            P b  2 y
                                           𝑞 = 𝑉 ∙ 𝐴 = 𝐶 2 𝑦 ∙ 𝑆 𝑜∙ 𝑦 ∙ 𝑏
                     3         𝑞2
      𝑦𝑛 =
9                        𝑏 2 ∙ 𝐶 2 ∙ 𝑆0
Equilibrium / normal depth
                                    𝑆0 = 𝑆 𝑓
             3          𝑞2
     𝑦𝑛 =
                  𝑏 2 ∙ 𝐶 2 ∙ 𝑆0

    yn =    normal depth [m]
    q=      discharge     [m3/s]
    b=      width         [m]
     𝑆0 =   bed slope     [1]
     𝑆𝑓 =   Hydraulic gradient caused by friction [1]
            8𝑔
    𝐶=           Chezy coefficient [m1/2/s]
             𝜆

9
Equilibrium / normal depth
yn

                   yn

                                yn

                                                    yn



                                     Dredged area




           3         𝑞2
    𝑦𝑛 =
               𝑏 2 ∙ 𝐶 2 ∙ 𝑆0

9

Weitere ähnliche Inhalte

Was ist angesagt?

Cu06997 lecture 4_bernoulli-17-2-2013
Cu06997 lecture 4_bernoulli-17-2-2013Cu06997 lecture 4_bernoulli-17-2-2013
Cu06997 lecture 4_bernoulli-17-2-2013Henk Massink
 
Cu06997 lecture 12_sediment transport and back water
Cu06997 lecture 12_sediment transport and back waterCu06997 lecture 12_sediment transport and back water
Cu06997 lecture 12_sediment transport and back waterHenk Massink
 
Cu06997 lecture 6_exercises
Cu06997 lecture 6_exercisesCu06997 lecture 6_exercises
Cu06997 lecture 6_exercisesHenk Massink
 
Cu06997 assignment 6 2014_answer
Cu06997 assignment 6 2014_answerCu06997 assignment 6 2014_answer
Cu06997 assignment 6 2014_answerHenk Massink
 
Cu06997 lecture 10_froude
Cu06997 lecture 10_froudeCu06997 lecture 10_froude
Cu06997 lecture 10_froudeHenk Massink
 
Cu06997 lecture 2_answer
Cu06997 lecture 2_answerCu06997 lecture 2_answer
Cu06997 lecture 2_answerHenk Massink
 
(Part ii)- open channels
(Part ii)- open channels(Part ii)- open channels
(Part ii)- open channelsMohsin Siddique
 
A Seminar Topic On Boundary Layer
A Seminar Topic On Boundary LayerA Seminar Topic On Boundary Layer
A Seminar Topic On Boundary LayerRAJKUMAR PATRA
 
Hydraulic analysis of complex piping systems (updated)
Hydraulic analysis of complex piping systems (updated)Hydraulic analysis of complex piping systems (updated)
Hydraulic analysis of complex piping systems (updated)Mohsin Siddique
 
Cu06997 lecture 8_exercise
Cu06997 lecture 8_exerciseCu06997 lecture 8_exercise
Cu06997 lecture 8_exerciseHenk Massink
 
Boundary layer theory 4
Boundary layer theory 4Boundary layer theory 4
Boundary layer theory 4sistec
 
Laminar Flow in pipes and Anuli Newtonian Fluids
Laminar Flow in pipes and Anuli Newtonian FluidsLaminar Flow in pipes and Anuli Newtonian Fluids
Laminar Flow in pipes and Anuli Newtonian FluidsUsman Shah
 
Design of pipe network
Design of pipe networkDesign of pipe network
Design of pipe networkManoj Mota
 

Was ist angesagt? (20)

Cu06997 lecture 4_bernoulli-17-2-2013
Cu06997 lecture 4_bernoulli-17-2-2013Cu06997 lecture 4_bernoulli-17-2-2013
Cu06997 lecture 4_bernoulli-17-2-2013
 
Cu06997 lecture 12_sediment transport and back water
Cu06997 lecture 12_sediment transport and back waterCu06997 lecture 12_sediment transport and back water
Cu06997 lecture 12_sediment transport and back water
 
Cu06997 lecture 6_exercises
Cu06997 lecture 6_exercisesCu06997 lecture 6_exercises
Cu06997 lecture 6_exercises
 
Cu06997 assignment 6 2014_answer
Cu06997 assignment 6 2014_answerCu06997 assignment 6 2014_answer
Cu06997 assignment 6 2014_answer
 
Cu06997 lecture 10_froude
Cu06997 lecture 10_froudeCu06997 lecture 10_froude
Cu06997 lecture 10_froude
 
Cu06997 lecture 2_answer
Cu06997 lecture 2_answerCu06997 lecture 2_answer
Cu06997 lecture 2_answer
 
(Part ii)- open channels
(Part ii)- open channels(Part ii)- open channels
(Part ii)- open channels
 
CE-6451-Fluid_Mechanics.GVK
CE-6451-Fluid_Mechanics.GVKCE-6451-Fluid_Mechanics.GVK
CE-6451-Fluid_Mechanics.GVK
 
A Seminar Topic On Boundary Layer
A Seminar Topic On Boundary LayerA Seminar Topic On Boundary Layer
A Seminar Topic On Boundary Layer
 
Hydraulic analysis of complex piping systems (updated)
Hydraulic analysis of complex piping systems (updated)Hydraulic analysis of complex piping systems (updated)
Hydraulic analysis of complex piping systems (updated)
 
Cu06997 lecture 8_exercise
Cu06997 lecture 8_exerciseCu06997 lecture 8_exercise
Cu06997 lecture 8_exercise
 
Fluid dynamic
Fluid dynamicFluid dynamic
Fluid dynamic
 
Hydraulic losses in pipe
Hydraulic losses in pipeHydraulic losses in pipe
Hydraulic losses in pipe
 
Lecture notes 05
Lecture notes 05Lecture notes 05
Lecture notes 05
 
Lecture notes 04
Lecture notes 04Lecture notes 04
Lecture notes 04
 
Chapter 7 gvf
Chapter 7 gvfChapter 7 gvf
Chapter 7 gvf
 
Laminar turbulent
Laminar turbulentLaminar turbulent
Laminar turbulent
 
Boundary layer theory 4
Boundary layer theory 4Boundary layer theory 4
Boundary layer theory 4
 
Laminar Flow in pipes and Anuli Newtonian Fluids
Laminar Flow in pipes and Anuli Newtonian FluidsLaminar Flow in pipes and Anuli Newtonian Fluids
Laminar Flow in pipes and Anuli Newtonian Fluids
 
Design of pipe network
Design of pipe networkDesign of pipe network
Design of pipe network
 

Ähnlich wie CU06997 Fluid Dynamics Open Channel Flow

Ähnlich wie CU06997 Fluid Dynamics Open Channel Flow (14)

Sediment transport
Sediment transportSediment transport
Sediment transport
 
Rubble mound breakwater
Rubble mound breakwaterRubble mound breakwater
Rubble mound breakwater
 
8. fm 9 flow in pipes major loses co 3 copy
8. fm 9 flow in pipes  major loses co 3   copy8. fm 9 flow in pipes  major loses co 3   copy
8. fm 9 flow in pipes major loses co 3 copy
 
Fluid mechanics for chermical engineering students
Fluid mechanics  for chermical  engineering studentsFluid mechanics  for chermical  engineering students
Fluid mechanics for chermical engineering students
 
Gabarito Fox Mecanica dos Fluidos cap 1 a 6
Gabarito Fox Mecanica dos Fluidos cap 1 a 6Gabarito Fox Mecanica dos Fluidos cap 1 a 6
Gabarito Fox Mecanica dos Fluidos cap 1 a 6
 
Met 402 mod_2
Met 402 mod_2Met 402 mod_2
Met 402 mod_2
 
010a (PPT) Flow through pipes.pdf .
010a (PPT) Flow through pipes.pdf          .010a (PPT) Flow through pipes.pdf          .
010a (PPT) Flow through pipes.pdf .
 
Viscosity & flow
Viscosity & flowViscosity & flow
Viscosity & flow
 
Laminar flow
Laminar flowLaminar flow
Laminar flow
 
Plank on a log
Plank on a logPlank on a log
Plank on a log
 
Plank on a log
Plank on a logPlank on a log
Plank on a log
 
Soil Mechanics
Soil MechanicsSoil Mechanics
Soil Mechanics
 
Surface area and volume ssolids
Surface area and volume ssolidsSurface area and volume ssolids
Surface area and volume ssolids
 
L21 MOS OCT 2020.pptx .
L21 MOS OCT 2020.pptx                           .L21 MOS OCT 2020.pptx                           .
L21 MOS OCT 2020.pptx .
 

Mehr von Henk Massink

Cu07821 ppt9 recapitulation
Cu07821 ppt9 recapitulationCu07821 ppt9 recapitulation
Cu07821 ppt9 recapitulationHenk Massink
 
Cu07821 10management and maintenance2015
Cu07821 10management and maintenance2015Cu07821 10management and maintenance2015
Cu07821 10management and maintenance2015Henk Massink
 
Cu07821 9 zoning plan2015
Cu07821 9 zoning plan2015Cu07821 9 zoning plan2015
Cu07821 9 zoning plan2015Henk Massink
 
Cu07821 7 culverts new
Cu07821 7 culverts newCu07821 7 culverts new
Cu07821 7 culverts newHenk Massink
 
Cu07821 6 pumping stations_update
Cu07821 6 pumping stations_updateCu07821 6 pumping stations_update
Cu07821 6 pumping stations_updateHenk Massink
 
Cu07821 5 drainage
Cu07821 5 drainageCu07821 5 drainage
Cu07821 5 drainageHenk Massink
 
Cu07821 3 precipitation and evapotranspiration
Cu07821 3  precipitation and evapotranspirationCu07821 3  precipitation and evapotranspiration
Cu07821 3 precipitation and evapotranspirationHenk Massink
 
Cu07821 1 intro_1415
Cu07821 1 intro_1415Cu07821 1 intro_1415
Cu07821 1 intro_1415Henk Massink
 
Research portfolio delta_academy_s2_2014_2015
Research portfolio delta_academy_s2_2014_2015Research portfolio delta_academy_s2_2014_2015
Research portfolio delta_academy_s2_2014_2015Henk Massink
 
Research portfolio da arc 2014-2015 s1
Research portfolio da arc  2014-2015 s1Research portfolio da arc  2014-2015 s1
Research portfolio da arc 2014-2015 s1Henk Massink
 
Research portfolios1 2013_2014 jan july 2014
Research portfolios1 2013_2014 jan july 2014Research portfolios1 2013_2014 jan july 2014
Research portfolios1 2013_2014 jan july 2014Henk Massink
 
Presentatie AET voor scholieren 15-11-2013
Presentatie AET voor scholieren 15-11-2013Presentatie AET voor scholieren 15-11-2013
Presentatie AET voor scholieren 15-11-2013Henk Massink
 
Final presentation spain quattro
Final presentation spain quattroFinal presentation spain quattro
Final presentation spain quattroHenk Massink
 
Final presentation group 3
Final presentation group 3Final presentation group 3
Final presentation group 3Henk Massink
 

Mehr von Henk Massink (20)

Cu07821 ppt9 recapitulation
Cu07821 ppt9 recapitulationCu07821 ppt9 recapitulation
Cu07821 ppt9 recapitulation
 
Gastcollege mli
Gastcollege mliGastcollege mli
Gastcollege mli
 
Cu07821 10management and maintenance2015
Cu07821 10management and maintenance2015Cu07821 10management and maintenance2015
Cu07821 10management and maintenance2015
 
Cu07821 9 zoning plan2015
Cu07821 9 zoning plan2015Cu07821 9 zoning plan2015
Cu07821 9 zoning plan2015
 
Cu07821 8 weirs
Cu07821 8 weirsCu07821 8 weirs
Cu07821 8 weirs
 
Cu07821 7 culverts new
Cu07821 7 culverts newCu07821 7 culverts new
Cu07821 7 culverts new
 
Cu07821 6 pumping stations_update
Cu07821 6 pumping stations_updateCu07821 6 pumping stations_update
Cu07821 6 pumping stations_update
 
Cu07821 5 drainage
Cu07821 5 drainageCu07821 5 drainage
Cu07821 5 drainage
 
Cu07821 4 soil
Cu07821 4 soilCu07821 4 soil
Cu07821 4 soil
 
Cu07821 3 precipitation and evapotranspiration
Cu07821 3  precipitation and evapotranspirationCu07821 3  precipitation and evapotranspiration
Cu07821 3 precipitation and evapotranspiration
 
Cu07821 2 help
Cu07821 2 helpCu07821 2 help
Cu07821 2 help
 
Cu07821 1 intro_1415
Cu07821 1 intro_1415Cu07821 1 intro_1415
Cu07821 1 intro_1415
 
Research portfolio delta_academy_s2_2014_2015
Research portfolio delta_academy_s2_2014_2015Research portfolio delta_academy_s2_2014_2015
Research portfolio delta_academy_s2_2014_2015
 
Research portfolio da arc 2014-2015 s1
Research portfolio da arc  2014-2015 s1Research portfolio da arc  2014-2015 s1
Research portfolio da arc 2014-2015 s1
 
Jacobapolder
JacobapolderJacobapolder
Jacobapolder
 
Research portfolios1 2013_2014 jan july 2014
Research portfolios1 2013_2014 jan july 2014Research portfolios1 2013_2014 jan july 2014
Research portfolios1 2013_2014 jan july 2014
 
Presentatie AET voor scholieren 15-11-2013
Presentatie AET voor scholieren 15-11-2013Presentatie AET voor scholieren 15-11-2013
Presentatie AET voor scholieren 15-11-2013
 
Vision group1(5)
Vision group1(5)Vision group1(5)
Vision group1(5)
 
Final presentation spain quattro
Final presentation spain quattroFinal presentation spain quattro
Final presentation spain quattro
 
Final presentation group 3
Final presentation group 3Final presentation group 3
Final presentation group 3
 

Kürzlich hochgeladen

SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 

Kürzlich hochgeladen (20)

SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 

CU06997 Fluid Dynamics Open Channel Flow

  • 1. CU06997 Fluid Dynamics Open channel flow 1 5.1 Flow with a free surface (page 122) 5.2 Flow classification (page 122, 123) 5.3 Channels and their properties (page 123-125) 5.4 Velocity distributions (page 126,127) 5.5 Laminar and turbulent flow (page 127-129) 5.6 Uniform flow (page 129 -138) 1
  • 2. Flow with a free surface 1
  • 3. Classification of flows, see part 2 1. Steady uniform flow example: pipe with constant D and Q example: channel with constant A and Q 2. Steady non-uniform flow example: pipe with different D and constant Q example: channel with different A and constant Q 3. Unsteady uniform flow example: channel with constant A and different Q 4. Unsteady non-uniform flow example; channel with different A and Q 2
  • 7. Velocity distributions 𝑄 𝑉1 𝐴1 + 𝑉2 𝐴2 + 𝑉3 𝐴3 𝑉𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = = 𝐴 𝐴1 + 𝐴2 + 𝐴3 𝑄 𝑡𝑜𝑡𝑎𝑎𝑙 = 𝑄1 + 𝑄3 + 𝑄3 =𝑉1 𝐴1 + 𝑉2 𝐴2 + 𝑉3 𝐴3 3
  • 8. Reynolds number, see part 3 𝑅𝑒 = 𝑉. 𝐷 𝜈 𝜇= Absolute viscosity [m2/s] 𝑉. 4𝑅 𝜐= Kinematic viscosity [kg/ms] 𝑅𝑒 = water, 20°C= 1,00 ∙ 10−6 𝜈 𝜌 = Density of liquid [kg/m3] 𝑉 = Velocity [m/s] D = Hydraulic diameter [m] R= Hydraulic Radius = D/4 [m] 𝑅𝑒 = Reynolds Number [1] 𝑹𝒆 > 𝟒𝟎𝟎𝟎 Turbulent flow 𝑹𝒆 < 𝟐𝟎𝟎𝟎 Laminar flow 3 In this course we only look at turbulent flow
  • 9. Open channel, with bed slope >0 2 2 𝑢1 𝑢2 𝑦1 + 𝑧1 + = 𝑦2 + 𝑧2 + + ∆𝐻1−2 2𝑔 2𝑔 Q  u1  A1  u2  A2 Head loss Reference line 4
  • 10. Open channel, with bed slope <= 0 2 2 u u y1  z1  1  y2  z2   H 1 2 2 2g 2g Head loss [m] u12/2g ΔH Total Head H [m] y1 u22/2g Velocity Head [m] P1 u1 Surfacelevel y +z [m] z1 y2 P2 u2 z2 4 Reference [m]
  • 11. Chezy formula 𝑉= 𝐶∙ 𝑅 ∙ 𝑆𝑓 Chezy formula describes the mean velocity of uniform, turbulent flow 𝑉= Mean Fluid Velocity [m/s] R= Hydraulic Radius [m] 𝑆𝑓 = Hydraulic gradient [1] 8𝑔 𝐶= Chezy coefficient [m1/2/s] 𝜆 ΔH 𝑆𝑓 = 𝐿 ΔH 5 Length
  • 12. Chezy coefficient In this course we assume a hydraulic rough boundary Boundary hydraulic rough 12 R C  18 log [m1/2/s] k kS = surface roughness [m] 5
  • 13. Surface roughness kS [m] Equivalent Sand Roughness, Material (ft) (mm) Copper, brass 1x10-4 - 3x10-3 3.05x10-2 - 0.9 Wrought iron, 1.5x10-4 - 8x10-3 4.6x10-2 - 2.4 steel Asphalt-lined 4x10-4 - 7x10-3 0.1 - 2.1 cast iron 3.3x10-4 - 1.5x10- Galvanized iron 2 0.102 - 4.6 Cast iron 8x10-4 - 1.8x10-2 0.2 - 5.5 Concrete 10-3 - 10-2 0.3 - 3.0 Uncoated Cast 7.4x10-4 0.226 Iron Coated Cast Iron 3.3x10-4 0.102 Coated Spun 1.8x10-4 5.6x10-2 Iron Cement 1.3x10-3 - 4x10-3 0.4 - 1.2s Wrought Iron 1.7x10-4 5x10-2 Uncoated Steel 9.2x10-5 2.8x10-2 Coated Steel 1.8x10-4 5.8x10-2 Wood Stave 6x10-4 - 3x10-3 0.2 - 0.9 PVC 5x10-6 1.5x10-3 Compiled from Lamont (1981), Moody (1944), and Mays (1999) 5
  • 14. Manning’s formula describes the Manning’s formula mean velocity of uniform, turbulent flow 2 1 5 1 𝑅3 ∙ 𝑆2 1 𝐴3 𝑆2 1 𝑉= 𝑓 𝑄= ∙ ∙ R 6 𝑛 2 𝑓 C 𝑛 𝑃3 n 𝑉= Mean Fluid Velocity [m/s] R= Hydraulic Radius [m] 𝑆𝑓 = Slope Total head [1] 𝐴= Wetted Area [m2] 𝑃= Wetter Perimeter [m] 𝑛= Mannings roughness coefficient [s/m1/3] 6
  • 16. Mean boundary shear stress 𝜏0 = 𝜌 ∙ 𝑔 ∙ 𝑅 ∙ 𝑆0 τ0 = shear stress at solid boundary [N/m2] R= Hydraulic Radius [m] 𝑆0 = Slope of channel bed [1] 7
  • 17. Flowing water and energy 2 u H1  z1  y1  1 [m ] 2g Total head H [m] u12/2g Velocity head [m] Surface level [m] y1 y = Pressure head [m] u1 P1 z1 z = Potential head [m] Reference /datum [m]
  • 18. Specific Energy 𝑉2 𝐸𝑠 = 𝑦 + 2𝑔 𝑉= Mean Fluid Velocity [m/s] p y= = Pressure Head / water depth [m] ρ∙g Total head H or Specific energy Es [m] V2/2g Velocity head [m] Surface level [m] V y y = Pressure head [m] = water depth [m] 8 Channel bed as datum [m]
  • 19. Equilibrium / normal depth Discharge, cross-section, energy gradient and friction are constant yn 𝑆0 = 𝑆 𝑓 Side view 𝑉= 𝐶∙ 𝑅 ∙ 𝑆𝑜 yn A b. y R  y Cross-section P b  2 y 𝑞 = 𝑉 ∙ 𝐴 = 𝐶 2 𝑦 ∙ 𝑆 𝑜∙ 𝑦 ∙ 𝑏 3 𝑞2 𝑦𝑛 = 9 𝑏 2 ∙ 𝐶 2 ∙ 𝑆0
  • 20. Equilibrium / normal depth 𝑆0 = 𝑆 𝑓 3 𝑞2 𝑦𝑛 = 𝑏 2 ∙ 𝐶 2 ∙ 𝑆0 yn = normal depth [m] q= discharge [m3/s] b= width [m] 𝑆0 = bed slope [1] 𝑆𝑓 = Hydraulic gradient caused by friction [1] 8𝑔 𝐶= Chezy coefficient [m1/2/s] 𝜆 9
  • 21. Equilibrium / normal depth yn yn yn yn Dredged area 3 𝑞2 𝑦𝑛 = 𝑏 2 ∙ 𝐶 2 ∙ 𝑆0 9