SlideShare ist ein Scribd-Unternehmen logo
1 von 11
Downloaden Sie, um offline zu lesen
UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA - UNAD.
       ESPECIALIZACIÓN EN INGENIERÍA DE PROCESOS DE ALIMENTOS Y BIOMATERIALES
                               MÉTODOS MATEMÁTICOS
                SEGUNDA UNIDAD: FORMULACIÓN INTEGRAL Y DIFERENCIAL
                       CAPÍTULO CUATRO: FUNCIONES ESPECIALES.
                                    LECCIÓN DOCE.

                                                   SERIES DE FOURIER.

Un caso especial y muy utilizado de la expansión de funciones ortogonales en series son las “series de Fourier”.
En un intervalo simétrico –L,L, la representación de las series de Fourier de una función f(x) se define como:

                                                 f        § nSx · f          § nSx ·
                                       f( x)     ¦ A n cos¨     ¸  ¦ B n sen¨     ¸
                                                n 0       © L ¹ n 0          © L ¹
Donde n es un entero positivo.
Si la ecuación presentada se multiplica por cos nSx L dx y el resultado se integra entre –L y L, se pueden
determinar los coeficientes An. De manera similar, utilizando sen nSx L dx se obtienen lo coeficientes Bn:

                                      1 L                                         1 L            nSx
                               A0        ³ f( x)dx              ;         An         ³ f( x) cos     dx
                                     2L L                                        L L            L

                                                                           1 L            nSx
                                     B0   0           ;             Bn        ³ f( x )sen     dx
                                                                           L L            L

Aunque la expansión en series de Fourier de la función f(x) dependa solo de términos de seno o de coseno, o de
ambos, si depende de si la función es regular, impar o ninguna de las dos.

Una función regular, es una donde f(x)=f(-x). x 2 , cos nx, xsenmx u un número puro son funciones regulares ( o
pares). Si una función es regular:
                             1L                             2L            nSx
                      A0      ³ f( x)dx    ;         An       ³ f( x) cos     dx ; B0 0
                             L0                            L0              L

Entonces se puede decir que:
                                               nSx              § nSx ·
                                                     f( x)sen¨ 
                                               f( x)sen                 ¸
                                                L               © L ¹
Consecuentemente, en la evaluación de los coeficientes An, la integral desde –L hasta 0 se suma a la integral de 0
a L, mientras que en la evaluación de los términos Bn estas integrales se cancelan. Esto se puede mostrar de
manera formal a continuación:

Sea f(x) una función regular (o par), entonces:
                                           1 L                       1 ªL             0          º
                                     A0        ³ f( x )dx              « ³ f( x )dx  ³ f( x )dx »
                                                                    2L ¬ 0
                                          2 L L                                     L          ¼


                                                           1 ªL            L         º
                                                 A0          « ³ f( x )dx  ³ f( x )dx»
                                                          2L ¬ 0            0         ¼

                                                                    1L
                                                           A0        ³ f( x )dx
                                                                    L0


        Los coeficientes An y Bn se obtienen de la misma manera.
                                                                     1
UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA - UNAD.
       ESPECIALIZACIÓN EN INGENIERÍA DE PROCESOS DE ALIMENTOS Y BIOMATERIALES
                               MÉTODOS MATEMÁTICOS

Una función impar, es una en la que f(x)=-f(-x). x , x 3 , sen( nx), x cos(nx) son funciones impares.

Si f(x) es impar:

                                                     A0     0
                                                     An     0
                                                            2L           nSx
                                                     Bn      ³ f( x )sen     dx
                                                            L0            L

Si solo el intervalo 0 a L es de interés, f(x) puede expandirse solo en series senoidales o solo en series
cosenoidales, y esto puede realizarse aunque la función sea par o impar. Cuando este procedimiento se realiza la
expansión en términos de se senos genera una función impar que, en general, no representará a f(x) fuera del
intervalo o a L. y la expresión en términos de cosenos, genera una función par que de igual manera no
representa a f(x) fuera del intervalo.

Cuando el intervalo de despliegue de las series incluye al infinito, y si la función es ortogonal, se puede llegauar
en el despliegue a uno de los siguientes casos:

* Integral del seno de Fourier:
                                           2 ªf          f                  º
                                  F( x)      « ³ senax
³ F( v)sen(av)dvda»
                                           S ¬0
                                                                                   0xf
                                                         0                  ¼
* Integral de coseno de Fourier:
                                           2 ªf          f                   º
                                  F( x)      « ³ cosax
³ F( v) cos(av)dvda»
                                           S ¬0
                                                                                   0xf
                                                         0                   ¼
* Integral de Fourier-Bessel:
                                          ff
                                 F( x )    ³ ³ avF( v )J p (ax )dvda       0xf   ; p ! 1
                                          00
* Integral completa de Fourier:
                                           1 f f
                                F( x )         ³ ³ F( v ) cos(a( v  x )dvda       fxf
                                          2 S f f

En la carpeta del capítulo cuatro ud. podrá encontrar un ejemplo de solución utilizando series de Fourier,
extraído de BRDKEY y HERSHEY, Transport Phenomena.




                                                                   2
654                 OF TRANSPORT PHENOMENA



It is common practice to abbreviate Eqs. (13.33) and (13.34) as
                                      (x, 0) =
                                       (0, = 0                            (13.35)


Similarly, it is desirable to transform the mass transfer equation, Eq.
using some convenient variable such as
                                      =                                   (13.36)
where again the transformation is useful only if the boundary conditions are
not a function of time. For one-dimensional transient mass transfer, Eq.
(13.11) becomes

                                                                          (13.37)

The boundary conditions in terms of      are almost identical to those in Eq.
(13.35); the variable  is simply substituted for

W.2.1 Fourier Series Solution
The solution of partial differential equations using Fourier series is usually
given in an advanced mathematics course at most universities. Hence, in this
section only a typical Fourier series solution to Eq. (13.32) will be given. The
reader is referred to the several excellent texts devoted to a more complete
treatment       Ml, M4,
      A Fourier series may be defined as

                            +             +   sin                         (13.38)

where the function f(x) is represented in terms of two periodic infinite series,
as shown in Eq. (13.38). If the function f(x) is assumed to be periodic, with
period’ 2L as shown in Fig. 13.6, then it is easily shown that

                                                                          (13.39)

                                                                          (13.40)

                                                                          (13.41)



A function is periodic if       +   for all
UNSTEADY-STATE TRANSPORT




      The power of Fourier series arises from the fact that any function may be
assumed periodic, even if it is not, by assuming that the length of the period is
the region of interest. For clarification, let us consider the following boundary
conditions:
                             0) =             =0                =0            (13.35)
These are the simplest possible; since the transformed temperature is zero at
either end, these boundary conditions are termed “homogeneous”. Obviously,
those are not in themselves periodic; yet they may be considered as a periodic
function of period         as shown in Fig. 13.7. Physically the boundary
conditions in Fig. 13.7 have no meaning for less than zero or greater than
     but the mathematical assumption of periodicity allows a Fourier series
solution, as will be shown later.
      Many functions likely to be encountered in our engineering problems can
be expanded in a Fourier series. There are some mathematical restrictions,
known as the Dirichlet conditions        that cannot be violated. A function is
Fourier expandable if in the interval 0      2L the following are true:

1.   The   function   f(x) is single-valued.
2.   The   function   f(x) never becomes infinite.
3.   The   function   f(x) has a finite number of maxima and minima.
4.   The   function   f(x) has a finite number of discontinuities.

A practical concern that does limit the utility of Fourier series solutions is that




     -4L    -2L          0          2L   4L         (13.35) as a periodic function.
656   APPLICATIONS OF TRANSPORT PHENOMENA



the integrals in Eqs. (13.39) to (13.41) must be analytic, since    and are
coefficients in an infinite series. Also, not all boundary conditions are
amenable to Fourier series solution       C3, C6,     Ml, M4,
      The first step in the Fourier series solution of a partial differential
equation is to assume that the solution is a product of two quantities:
                                      =                                  (13.42)
where is a function of only and is a function of only. This assumption
can be justified only in that it leads to a solution satisfying the partial
differential equation and its boundary conditions. The assumed solution, Eq.
(13.42) is substituted into the partial differential equation of interest, Eq.
(13.32). Since is a function of only, it follows that

                                                                         (13.43)

Similarly

                                                                         (13.44)

Substituting the above into Eq.             the result is




The variables in Eq. (13.45) are separated as follows
                                   X ”
                                                                         (13.46)

It is argued that, if is varied there is no effect on the term             since
          is not a function of x. Thus, the term             must be independent
of x. A similar argument about varying and its effect on the term         leads
to the conclusion that each side of Eq. (13.46) must be equal to a constant.
This constant shall be designated as            to facilitate later forms of the
solution:

                                                                         (13.47)

The constant        in Eq. (13.47) must be negative in order to avoid an
exponential solution that would be inconsistent with the boundary conditions
       Equation (13.47) may be decomposed into two ordinary differential
equations:
                                                                         (13.48)
                                                                         (13.49)
UNSTEADY-STATE TRANSPORT   657

The solutions to Eqs. (13.48) and (13.49) are assumed to be
                                  =         exp(                                   (13.50)
                                                                                    (13.51)
Appropriate boundary conditions for a direct Fourier series solution must be
the simplest possible, i.e., homogeneous:
                                             0) =
                                                   =0
                                                   =0                             (13.35)
At this stage in the solution, there are four constants     and    to be
determined from the boundary conditions. Using the boundary condition at
the point = 0, Eq. (13.42) becomes
                                       =                     =0                     (13.52)
Since for the nontrivial case T(t) cannot be zero for all             it follows that Eq.
(13.52) is true only if
                                               =0                                   (13.53)
Substituting the results of Eq. (13.53) into Eq.                   Eq. (13.51) becomes
                         =                     +                                    (13.54)
Since the sine of zero is zero and the cosine of zero is one, then by Eq. (13.54)
   must be zero. Next, the boundary condition at the other end is applied, and
by similar reasoning
                                       =0=           sin                            (13.55)
Equation (13.55) equals zero only if          is zero or if sin    is zero or if both
are zero. However, if     is zero, then       is zero and our assumed solution, Eq.
(13.42) is trivial. Therefore
                                      sin           =0                              (13.56)
The sine of an arbitrary angle        is zero if         =           etc. Hence
                                                    1, 2, 3, . .                    (13.57)
From Eq.           the constant       is found to be

                                                                                    (13.58)

      The solution as determined so far is substituted from Eqs.
(13.55) and (13.58) into Eq. (13.42):

                             =                                                      (13.59)
APPLICATIONS OF TRANSPORT PHENOMENA



where each and every j, as j goes from 1 to          is a solution to the original
partial differential equation, Eq. (13.32). Thus, the total solution is the sum
over j of all possible solutions, since Eq. (13.32) is a linear partial differential
equation:

                                                                               (13.60)

where the product       has been replaced by
     The remaining boundary condition at time zero, Eq.                     is used to
evaluate    Applying that condition to Eq. (13.60):

                    0)                                                         (13.61)

Since the exponential of zero is one, Eq. (13.61) reduces to

                                   =                                           (13.62)

A comparison of Eq. (13.62) with the Fourier series of Eq. (13.38) shows that
  must be zero for all j and

                                                                               (13.63)

By substituting Eq. (13.63) into Eq.          a complete solution is now
available. Note that a Fourier series solution is possible as long as the
integration in Eq. (13.63) can be performed. For the case of constant
integration of Eq. (13.63) yields




                                       (-cos 0)] =            [for odd j]      (13.64)

The simplification of Eq. (13.64) resulted from the following reasoning. The
cosine of zero is one. The cosine of    equals -1 for odd j and   for even j.
Hence
                         -(cos jn) + 1 = 0           if j is even
                         -(cos      +1=2             if j is odd               (13.65)

Note that a single value of       from Eq. (13.64) cannot possibly satisfy the
boundary condition of Eq. (13.33). Hence, it is argued that only the sum from
one to infinity of all possible    will satisfy the boundary condition, since Eq.
(13.32) [or Eq.          is a linear partial differential equation.
      Combining results, the final solution to Eq. (13.32) as determined by the

Weitere ähnliche Inhalte

Was ist angesagt?

X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and divisionNigel Simmons
 
Ee107 mock exam1_q&s_20feb2013_khl
Ee107 mock exam1_q&s_20feb2013_khlEe107 mock exam1_q&s_20feb2013_khl
Ee107 mock exam1_q&s_20feb2013_khlSporsho
 
C Sanchez Reduction Saetas
C Sanchez Reduction SaetasC Sanchez Reduction Saetas
C Sanchez Reduction SaetasMiguel Morales
 
X2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functionsX2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functionsNigel Simmons
 
P1 Graph Function Test
P1 Graph Function TestP1 Graph Function Test
P1 Graph Function Testguest3952880
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010zabidah awang
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010zabidah awang
 
Thesis Multi Step Method 111006
Thesis Multi Step Method 111006Thesis Multi Step Method 111006
Thesis Multi Step Method 111006egebhardt72
 
11X1 T10 01 graphing quadratics (2010)
11X1 T10 01 graphing quadratics (2010)11X1 T10 01 graphing quadratics (2010)
11X1 T10 01 graphing quadratics (2010)Nigel Simmons
 
11X1 T11 01 graphing quadratics
11X1 T11 01 graphing quadratics11X1 T11 01 graphing quadratics
11X1 T11 01 graphing quadraticsNigel Simmons
 
Mark and sweep algorithm(garbage collector)
Mark and sweep algorithm(garbage collector)Mark and sweep algorithm(garbage collector)
Mark and sweep algorithm(garbage collector)Ashish Jha
 

Was ist angesagt? (14)

004 parabola
004 parabola004 parabola
004 parabola
 
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
 
Ee107 mock exam1_q&s_20feb2013_khl
Ee107 mock exam1_q&s_20feb2013_khlEe107 mock exam1_q&s_20feb2013_khl
Ee107 mock exam1_q&s_20feb2013_khl
 
Cg
CgCg
Cg
 
C Sanchez Reduction Saetas
C Sanchez Reduction SaetasC Sanchez Reduction Saetas
C Sanchez Reduction Saetas
 
X2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functionsX2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functions
 
P1 Graph Function Test
P1 Graph Function TestP1 Graph Function Test
P1 Graph Function Test
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 
Exercise #10 notes
Exercise #10 notesExercise #10 notes
Exercise #10 notes
 
Thesis Multi Step Method 111006
Thesis Multi Step Method 111006Thesis Multi Step Method 111006
Thesis Multi Step Method 111006
 
11X1 T10 01 graphing quadratics (2010)
11X1 T10 01 graphing quadratics (2010)11X1 T10 01 graphing quadratics (2010)
11X1 T10 01 graphing quadratics (2010)
 
11X1 T11 01 graphing quadratics
11X1 T11 01 graphing quadratics11X1 T11 01 graphing quadratics
11X1 T11 01 graphing quadratics
 
Mark and sweep algorithm(garbage collector)
Mark and sweep algorithm(garbage collector)Mark and sweep algorithm(garbage collector)
Mark and sweep algorithm(garbage collector)
 

Andere mochten auch

Simulation of natural air drying of maize in a typical location of argentina ...
Simulation of natural air drying of maize in a typical location of argentina ...Simulation of natural air drying of maize in a typical location of argentina ...
Simulation of natural air drying of maize in a typical location of argentina ...Andres Milquez
 
Metodo newton y secante
Metodo newton y secanteMetodo newton y secante
Metodo newton y secanteAndres Milquez
 
1 presentacion del curso 2010 (2 w)
1 presentacion del curso 2010 (2 w)1 presentacion del curso 2010 (2 w)
1 presentacion del curso 2010 (2 w)Andres Milquez
 
Modelado y control_de_una_columna_de_destilacion_-_exposicin_marzo_2011
Modelado y control_de_una_columna_de_destilacion_-_exposicin_marzo_2011Modelado y control_de_una_columna_de_destilacion_-_exposicin_marzo_2011
Modelado y control_de_una_columna_de_destilacion_-_exposicin_marzo_2011Ankit Garg
 
Simulacion de procesos industriales
Simulacion de procesos industrialesSimulacion de procesos industriales
Simulacion de procesos industrialesmarcosrgg
 
Instrumentos de laboratorio
Instrumentos de laboratorioInstrumentos de laboratorio
Instrumentos de laboratorioAndres Milquez
 

Andere mochten auch (18)

Met graficos
Met graficosMet graficos
Met graficos
 
Simulation of natural air drying of maize in a typical location of argentina ...
Simulation of natural air drying of maize in a typical location of argentina ...Simulation of natural air drying of maize in a typical location of argentina ...
Simulation of natural air drying of maize in a typical location of argentina ...
 
Ecu simul l1
Ecu simul l1Ecu simul l1
Ecu simul l1
 
Metodo newton y secante
Metodo newton y secanteMetodo newton y secante
Metodo newton y secante
 
Cap5 lec1
Cap5 lec1Cap5 lec1
Cap5 lec1
 
Cap5 lec2
Cap5 lec2Cap5 lec2
Cap5 lec2
 
Cap6 lec3
Cap6 lec3Cap6 lec3
Cap6 lec3
 
Cap6 lec2
Cap6 lec2Cap6 lec2
Cap6 lec2
 
Cap6 lec1
Cap6 lec1Cap6 lec1
Cap6 lec1
 
Cap4 lec3
Cap4 lec3Cap4 lec3
Cap4 lec3
 
Folletoseguridad
FolletoseguridadFolletoseguridad
Folletoseguridad
 
Cap4 lec4
Cap4 lec4Cap4 lec4
Cap4 lec4
 
1 presentacion del curso 2010 (2 w)
1 presentacion del curso 2010 (2 w)1 presentacion del curso 2010 (2 w)
1 presentacion del curso 2010 (2 w)
 
Introduccion
IntroduccionIntroduccion
Introduccion
 
Modelado y control_de_una_columna_de_destilacion_-_exposicin_marzo_2011
Modelado y control_de_una_columna_de_destilacion_-_exposicin_marzo_2011Modelado y control_de_una_columna_de_destilacion_-_exposicin_marzo_2011
Modelado y control_de_una_columna_de_destilacion_-_exposicin_marzo_2011
 
4 reactores (2_w)
4 reactores (2_w)4 reactores (2_w)
4 reactores (2_w)
 
Simulacion de procesos industriales
Simulacion de procesos industrialesSimulacion de procesos industriales
Simulacion de procesos industriales
 
Instrumentos de laboratorio
Instrumentos de laboratorioInstrumentos de laboratorio
Instrumentos de laboratorio
 

Ähnlich wie Fourier Series Solution for Transient Heat Transfer

Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1Pokkarn Narkhede
 
11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)Nigel Simmons
 
11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)Nigel Simmons
 
Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16derry92
 
Cs229 cvxopt
Cs229 cvxoptCs229 cvxopt
Cs229 cvxoptcerezaso
 
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14
Correlation of dts by er. sanyam s. saini me (reg) 2012-14Sanyam Singh
 
signal space analysis.ppt
signal space analysis.pptsignal space analysis.ppt
signal space analysis.pptPatrickMumba7
 
Fourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 lFourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 lPepa Vidosa Serradilla
 

Ähnlich wie Fourier Series Solution for Transient Heat Transfer (20)

Chapter 2 (maths 3)
Chapter 2 (maths 3)Chapter 2 (maths 3)
Chapter 2 (maths 3)
 
Chapter 4 (maths 3)
Chapter 4 (maths 3)Chapter 4 (maths 3)
Chapter 4 (maths 3)
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Fourier series
Fourier seriesFourier series
Fourier series
 
AEM Fourier series
 AEM Fourier series AEM Fourier series
AEM Fourier series
 
11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)
 
11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)
 
11X1 T17 04 areas
11X1 T17 04 areas11X1 T17 04 areas
11X1 T17 04 areas
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16
 
Models
ModelsModels
Models
 
Peta karnaugh
Peta karnaughPeta karnaugh
Peta karnaugh
 
Cs229 cvxopt
Cs229 cvxoptCs229 cvxopt
Cs229 cvxopt
 
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
 
signal space analysis.ppt
signal space analysis.pptsignal space analysis.ppt
signal space analysis.ppt
 
Fourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 lFourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 l
 
Ism et chapter_3
Ism et chapter_3Ism et chapter_3
Ism et chapter_3
 
Ism et chapter_3
Ism et chapter_3Ism et chapter_3
Ism et chapter_3
 
Ism et chapter_3
Ism et chapter_3Ism et chapter_3
Ism et chapter_3
 

Mehr von Andres Milquez (19)

Cap4 lec1
Cap4 lec1Cap4 lec1
Cap4 lec1
 
Cap3 lec3
Cap3 lec3Cap3 lec3
Cap3 lec3
 
Cap3 lec2
Cap3 lec2Cap3 lec2
Cap3 lec2
 
Cap3 lec1
Cap3 lec1Cap3 lec1
Cap3 lec1
 
Cap2 lec3
Cap2 lec3Cap2 lec3
Cap2 lec3
 
Cap2 lec2
Cap2 lec2Cap2 lec2
Cap2 lec2
 
Cap2 lec1
Cap2 lec1Cap2 lec1
Cap2 lec1
 
Cap1 lec3
Cap1 lec3Cap1 lec3
Cap1 lec3
 
Cap1 lec2
Cap1 lec2Cap1 lec2
Cap1 lec2
 
Cap1 lec1
Cap1 lec1Cap1 lec1
Cap1 lec1
 
Autoevaluacion 4
Autoevaluacion 4Autoevaluacion 4
Autoevaluacion 4
 
Autoevaluacion 3
Autoevaluacion 3Autoevaluacion 3
Autoevaluacion 3
 
Autoevaluacion 2
Autoevaluacion 2Autoevaluacion 2
Autoevaluacion 2
 
Autoevaluacion 1
Autoevaluacion 1Autoevaluacion 1
Autoevaluacion 1
 
Dif numerica
Dif numericaDif numerica
Dif numerica
 
Punto fijo
Punto fijoPunto fijo
Punto fijo
 
Biseccion matlab
Biseccion matlabBiseccion matlab
Biseccion matlab
 
Biseccion
BiseccionBiseccion
Biseccion
 
Int raices
Int raicesInt raices
Int raices
 

Kürzlich hochgeladen

Technical Data | ThermTec Wild 335 | Optics Trade
Technical Data | ThermTec Wild 335 | Optics TradeTechnical Data | ThermTec Wild 335 | Optics Trade
Technical Data | ThermTec Wild 335 | Optics TradeOptics-Trade
 
Call Girls in Dhaula Kuan 💯Call Us 🔝8264348440🔝
Call Girls in Dhaula Kuan 💯Call Us 🔝8264348440🔝Call Girls in Dhaula Kuan 💯Call Us 🔝8264348440🔝
Call Girls in Dhaula Kuan 💯Call Us 🔝8264348440🔝soniya singh
 
8377087607 ☎, Cash On Delivery Call Girls Service In Hauz Khas Delhi Enjoy 24/7
8377087607 ☎, Cash On Delivery Call Girls Service In Hauz Khas Delhi Enjoy 24/78377087607 ☎, Cash On Delivery Call Girls Service In Hauz Khas Delhi Enjoy 24/7
8377087607 ☎, Cash On Delivery Call Girls Service In Hauz Khas Delhi Enjoy 24/7dollysharma2066
 
Technical Data | ThermTec Wild 650 | Optics Trade
Technical Data | ThermTec Wild 650 | Optics TradeTechnical Data | ThermTec Wild 650 | Optics Trade
Technical Data | ThermTec Wild 650 | Optics TradeOptics-Trade
 
France's UEFA Euro 2024 Ambitions Amid Coman's Injury.docx
France's UEFA Euro 2024 Ambitions Amid Coman's Injury.docxFrance's UEFA Euro 2024 Ambitions Amid Coman's Injury.docx
France's UEFA Euro 2024 Ambitions Amid Coman's Injury.docxEuro Cup 2024 Tickets
 
Expert Pool Table Refelting in Lee & Collier County, FL
Expert Pool Table Refelting in Lee & Collier County, FLExpert Pool Table Refelting in Lee & Collier County, FL
Expert Pool Table Refelting in Lee & Collier County, FLAll American Billiards
 
Resultados del Campeonato mundial de Marcha por equipos Antalya 2024
Resultados del Campeonato mundial de Marcha por equipos Antalya 2024Resultados del Campeonato mundial de Marcha por equipos Antalya 2024
Resultados del Campeonato mundial de Marcha por equipos Antalya 2024Judith Chuquipul
 
Dubai Call Girls Bikni O528786472 Call Girls Dubai Ebony
Dubai Call Girls Bikni O528786472 Call Girls Dubai EbonyDubai Call Girls Bikni O528786472 Call Girls Dubai Ebony
Dubai Call Girls Bikni O528786472 Call Girls Dubai Ebonyhf8803863
 
Croatia vs Italy UEFA Euro 2024 Croatia's Checkered Legacy on Display in New ...
Croatia vs Italy UEFA Euro 2024 Croatia's Checkered Legacy on Display in New ...Croatia vs Italy UEFA Euro 2024 Croatia's Checkered Legacy on Display in New ...
Croatia vs Italy UEFA Euro 2024 Croatia's Checkered Legacy on Display in New ...Eticketing.co
 
Mysore Call Girls 7001305949 WhatsApp Number 24x7 Best Services
Mysore Call Girls 7001305949 WhatsApp Number 24x7 Best ServicesMysore Call Girls 7001305949 WhatsApp Number 24x7 Best Services
Mysore Call Girls 7001305949 WhatsApp Number 24x7 Best Servicesnajka9823
 
IPL Quiz ( weekly quiz) by SJU quizzers.
IPL Quiz ( weekly quiz) by SJU quizzers.IPL Quiz ( weekly quiz) by SJU quizzers.
IPL Quiz ( weekly quiz) by SJU quizzers.SJU Quizzers
 
Technical Data | ThermTec Wild 650L | Optics Trade
Technical Data | ThermTec Wild 650L | Optics TradeTechnical Data | ThermTec Wild 650L | Optics Trade
Technical Data | ThermTec Wild 650L | Optics TradeOptics-Trade
 
Real Moto 2 MOD APK v1.1.721 All Bikes, Unlimited Money
Real Moto 2 MOD APK v1.1.721 All Bikes, Unlimited MoneyReal Moto 2 MOD APK v1.1.721 All Bikes, Unlimited Money
Real Moto 2 MOD APK v1.1.721 All Bikes, Unlimited MoneyApk Toly
 
JORNADA 3 LIGA MURO 2024GHGHGHGHGHGH.pdf
JORNADA 3 LIGA MURO 2024GHGHGHGHGHGH.pdfJORNADA 3 LIGA MURO 2024GHGHGHGHGHGH.pdf
JORNADA 3 LIGA MURO 2024GHGHGHGHGHGH.pdfArturo Pacheco Alvarez
 
Instruction Manual | ThermTec Wild Thermal Monoculars | Optics Trade
Instruction Manual | ThermTec Wild Thermal Monoculars | Optics TradeInstruction Manual | ThermTec Wild Thermal Monoculars | Optics Trade
Instruction Manual | ThermTec Wild Thermal Monoculars | Optics TradeOptics-Trade
 
办理学位证(KCL文凭证书)伦敦国王学院毕业证成绩单原版一模一样
办理学位证(KCL文凭证书)伦敦国王学院毕业证成绩单原版一模一样办理学位证(KCL文凭证书)伦敦国王学院毕业证成绩单原版一模一样
办理学位证(KCL文凭证书)伦敦国王学院毕业证成绩单原版一模一样7pn7zv3i
 
ppt on Myself, Occupation and my Interest
ppt on Myself, Occupation and my Interestppt on Myself, Occupation and my Interest
ppt on Myself, Occupation and my InterestNagaissenValaydum
 
JORNADA 4 LIGA MURO 2024TUXTEPEC1234.pdf
JORNADA 4 LIGA MURO 2024TUXTEPEC1234.pdfJORNADA 4 LIGA MURO 2024TUXTEPEC1234.pdf
JORNADA 4 LIGA MURO 2024TUXTEPEC1234.pdfArturo Pacheco Alvarez
 

Kürzlich hochgeladen (20)

FULL ENJOY Call Girls In Savitri Nagar (Delhi) Call Us 9953056974
FULL ENJOY Call Girls In  Savitri Nagar (Delhi) Call Us 9953056974FULL ENJOY Call Girls In  Savitri Nagar (Delhi) Call Us 9953056974
FULL ENJOY Call Girls In Savitri Nagar (Delhi) Call Us 9953056974
 
Technical Data | ThermTec Wild 335 | Optics Trade
Technical Data | ThermTec Wild 335 | Optics TradeTechnical Data | ThermTec Wild 335 | Optics Trade
Technical Data | ThermTec Wild 335 | Optics Trade
 
Call Girls in Dhaula Kuan 💯Call Us 🔝8264348440🔝
Call Girls in Dhaula Kuan 💯Call Us 🔝8264348440🔝Call Girls in Dhaula Kuan 💯Call Us 🔝8264348440🔝
Call Girls in Dhaula Kuan 💯Call Us 🔝8264348440🔝
 
8377087607 ☎, Cash On Delivery Call Girls Service In Hauz Khas Delhi Enjoy 24/7
8377087607 ☎, Cash On Delivery Call Girls Service In Hauz Khas Delhi Enjoy 24/78377087607 ☎, Cash On Delivery Call Girls Service In Hauz Khas Delhi Enjoy 24/7
8377087607 ☎, Cash On Delivery Call Girls Service In Hauz Khas Delhi Enjoy 24/7
 
Technical Data | ThermTec Wild 650 | Optics Trade
Technical Data | ThermTec Wild 650 | Optics TradeTechnical Data | ThermTec Wild 650 | Optics Trade
Technical Data | ThermTec Wild 650 | Optics Trade
 
France's UEFA Euro 2024 Ambitions Amid Coman's Injury.docx
France's UEFA Euro 2024 Ambitions Amid Coman's Injury.docxFrance's UEFA Euro 2024 Ambitions Amid Coman's Injury.docx
France's UEFA Euro 2024 Ambitions Amid Coman's Injury.docx
 
Expert Pool Table Refelting in Lee & Collier County, FL
Expert Pool Table Refelting in Lee & Collier County, FLExpert Pool Table Refelting in Lee & Collier County, FL
Expert Pool Table Refelting in Lee & Collier County, FL
 
Resultados del Campeonato mundial de Marcha por equipos Antalya 2024
Resultados del Campeonato mundial de Marcha por equipos Antalya 2024Resultados del Campeonato mundial de Marcha por equipos Antalya 2024
Resultados del Campeonato mundial de Marcha por equipos Antalya 2024
 
Dubai Call Girls Bikni O528786472 Call Girls Dubai Ebony
Dubai Call Girls Bikni O528786472 Call Girls Dubai EbonyDubai Call Girls Bikni O528786472 Call Girls Dubai Ebony
Dubai Call Girls Bikni O528786472 Call Girls Dubai Ebony
 
Croatia vs Italy UEFA Euro 2024 Croatia's Checkered Legacy on Display in New ...
Croatia vs Italy UEFA Euro 2024 Croatia's Checkered Legacy on Display in New ...Croatia vs Italy UEFA Euro 2024 Croatia's Checkered Legacy on Display in New ...
Croatia vs Italy UEFA Euro 2024 Croatia's Checkered Legacy on Display in New ...
 
Mysore Call Girls 7001305949 WhatsApp Number 24x7 Best Services
Mysore Call Girls 7001305949 WhatsApp Number 24x7 Best ServicesMysore Call Girls 7001305949 WhatsApp Number 24x7 Best Services
Mysore Call Girls 7001305949 WhatsApp Number 24x7 Best Services
 
IPL Quiz ( weekly quiz) by SJU quizzers.
IPL Quiz ( weekly quiz) by SJU quizzers.IPL Quiz ( weekly quiz) by SJU quizzers.
IPL Quiz ( weekly quiz) by SJU quizzers.
 
Technical Data | ThermTec Wild 650L | Optics Trade
Technical Data | ThermTec Wild 650L | Optics TradeTechnical Data | ThermTec Wild 650L | Optics Trade
Technical Data | ThermTec Wild 650L | Optics Trade
 
Real Moto 2 MOD APK v1.1.721 All Bikes, Unlimited Money
Real Moto 2 MOD APK v1.1.721 All Bikes, Unlimited MoneyReal Moto 2 MOD APK v1.1.721 All Bikes, Unlimited Money
Real Moto 2 MOD APK v1.1.721 All Bikes, Unlimited Money
 
JORNADA 3 LIGA MURO 2024GHGHGHGHGHGH.pdf
JORNADA 3 LIGA MURO 2024GHGHGHGHGHGH.pdfJORNADA 3 LIGA MURO 2024GHGHGHGHGHGH.pdf
JORNADA 3 LIGA MURO 2024GHGHGHGHGHGH.pdf
 
Instruction Manual | ThermTec Wild Thermal Monoculars | Optics Trade
Instruction Manual | ThermTec Wild Thermal Monoculars | Optics TradeInstruction Manual | ThermTec Wild Thermal Monoculars | Optics Trade
Instruction Manual | ThermTec Wild Thermal Monoculars | Optics Trade
 
办理学位证(KCL文凭证书)伦敦国王学院毕业证成绩单原版一模一样
办理学位证(KCL文凭证书)伦敦国王学院毕业证成绩单原版一模一样办理学位证(KCL文凭证书)伦敦国王学院毕业证成绩单原版一模一样
办理学位证(KCL文凭证书)伦敦国王学院毕业证成绩单原版一模一样
 
young Call girls in Moolchand 🔝 9953056974 🔝 Delhi escort Service
young Call girls in Moolchand 🔝 9953056974 🔝 Delhi escort Serviceyoung Call girls in Moolchand 🔝 9953056974 🔝 Delhi escort Service
young Call girls in Moolchand 🔝 9953056974 🔝 Delhi escort Service
 
ppt on Myself, Occupation and my Interest
ppt on Myself, Occupation and my Interestppt on Myself, Occupation and my Interest
ppt on Myself, Occupation and my Interest
 
JORNADA 4 LIGA MURO 2024TUXTEPEC1234.pdf
JORNADA 4 LIGA MURO 2024TUXTEPEC1234.pdfJORNADA 4 LIGA MURO 2024TUXTEPEC1234.pdf
JORNADA 4 LIGA MURO 2024TUXTEPEC1234.pdf
 

Fourier Series Solution for Transient Heat Transfer

  • 1. UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA - UNAD. ESPECIALIZACIÓN EN INGENIERÍA DE PROCESOS DE ALIMENTOS Y BIOMATERIALES MÉTODOS MATEMÁTICOS SEGUNDA UNIDAD: FORMULACIÓN INTEGRAL Y DIFERENCIAL CAPÍTULO CUATRO: FUNCIONES ESPECIALES. LECCIÓN DOCE. SERIES DE FOURIER. Un caso especial y muy utilizado de la expansión de funciones ortogonales en series son las “series de Fourier”. En un intervalo simétrico –L,L, la representación de las series de Fourier de una función f(x) se define como: f § nSx · f § nSx · f( x) ¦ A n cos¨ ¸ ¦ B n sen¨ ¸ n 0 © L ¹ n 0 © L ¹ Donde n es un entero positivo.
  • 2. Si la ecuación presentada se multiplica por cos nSx L dx y el resultado se integra entre –L y L, se pueden
  • 3. determinar los coeficientes An. De manera similar, utilizando sen nSx L dx se obtienen lo coeficientes Bn: 1 L 1 L nSx A0 ³ f( x)dx ; An ³ f( x) cos dx 2L L L L L 1 L nSx B0 0 ; Bn ³ f( x )sen dx L L L Aunque la expansión en series de Fourier de la función f(x) dependa solo de términos de seno o de coseno, o de ambos, si depende de si la función es regular, impar o ninguna de las dos. Una función regular, es una donde f(x)=f(-x). x 2 , cos nx, xsenmx u un número puro son funciones regulares ( o pares). Si una función es regular: 1L 2L nSx A0 ³ f( x)dx ; An ³ f( x) cos dx ; B0 0 L0 L0 L Entonces se puede decir que: nSx § nSx · f( x)sen¨ f( x)sen ¸ L © L ¹ Consecuentemente, en la evaluación de los coeficientes An, la integral desde –L hasta 0 se suma a la integral de 0 a L, mientras que en la evaluación de los términos Bn estas integrales se cancelan. Esto se puede mostrar de manera formal a continuación: Sea f(x) una función regular (o par), entonces: 1 L 1 ªL 0 º A0 ³ f( x )dx « ³ f( x )dx ³ f( x )dx » 2L ¬ 0 2 L L L ¼ 1 ªL L º A0 « ³ f( x )dx ³ f( x )dx» 2L ¬ 0 0 ¼ 1L A0 ³ f( x )dx L0 Los coeficientes An y Bn se obtienen de la misma manera. 1
  • 4. UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA - UNAD. ESPECIALIZACIÓN EN INGENIERÍA DE PROCESOS DE ALIMENTOS Y BIOMATERIALES MÉTODOS MATEMÁTICOS Una función impar, es una en la que f(x)=-f(-x). x , x 3 , sen( nx), x cos(nx) son funciones impares. Si f(x) es impar: A0 0 An 0 2L nSx Bn ³ f( x )sen dx L0 L Si solo el intervalo 0 a L es de interés, f(x) puede expandirse solo en series senoidales o solo en series cosenoidales, y esto puede realizarse aunque la función sea par o impar. Cuando este procedimiento se realiza la expansión en términos de se senos genera una función impar que, en general, no representará a f(x) fuera del intervalo o a L. y la expresión en términos de cosenos, genera una función par que de igual manera no representa a f(x) fuera del intervalo. Cuando el intervalo de despliegue de las series incluye al infinito, y si la función es ortogonal, se puede llegauar en el despliegue a uno de los siguientes casos: * Integral del seno de Fourier: 2 ªf f º F( x) « ³ senax
  • 5. ³ F( v)sen(av)dvda» S ¬0 0xf 0 ¼ * Integral de coseno de Fourier: 2 ªf f º F( x) « ³ cosax
  • 6. ³ F( v) cos(av)dvda» S ¬0 0xf 0 ¼ * Integral de Fourier-Bessel: ff F( x ) ³ ³ avF( v )J p (ax )dvda 0xf ; p ! 1 00 * Integral completa de Fourier: 1 f f F( x ) ³ ³ F( v ) cos(a( v x )dvda fxf 2 S f f En la carpeta del capítulo cuatro ud. podrá encontrar un ejemplo de solución utilizando series de Fourier, extraído de BRDKEY y HERSHEY, Transport Phenomena. 2
  • 7. 654 OF TRANSPORT PHENOMENA It is common practice to abbreviate Eqs. (13.33) and (13.34) as (x, 0) = (0, = 0 (13.35) Similarly, it is desirable to transform the mass transfer equation, Eq. using some convenient variable such as = (13.36) where again the transformation is useful only if the boundary conditions are not a function of time. For one-dimensional transient mass transfer, Eq. (13.11) becomes (13.37) The boundary conditions in terms of are almost identical to those in Eq. (13.35); the variable is simply substituted for W.2.1 Fourier Series Solution The solution of partial differential equations using Fourier series is usually given in an advanced mathematics course at most universities. Hence, in this section only a typical Fourier series solution to Eq. (13.32) will be given. The reader is referred to the several excellent texts devoted to a more complete treatment Ml, M4, A Fourier series may be defined as + + sin (13.38) where the function f(x) is represented in terms of two periodic infinite series, as shown in Eq. (13.38). If the function f(x) is assumed to be periodic, with period’ 2L as shown in Fig. 13.6, then it is easily shown that (13.39) (13.40) (13.41) A function is periodic if + for all
  • 8. UNSTEADY-STATE TRANSPORT The power of Fourier series arises from the fact that any function may be assumed periodic, even if it is not, by assuming that the length of the period is the region of interest. For clarification, let us consider the following boundary conditions: 0) = =0 =0 (13.35) These are the simplest possible; since the transformed temperature is zero at either end, these boundary conditions are termed “homogeneous”. Obviously, those are not in themselves periodic; yet they may be considered as a periodic function of period as shown in Fig. 13.7. Physically the boundary conditions in Fig. 13.7 have no meaning for less than zero or greater than but the mathematical assumption of periodicity allows a Fourier series solution, as will be shown later. Many functions likely to be encountered in our engineering problems can be expanded in a Fourier series. There are some mathematical restrictions, known as the Dirichlet conditions that cannot be violated. A function is Fourier expandable if in the interval 0 2L the following are true: 1. The function f(x) is single-valued. 2. The function f(x) never becomes infinite. 3. The function f(x) has a finite number of maxima and minima. 4. The function f(x) has a finite number of discontinuities. A practical concern that does limit the utility of Fourier series solutions is that -4L -2L 0 2L 4L (13.35) as a periodic function.
  • 9. 656 APPLICATIONS OF TRANSPORT PHENOMENA the integrals in Eqs. (13.39) to (13.41) must be analytic, since and are coefficients in an infinite series. Also, not all boundary conditions are amenable to Fourier series solution C3, C6, Ml, M4, The first step in the Fourier series solution of a partial differential equation is to assume that the solution is a product of two quantities: = (13.42) where is a function of only and is a function of only. This assumption can be justified only in that it leads to a solution satisfying the partial differential equation and its boundary conditions. The assumed solution, Eq. (13.42) is substituted into the partial differential equation of interest, Eq. (13.32). Since is a function of only, it follows that (13.43) Similarly (13.44) Substituting the above into Eq. the result is The variables in Eq. (13.45) are separated as follows X ” (13.46) It is argued that, if is varied there is no effect on the term since is not a function of x. Thus, the term must be independent of x. A similar argument about varying and its effect on the term leads to the conclusion that each side of Eq. (13.46) must be equal to a constant. This constant shall be designated as to facilitate later forms of the solution: (13.47) The constant in Eq. (13.47) must be negative in order to avoid an exponential solution that would be inconsistent with the boundary conditions Equation (13.47) may be decomposed into two ordinary differential equations: (13.48) (13.49)
  • 10. UNSTEADY-STATE TRANSPORT 657 The solutions to Eqs. (13.48) and (13.49) are assumed to be = exp( (13.50) (13.51) Appropriate boundary conditions for a direct Fourier series solution must be the simplest possible, i.e., homogeneous: 0) = =0 =0 (13.35) At this stage in the solution, there are four constants and to be determined from the boundary conditions. Using the boundary condition at the point = 0, Eq. (13.42) becomes = =0 (13.52) Since for the nontrivial case T(t) cannot be zero for all it follows that Eq. (13.52) is true only if =0 (13.53) Substituting the results of Eq. (13.53) into Eq. Eq. (13.51) becomes = + (13.54) Since the sine of zero is zero and the cosine of zero is one, then by Eq. (13.54) must be zero. Next, the boundary condition at the other end is applied, and by similar reasoning =0= sin (13.55) Equation (13.55) equals zero only if is zero or if sin is zero or if both are zero. However, if is zero, then is zero and our assumed solution, Eq. (13.42) is trivial. Therefore sin =0 (13.56) The sine of an arbitrary angle is zero if = etc. Hence 1, 2, 3, . . (13.57) From Eq. the constant is found to be (13.58) The solution as determined so far is substituted from Eqs. (13.55) and (13.58) into Eq. (13.42): = (13.59)
  • 11. APPLICATIONS OF TRANSPORT PHENOMENA where each and every j, as j goes from 1 to is a solution to the original partial differential equation, Eq. (13.32). Thus, the total solution is the sum over j of all possible solutions, since Eq. (13.32) is a linear partial differential equation: (13.60) where the product has been replaced by The remaining boundary condition at time zero, Eq. is used to evaluate Applying that condition to Eq. (13.60): 0) (13.61) Since the exponential of zero is one, Eq. (13.61) reduces to = (13.62) A comparison of Eq. (13.62) with the Fourier series of Eq. (13.38) shows that must be zero for all j and (13.63) By substituting Eq. (13.63) into Eq. a complete solution is now available. Note that a Fourier series solution is possible as long as the integration in Eq. (13.63) can be performed. For the case of constant integration of Eq. (13.63) yields (-cos 0)] = [for odd j] (13.64) The simplification of Eq. (13.64) resulted from the following reasoning. The cosine of zero is one. The cosine of equals -1 for odd j and for even j. Hence -(cos jn) + 1 = 0 if j is even -(cos +1=2 if j is odd (13.65) Note that a single value of from Eq. (13.64) cannot possibly satisfy the boundary condition of Eq. (13.33). Hence, it is argued that only the sum from one to infinity of all possible will satisfy the boundary condition, since Eq. (13.32) [or Eq. is a linear partial differential equation. Combining results, the final solution to Eq. (13.32) as determined by the
  • 12. UNSTEADY-STATE TRANSPORT 659 method of Fourier series is Equation (13.66) expresses in terms of an infinite series the dimensionless temperature for any and when the boundary conditions of Eq. (13.35) are valid. However, the engineer will usually be interested in the temperature for a particular and c or for a series of and combinations. In general a Fourier series such as Eq. (13.38) or Eq. (13.66) converges very slowly, especially for small Often thousands of terms are required in order to evaluate to the required accuracy. In fact, evaluation of Eq. (13.66) on a digital computer requires almost as much effort as a direct numerical method (to be discussed subsequently), not including the lengthy steps required to get Eq. (13.66). A mass transfer problem with nonhomogeneous boundary conditions is solved in Example 13.2. Example A 3-in. schedule 40 pipe is 3 ft long and contains helium at 26.03 atm and 317.2 K as shown in Fig. 13.8. The ends of the pipe are initially capped by removable partitions. At time zero, the partitions are removed, and across each end of the pipe flows a stream of air plus helium at the same temperature and pressure. On the left end, the stream is 90 percent air and 10 percent He (by volume) and on the right 80 percent air and 20percent He. It may be assumed that the flow effectively maintains the helium concentration constant at the ends. If isothermal conditions are maintained and there are no end effects associated with the air flowing past the pipe, calculate the composition profile (to four decimal places) after 1.2 h at space increments of Use Fourier series. The value of is 0.7652 x Answer. First, note that mass transfer in Fig. 13.8 occurs in the z direction only; there is no transport in either the or e-directions. Since the previous equations (derived with heat transfer as the example) are in terms of the direction, the . solution to this problem arbitrarily use the direction as the direction of mass transfer. FIGURE 90% air, 10% He 80% air, 20% He Transient diffusion of helium atm, 44°C 1 atm, 44°C in a pipe.
  • 13. OF TRANSPORT PHENOMENA Concentration is related to partial pressure by Eq. (2.37): = (2.37) where is the gas constant (0.082057 atm from Table C.l). The partial pressure of species A is defined by Eq. (2.38): PA = (2.38) where is the mole fraction of A and is the total pressure. Example 2.7 illustrated the method of converting partial pressures into concentrations. Initially, the partial pressure of helium in the tube equals the total pressure, 26.03 atm. When the partitions are removed, the of helium at the ends of the pipe are = = 2.603 atm = = = atm Inserting these into Eq. the concentrations are = = x = 1.0 kmol = x = 0.1 kmol (ii) = x = 0.2 kmol Following the nomenclature of Eq. these are 0) = 1.0 kmol = 0.1 kmol (iii) = 0.2 kmol where the total length of the pipe is or 3 Although does not equal C it is still convenient to transform to 0,: = 0) = = 0.9 = = = t) = = 0.1 (vii) where the definition of 0, is arbitrarily based on for ease of notation, and have also been introduced in the above equations. Using the above transformation, Eq. (13.37) still applies: (13.37) where the total length of the pipe is or 3 ft. The boundary conditions in Eqs. (iv) through (vii) do not allow a solution by Fourier series because the condition in Eq. (vii) does not equal zero. This limitation is easily circumvented by expressing the total solution as the sum of the unsteady-state (or transient or particular) solution 0, and the steady-state solution 0, = + (viii)
  • 14. TRANSPORT 661 The steady-state solution is obtained from Fick’s law, Eq. (2.4). For equimolar counter diffusion, it is easily shown that the ratio must be constant at steady-state. If the ratio is constant, then the ratio is also constant [cf. Eq. Since two points uniquely determine the equation for a straight line, the equation for is =0+ = = = The boundary conditions for the transient solution are found by combining the last two equations. First, Eq. (viii) is solved for t); then the conditions in Eqs. (v) through (vii) are inserted into the resulting equation: 0) = 0) = 0.9 = t) = t) =0 0=0 = = 0. =0 The solution to Eq. (13.37) subject to the above boundary conditions follows the derivation of Eq. (13.66) from the inception, Eq. up through Eq. which after replacing w i t h D i s (xiii) boundary condition of Eq. (x) is used to evaluate the remaining constant, = = 0.9 [ A comparison of Eq. (xiv) with the Fourier series of Eq. (13.38) shows that must be zero for all and 2L Equation (xv) equals the sum of two integrals: The first integral is identical to that in Eq. (13.64): [for odd The second integral may be located in a standard table of integrals (xviii) a
  • 15. APPLICATIONS OF TRANSPORT PHENOMENA where equals Substituting, the second integral is The first term in the above is ( x x ) since cos = for even values of j and -1 for odd values of j. The second term is zero since sin equals zero for all values of j: sin 0 = sin 0=0 The value of is the combination of Eqs. (xvii) and (xx). The final expression is obtained by the summation of all between 1 and infinity, which is then included in Eq. (xiii): (xxii) ,. As a rule, these infinite series converge slowly; hence, it may be advantageous to combine the two infinite series: (xxiii) Note that if Eq. (xxiii) reduces to Eq. (13.66). Inserting Eqs. (ix) and (xxiii) into Eq. (viii) yields the final expression for the concentration or for as a function of time and distance: (xxiv) where D= A computer program to evaluate Eq. (xxiv) at the and of interest is given in Fig. 13.9. Equation (xxiv) is a converging infinite series, in which the signs of the terms alternate in an irregular pattern. The best procedure is to combine all terms of like sign, then test the magnitude to see if that combination is less than the accuracy desired. In the case of a simple alternating converging series, the truncation error is smaller in absolute value than the first term neglected and is of the same sign. The results are given in Table 13.2. The last column is an indication of how many terms are required for the infinite series to converge.