SlideShare ist ein Scribd-Unternehmen logo
1 von 94
Jakarta
               15 December 2012

               Arief Hamdani Gunawan




OFDMA & MIMO                  Planning
OFDMA & MIMO


•OFDM and OFDMA                                   •Introduction to MIMO?
•LTE Downlink                                     •Different gains of multiple antenna systems
•OFDMA time-frequency multiplexing                •Shannon capacity of Wireless Channels
•LTE Spectrum Flexibility                         •Multiple antennas at one end
•LTE Frame Structure type 1 (FDD)                 •Capacity of MIMO Links
•LTE Frame Structure type 2(TDD)                  •Principles of Data transmission over MIMO Systems
•Introduction to SC-FDMA and UL frame structure   •Diversity using Space Time Block Codes
•How to generate SC-FDMA                          •Spatial Multiplexing
•How does SC-FDMA signal look like                •Wireless Channel Modeling
•SC-FDMA Signal Generation                        •System Level Issues
•SC-FDMA PAPR                                     •MIMO Transmission Scheme for HSPA and LTE
•SC-FDMA Parameterization
OFDMA & MIMO


•OFDM and OFDMA                                   •Introduction to MIMO?
•LTE Downlink                                     •Different gains of multiple antenna systems
•OFDMA time-frequency multiplexing                •Shannon capacity of Wireless Channels
•LTE Spectrum Flexibility                         •Multiple antennas at one end
•LTE Frame Structure type 1 (FDD)                 •Capacity of MIMO Links
•LTE Frame Structure type 2(TDD)                  •Principles of Data transmission over MIMO Systems
•Introduction to SC-FDMA and UL frame structure   •Diversity using Space Time Block Codes
•How to generate SC-FDMA                          •Spatial Multiplexing
•How does SC-FDMA signal look like                •Wireless Channel Modeling
•SC-FDMA Signal Generation                        •System Level Issues
•SC-FDMA PAPR                                     •MIMO Transmission Scheme for HSPA and LTE
•SC-FDMA Parameterization
OFDM
• Single Carrier Transmission (e.g. WCDMA)




• Orthogonal Frequency Division Multiplexing
OFDM Concept: Mengapa OFDM

• Sinyal OFDM (Orthogonal Frequency Division
  Multiplexing) dapat mendukung kondisi NLOS (Non
  Line of Sight) dengan mempertahankan efisiensi
  spektral yang tinggi dan memaksimalkan spektrum
  yang tersedia.
• Mendukung lingkungan propagasi multi-path.
• Scalable bandwidth: menyediakan fleksibilitas dan
  potensial mengurangi CAPEX (capital expense).


                                                      5
OFDM Concept: NLOS Performance




                                 6
OFDM Concept: Mutipath Propagation




•   Sinyal-sinyal multipath datang pada waktu yang berbeda dengan amplitudo dan pergeseran fasa yang
    berbeda, yang menyebabkan pelemahan dan penguatan daya sinyal yang diterima.
•   Propagasi multipath berpengaruh terhadap performansi link dan coverage.
•   Selubung (envelop) sinyal Rx berfluktuasi secara acak.
                                                                                                 7
OFDM Concept: FFT




•   Multi-carrier modulation/multiplexing technique
•   Available bandwidth is divided into several subchannels
•   Data is serial-to-parallel converted
•   Symbols are transmitted on different subcarriers
                                                              8
OFDM Concept: IFFT




Basic ideas valid for various multicarrier techniques:
•   OFDM: Orthogonal Frequency Division Multiplexing
•   OFDMA: Orthogonal Frequency Division Multiple Access

                                                           9
OFDM Concept: Single-Carrier Vs. OFDM




            Single-Carrier Mode:                             OFDM Mode:
•   Serial Symbol Stream Used to Modulate a   •   Each Symbol Used to Modulate a Separate
    Single Wideband Carrier                       Sub-Carrier
•   Serial Datastream Converted to Symbols
    (Each Symbol Can Represented 1 or More
    Data Bits)                                                                        10
OFDM Concept: Single-Carrier Vs. OFDM




               Single-Carrier Mode                                       OFDM Mode
•   Dotted Area Represents Transmitted Spectrum
•   Solid Area Represents Receiver Input


•   OFDM mengatasi delay spread, multipath dan ISI (Inter Symbol Interference) secara efisien sehingga
    dapat meningkatkan throughput data rate yang lebih tinggi.
•   Memudahkan ekualisasi kanal terhadap sub-carrier OFDM individual, dibandingkan terhadap sinyal
    single-carrier yang memerlukan teknik ekualisasi adaptif lebih kompleks.                    11
OFDM Concept: Motivation for Multi-carrier Approaches


• Multi-carrier transmission offers various advantages over
  traditional single carrier approaches:
   – Highly scalable
   – Simplified equalizer design in the frequency domain, also in cases of
     large delay spread
   – High spectrum density
   – Simplified the usage of MIMO
   – Good granularity to control user data rates
   – Robustness against timing errors
• Weakness of multi-carrier systems:
   – Increased peak to average power ratio (PAPR)
   – Impairments due to impulsive noise
   – Impairments due to frequency errors

                                                                             12
OFDM Concept: Peak to Average Power Ratio (PAPR)




•   PAPR merupakan ukuran dari fluktuasi tepat sebelum amplifier.
•   PAPR sinyal hasil dari mapping PSK base band sebesar 0 dB karena semua symbol mempunyai daya yang
    sama.
•   Tetapi setelah dilakukan proses IDFT/IFFT, hasil superposisi dari dua atau lebih subcarrier dapat
    menghasilkan variasi daya dengan nilai peak yang besar.
•   Hal ini disebabkan oleh modulasi masing-masing subcarrier dengan frekuensi yang berbeda sehingga
    apabila beberapa subcarrier mempunyai fasa yang koheren, akan muncul amplituda dengan level yang
    jauh lebih besar dari daya sinyalnya.                                                        13
OFDM Concept: Peak to Average Power Ratio (PAPR)




•   Nilai PAPR yang besar pada OFDM membutuhkan amplifier dengan dynamic range yang lebar untuk
    mengakomodasi amplitudo sinyal.
•   Jika hal ini tidak terpenuhi maka akan terjadi distorsi linear yang menyebabkan subcarrier menjadi tidak
    lagi ortogonal dan pada akhirnya menurunkan performansi OFDM.
                                                                                                     14
Tipe Sub-Carrier OFDM




Data Sub-carriers
•   Membawa simbol BPSK, QPSK, 16QAM, 64QAM
Pilot Sub-carriers
•   Untuk memudahkan estimasi kanal dan demodulasi koheren pada receiver.
Null Subcarrier
•   Guard Sub-carriers
•   DC Sub-carrier                                                          15
Guard Interval (Cyclic Prefix)




•   Untuk mengatasi multipath delay spread
                                                              16
•   Guard Interval (cyclic prefix) : 1/4, 1/8, 1/16 or 1/32
OFDM Transceiver




                   17
OFDM & OFDMA
OFDM                                           OFDMA
•   Semua subcarrier dialokasikan untuk satu   •   Subcarrier dialokasikan secara fleksibel
    user                                           untuk banyak user tergantung pada kondisi
•   Misal : 802.16-2004                            radio.
                                               •   Misal : 802.16e-2005 dan 802.16m




                                                                                        18
OFDM Parameters used in WiMAX




                                19
Difference between OFDM and OFDMA


• OFDM allocates users in time   • OFDMA allocates users in time
  domain only                      and frequency domain
OFDMA time-frequency multiplexing
LTE Downlink Physical Layer Design: Physical Resource

                                                          The physical resource can be seen as
                                                          a time-frequency grid




•   LTE uses OFDM (Orthogonal Frequency Division Multiplexing) as its radio technology in downlink
•   In the uplink LTE uses a pre=coded version of OFDM, SC-FDMA (Single Carrier Frequency Division
    Multiple Access) to reduced power consumption
                                                                                                     22
LTE Downlink Resource Grid




     •   Suatu RB (resource block) terdiri dari 12 subcarrier pada suatu
         durasi slot 0.5 ms.

     •   Satu subcarrier mempunyai BW 15 kHz, sehingga menjadi 180
         kHz per RB.



                                                                       23
Parameters for DL generic frame structure




       Bandwidth (MHz)           1.25   2.5   5.0         10.0   15.0   20.0

  Subcarrier bandwidth (kHz)                        15

 Physical resource block (PRB)
                                                    180
       bandwidth (kHz)

  Number of available PRBs        6     12    25          50     75     100



                                                                           24
Parameters for DL generic frame structure

  Transmission BW        1.25 MHz           2.5 MHz             5 MHz                    10 MHz              15 MHz              20 MHz


 Sub-frame duration                                                            0.5 ms


 Sub-carrier spacing                                                           15 kHz

                         192 MHz
                                                              7.68 MHz                 15.36 MHz          23.04 MHz           30.72 MHz
 Sampling frequency      (1/2x3.84          3.84 MHz
                                                            (2x3.84 MHz)              (4x3.84 MHz)       (6x3.84 MHz)        (8x3.84 MHz)
                           MHz)

      FFT size              128                256                512                      1024               1536                2048


 OFDM sym per slot
                                                                                7/6
  (short/long CP)

                         (4.69/9) x 6,     (4.69/18) x 6,     (4.69/36) x 6,            (4.69/72) x 6,     (4.69/108) x 6,     (4.69/144) x 6,
                 Short   (5.21/10) x 1     (5.21/20) x 1      (5.21/40) x 1             (5.21/80) x 1      (5.21/120) x 1      (5.21/160) x 1
CP length
 (usec/
samples)                  (16.67/32)     (16.67/64)         (16.67/128)            (16.67/256)           (16.67/384)         (16.67/512)
                 Long




                                                                                                                                           25
LTE – Spectrum Flexibility

• LTE physical layer supports any bandwidth from 1.4 MHz to 20
  MHz in steps of 180 kHz (resource block).
• Current LTE specification supports a subset of 6 different
  system bandwidths.
• All UEs must support the maximum bandwidth of 20 MHz.
E-UTRA channel bandwidth
Case Study
                   LTE Signal Spectrum (20 MHz case)




•   The LTE standard uses an over-sized LTE. The actual used bandwidth is controlled by the number of used
    subcarriers. 15 kHz subcarrier spacing is the constant factor!
•   18 MHz out of 20 MHz is used for data, 1 MHz on each side is used as guard band.
•   LTE used spectrum radio = 90%
•   WiMAX used spectrum radio = 82%                                                                28
TDD & FDD




•   Time Division Duplex (TDD)
•   Frequency Division Duplex (FDD)
•   Durasi Frame : 2.5 - 20ms                     29
Generic LTE Frame Structure type 1 (FDD)
                                            Tf = 307200 x Ts = 10 ms

                                                                       Tslot = 15360 x Ts = 0.5 ms




•   Untuk struktur generik, frame radio 10 ms dibagi dalam 20 slot yang sama berukuran 0.5 ms.
•   Suatu sub-frame terdiri dari 2 slot berturut-turut, sehingga satu frame radio berisi 10 sub-frame.
•   Ts menunjukkan unit waktu dasar yang sesuai dengan 30.72 MHz.
•   Struktur frame tipe-1 dapat digunakan untuk transmisi FDD dan TDD.
                                                                                                         30
LTE Frame Structure type 1 (FDD)




•   2 slots form one subframe = 1 ms
•   For FDD, in each 10 ms interval, all 10 subframes are available for downlink transmission and uplink transmissions.
•   For TDD, a subframe is either located to downlink or uplink transmission. The 0th and 5th subframe in a radio frame is
    always allocated for downlink transmission.
                                                                                                                    31
Downlink LTE Frame Structure type 1 (FDD)
Generic LTE Frame Structure type 2 (TDD)




•   Struktur frame tipe-2 hanya digunakan untuk transmisi TDD.
•   Slot 0 dan DwPTSdisediakan untuk transmisi DL, sedangkan slot 1 dan UpPTS disediakan untuk transmisi
    UL.
                                                                                                 33
LTE Frame Structure type 2 (TDD)




                                   34
Mobile WiMAX Frame Structure




                               35
LTE Frame Structure type 2 (TDD)
DL Peak rates for E-UTRA FDD/TDD
          frame structure type 1
                               Downlink
                                64 QAM
Assumptions     Signal overhead for reference signals and
              control channel occupying one OFDM symbol
Unit             Mbps in 20 MHz               b/s/Hz
Requirement             100                     5.0
2x2 MIMO               172.8                    8.6
4x4 MIMO               326.4                   16.3
UL Peak rates for E-UTRA FDD/TDD
              frame structure type 1
                                     Uplink
                                  Single TX UE
Assumptions     Signal overhead for reference signals and control
                             channel occupying 2RB
Unit               Mbps in 20 MHz                 b/s/Hz
Requirement               50                         2.5
16QAM                    57.6                        2.9
64QAM                    86.4                        4.3
Peak rates for E-UTRA TDD
                 frame structure type 2

                     Downlink                     Uplink
                                               Single TX UE,
 Assumptions       64 QAM, R=1
                                               64 QAM, R=1
                    Mbps                 Mbps
     Unit                    b/s/Hz                     b/s/Hz
                 in 20 MHz            in 20 MHz
 Requirement         100       5.0        50              2.5
2x2 MIMO in DL       142       7.1
                                        62.7              3.1
4x4 MIMO in DL       270      13.5
3GPP TR 25.912
         Technical Specification Group Radio Access Network;
                           Feasibility study for
           evolved Universal Terrestrial Radio Access (UTRA)
        and Universal Terrestrial Radio Access Network (UTRAN)

Release         Freeze meeting         Freeze date       ::
Rel-7           RP-33                  2006-09-22        ::
                event                          version        available
                RP-27                           0.0.0         2005-03-03
                RP-31                           0.0.4         2006-03-20
                draft                           0.1.0         2006-03-20
                draft                           0.1.1         2006-03-20
                post RP-31                      0.1.2         2006-03-30
                R3-51b                          0.1.3         2006-05-02
                draft post Shanghai             0.1.4         2006-05-22
                draft                           0.1.5         2006-07-10
                draft                           0.1.6             -
                draft                           0.1.7         2006-05-29
                RP-32                           0.2.0         2006-06-12
                RP-32                           7.0.0         2006-06-23
                RP-33                           7.1.0         2006-10-18
                RP-36                           7.2.0         2007-08-13
3GPP TR 25.912
                   Technical Specification Group Radio Access Network;
                                     Feasibility study for
                     evolved Universal Terrestrial Radio Access (UTRA)
                  and Universal Terrestrial Radio Access Network (UTRAN)
Rel-8   SP-42   2008-12-11    ::               .                                                  ETSI
        event       version        available                        remarks
                                                                                                  RTR/TSGR-
        SP-42        8.0.0     2009-01-02 Upgraded unchanged from Rel-7
                                                                                                  0025912v800
                                           Upgraded to Rel-9 with no technical change to enable
Rel-9   SP-46   2009-12-10    ::           reference related to ITU-R IMT-Advanced submission     ETSI
                                           (reference in 36.912). .
        event       version      available                          remarks
                                                                                                  RTR/TSGR-
        RP-45        9.0.0     2009-10-01 Technically identical to v8.0.0
                                                                                                  0025912v900
                                             Upgraded from previous Release without technical
Rel-10 SP-51    2011-03-23    ::                                                                  ETSI
                                             change .
        event       version        available                        remarks
                                                                                                  RTR/TSGR-
        SP-51       10.0.0     2011-04-06 Automatic upgrade from previous Release version 9.0.0
                                                                                                  0025912va00
                                          Upgraded from previous Release without technical
Rel-11 SP-57    2012-09-12    ::                                                                 ETSI
                                          change .
        event       version     available                        remarks
        SP-57        11.0.0    2012-09-26 Automatic upgrade from previous Release version 10.0.0 -
OFDMA & MIMO


•OFDM and OFDMA                                   •Introduction to MIMO?
•LTE Downlink                                     •Different gains of multiple antenna systems
•OFDMA time-frequency multiplexing                •Shannon capacity of Wireless Channels
•LTE Spectrum Flexibility                         •Multiple antennas at one end
•LTE Frame Structure type 1 (FDD)                 •Capacity of MIMO Links
•LTE Frame Structure type 2(TDD)                  •Principles of Data transmission over MIMO Systems
•Introduction to SC-FDMA and UL frame structure   •Diversity using Space Time Block Codes
•How to generate SC-FDMA                          •Spatial Multiplexing
•How does SC-FDMA signal look like                •Wireless Channel Modeling
•SC-FDMA Signal Generation                        •System Level Issues
•SC-FDMA PAPR                                     •MIMO Transmission Scheme for HSPA and LTE
•SC-FDMA Parameterization
LTE Uplink Transmission Scheme: SC-FDMA
• Pemilihan OFDMA dianggap optimum untuk memenuhi persyaratan LTE
  pada arah downlink, tetapi OFDMA memiliki properti yang kurang
  menguntungkan pada arah Uplink.
• Hal tsb terutama disebabkan oleh lemahnya peak-to-average power ratio
  (PAPR) dari sinyal OFDMA, yang mengakibatkan buruknya coverage uplink.
• Oleh karena itu, skema transmisi Uplink LTE untuk mode FDD maupun TDD
  didasarkan pada SC-FDMA, yang mempunyai properti PAPR lebih baik.
• Pemrosesan sinyal SC-FDMA memiliki beberapa kesamaan dengan
  pemrosesan sinyal OFDMA, sehingga parameter-parameter DL dan UL
  dapat diharmonisasi.
• Untuk membangkitkan sinyal SC-FDMA, E-UTRA telah memilih DFT-
  spread-OFDM (DFT-s-OFDM).




                                                                      43
OFDMA and SC-FDMA
                •   The symbol mapping
                    in OFDM happens in
                    the frequency
                    domain.
                •   In SC-FDMA, the
                    symbol mapping is
                    done in the time
                    domain.
                •   Appropriate
                    subscriber mapping
                    in the frequency
                    domain allows to
                    control the PAPR.
                •   SC-FDMA enable
                    frequency domain
                    equalizer approaches
                    like OFDMA

                                   44
Comparison of how OFDMA and SC-FDMA
transmit a sequence of QPSK data symbols




                                           45
Comparison of how OFDMA and SC-FDMA
transmit a sequence of QPSK data symbols
                                Creating the time-
                                domain waveform of an
                                SC-FDMA symbol




                                Baseband and shifted
                                frequency domain
                                representations of an
                                SC-FDMA symbol



                                                     46
How to generate SC-FDMA?
• DFT “pre-coding” is performed on modulated data symbols to
  transform them into frequency domain,
• Sub-carrier mapping allows flexible allocation of signal to available
  sub-carriers,
• IFFT and cyclic prefix (CP) insertion as in OFDM,




• Each subcarrier carries a portion of superposed DFT spread data
  symbols, therefore SC-FDMA is also referred to as DFT-spread-
  OFDM (DFT-s-OFDM).
How does a SC-FDMA signal look like?

• Similar to OFDM signal, but…
   – …in OFDMA, each sub-carrier only carries information
     related to one specific symbol,
   – …in SC-FDMA, each sub-carrier contains information of ALL
     transmitted symbols.
SC-FDMA signal generation
Localized vs. distributed FDMA
SC-FDMA – Peak-to-average Power Ratio (PAPR)




                Comparison of CCDF of PAPR for IFDMA, LFDMA, and OFDMA with M = 256 system subcarriers,
                N=64 subcarriers per users, and a = 0.5 roll factor; (a) QPSK; (b) 16-QAM

Source:
H.G. Myung, J.Lim, D.J. Goodman “SC-FDMA for Uplink Wireless Transmission”,
IEEE VEHICULAR TECHNOLOGY MAGAZINE, SEPTEMBER 2006
SC-FDMA parameterization (FDD and TDD)
LTE FDD
•Same as in downlink




TD-LTE
•Usage of UL depends on the selected UL-DL configuration (1 to 8), each
configuration offers a different number of subframes (1ms) for uplink
transmission,
•Parameterization for those subframes, means number of SC-FDMA symbols
same as for FDD and depending on CP,
                                                                     51
Improved UL Performance
            SC-FDMA compared to ordinary OFDM




Single-carrier transmission in uplink enables low PAPR that gives more 4 dB better link
   budget and reduced power consumption compared to OFDM
                                                                                  52
LTE Uplink SC-FDMA Physical Layer Parameters




                                               53
Physical Channel Processing



•   Scrambling: Scramble binary information
•   Modulation Mapper: Maps groups of 2, 4, or 6 bits onto QPSK, 16QAM, 64QAM symbol constellation points
•   Transform Precoder: Slices the input data vector into a set of symbol vectors and perform DFT transformation.
•   Resource Element Mapper: Maps the complex constellation points into the allocated virtual resource blocks
    and performs translation into physical resource blocks.
•   SC-FDMA Signal Generation: Performs the IFFT processing to generate final time domain for transmission.




                                                                                                             54
SC-FDMA and OFDMA Signal Chain
           Have a High Degree of Functional Commonality

                                                                          Cyclic
              Single Carrier S/P Symbol M-Point   Subcarrier
    Bit                                                        N-Point   Prefix &
                                                                                    RFE
              Constellation Convert                Mapping
  Stream        Mapping             Block DFT                   IDFT      Pulse
                                                                         Shaping

                                                                                          Channel




                                                    Freq                  Cyclic
  Bit      Const.   SC      S/P Symbol M-Point                 N-Point
           De-map Detector Convert Block IDFT      Domain                 Prefix    RFE
Stream                                                          DFT
                                                  Equalizer              Removal




                                        Functions Common to OFDMA and SC-FDMA

                                        SC-FDMA Only


                                                                                              55
OFDMA & MIMO


•OFDM and OFDMA                                   •Introduction to MIMO?
•LTE Downlink                                     •Different gains of multiple antenna systems
•OFDMA time-frequency multiplexing                •Shannon capacity of Wireless Channels
•LTE Spectrum Flexibility                         •Multiple antennas at one end
•LTE Frame Structure type 1 (FDD)                 •Capacity of MIMO Links
•LTE Frame Structure type 2(TDD)                  •Principles of Data transmission over MIMO Systems
•Introduction to SC-FDMA and UL frame structure   •Diversity using Space Time Block Codes
•How to generate SC-FDMA                          •Spatial Multiplexing
•How does SC-FDMA signal look like                •Wireless Channel Modeling
•SC-FDMA Signal Generation                        •System Level Issues
•SC-FDMA PAPR                                     •MIMO Transmission Scheme for HSPA and LTE
•SC-FDMA Parameterization
What is MIMO?
• MIMO: Multiple input – multiple output
• Given an arbitrary wireless communication system:
    – ”A link for which the transmitting end as well as the receiving end is
      equipped with multiple antenna elements”




• The signals on the transmit antennas and receive antennas are
  ”combined” to improve the quality of the communication (ber
  and/or bps)
• MIMO systems use space-time processing techniques
    – Time dimension is completed with the spatial dimension
Different gains of multiple antenna systems
• ”Smart antenna” gain
   – Beamforming to increase the average signal-to-noise (SNR)
     ratio through focussing energy into desired directions
• Spatial diversity gain
   – Receiving on multiple antenna elements reduces fading
     problems. The diversity order is defined by the number of
     decorrelated spatial branches
• Spatial multiplexing gain
   – A matrix channel is created, opening up the possibility of
     transmitting over several spatial modes of the matrix
     channel increasing the link throughput at no additional
     frequency, timer or power expenditure
Multiple antenna fundamentals
                                  Recovered data stream




                                                          Data
   Tx antenna ports




                       Channel



Data
                                 Rx antenna ports



         Data stream
Multiple antenna fundamentals
                                                             Recovered data stream




                                                                                     Data
   Tx antenna ports




Data                       N transmit antennas              Rx antenna ports


                           h11   h12   h13       h14
         Data stream                                   M receive
                       H   h21   h22   h23       h24
                                                       antennas
                           h31   h32   h33       h34

                           Channel matrix
Multiple antenna fundamentals
                                           Recovered data stream




                                                                   Data
   Tx antenna ports




                      A1
                           A2
                                A3
                                     A4
Data
                                          Rx antenna ports



         Data stream
Multiple antenna fundamentals
                    Spatial multiplexing                            Recovered data stream




                                                                                            Data
   Tx antenna ports




Data
                                                                Rx antenna ports


                                                        h11   h12     h13    h14
         Data stream
                             The different data     H   h21   h22     h23    h24
                           streams are divided in
                                   space
                                                        h31   h32     h33    h34

       rank(H) determines how many streams are possible to transmit
Multiple antenna fundamentals
                      Transmit diversity                              Recovered data stream




                                                                                              Data
   Tx antenna ports




                      A1
                           A2
                                A3
                                     A4
Data
                                                                     Rx antenna ports



         Data stream

                                               Redundancy:
                                          The data streams contain
                                               the same data
Multiple antenna fundamentals
                        Beamforming                                      Recovered data stream




                                                                                                 Data
   Tx antenna ports




                      A1
                           A2
                                A3
                                     A4
Data
                                                                        Rx antenna ports



         Data stream
                                             Only the best spatial
                                          channel is used to maximize
                                                      C/N
Fundamental limits of wireless transmission

• Shannon capacity of Wireless                       C    log 2 (1   )
  Channels:                                          C    log 2 (1    h )
                                                                         2


     – h is the unit power complex Gaussian
       amplitude of the channel
        • h is a random variable
                                                     C    log 2 (1   hh * )
     – Multiple antennas at one end:
                                                C    log 2 det I M       HH *
     – Capacity of MIMO Links:                                       N


• Average capacity Ca
                                                PC       Co     99 .9..9%
• Outage capacity Co


65                                 01.03.2012
Shannon capacity of Wireless Channels
       Ideal Rayleigh Channel
                                                              2
                                          C   log 2 (1    h )




                                      C   log 2 det I M       HH *
                                                          N




         C   log 2 (1   hh * )




66                       01.03.2012
Data transmission over MIMO systems
• Two main categories:
  – Data rate maximization
     • Sending as many independent signals as antennas
     • Spatial multiplexing
  – Diversity maximization
     • The individual streams can be encoded jointly
     • Protect against transmission errors caused by channel
       fading
     • Minimize the outage probability
Maximizing diversity with space-time
                   block codes
   •       Alamouti’s scheme:
            –       The block of symbols s0 and s1 is coded across time and space
                                                                                                                *
            –       Normalization factor ensures total energy to be the same the
                    case of one transmitter
                                                                                                       1 s0    s1
   •       Reception:
                                                                                              C                 *
            –       The receiver collects the observation, y, over two symbol                           2 s1   s0
                    periods



                             T
                                                                      ˆ         1 h0          h1
       s        s0      s1              h     h0     h1               H             *              *
                                                                                 2 h1             h0
                                                          n
                *
s0 ,        s                Tx0               h0                                   y0   y1       n h C n
                1

                                                              Rx
                                                                                    y0    *
                                                                                         y1
                                                                                              T
                                                                                                     ˆ
                                                                                                   n H s n
 s1, s
            *
            0                Tx1                h1
Spatial multiplexing
                               Y HC N
•   Extending the Space-
    Time Block Coding          C   H   Y
     – Transmitting
       independent data
       over different
       antennas
     – The receiver must
       un-mix the channel
     – Limited diversity
       benefit
Spatial multiplexing - decoding
• Zero-forcing (ZF)
                                                Y HC N
    – Inverting matrix H
    – Simple approach                           ˆ
                                                C H 1Y
    – Dependent on low-correlation in H

• Maximum likelihood (ML)
    – Optimum                                   ˆ      min   ˆ
    – Comparing all possible combination with   C   arg ˆ Y HC
                                                        C
      the observation
    – High complexity

• Nulling and cancelling
    – Matrix inversion in layers
    – Estimates one symbol, subtracts and
      continues decoding successively
Transmission scheme performance
• Same transmission
  rate

   – Alamouti

   – Spatial multiplexing
     – zero forcing

   – Spatial multiplexing
     – maximum
     likelihood

   – Combined STBC
     spatial multiplexing
OFDMA & MIMO


•OFDM and OFDMA                                   •Introduction to MIMO?
•LTE Downlink                                     •Different gains of multiple antenna systems
•OFDMA time-frequency multiplexing                •Shannon capacity of Wireless Channels
•LTE Spectrum Flexibility                         •Multiple antennas at one end
•LTE Frame Structure type 1 (FDD)                 •Capacity of MIMO Links
•LTE Frame Structure type 2(TDD)                  •Principles of Data transmission over MIMO Systems
•Introduction to SC-FDMA and UL frame structure   •Diversity using Space Time Block Codes
•How to generate SC-FDMA                          •Spatial Multiplexing
•How does SC-FDMA signal look like                •Wireless Channel Modeling
•SC-FDMA Signal Generation                        •System Level Issues
•SC-FDMA PAPR                                     •MIMO Transmission Scheme for HSPA and LTE
•SC-FDMA Parameterization
Wireless channel modelling
• The promise of high MIMO capacities largely relies on the
  decorrelation properties:
   – Between antennas
   – Full-rankness of the MIMO channel matrix H
       • E.g. spatial multiplexing becomes completely inefficient if the channel
         has rank 1

• Aim of channel modelling:
   – Get an understanding of what performance can be reasonably
     expected form MIMO systems
   – To provide the necessary tools to analyze the impact of selected
     antenna or propagation parameters
       • Spacing, frequency, antenna height..
   – To influence the system design in the best way
Wireless channel modelling
• Four approaches
  – Theoretical Models
     • E.g. the ”idealistic” channel matrix of perfectly uncorrelated
       (i.i.d.) random Gaussian elements
  – Heurestic Models
     • In practice, MIMO channels will not fall completely into any
       of the theoretical cases
  – Broadband Channels
     • Frequency selective fading is experienced a new MIMO
       matrix is obtained at each frequency/sub-band
  – Measured Channels
     • Validate the models, provide acceptance of MIMO systems
       into wireless standards
Theoretical channel models
• Ideal channel (i.i.d.):
    – Corresponds to a rich multipath
      environment

• Emphasizing the separate roles
    – Antenna correlation (transmit or receive)
    – Rank of the channel
        • Uncorrelated High Rank (UHR aka i.i.d.)
        • Correlated Low Rank (CLR)
             – Antennas are placed too close to each other, or
             – Too little angular spread at both transmitter
                                                                 H   g rx g tx u rx u*
                                                                            *
                                                                                     tx
               and receiver
        • Uncorrelated Low Rank (ULR)
             – ”pin-hole” model
                                                                 H   g rx g *
                                                                            tx
Heuristic channel models
• Display a wide range of MIMO
  channel behaviours through
  the use of as few relevant
  channel parameters as
  possible, with as much realism
  as possible
   – What is the typical capacity of a
     MIMO channel?
   – What are the key parameters
     governing capacity?
   – Under what simple conditions
     do we get full rank channel?
• The model parameters should
  be controllable or measurable
Antenna correlation at transmitter or receiver

                                                 H R1/r2dr H0
• A MIMO channel with correlated                       ,


  receive antennas:
  – For ”large” values of the angle spread
    and/or antenna spacing, R will
    converge to the identity matrix
  – For ”small” values of θr, dr, R becomes
                                              H R1/r 2dr H0R1/t 2dt
    rank deficient (eventually rank one)             ,          ,

    causing fully correlated fading
• Generalized model includes
  correlation on both sides:
The double scattering model:
             ”pinhole” channels




• Uncorrelated low rank:
   – Significant local scattering around both the BTS and the subscriber’s
     antennas
   – Local scatterer’s are considered as virtual receive antennas
       • When the virtual aperture is small, either on transmit or receive, the rank of
         the overall MIMO channel will fall
Broadband channels
• Frequency selective channels are
  experienced
• MIMO capacity benefits OFDM systems
  with MIMO
   – Additional paths contribute to the
     selectivity as well as a greater overall
     angular spread
   – Improving the average rank of the
     MIMO channel across frequencies


                                                H(f)
Measured channels

•     Channel matrix is measured using multiple antennas at transmitter and
      receiver
              – Results confirm the high level of MIMO capacity potential, at least in urban and
                suburban areas
              – Eigenvalue analysis                                SISO
                        •    A large number of the modes of MIMO channels can be exploited to transmit data


                        SNR mean value and difference                                             4x4
                                                                                                  P Kvadraturen 01 15 21
                   30                                                                800          MIMO


                                                                  Capacity Mbits/s
                                                 NLOS                                600
                   20
                             LOS
       dB




                                                                                     400
                   10                                                                                                         2x2
                                                                                     200
                                                                                                                              MIMO
                   0                                                                      0
                        0          200       400        600                                   0        200         400         600
                                 Route sample no.                                                    Route sample no.
                            RX= 10,14,12,16 TX= 2,6,1,5                                            Diversity gain, full CSI
    ity < C-sum)




                                                                                      0
                   1                                                                 10
                                                                 bility
System level issues:
   optimum use of multiple antennas
• Multiple antenna usage is not new in mobile systems:
   – Spatial diversity systems
• Different goals:
   – Beamforming is optimum using a large number of closely
     spaced antennas:
      • Directional beamforming imposes stringent limits on
        spacing, typically a half wavelength
      • Best performance in line-of-sight (LOS)
   – MIMO algorithms focusses on diversity or data rate
     maximization:
      • Antennas will use as much space as possible to realize
        decorrelation between antennas
      • Turning rich multipath into an advantage and lose the gain in LOS
        cases
MIMO in mobile broadband
•   A unfavourable aspect:
     –   Increased cost and size of the subscriber’s equipment
     –   Limits applicability on simple mobile devices

•   A better opportunity:
     –   Wireless LAN modems – tablets - laptops
MIMO transmission schemes for LTE
• LTE supports downlink                   LTE Transmission modes
  transmissions on one, two or four
  cell-specific antenna ports             1        Single eNB antenna
    – Up to two transport blocks can be   2        Tx diversity (SFBC)
      transmitted simultaneously on up
      to four layers                      3        Open-loop SM
                                          4        Closed-loop SM
• The use of multiple antennas in
  the DL of LTE comprises several         5        Multi-user MIMO
  modes                                   6        Beamforming
• The system adaptively switches          7        UE specific RS
  between each mode to obtain
  the best possible performance as
  the propagation conditions vary
Downlink multi-antenna support in
                LTE
• Up to 4x4 antennas on downlink                                 1                 Single eNB antenna
        – 8x8 on LTE-advanced                                    2                 Tx diversity (SFBC)
• Single-user schemes                                            3                 Open-loop SM
        – Transmit diversity (2)                                 4                 Closed-loop SM
        – Spatial multiplexing (3, 4)
                                                                 5                 Multi-user MIMO
        – Beamforming (6)
• Multi-user MIMO (5)                                            6                 Beamforming
• A common physical layer architecture:                          7                 UE specific RS

 code words                                 layers                                                antenna ports


                      Modulation                                     Resource element      OFDM signal
         Scrambling                                                      mapper
                       mapper                                                               generation
                                   Layer
                                                     Precoding
                                   mapper
                      Modulation                                     Resource element      OFDM signal
         Scrambling                                                      mapper
                       mapper                                                               generation
Downlink multi-antenna support in
                LTE
• Up to 4x4 antennas on downlink                                 1                 Single eNB antenna
        – 8x8 on LTE-advanced                                    2                 Tx diversity (SFBC)
• Single-user schemes                                            3                 Open-loop SM
        – Transmit diversity (2)                                 4                 Closed-loop SM
        – Spatial multiplexing (3, 4)
                                                                 5                 Multi-user MIMO
        – Beamforming (6)
• Multi-user MIMO (5)                                            6                 Beamforming
• A common physical layer architecture:                          7                 UE specific RS

 code words                                 layers                                                antenna ports


                      Modulation                                     Resource element      OFDM signal
         Scrambling                                                      mapper
                       mapper                                                               generation
                                   Layer
                                                     Precoding
                                   mapper
                      Modulation                                     Resource element      OFDM signal
         Scrambling                                                      mapper
                       mapper                                                               generation
Transmit Diversity with 2 Tx antennas
• Alamouti scheme
                  – Transmitted diversity streams are orthogonal:
                   Subcarrier (frequency)
 Port (antenna)




                     y 0 (1) y 0 (2)        x1   x2
                                             *    *
                     y1 (1) y1 (2)          x2   x1
                                                           x1 x2


                        Antenna port 0

                                                           -x2* x1*


                        Antenna port 1

                                                      OFDM subcarriers
Downlink multi-antenna support in LTE

• Up to 4x4 antennas on downlink                                 1                 Single eNB antenna
        – 8x8 on LTE-advanced                                    2                 Tx diversity (SFBC)
• Single-user schemes                                            3                 Open-loop SM
        – Transmit diversity (2)                                 4                 Closed-loop SM
        – Spatial multiplexing (3, 4)
                                                                 5                 Multi-user MIMO
        – Beamforming (6)
• Multi-user MIMO (5)                                            6                 Beamforming
• A common physical layer architecture:                          7                 UE specific RS

 code words                                 layers                                                antenna ports


                      Modulation                                     Resource element      OFDM signal
         Scrambling                                                      mapper
                       mapper                                                               generation
                                   Layer
                                                     Precoding
                                   mapper
                      Modulation                                     Resource element      OFDM signal
         Scrambling                                                      mapper
                       mapper                                                               generation
Downlink spatial multiplexing for 2x2 antennas

•    The number of codewords equals the transmission rank and codeword n is
     mapped to layer n
•    Rank one precoders are column subsets of the rank two precoders

                           1 0              1       1          1   1
                                   ,                       ,
                           0 1              1          1       j       j
•    Recommendations on transmission rank and which precoder matrix to use
     is obtained via feedback from the subscriber equipment (UE)
      – The base station (eNB) can override the rank recommended by the UE

•    Codeword to layer mapping:

                                       Codeword 1                  Codeword 2
           Rank 1                      Layer 1
           Rank 2                      Layer 1                     Layer 2
           Rank 3                      Layer 1                     Layer 2 and 3
           Rank 4                      Layer 1 and 2               Layer 3 and 4
Downlink multi-antenna support in
                LTE
• Up to 4x4 antennas on downlink                                 1                 Single eNB antenna
        – 8x8 on LTE-advanced                                    2                 Tx diversity (SFBC)
• Single-user schemes                                            3                 Open-loop SM
        – Transmit diversity (2)                                 4                 Closed-loop SM
        – Spatial multiplexing (3, 4)
                                                                 5                 Multi-user MIMO
        – Beamforming (6)
• Multi-user MIMO (5)                                            6                 Beamforming
• A common physical layer architecture:                          7                 UE specific RS

 code words                                 layers                                                antenna ports


                      Modulation                                     Resource element      OFDM signal
         Scrambling                                                      mapper
                       mapper                                                               generation
                                   Layer
                                                     Precoding
                                   mapper
                      Modulation                                     Resource element      OFDM signal
         Scrambling                                                      mapper
                       mapper                                                               generation
DL peak throughputs in LTE
                                                     64QAM Modulation




MIMO config

 4 layer
                                 Data rate (gross)

 2 layer                                                                                        326Mbps

                                                                                   245Mbps
               Peak Throughput




 1 layer                                                                163Mbps
                                                                                                172.8Mbps
                                                              82Mbps
                                               49Mbps                              129.6Mbps
                                   23Mbps
                                                                        86.4Mbps
                                                             43.2Mbps                           86.4Mbps
                                  10.4Mbps    25.9Mbps
                                                                                   64.8Mbps
                                                                        43.2Mbps
                                               13Mbps        21.6Mbps
                                   5.2Mbps


                                   1.4         3              5        10       15             20
                                                         Carrier Bandwidth (MHz)
Downlink MIMO for HSPA (3G)
• HSPA supports downlink closed-loop MIMO rank 2
Other multiple antenna schemes
• Multi-user (MU-) MIMO
  – Spatial multiplexing to different UEs in the same
    cell
  – Also called Spatial Division Multiple Access
    (SDMA)
Summary
•   MIMO is using multiple antennas at both transmitter and receiver ends to set up a
    wireless link

•   MIMO gains can be beamforming, diversity or spatial multiplexing

•   Wireless link capacity can be multiplied by min(M,N)

•   Data transmission exploits the spatial dimension by maximizing either data rate or
    diversity

•   Wireless channel modelling is a tool to get the necessary understanding of
    perfoemence and be atool to analyze the impact of the design

•   Optimum use of multiple antennas contain conflicting goals in the system
    design, especially when it comes to antenna sizes and design

•   Both HSPA and LTE enables practical use of MIMO
End of
15 December2012

  Thank You

See you again at
  16 December 2012

Weitere ähnliche Inhalte

Was ist angesagt?

OFDM Orthogonal Frequency Division Multiplexing
OFDM Orthogonal Frequency Division MultiplexingOFDM Orthogonal Frequency Division Multiplexing
OFDM Orthogonal Frequency Division MultiplexingAbdullaziz Tagawy
 
Satellite Multiple Access Schemes
Satellite Multiple Access SchemesSatellite Multiple Access Schemes
Satellite Multiple Access SchemesDileep Kadavarath
 
Introduction to Massive Mimo
Introduction to Massive MimoIntroduction to Massive Mimo
Introduction to Massive MimoAhmed Nasser Agag
 
OFDMA - Orthogonal Frequency Division Multiple Access PPT by PREM KAMAL
OFDMA - Orthogonal Frequency Division Multiple Access PPT by PREM KAMALOFDMA - Orthogonal Frequency Division Multiple Access PPT by PREM KAMAL
OFDMA - Orthogonal Frequency Division Multiple Access PPT by PREM KAMALprem kamal
 
Lte Presentation.Ppt
Lte Presentation.PptLte Presentation.Ppt
Lte Presentation.Pptvaimalik
 
Code Division Multiple Access- CDMA
Code Division Multiple Access- CDMA Code Division Multiple Access- CDMA
Code Division Multiple Access- CDMA ViVek Patel
 
OTN for Beginners
OTN for BeginnersOTN for Beginners
OTN for BeginnersMapYourTech
 
5G_NR_Overview_Architecture_and_Operating_Modes
5G_NR_Overview_Architecture_and_Operating_Modes5G_NR_Overview_Architecture_and_Operating_Modes
5G_NR_Overview_Architecture_and_Operating_ModesAalekh Jain
 
Orthogonal Frequency Division Multiplexing (OFDM)
Orthogonal Frequency Division Multiplexing (OFDM)Orthogonal Frequency Division Multiplexing (OFDM)
Orthogonal Frequency Division Multiplexing (OFDM)ashishsoni1505
 
5G NR DSS - Explained Well
5G NR DSS - Explained Well5G NR DSS - Explained Well
5G NR DSS - Explained Wellssk
 
Cell-Free architectures for 5G
Cell-Free architectures for 5GCell-Free architectures for 5G
Cell-Free architectures for 5GStefano Buzzi
 
Ofdm tutorial fuyun_ling_rev1
Ofdm tutorial fuyun_ling_rev1Ofdm tutorial fuyun_ling_rev1
Ofdm tutorial fuyun_ling_rev1Fuyun Ling
 
Info vista planet-5g nr
Info vista planet-5g nrInfo vista planet-5g nr
Info vista planet-5g nrDenmark Wilson
 

Was ist angesagt? (20)

OFDM Orthogonal Frequency Division Multiplexing
OFDM Orthogonal Frequency Division MultiplexingOFDM Orthogonal Frequency Division Multiplexing
OFDM Orthogonal Frequency Division Multiplexing
 
OFDM Basics
OFDM BasicsOFDM Basics
OFDM Basics
 
Ofdma
OfdmaOfdma
Ofdma
 
Satellite Multiple Access Schemes
Satellite Multiple Access SchemesSatellite Multiple Access Schemes
Satellite Multiple Access Schemes
 
Introduction to Massive Mimo
Introduction to Massive MimoIntroduction to Massive Mimo
Introduction to Massive Mimo
 
OFDMA - Orthogonal Frequency Division Multiple Access PPT by PREM KAMAL
OFDMA - Orthogonal Frequency Division Multiple Access PPT by PREM KAMALOFDMA - Orthogonal Frequency Division Multiple Access PPT by PREM KAMAL
OFDMA - Orthogonal Frequency Division Multiple Access PPT by PREM KAMAL
 
Lte Presentation.Ppt
Lte Presentation.PptLte Presentation.Ppt
Lte Presentation.Ppt
 
Code Division Multiple Access- CDMA
Code Division Multiple Access- CDMA Code Division Multiple Access- CDMA
Code Division Multiple Access- CDMA
 
Channel Estimation
Channel EstimationChannel Estimation
Channel Estimation
 
OTN for Beginners
OTN for BeginnersOTN for Beginners
OTN for Beginners
 
Wcdma
WcdmaWcdma
Wcdma
 
5G_NR_Overview_Architecture_and_Operating_Modes
5G_NR_Overview_Architecture_and_Operating_Modes5G_NR_Overview_Architecture_and_Operating_Modes
5G_NR_Overview_Architecture_and_Operating_Modes
 
Orthogonal Frequency Division Multiplexing (OFDM)
Orthogonal Frequency Division Multiplexing (OFDM)Orthogonal Frequency Division Multiplexing (OFDM)
Orthogonal Frequency Division Multiplexing (OFDM)
 
Gsm interview question
Gsm interview questionGsm interview question
Gsm interview question
 
Mimo
MimoMimo
Mimo
 
5G NR DSS - Explained Well
5G NR DSS - Explained Well5G NR DSS - Explained Well
5G NR DSS - Explained Well
 
Massive mimo
Massive mimoMassive mimo
Massive mimo
 
Cell-Free architectures for 5G
Cell-Free architectures for 5GCell-Free architectures for 5G
Cell-Free architectures for 5G
 
Ofdm tutorial fuyun_ling_rev1
Ofdm tutorial fuyun_ling_rev1Ofdm tutorial fuyun_ling_rev1
Ofdm tutorial fuyun_ling_rev1
 
Info vista planet-5g nr
Info vista planet-5g nrInfo vista planet-5g nr
Info vista planet-5g nr
 

Andere mochten auch

Evolution of Commercial Mobile Communications - GPREC TechTalk
Evolution of Commercial Mobile Communications - GPREC TechTalkEvolution of Commercial Mobile Communications - GPREC TechTalk
Evolution of Commercial Mobile Communications - GPREC TechTalkVenkateswar Reddy Melachervu
 
ET1470 - 3G4G Report
ET1470 - 3G4G ReportET1470 - 3G4G Report
ET1470 - 3G4G ReportEssam Khalid
 
Meaningful communications for mobile 2020
Meaningful communications for mobile 2020Meaningful communications for mobile 2020
Meaningful communications for mobile 2020itspeciation
 
Basic LTE overview - LTE for indonesia
Basic LTE overview - LTE for indonesiaBasic LTE overview - LTE for indonesia
Basic LTE overview - LTE for indonesiaToenof Moegan
 
4 g long term evolution introduction 18-jan-2014
4 g long term evolution introduction 18-jan-20144 g long term evolution introduction 18-jan-2014
4 g long term evolution introduction 18-jan-2014Wisawa Wongpang
 
Archi Modelling
Archi ModellingArchi Modelling
Archi Modellingdilane007
 
1 introduction to dsp processor 20140919
1 introduction to dsp processor 201409191 introduction to dsp processor 20140919
1 introduction to dsp processor 20140919Hans Kuo
 
Antenna course sofia_2015_lisi_lesson1_v03
Antenna course sofia_2015_lisi_lesson1_v03Antenna course sofia_2015_lisi_lesson1_v03
Antenna course sofia_2015_lisi_lesson1_v03Marco Lisi
 
4 G mobile technology
4 G mobile technology4 G mobile technology
4 G mobile technologyAman Jain
 
Digital Signal Processor evolution over the last 30 years
Digital Signal Processor evolution over the last 30 yearsDigital Signal Processor evolution over the last 30 years
Digital Signal Processor evolution over the last 30 yearsFrancois Charlot
 
DSP architecture
DSP architectureDSP architecture
DSP architecturejstripinis
 
Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...
Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...
Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...Rupesh Sharma
 
Communication Engineering - Chapter 6 - Noise
Communication Engineering - Chapter 6 - NoiseCommunication Engineering - Chapter 6 - Noise
Communication Engineering - Chapter 6 - Noisemkazree
 

Andere mochten auch (20)

Evolution of Commercial Mobile Communications - GPREC TechTalk
Evolution of Commercial Mobile Communications - GPREC TechTalkEvolution of Commercial Mobile Communications - GPREC TechTalk
Evolution of Commercial Mobile Communications - GPREC TechTalk
 
ET1470 - 3G4G Report
ET1470 - 3G4G ReportET1470 - 3G4G Report
ET1470 - 3G4G Report
 
4G - The mobile race to evolution
4G - The mobile race to evolution4G - The mobile race to evolution
4G - The mobile race to evolution
 
Meaningful communications for mobile 2020
Meaningful communications for mobile 2020Meaningful communications for mobile 2020
Meaningful communications for mobile 2020
 
Day two planning
Day two planningDay two planning
Day two planning
 
Basic LTE overview - LTE for indonesia
Basic LTE overview - LTE for indonesiaBasic LTE overview - LTE for indonesia
Basic LTE overview - LTE for indonesia
 
4 g long term evolution introduction 18-jan-2014
4 g long term evolution introduction 18-jan-20144 g long term evolution introduction 18-jan-2014
4 g long term evolution introduction 18-jan-2014
 
Mobile in 2020
Mobile in 2020Mobile in 2020
Mobile in 2020
 
4G Mobile Communications
4G Mobile Communications4G Mobile Communications
4G Mobile Communications
 
Archi Modelling
Archi ModellingArchi Modelling
Archi Modelling
 
1 introduction to dsp processor 20140919
1 introduction to dsp processor 201409191 introduction to dsp processor 20140919
1 introduction to dsp processor 20140919
 
Antenna course sofia_2015_lisi_lesson1_v03
Antenna course sofia_2015_lisi_lesson1_v03Antenna course sofia_2015_lisi_lesson1_v03
Antenna course sofia_2015_lisi_lesson1_v03
 
4 G mobile technology
4 G mobile technology4 G mobile technology
4 G mobile technology
 
Dsp ajal
Dsp  ajalDsp  ajal
Dsp ajal
 
Digital Signal Processor evolution over the last 30 years
Digital Signal Processor evolution over the last 30 yearsDigital Signal Processor evolution over the last 30 years
Digital Signal Processor evolution over the last 30 years
 
DSP architecture
DSP architectureDSP architecture
DSP architecture
 
Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...
Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...
Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...
 
Communication Engineering - Chapter 6 - Noise
Communication Engineering - Chapter 6 - NoiseCommunication Engineering - Chapter 6 - Noise
Communication Engineering - Chapter 6 - Noise
 
4 g technology
4 g technology4 g technology
4 g technology
 
LTE and 4G Executive Briefing 3Q 2009
LTE and 4G  Executive Briefing 3Q 2009LTE and 4G  Executive Briefing 3Q 2009
LTE and 4G Executive Briefing 3Q 2009
 

Ähnlich wie LTE Downlink OFDMA & MIMO Planning Guide

Ähnlich wie LTE Downlink OFDMA & MIMO Planning Guide (20)

3GPP – Long Term Evolution
3GPP – Long Term Evolution 3GPP – Long Term Evolution
3GPP – Long Term Evolution
 
How networks are build
How networks are buildHow networks are build
How networks are build
 
LTE Key Technologies
LTE Key TechnologiesLTE Key Technologies
LTE Key Technologies
 
5 g ran_jnn_atal_fdp
5 g ran_jnn_atal_fdp5 g ran_jnn_atal_fdp
5 g ran_jnn_atal_fdp
 
3 multiplexing-wdm
3 multiplexing-wdm3 multiplexing-wdm
3 multiplexing-wdm
 
optical time division multiplexing
optical time division multiplexingoptical time division multiplexing
optical time division multiplexing
 
implementation of 4G
implementation of 4Gimplementation of 4G
implementation of 4G
 
OFDM
OFDMOFDM
OFDM
 
Introduction to LTE
Introduction to LTEIntroduction to LTE
Introduction to LTE
 
Multi protocol label switching (mpls)
Multi protocol label switching (mpls)Multi protocol label switching (mpls)
Multi protocol label switching (mpls)
 
Insight into OFDM.ppt
Insight into OFDM.pptInsight into OFDM.ppt
Insight into OFDM.ppt
 
3G Systems
3G Systems3G Systems
3G Systems
 
Mobile Broadband
Mobile BroadbandMobile Broadband
Mobile Broadband
 
Fundamentals of Wimax
Fundamentals of WimaxFundamentals of Wimax
Fundamentals of Wimax
 
Slides day one
Slides   day oneSlides   day one
Slides day one
 
Day one 09 november 2012
Day one 09 november 2012Day one 09 november 2012
Day one 09 november 2012
 
Introduction to LTE
Introduction to LTEIntroduction to LTE
Introduction to LTE
 
Multi Carrier Modulation OFDM & FBMC
Multi Carrier Modulation OFDM & FBMCMulti Carrier Modulation OFDM & FBMC
Multi Carrier Modulation OFDM & FBMC
 
Ultra_Wide_Band_ppt
Ultra_Wide_Band_pptUltra_Wide_Band_ppt
Ultra_Wide_Band_ppt
 
Introduction to LTE
Introduction to LTEIntroduction to LTE
Introduction to LTE
 

Mehr von Arief Gunawan

Metaverse - Let's learn to understand when business becomes virtual and when ...
Metaverse - Let's learn to understand when business becomes virtual and when ...Metaverse - Let's learn to understand when business becomes virtual and when ...
Metaverse - Let's learn to understand when business becomes virtual and when ...Arief Gunawan
 
Technology Disruptions
Technology DisruptionsTechnology Disruptions
Technology DisruptionsArief Gunawan
 
Tutorial on Network Management and Security in Wireless Communications (Bandu...
Tutorial on Network Management and Security in Wireless Communications (Bandu...Tutorial on Network Management and Security in Wireless Communications (Bandu...
Tutorial on Network Management and Security in Wireless Communications (Bandu...Arief Gunawan
 
APWiMob 2014 (Bali, 28-30 August 2014) CFP
APWiMob 2014 (Bali, 28-30 August 2014) CFPAPWiMob 2014 (Bali, 28-30 August 2014) CFP
APWiMob 2014 (Bali, 28-30 August 2014) CFPArief Gunawan
 
Prof Ekram Hossain on DLT 2013 in Indonesia
Prof Ekram Hossain on DLT 2013 in IndonesiaProf Ekram Hossain on DLT 2013 in Indonesia
Prof Ekram Hossain on DLT 2013 in IndonesiaArief Gunawan
 
Day two 10 november 2012
Day two 10 november 2012Day two 10 november 2012
Day two 10 november 2012Arief Gunawan
 
IEEE Background presentation
IEEE Background  presentationIEEE Background  presentation
IEEE Background presentationArief Gunawan
 
Cloud and Ubiquitous Computing in Today's Era of Tera
Cloud and Ubiquitous Computing in Today's Era of TeraCloud and Ubiquitous Computing in Today's Era of Tera
Cloud and Ubiquitous Computing in Today's Era of TeraArief Gunawan
 
Cloud Computing: Peluang Bisnis dan Tantangan Regulasi
Cloud Computing: Peluang Bisnis dan Tantangan RegulasiCloud Computing: Peluang Bisnis dan Tantangan Regulasi
Cloud Computing: Peluang Bisnis dan Tantangan RegulasiArief Gunawan
 
Mobile Cloud @ Binus
Mobile Cloud @ BinusMobile Cloud @ Binus
Mobile Cloud @ BinusArief Gunawan
 
Small Cell @ IT Telkom
Small Cell @ IT TelkomSmall Cell @ IT Telkom
Small Cell @ IT TelkomArief Gunawan
 
03 Beginning Android Application Development
03 Beginning Android Application Development03 Beginning Android Application Development
03 Beginning Android Application DevelopmentArief Gunawan
 
02 BlackBerry Application Development
02 BlackBerry Application Development02 BlackBerry Application Development
02 BlackBerry Application DevelopmentArief Gunawan
 
Indonesia Pasar Empuk
Indonesia Pasar EmpukIndonesia Pasar Empuk
Indonesia Pasar EmpukArief Gunawan
 

Mehr von Arief Gunawan (20)

Metaverse - Let's learn to understand when business becomes virtual and when ...
Metaverse - Let's learn to understand when business becomes virtual and when ...Metaverse - Let's learn to understand when business becomes virtual and when ...
Metaverse - Let's learn to understand when business becomes virtual and when ...
 
Technology Disruptions
Technology DisruptionsTechnology Disruptions
Technology Disruptions
 
Tutorial on Network Management and Security in Wireless Communications (Bandu...
Tutorial on Network Management and Security in Wireless Communications (Bandu...Tutorial on Network Management and Security in Wireless Communications (Bandu...
Tutorial on Network Management and Security in Wireless Communications (Bandu...
 
APWiMob 2014 (Bali, 28-30 August 2014) CFP
APWiMob 2014 (Bali, 28-30 August 2014) CFPAPWiMob 2014 (Bali, 28-30 August 2014) CFP
APWiMob 2014 (Bali, 28-30 August 2014) CFP
 
Prof Ekram Hossain on DLT 2013 in Indonesia
Prof Ekram Hossain on DLT 2013 in IndonesiaProf Ekram Hossain on DLT 2013 in Indonesia
Prof Ekram Hossain on DLT 2013 in Indonesia
 
M2M Day Two
M2M Day TwoM2M Day Two
M2M Day Two
 
M2M Day One
M2M Day OneM2M Day One
M2M Day One
 
Day two 10 november 2012
Day two 10 november 2012Day two 10 november 2012
Day two 10 november 2012
 
Cloud Architecture
Cloud ArchitectureCloud Architecture
Cloud Architecture
 
Cloud Ecosystem
Cloud EcosystemCloud Ecosystem
Cloud Ecosystem
 
IEEE Background presentation
IEEE Background  presentationIEEE Background  presentation
IEEE Background presentation
 
Cloud and Ubiquitous Computing in Today's Era of Tera
Cloud and Ubiquitous Computing in Today's Era of TeraCloud and Ubiquitous Computing in Today's Era of Tera
Cloud and Ubiquitous Computing in Today's Era of Tera
 
Cloud Computing: Peluang Bisnis dan Tantangan Regulasi
Cloud Computing: Peluang Bisnis dan Tantangan RegulasiCloud Computing: Peluang Bisnis dan Tantangan Regulasi
Cloud Computing: Peluang Bisnis dan Tantangan Regulasi
 
Mobile Cloud @ Binus
Mobile Cloud @ BinusMobile Cloud @ Binus
Mobile Cloud @ Binus
 
Small Cell @ UI
Small Cell @ UISmall Cell @ UI
Small Cell @ UI
 
Small Cell @ IT Telkom
Small Cell @ IT TelkomSmall Cell @ IT Telkom
Small Cell @ IT Telkom
 
03 Beginning Android Application Development
03 Beginning Android Application Development03 Beginning Android Application Development
03 Beginning Android Application Development
 
02 BlackBerry Application Development
02 BlackBerry Application Development02 BlackBerry Application Development
02 BlackBerry Application Development
 
01 Mobile Jungle
01 Mobile Jungle01 Mobile Jungle
01 Mobile Jungle
 
Indonesia Pasar Empuk
Indonesia Pasar EmpukIndonesia Pasar Empuk
Indonesia Pasar Empuk
 

Kürzlich hochgeladen

Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Hiroshi SHIBATA
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality AssuranceInflectra
 
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...Alkin Tezuysal
 
Zeshan Sattar- Assessing the skill requirements and industry expectations for...
Zeshan Sattar- Assessing the skill requirements and industry expectations for...Zeshan Sattar- Assessing the skill requirements and industry expectations for...
Zeshan Sattar- Assessing the skill requirements and industry expectations for...itnewsafrica
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesKari Kakkonen
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Strongerpanagenda
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...itnewsafrica
 
QCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architecturesQCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architecturesBernd Ruecker
 
Scale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterScale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterMydbops
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Farhan Tariq
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
UiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPathCommunity
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersNicole Novielli
 
React Native vs Ionic - The Best Mobile App Framework
React Native vs Ionic - The Best Mobile App FrameworkReact Native vs Ionic - The Best Mobile App Framework
React Native vs Ionic - The Best Mobile App FrameworkPixlogix Infotech
 
Connecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfConnecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfNeo4j
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 

Kürzlich hochgeladen (20)

Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
 
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
 
Zeshan Sattar- Assessing the skill requirements and industry expectations for...
Zeshan Sattar- Assessing the skill requirements and industry expectations for...Zeshan Sattar- Assessing the skill requirements and industry expectations for...
Zeshan Sattar- Assessing the skill requirements and industry expectations for...
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examples
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...
 
QCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architecturesQCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architectures
 
Scale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterScale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL Router
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
UiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to Hero
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software Developers
 
React Native vs Ionic - The Best Mobile App Framework
React Native vs Ionic - The Best Mobile App FrameworkReact Native vs Ionic - The Best Mobile App Framework
React Native vs Ionic - The Best Mobile App Framework
 
Connecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfConnecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdf
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 

LTE Downlink OFDMA & MIMO Planning Guide

  • 1. Jakarta 15 December 2012 Arief Hamdani Gunawan OFDMA & MIMO Planning
  • 2. OFDMA & MIMO •OFDM and OFDMA •Introduction to MIMO? •LTE Downlink •Different gains of multiple antenna systems •OFDMA time-frequency multiplexing •Shannon capacity of Wireless Channels •LTE Spectrum Flexibility •Multiple antennas at one end •LTE Frame Structure type 1 (FDD) •Capacity of MIMO Links •LTE Frame Structure type 2(TDD) •Principles of Data transmission over MIMO Systems •Introduction to SC-FDMA and UL frame structure •Diversity using Space Time Block Codes •How to generate SC-FDMA •Spatial Multiplexing •How does SC-FDMA signal look like •Wireless Channel Modeling •SC-FDMA Signal Generation •System Level Issues •SC-FDMA PAPR •MIMO Transmission Scheme for HSPA and LTE •SC-FDMA Parameterization
  • 3. OFDMA & MIMO •OFDM and OFDMA •Introduction to MIMO? •LTE Downlink •Different gains of multiple antenna systems •OFDMA time-frequency multiplexing •Shannon capacity of Wireless Channels •LTE Spectrum Flexibility •Multiple antennas at one end •LTE Frame Structure type 1 (FDD) •Capacity of MIMO Links •LTE Frame Structure type 2(TDD) •Principles of Data transmission over MIMO Systems •Introduction to SC-FDMA and UL frame structure •Diversity using Space Time Block Codes •How to generate SC-FDMA •Spatial Multiplexing •How does SC-FDMA signal look like •Wireless Channel Modeling •SC-FDMA Signal Generation •System Level Issues •SC-FDMA PAPR •MIMO Transmission Scheme for HSPA and LTE •SC-FDMA Parameterization
  • 4. OFDM • Single Carrier Transmission (e.g. WCDMA) • Orthogonal Frequency Division Multiplexing
  • 5. OFDM Concept: Mengapa OFDM • Sinyal OFDM (Orthogonal Frequency Division Multiplexing) dapat mendukung kondisi NLOS (Non Line of Sight) dengan mempertahankan efisiensi spektral yang tinggi dan memaksimalkan spektrum yang tersedia. • Mendukung lingkungan propagasi multi-path. • Scalable bandwidth: menyediakan fleksibilitas dan potensial mengurangi CAPEX (capital expense). 5
  • 6. OFDM Concept: NLOS Performance 6
  • 7. OFDM Concept: Mutipath Propagation • Sinyal-sinyal multipath datang pada waktu yang berbeda dengan amplitudo dan pergeseran fasa yang berbeda, yang menyebabkan pelemahan dan penguatan daya sinyal yang diterima. • Propagasi multipath berpengaruh terhadap performansi link dan coverage. • Selubung (envelop) sinyal Rx berfluktuasi secara acak. 7
  • 8. OFDM Concept: FFT • Multi-carrier modulation/multiplexing technique • Available bandwidth is divided into several subchannels • Data is serial-to-parallel converted • Symbols are transmitted on different subcarriers 8
  • 9. OFDM Concept: IFFT Basic ideas valid for various multicarrier techniques: • OFDM: Orthogonal Frequency Division Multiplexing • OFDMA: Orthogonal Frequency Division Multiple Access 9
  • 10. OFDM Concept: Single-Carrier Vs. OFDM Single-Carrier Mode: OFDM Mode: • Serial Symbol Stream Used to Modulate a • Each Symbol Used to Modulate a Separate Single Wideband Carrier Sub-Carrier • Serial Datastream Converted to Symbols (Each Symbol Can Represented 1 or More Data Bits) 10
  • 11. OFDM Concept: Single-Carrier Vs. OFDM Single-Carrier Mode OFDM Mode • Dotted Area Represents Transmitted Spectrum • Solid Area Represents Receiver Input • OFDM mengatasi delay spread, multipath dan ISI (Inter Symbol Interference) secara efisien sehingga dapat meningkatkan throughput data rate yang lebih tinggi. • Memudahkan ekualisasi kanal terhadap sub-carrier OFDM individual, dibandingkan terhadap sinyal single-carrier yang memerlukan teknik ekualisasi adaptif lebih kompleks. 11
  • 12. OFDM Concept: Motivation for Multi-carrier Approaches • Multi-carrier transmission offers various advantages over traditional single carrier approaches: – Highly scalable – Simplified equalizer design in the frequency domain, also in cases of large delay spread – High spectrum density – Simplified the usage of MIMO – Good granularity to control user data rates – Robustness against timing errors • Weakness of multi-carrier systems: – Increased peak to average power ratio (PAPR) – Impairments due to impulsive noise – Impairments due to frequency errors 12
  • 13. OFDM Concept: Peak to Average Power Ratio (PAPR) • PAPR merupakan ukuran dari fluktuasi tepat sebelum amplifier. • PAPR sinyal hasil dari mapping PSK base band sebesar 0 dB karena semua symbol mempunyai daya yang sama. • Tetapi setelah dilakukan proses IDFT/IFFT, hasil superposisi dari dua atau lebih subcarrier dapat menghasilkan variasi daya dengan nilai peak yang besar. • Hal ini disebabkan oleh modulasi masing-masing subcarrier dengan frekuensi yang berbeda sehingga apabila beberapa subcarrier mempunyai fasa yang koheren, akan muncul amplituda dengan level yang jauh lebih besar dari daya sinyalnya. 13
  • 14. OFDM Concept: Peak to Average Power Ratio (PAPR) • Nilai PAPR yang besar pada OFDM membutuhkan amplifier dengan dynamic range yang lebar untuk mengakomodasi amplitudo sinyal. • Jika hal ini tidak terpenuhi maka akan terjadi distorsi linear yang menyebabkan subcarrier menjadi tidak lagi ortogonal dan pada akhirnya menurunkan performansi OFDM. 14
  • 15. Tipe Sub-Carrier OFDM Data Sub-carriers • Membawa simbol BPSK, QPSK, 16QAM, 64QAM Pilot Sub-carriers • Untuk memudahkan estimasi kanal dan demodulasi koheren pada receiver. Null Subcarrier • Guard Sub-carriers • DC Sub-carrier 15
  • 16. Guard Interval (Cyclic Prefix) • Untuk mengatasi multipath delay spread 16 • Guard Interval (cyclic prefix) : 1/4, 1/8, 1/16 or 1/32
  • 18. OFDM & OFDMA OFDM OFDMA • Semua subcarrier dialokasikan untuk satu • Subcarrier dialokasikan secara fleksibel user untuk banyak user tergantung pada kondisi • Misal : 802.16-2004 radio. • Misal : 802.16e-2005 dan 802.16m 18
  • 19. OFDM Parameters used in WiMAX 19
  • 20. Difference between OFDM and OFDMA • OFDM allocates users in time • OFDMA allocates users in time domain only and frequency domain
  • 22. LTE Downlink Physical Layer Design: Physical Resource The physical resource can be seen as a time-frequency grid • LTE uses OFDM (Orthogonal Frequency Division Multiplexing) as its radio technology in downlink • In the uplink LTE uses a pre=coded version of OFDM, SC-FDMA (Single Carrier Frequency Division Multiple Access) to reduced power consumption 22
  • 23. LTE Downlink Resource Grid • Suatu RB (resource block) terdiri dari 12 subcarrier pada suatu durasi slot 0.5 ms. • Satu subcarrier mempunyai BW 15 kHz, sehingga menjadi 180 kHz per RB. 23
  • 24. Parameters for DL generic frame structure Bandwidth (MHz) 1.25 2.5 5.0 10.0 15.0 20.0 Subcarrier bandwidth (kHz) 15 Physical resource block (PRB) 180 bandwidth (kHz) Number of available PRBs 6 12 25 50 75 100 24
  • 25. Parameters for DL generic frame structure Transmission BW 1.25 MHz 2.5 MHz 5 MHz 10 MHz 15 MHz 20 MHz Sub-frame duration 0.5 ms Sub-carrier spacing 15 kHz 192 MHz 7.68 MHz 15.36 MHz 23.04 MHz 30.72 MHz Sampling frequency (1/2x3.84 3.84 MHz (2x3.84 MHz) (4x3.84 MHz) (6x3.84 MHz) (8x3.84 MHz) MHz) FFT size 128 256 512 1024 1536 2048 OFDM sym per slot 7/6 (short/long CP) (4.69/9) x 6, (4.69/18) x 6, (4.69/36) x 6, (4.69/72) x 6, (4.69/108) x 6, (4.69/144) x 6, Short (5.21/10) x 1 (5.21/20) x 1 (5.21/40) x 1 (5.21/80) x 1 (5.21/120) x 1 (5.21/160) x 1 CP length (usec/ samples) (16.67/32) (16.67/64) (16.67/128) (16.67/256) (16.67/384) (16.67/512) Long 25
  • 26. LTE – Spectrum Flexibility • LTE physical layer supports any bandwidth from 1.4 MHz to 20 MHz in steps of 180 kHz (resource block). • Current LTE specification supports a subset of 6 different system bandwidths. • All UEs must support the maximum bandwidth of 20 MHz.
  • 28. Case Study LTE Signal Spectrum (20 MHz case) • The LTE standard uses an over-sized LTE. The actual used bandwidth is controlled by the number of used subcarriers. 15 kHz subcarrier spacing is the constant factor! • 18 MHz out of 20 MHz is used for data, 1 MHz on each side is used as guard band. • LTE used spectrum radio = 90% • WiMAX used spectrum radio = 82% 28
  • 29. TDD & FDD • Time Division Duplex (TDD) • Frequency Division Duplex (FDD) • Durasi Frame : 2.5 - 20ms 29
  • 30. Generic LTE Frame Structure type 1 (FDD) Tf = 307200 x Ts = 10 ms Tslot = 15360 x Ts = 0.5 ms • Untuk struktur generik, frame radio 10 ms dibagi dalam 20 slot yang sama berukuran 0.5 ms. • Suatu sub-frame terdiri dari 2 slot berturut-turut, sehingga satu frame radio berisi 10 sub-frame. • Ts menunjukkan unit waktu dasar yang sesuai dengan 30.72 MHz. • Struktur frame tipe-1 dapat digunakan untuk transmisi FDD dan TDD. 30
  • 31. LTE Frame Structure type 1 (FDD) • 2 slots form one subframe = 1 ms • For FDD, in each 10 ms interval, all 10 subframes are available for downlink transmission and uplink transmissions. • For TDD, a subframe is either located to downlink or uplink transmission. The 0th and 5th subframe in a radio frame is always allocated for downlink transmission. 31
  • 32. Downlink LTE Frame Structure type 1 (FDD)
  • 33. Generic LTE Frame Structure type 2 (TDD) • Struktur frame tipe-2 hanya digunakan untuk transmisi TDD. • Slot 0 dan DwPTSdisediakan untuk transmisi DL, sedangkan slot 1 dan UpPTS disediakan untuk transmisi UL. 33
  • 34. LTE Frame Structure type 2 (TDD) 34
  • 35. Mobile WiMAX Frame Structure 35
  • 36. LTE Frame Structure type 2 (TDD)
  • 37. DL Peak rates for E-UTRA FDD/TDD frame structure type 1 Downlink 64 QAM Assumptions Signal overhead for reference signals and control channel occupying one OFDM symbol Unit Mbps in 20 MHz b/s/Hz Requirement 100 5.0 2x2 MIMO 172.8 8.6 4x4 MIMO 326.4 16.3
  • 38. UL Peak rates for E-UTRA FDD/TDD frame structure type 1 Uplink Single TX UE Assumptions Signal overhead for reference signals and control channel occupying 2RB Unit Mbps in 20 MHz b/s/Hz Requirement 50 2.5 16QAM 57.6 2.9 64QAM 86.4 4.3
  • 39. Peak rates for E-UTRA TDD frame structure type 2 Downlink Uplink Single TX UE, Assumptions 64 QAM, R=1 64 QAM, R=1 Mbps Mbps Unit b/s/Hz b/s/Hz in 20 MHz in 20 MHz Requirement 100 5.0 50 2.5 2x2 MIMO in DL 142 7.1 62.7 3.1 4x4 MIMO in DL 270 13.5
  • 40. 3GPP TR 25.912 Technical Specification Group Radio Access Network; Feasibility study for evolved Universal Terrestrial Radio Access (UTRA) and Universal Terrestrial Radio Access Network (UTRAN) Release Freeze meeting Freeze date :: Rel-7 RP-33 2006-09-22 :: event version available RP-27 0.0.0 2005-03-03 RP-31 0.0.4 2006-03-20 draft 0.1.0 2006-03-20 draft 0.1.1 2006-03-20 post RP-31 0.1.2 2006-03-30 R3-51b 0.1.3 2006-05-02 draft post Shanghai 0.1.4 2006-05-22 draft 0.1.5 2006-07-10 draft 0.1.6 - draft 0.1.7 2006-05-29 RP-32 0.2.0 2006-06-12 RP-32 7.0.0 2006-06-23 RP-33 7.1.0 2006-10-18 RP-36 7.2.0 2007-08-13
  • 41. 3GPP TR 25.912 Technical Specification Group Radio Access Network; Feasibility study for evolved Universal Terrestrial Radio Access (UTRA) and Universal Terrestrial Radio Access Network (UTRAN) Rel-8 SP-42 2008-12-11 :: . ETSI event version available remarks RTR/TSGR- SP-42 8.0.0 2009-01-02 Upgraded unchanged from Rel-7 0025912v800 Upgraded to Rel-9 with no technical change to enable Rel-9 SP-46 2009-12-10 :: reference related to ITU-R IMT-Advanced submission ETSI (reference in 36.912). . event version available remarks RTR/TSGR- RP-45 9.0.0 2009-10-01 Technically identical to v8.0.0 0025912v900 Upgraded from previous Release without technical Rel-10 SP-51 2011-03-23 :: ETSI change . event version available remarks RTR/TSGR- SP-51 10.0.0 2011-04-06 Automatic upgrade from previous Release version 9.0.0 0025912va00 Upgraded from previous Release without technical Rel-11 SP-57 2012-09-12 :: ETSI change . event version available remarks SP-57 11.0.0 2012-09-26 Automatic upgrade from previous Release version 10.0.0 -
  • 42. OFDMA & MIMO •OFDM and OFDMA •Introduction to MIMO? •LTE Downlink •Different gains of multiple antenna systems •OFDMA time-frequency multiplexing •Shannon capacity of Wireless Channels •LTE Spectrum Flexibility •Multiple antennas at one end •LTE Frame Structure type 1 (FDD) •Capacity of MIMO Links •LTE Frame Structure type 2(TDD) •Principles of Data transmission over MIMO Systems •Introduction to SC-FDMA and UL frame structure •Diversity using Space Time Block Codes •How to generate SC-FDMA •Spatial Multiplexing •How does SC-FDMA signal look like •Wireless Channel Modeling •SC-FDMA Signal Generation •System Level Issues •SC-FDMA PAPR •MIMO Transmission Scheme for HSPA and LTE •SC-FDMA Parameterization
  • 43. LTE Uplink Transmission Scheme: SC-FDMA • Pemilihan OFDMA dianggap optimum untuk memenuhi persyaratan LTE pada arah downlink, tetapi OFDMA memiliki properti yang kurang menguntungkan pada arah Uplink. • Hal tsb terutama disebabkan oleh lemahnya peak-to-average power ratio (PAPR) dari sinyal OFDMA, yang mengakibatkan buruknya coverage uplink. • Oleh karena itu, skema transmisi Uplink LTE untuk mode FDD maupun TDD didasarkan pada SC-FDMA, yang mempunyai properti PAPR lebih baik. • Pemrosesan sinyal SC-FDMA memiliki beberapa kesamaan dengan pemrosesan sinyal OFDMA, sehingga parameter-parameter DL dan UL dapat diharmonisasi. • Untuk membangkitkan sinyal SC-FDMA, E-UTRA telah memilih DFT- spread-OFDM (DFT-s-OFDM). 43
  • 44. OFDMA and SC-FDMA • The symbol mapping in OFDM happens in the frequency domain. • In SC-FDMA, the symbol mapping is done in the time domain. • Appropriate subscriber mapping in the frequency domain allows to control the PAPR. • SC-FDMA enable frequency domain equalizer approaches like OFDMA 44
  • 45. Comparison of how OFDMA and SC-FDMA transmit a sequence of QPSK data symbols 45
  • 46. Comparison of how OFDMA and SC-FDMA transmit a sequence of QPSK data symbols Creating the time- domain waveform of an SC-FDMA symbol Baseband and shifted frequency domain representations of an SC-FDMA symbol 46
  • 47. How to generate SC-FDMA? • DFT “pre-coding” is performed on modulated data symbols to transform them into frequency domain, • Sub-carrier mapping allows flexible allocation of signal to available sub-carriers, • IFFT and cyclic prefix (CP) insertion as in OFDM, • Each subcarrier carries a portion of superposed DFT spread data symbols, therefore SC-FDMA is also referred to as DFT-spread- OFDM (DFT-s-OFDM).
  • 48. How does a SC-FDMA signal look like? • Similar to OFDM signal, but… – …in OFDMA, each sub-carrier only carries information related to one specific symbol, – …in SC-FDMA, each sub-carrier contains information of ALL transmitted symbols.
  • 49. SC-FDMA signal generation Localized vs. distributed FDMA
  • 50. SC-FDMA – Peak-to-average Power Ratio (PAPR) Comparison of CCDF of PAPR for IFDMA, LFDMA, and OFDMA with M = 256 system subcarriers, N=64 subcarriers per users, and a = 0.5 roll factor; (a) QPSK; (b) 16-QAM Source: H.G. Myung, J.Lim, D.J. Goodman “SC-FDMA for Uplink Wireless Transmission”, IEEE VEHICULAR TECHNOLOGY MAGAZINE, SEPTEMBER 2006
  • 51. SC-FDMA parameterization (FDD and TDD) LTE FDD •Same as in downlink TD-LTE •Usage of UL depends on the selected UL-DL configuration (1 to 8), each configuration offers a different number of subframes (1ms) for uplink transmission, •Parameterization for those subframes, means number of SC-FDMA symbols same as for FDD and depending on CP, 51
  • 52. Improved UL Performance SC-FDMA compared to ordinary OFDM Single-carrier transmission in uplink enables low PAPR that gives more 4 dB better link budget and reduced power consumption compared to OFDM 52
  • 53. LTE Uplink SC-FDMA Physical Layer Parameters 53
  • 54. Physical Channel Processing • Scrambling: Scramble binary information • Modulation Mapper: Maps groups of 2, 4, or 6 bits onto QPSK, 16QAM, 64QAM symbol constellation points • Transform Precoder: Slices the input data vector into a set of symbol vectors and perform DFT transformation. • Resource Element Mapper: Maps the complex constellation points into the allocated virtual resource blocks and performs translation into physical resource blocks. • SC-FDMA Signal Generation: Performs the IFFT processing to generate final time domain for transmission. 54
  • 55. SC-FDMA and OFDMA Signal Chain Have a High Degree of Functional Commonality Cyclic Single Carrier S/P Symbol M-Point Subcarrier Bit N-Point Prefix & RFE Constellation Convert Mapping Stream Mapping Block DFT IDFT Pulse Shaping Channel Freq Cyclic Bit Const. SC S/P Symbol M-Point N-Point De-map Detector Convert Block IDFT Domain Prefix RFE Stream DFT Equalizer Removal Functions Common to OFDMA and SC-FDMA SC-FDMA Only 55
  • 56. OFDMA & MIMO •OFDM and OFDMA •Introduction to MIMO? •LTE Downlink •Different gains of multiple antenna systems •OFDMA time-frequency multiplexing •Shannon capacity of Wireless Channels •LTE Spectrum Flexibility •Multiple antennas at one end •LTE Frame Structure type 1 (FDD) •Capacity of MIMO Links •LTE Frame Structure type 2(TDD) •Principles of Data transmission over MIMO Systems •Introduction to SC-FDMA and UL frame structure •Diversity using Space Time Block Codes •How to generate SC-FDMA •Spatial Multiplexing •How does SC-FDMA signal look like •Wireless Channel Modeling •SC-FDMA Signal Generation •System Level Issues •SC-FDMA PAPR •MIMO Transmission Scheme for HSPA and LTE •SC-FDMA Parameterization
  • 57. What is MIMO? • MIMO: Multiple input – multiple output • Given an arbitrary wireless communication system: – ”A link for which the transmitting end as well as the receiving end is equipped with multiple antenna elements” • The signals on the transmit antennas and receive antennas are ”combined” to improve the quality of the communication (ber and/or bps) • MIMO systems use space-time processing techniques – Time dimension is completed with the spatial dimension
  • 58. Different gains of multiple antenna systems • ”Smart antenna” gain – Beamforming to increase the average signal-to-noise (SNR) ratio through focussing energy into desired directions • Spatial diversity gain – Receiving on multiple antenna elements reduces fading problems. The diversity order is defined by the number of decorrelated spatial branches • Spatial multiplexing gain – A matrix channel is created, opening up the possibility of transmitting over several spatial modes of the matrix channel increasing the link throughput at no additional frequency, timer or power expenditure
  • 59. Multiple antenna fundamentals Recovered data stream Data Tx antenna ports Channel Data Rx antenna ports Data stream
  • 60. Multiple antenna fundamentals Recovered data stream Data Tx antenna ports Data N transmit antennas Rx antenna ports h11 h12 h13 h14 Data stream M receive H h21 h22 h23 h24 antennas h31 h32 h33 h34 Channel matrix
  • 61. Multiple antenna fundamentals Recovered data stream Data Tx antenna ports A1 A2 A3 A4 Data Rx antenna ports Data stream
  • 62. Multiple antenna fundamentals Spatial multiplexing Recovered data stream Data Tx antenna ports Data Rx antenna ports h11 h12 h13 h14 Data stream The different data H h21 h22 h23 h24 streams are divided in space h31 h32 h33 h34 rank(H) determines how many streams are possible to transmit
  • 63. Multiple antenna fundamentals Transmit diversity Recovered data stream Data Tx antenna ports A1 A2 A3 A4 Data Rx antenna ports Data stream Redundancy: The data streams contain the same data
  • 64. Multiple antenna fundamentals Beamforming Recovered data stream Data Tx antenna ports A1 A2 A3 A4 Data Rx antenna ports Data stream Only the best spatial channel is used to maximize C/N
  • 65. Fundamental limits of wireless transmission • Shannon capacity of Wireless C log 2 (1 ) Channels: C log 2 (1 h ) 2 – h is the unit power complex Gaussian amplitude of the channel • h is a random variable C log 2 (1 hh * ) – Multiple antennas at one end: C log 2 det I M HH * – Capacity of MIMO Links: N • Average capacity Ca PC Co 99 .9..9% • Outage capacity Co 65 01.03.2012
  • 66. Shannon capacity of Wireless Channels Ideal Rayleigh Channel 2 C log 2 (1 h ) C log 2 det I M HH * N C log 2 (1 hh * ) 66 01.03.2012
  • 67. Data transmission over MIMO systems • Two main categories: – Data rate maximization • Sending as many independent signals as antennas • Spatial multiplexing – Diversity maximization • The individual streams can be encoded jointly • Protect against transmission errors caused by channel fading • Minimize the outage probability
  • 68. Maximizing diversity with space-time block codes • Alamouti’s scheme: – The block of symbols s0 and s1 is coded across time and space * – Normalization factor ensures total energy to be the same the case of one transmitter 1 s0 s1 • Reception: C * – The receiver collects the observation, y, over two symbol 2 s1 s0 periods T ˆ 1 h0 h1 s s0 s1 h h0 h1 H * * 2 h1 h0 n * s0 , s Tx0 h0 y0 y1 n h C n 1 Rx y0 * y1 T ˆ n H s n s1, s * 0 Tx1 h1
  • 69. Spatial multiplexing Y HC N • Extending the Space- Time Block Coding C H Y – Transmitting independent data over different antennas – The receiver must un-mix the channel – Limited diversity benefit
  • 70. Spatial multiplexing - decoding • Zero-forcing (ZF) Y HC N – Inverting matrix H – Simple approach ˆ C H 1Y – Dependent on low-correlation in H • Maximum likelihood (ML) – Optimum ˆ min ˆ – Comparing all possible combination with C arg ˆ Y HC C the observation – High complexity • Nulling and cancelling – Matrix inversion in layers – Estimates one symbol, subtracts and continues decoding successively
  • 71. Transmission scheme performance • Same transmission rate – Alamouti – Spatial multiplexing – zero forcing – Spatial multiplexing – maximum likelihood – Combined STBC spatial multiplexing
  • 72. OFDMA & MIMO •OFDM and OFDMA •Introduction to MIMO? •LTE Downlink •Different gains of multiple antenna systems •OFDMA time-frequency multiplexing •Shannon capacity of Wireless Channels •LTE Spectrum Flexibility •Multiple antennas at one end •LTE Frame Structure type 1 (FDD) •Capacity of MIMO Links •LTE Frame Structure type 2(TDD) •Principles of Data transmission over MIMO Systems •Introduction to SC-FDMA and UL frame structure •Diversity using Space Time Block Codes •How to generate SC-FDMA •Spatial Multiplexing •How does SC-FDMA signal look like •Wireless Channel Modeling •SC-FDMA Signal Generation •System Level Issues •SC-FDMA PAPR •MIMO Transmission Scheme for HSPA and LTE •SC-FDMA Parameterization
  • 73. Wireless channel modelling • The promise of high MIMO capacities largely relies on the decorrelation properties: – Between antennas – Full-rankness of the MIMO channel matrix H • E.g. spatial multiplexing becomes completely inefficient if the channel has rank 1 • Aim of channel modelling: – Get an understanding of what performance can be reasonably expected form MIMO systems – To provide the necessary tools to analyze the impact of selected antenna or propagation parameters • Spacing, frequency, antenna height.. – To influence the system design in the best way
  • 74. Wireless channel modelling • Four approaches – Theoretical Models • E.g. the ”idealistic” channel matrix of perfectly uncorrelated (i.i.d.) random Gaussian elements – Heurestic Models • In practice, MIMO channels will not fall completely into any of the theoretical cases – Broadband Channels • Frequency selective fading is experienced a new MIMO matrix is obtained at each frequency/sub-band – Measured Channels • Validate the models, provide acceptance of MIMO systems into wireless standards
  • 75. Theoretical channel models • Ideal channel (i.i.d.): – Corresponds to a rich multipath environment • Emphasizing the separate roles – Antenna correlation (transmit or receive) – Rank of the channel • Uncorrelated High Rank (UHR aka i.i.d.) • Correlated Low Rank (CLR) – Antennas are placed too close to each other, or – Too little angular spread at both transmitter H g rx g tx u rx u* * tx and receiver • Uncorrelated Low Rank (ULR) – ”pin-hole” model H g rx g * tx
  • 76. Heuristic channel models • Display a wide range of MIMO channel behaviours through the use of as few relevant channel parameters as possible, with as much realism as possible – What is the typical capacity of a MIMO channel? – What are the key parameters governing capacity? – Under what simple conditions do we get full rank channel? • The model parameters should be controllable or measurable
  • 77. Antenna correlation at transmitter or receiver H R1/r2dr H0 • A MIMO channel with correlated , receive antennas: – For ”large” values of the angle spread and/or antenna spacing, R will converge to the identity matrix – For ”small” values of θr, dr, R becomes H R1/r 2dr H0R1/t 2dt rank deficient (eventually rank one) , , causing fully correlated fading • Generalized model includes correlation on both sides:
  • 78. The double scattering model: ”pinhole” channels • Uncorrelated low rank: – Significant local scattering around both the BTS and the subscriber’s antennas – Local scatterer’s are considered as virtual receive antennas • When the virtual aperture is small, either on transmit or receive, the rank of the overall MIMO channel will fall
  • 79. Broadband channels • Frequency selective channels are experienced • MIMO capacity benefits OFDM systems with MIMO – Additional paths contribute to the selectivity as well as a greater overall angular spread – Improving the average rank of the MIMO channel across frequencies H(f)
  • 80. Measured channels • Channel matrix is measured using multiple antennas at transmitter and receiver – Results confirm the high level of MIMO capacity potential, at least in urban and suburban areas – Eigenvalue analysis SISO • A large number of the modes of MIMO channels can be exploited to transmit data SNR mean value and difference 4x4 P Kvadraturen 01 15 21 30 800 MIMO Capacity Mbits/s NLOS 600 20 LOS dB 400 10 2x2 200 MIMO 0 0 0 200 400 600 0 200 400 600 Route sample no. Route sample no. RX= 10,14,12,16 TX= 2,6,1,5 Diversity gain, full CSI ity < C-sum) 0 1 10 bility
  • 81. System level issues: optimum use of multiple antennas • Multiple antenna usage is not new in mobile systems: – Spatial diversity systems • Different goals: – Beamforming is optimum using a large number of closely spaced antennas: • Directional beamforming imposes stringent limits on spacing, typically a half wavelength • Best performance in line-of-sight (LOS) – MIMO algorithms focusses on diversity or data rate maximization: • Antennas will use as much space as possible to realize decorrelation between antennas • Turning rich multipath into an advantage and lose the gain in LOS cases
  • 82. MIMO in mobile broadband • A unfavourable aspect: – Increased cost and size of the subscriber’s equipment – Limits applicability on simple mobile devices • A better opportunity: – Wireless LAN modems – tablets - laptops
  • 83. MIMO transmission schemes for LTE • LTE supports downlink LTE Transmission modes transmissions on one, two or four cell-specific antenna ports 1 Single eNB antenna – Up to two transport blocks can be 2 Tx diversity (SFBC) transmitted simultaneously on up to four layers 3 Open-loop SM 4 Closed-loop SM • The use of multiple antennas in the DL of LTE comprises several 5 Multi-user MIMO modes 6 Beamforming • The system adaptively switches 7 UE specific RS between each mode to obtain the best possible performance as the propagation conditions vary
  • 84. Downlink multi-antenna support in LTE • Up to 4x4 antennas on downlink 1 Single eNB antenna – 8x8 on LTE-advanced 2 Tx diversity (SFBC) • Single-user schemes 3 Open-loop SM – Transmit diversity (2) 4 Closed-loop SM – Spatial multiplexing (3, 4) 5 Multi-user MIMO – Beamforming (6) • Multi-user MIMO (5) 6 Beamforming • A common physical layer architecture: 7 UE specific RS code words layers antenna ports Modulation Resource element OFDM signal Scrambling mapper mapper generation Layer Precoding mapper Modulation Resource element OFDM signal Scrambling mapper mapper generation
  • 85. Downlink multi-antenna support in LTE • Up to 4x4 antennas on downlink 1 Single eNB antenna – 8x8 on LTE-advanced 2 Tx diversity (SFBC) • Single-user schemes 3 Open-loop SM – Transmit diversity (2) 4 Closed-loop SM – Spatial multiplexing (3, 4) 5 Multi-user MIMO – Beamforming (6) • Multi-user MIMO (5) 6 Beamforming • A common physical layer architecture: 7 UE specific RS code words layers antenna ports Modulation Resource element OFDM signal Scrambling mapper mapper generation Layer Precoding mapper Modulation Resource element OFDM signal Scrambling mapper mapper generation
  • 86. Transmit Diversity with 2 Tx antennas • Alamouti scheme – Transmitted diversity streams are orthogonal: Subcarrier (frequency) Port (antenna) y 0 (1) y 0 (2) x1 x2 * * y1 (1) y1 (2) x2 x1 x1 x2 Antenna port 0 -x2* x1* Antenna port 1 OFDM subcarriers
  • 87. Downlink multi-antenna support in LTE • Up to 4x4 antennas on downlink 1 Single eNB antenna – 8x8 on LTE-advanced 2 Tx diversity (SFBC) • Single-user schemes 3 Open-loop SM – Transmit diversity (2) 4 Closed-loop SM – Spatial multiplexing (3, 4) 5 Multi-user MIMO – Beamforming (6) • Multi-user MIMO (5) 6 Beamforming • A common physical layer architecture: 7 UE specific RS code words layers antenna ports Modulation Resource element OFDM signal Scrambling mapper mapper generation Layer Precoding mapper Modulation Resource element OFDM signal Scrambling mapper mapper generation
  • 88. Downlink spatial multiplexing for 2x2 antennas • The number of codewords equals the transmission rank and codeword n is mapped to layer n • Rank one precoders are column subsets of the rank two precoders 1 0 1 1 1 1 , , 0 1 1 1 j j • Recommendations on transmission rank and which precoder matrix to use is obtained via feedback from the subscriber equipment (UE) – The base station (eNB) can override the rank recommended by the UE • Codeword to layer mapping: Codeword 1 Codeword 2 Rank 1 Layer 1 Rank 2 Layer 1 Layer 2 Rank 3 Layer 1 Layer 2 and 3 Rank 4 Layer 1 and 2 Layer 3 and 4
  • 89. Downlink multi-antenna support in LTE • Up to 4x4 antennas on downlink 1 Single eNB antenna – 8x8 on LTE-advanced 2 Tx diversity (SFBC) • Single-user schemes 3 Open-loop SM – Transmit diversity (2) 4 Closed-loop SM – Spatial multiplexing (3, 4) 5 Multi-user MIMO – Beamforming (6) • Multi-user MIMO (5) 6 Beamforming • A common physical layer architecture: 7 UE specific RS code words layers antenna ports Modulation Resource element OFDM signal Scrambling mapper mapper generation Layer Precoding mapper Modulation Resource element OFDM signal Scrambling mapper mapper generation
  • 90. DL peak throughputs in LTE 64QAM Modulation MIMO config 4 layer Data rate (gross) 2 layer 326Mbps 245Mbps Peak Throughput 1 layer 163Mbps 172.8Mbps 82Mbps 49Mbps 129.6Mbps 23Mbps 86.4Mbps 43.2Mbps 86.4Mbps 10.4Mbps 25.9Mbps 64.8Mbps 43.2Mbps 13Mbps 21.6Mbps 5.2Mbps 1.4 3 5 10 15 20 Carrier Bandwidth (MHz)
  • 91. Downlink MIMO for HSPA (3G) • HSPA supports downlink closed-loop MIMO rank 2
  • 92. Other multiple antenna schemes • Multi-user (MU-) MIMO – Spatial multiplexing to different UEs in the same cell – Also called Spatial Division Multiple Access (SDMA)
  • 93. Summary • MIMO is using multiple antennas at both transmitter and receiver ends to set up a wireless link • MIMO gains can be beamforming, diversity or spatial multiplexing • Wireless link capacity can be multiplied by min(M,N) • Data transmission exploits the spatial dimension by maximizing either data rate or diversity • Wireless channel modelling is a tool to get the necessary understanding of perfoemence and be atool to analyze the impact of the design • Optimum use of multiple antennas contain conflicting goals in the system design, especially when it comes to antenna sizes and design • Both HSPA and LTE enables practical use of MIMO
  • 94. End of 15 December2012 Thank You See you again at 16 December 2012

Hinweis der Redaktion

  1. i.i.d. – independent and identically distributed
  2. i.i.d. – independent and identically distributed