SlideShare una empresa de Scribd logo
1 de 6
Republica bolibariana de venezuela
Ministerio del poder popular para educasion
   Instituto Universitarion de tecnologia
            Antoni jose de sucre
          Extencion_barquisimeto




               Algebra
Temas



        Relaciones Binarias

         Dominio y Rango

Representacion grafica de Relaciones

          Matriz Binaria

         Relacion Inversa

    Composicion de Relaciones




        Relaciones Binarias
Sean X e Y dos conjuntos. Una relación de X en Y es un subconjunto R del
producto cartesiano X x Y. El conjunto X es llamado conjunto de partida de la relación
R; e Y es el conjunto de llegada.
En el caso de que Y = X, en lugar de decir que R es una relación de X en X, diremos
que R es una relación en X.
Los elementos de R son pares ordenados. Si (x, y) es un elemento de R, en lugar de
escribir (x, y) Î R, escribiremos X R Y y leeremos: "X está relacionado con Y", según la
relación R".

Usaremos las letras R, S, T, etc., para representar relaciones.
Ejemplos
1. Si X = {a, b, c, d} e Y = {1, 2, 3, 4, 5}, una relación de X en Y es R = {(a, 2), (b, 1),
(b, 4), (c, 5)}
2. La siguiente relación S de R en R S = { (X, Y) Î R x R / X £ Y } es la relación
"menor o igual" en R. En este caso X S Y Û X £ Y
3. Sea U el conjunto referencial. La relación de inclusión en P(U) es la relación
R = { (A, B) Î P(U) x P(U) / A Ì B }

Dominio y Rango

U1t1img4.4.jpgDefinición: Sea R una relación de X en Y El Dominio de R es el
conjunto Dom(R) = { xÎ X / (x,y) Î R, para algún y Î Y} El Rango o imagen de R es el
conjunto Rang(R) = { y Î Y / (x, y) Î R, para algún x Î X }

En otros términos, el dominio y la imagen de una relación están constituidos por los
primeros y segundos componentes respectivamente de los pares ordenados que
constituyen la relación.

Ejemplo: La relación R= { (a, 2) , (b, 1) , (b, 4) , (c, 5) } tiene como dominio el
conjunto Dom (R) = { a, b, c} y rango a rang (R) = { 1, 2, 4, 5 }, ya que a,b y c están en
el primer componente de los pares ordenados y 1,2,4,5 están en el segund componente
de cada par.


Representacion grafica de Relaciones

U1t1img4.5.jpgExisten varias formas de representar gráficamente una relación. Las más
usuales son las siguientes: Representación Cartesiana, Matricial y Sagitaria.

Representación Cartesiana
Para obtener una representación cartesiana de una relación, se toman como abscisas los
elementos del conjunto de partida; y como ordenadas, el conjunto de llegada. En el
plano se marcan los pares ordenados que conforma la relación. Esta representación
alcanza su mayor importancia cuando el conjunto de partida y el de llegada son
subconjuntos de R.

Ejemplo 1

  si X={ a, b, c, d} e Y={ 1, 2, 3, 4, 5} una relación de X en Y

  R={ (a, 2), (b, 1), (b, 4), (c, 5) }

La representación cartesiana es el diagrama adjunto.

Representación Sagital

La representación sagital es la más popular de las representaciones. Ésta, igual que la
matricial, se usa cuando los conjuntos de partida y llegada son finitos. La representación
sagital se obtiene representando mediante diagramas de Venn el conjunto de partida y el
de llegada; uniendo luego, con flechas, los elementos relacionados. Así, la
representación sagital de la relación del ejemplo 1 es el siguiente diagrama:

Si el conjunto de partida y el de llegada coinciden, se usa un solo diagrama de Venn y
las flechas se representan interiormente. Así, el diagrama siguiente representa a la
siguiente relación en X={ a, b, c, d }

S= { (a, b), (b, b), (a, d), (b, c), ( d, d) }

Matriz Binaria

U1t1img4.6.jpgLa representación matricial se usa cuando los conjuntos de partida y de
llegada de la relación son conjuntos finitos con pocos elementos. Para obtener tal
representación, se asigna a cada elemento del conjunto de llegada una columna; y a cada
elemento del conjunto de partida, una fila.

Si (x, y) está en la relación, en la intersección de la fila que corresponde a x con la
columna que corresponde a Y, escribimos 1; y escribiremos 0 en caso contrario. La
configuración rectangular de ceros y unos que se obtiene se llama matriz binaria de la
relación.

Así, la matriz de la relación. R={(a, 2), (b, 1), (b, 4), (c, 5)}

Relacion Inversa

Sea R una relación de X en Y. Se llama relación inversa de R a la relación R-1 de Y en
X dada por:
R-1 = { (y, x) Î Y x X / (x, y) Î R} O sea, Y R-1 X Û X R Y
Es evidente que se verifica que: dom(R-1)= rang(R) 2. Rang( R-1)= dom( R)

Ejemplo
Si X= { a, b, c } Y= { 1, 2, 3, 4 } y R Ì X x Y es dado por

  R= { (a, 3) , (a, 1) , (b, 1) , (c, 4) }

  R-1= { (3, a) , ( 1, a) , (1, b) , (4, c) }

Además domR-1= { 1, 3, 4 } = rang( R) Rang(R-1)= { a, b, c } = dom( R)

El siguiente teorema nos dice que la inversa de la inversa de una relación es la misma
relación.
Teorema: Sea R una relación de X en Y. Entonces (R-1)-1 = R

Demostración
X(R-1)-1 Y Û Y R-1 X definición de relación inversa
 ÛXRY
 Luego, (R-1)-1 = R

Composicion de Relaciones

U1t1img4.9.jpgSea R una relación de X a Y y S una relación de Y en Z. Se llama
composición de R con S a la siguiente relación de X en Z:

X(S o R) Z Û $ YÎ Y, X R Y Ù Y S Z

En la composición de R con S, es necesario que el conjunto de llegada de R sea igual al
conjunto de partida de S. Este requisito puede ser aligerado exigiendo solamente que el
conjunto de llegada de R esté contenido en el conjunto de partida de S.

Observar también que el orden en que se escriben R y S en la composición S o R es
inverso al orden en que se dan R y S.

Ejemplo

 Sean X={ 2, 3, 5 } , Y= { a, b, c, d } y Z= { 1, 4, 9 }
 Si R y S son las relaciones de X en Y y de Y en Z respectivamente, dadas por
 R= { (2, a) , (2, d) , (3, c) , (5, a) } ,
 S= { (a, 9) , (b, 1) , (d, 4) }
 Entonces:
 SoR = { (2, 9) , (2, 4) , (5, 9) }

Teorema: Si R es una relación de X en Y, S es una relación de Y en Z y T es una
relación de Z en W, entonces:

To(SoR)=(ToS)oR




Demostración
X( T o ( S o R ) W Û $ z Î Z , x(S o R)z Ù z T w Û $ z Î Z, ( $ y Î Y, x R y Ù y S z) Ù
zTw

Û $ y Î Y, x R y Ù ($ z Î Z, y S z Ù z T w )$ y Î Y, x R y Ù y(T o S) w
Û x ( ( T o S ) o R )w
Luego, T o ( S o R ) = ( T o S ) o R

Teorema: Si R es una relación de X en Y y S en una relación de Y en Z, entonces (S o
R)-1 = R-1 o S-1

Demostración
 z ( S o R )-1 x Û x ( S o R )z
Û$yÎY,xRyÙySz
Û $ y Î Y , y R-1 x Ù z S-1 y
Û $ y Î Y, z S-1 y Ù y R-1 x
Û z( R-1 o S-1)x
Luego, ( S o R )-1 = R-1 o S-1

Problemas Propuestos

  Sea X={2, 3, 4} e Y= {4, 5, 6, 7} y R la relación de X en Y dada por: X R Y Û X
divide a Y

     Hallar los elementos de R.

     Representar a R matricialmente y sagitalmente.

     Hallar la relación inversa R-1 .

   Sean X= {1, 2, 3, 4, 5} , Y= {1, 4, 6, 9, 16, 25} y Z= {2, 3, 8, 25/2} Si R es la
relación de X en Y dada por Hallar

     S o R b. R-1 o S-1

Más contenido relacionado

La actualidad más candente

Relaciones Generales
Relaciones GeneralesRelaciones Generales
Relaciones Generales
nerdito
 
Relaciones binarias
Relaciones binariasRelaciones binarias
Relaciones binarias
Jesus Mora
 
Relaciones binarias
Relaciones binariasRelaciones binarias
Relaciones binarias
EnyelJox
 
Algebra: Monomios y Polinomios Parte III
Algebra: Monomios y Polinomios Parte IIIAlgebra: Monomios y Polinomios Parte III
Algebra: Monomios y Polinomios Parte III
Luis
 

La actualidad más candente (18)

Relaciones e intervalos n5
Relaciones e intervalos n5Relaciones e intervalos n5
Relaciones e intervalos n5
 
Relaciones binarias-1
Relaciones binarias-1Relaciones binarias-1
Relaciones binarias-1
 
Relaciones binarias
Relaciones binarias Relaciones binarias
Relaciones binarias
 
Relaciones
RelacionesRelaciones
Relaciones
 
Relaciones Generales
Relaciones GeneralesRelaciones Generales
Relaciones Generales
 
Relaciones
RelacionesRelaciones
Relaciones
 
Relaciones Binarias
Relaciones BinariasRelaciones Binarias
Relaciones Binarias
 
Matemáticas IV - Bloque 4
Matemáticas IV - Bloque 4Matemáticas IV - Bloque 4
Matemáticas IV - Bloque 4
 
Relaciones binarias
Relaciones binariasRelaciones binarias
Relaciones binarias
 
Relaciones binarias
Relaciones binariasRelaciones binarias
Relaciones binarias
 
SUCESIONES ARITMÉTICAS Y GEOMÉTRICAS
SUCESIONES ARITMÉTICAS Y GEOMÉTRICASSUCESIONES ARITMÉTICAS Y GEOMÉTRICAS
SUCESIONES ARITMÉTICAS Y GEOMÉTRICAS
 
Algebra: Monomios y Polinomios Parte III
Algebra: Monomios y Polinomios Parte IIIAlgebra: Monomios y Polinomios Parte III
Algebra: Monomios y Polinomios Parte III
 
Matematica discreta2011 unidad3_3ºparte_2011
Matematica discreta2011 unidad3_3ºparte_2011Matematica discreta2011 unidad3_3ºparte_2011
Matematica discreta2011 unidad3_3ºparte_2011
 
Sucesiones
SucesionesSucesiones
Sucesiones
 
Relacion de equivalencia
Relacion de equivalenciaRelacion de equivalencia
Relacion de equivalencia
 
Conjuntos ordenados
Conjuntos ordenadosConjuntos ordenados
Conjuntos ordenados
 
Relaciones de orden y equivalencia.walter scarsella
Relaciones de orden y equivalencia.walter scarsellaRelaciones de orden y equivalencia.walter scarsella
Relaciones de orden y equivalencia.walter scarsella
 
Relaciones binarias
Relaciones binariasRelaciones binarias
Relaciones binarias
 

Destacado

Automedicacion de pacientes con obesidad en la ciudad
Automedicacion de pacientes con obesidad en la  ciudadAutomedicacion de pacientes con obesidad en la  ciudad
Automedicacion de pacientes con obesidad en la ciudad
cipalospracticos
 
Modulo xi ce
Modulo xi  ceModulo xi  ce
Modulo xi ce
cepegperu
 
Diapositivas 35 42 datos (ingreso de datos)
Diapositivas 35 42 datos (ingreso de datos)Diapositivas 35 42 datos (ingreso de datos)
Diapositivas 35 42 datos (ingreso de datos)
HorizonteConsultores
 
Modelo para trabajo juegos tradicionales y populares
Modelo para trabajo juegos  tradicionales y  popularesModelo para trabajo juegos  tradicionales y  populares
Modelo para trabajo juegos tradicionales y populares
XORAGA
 
Paisajes de la argentina8 bis
Paisajes de la argentina8 bisPaisajes de la argentina8 bis
Paisajes de la argentina8 bis
graasuncion
 
Antonny parez
Antonny parezAntonny parez
Antonny parez
mejorao
 
Mesa PappsPresentación Paco Camaralles
Mesa PappsPresentación Paco CamarallesMesa PappsPresentación Paco Camaralles
Mesa PappsPresentación Paco Camaralles
semfycsemfyc
 
Características cinéticas de los hemoderivados: Importancia clínica, individu...
Características cinéticas de los hemoderivados: Importancia clínica, individu...Características cinéticas de los hemoderivados: Importancia clínica, individu...
Características cinéticas de los hemoderivados: Importancia clínica, individu...
cursohemoderivados
 

Destacado (20)

Automedicacion de pacientes con obesidad en la ciudad
Automedicacion de pacientes con obesidad en la  ciudadAutomedicacion de pacientes con obesidad en la  ciudad
Automedicacion de pacientes con obesidad en la ciudad
 
Modulo xi ce
Modulo xi  ceModulo xi  ce
Modulo xi ce
 
Mmmmm
MmmmmMmmmm
Mmmmm
 
Diapositivas 35 42 datos (ingreso de datos)
Diapositivas 35 42 datos (ingreso de datos)Diapositivas 35 42 datos (ingreso de datos)
Diapositivas 35 42 datos (ingreso de datos)
 
Modelo para trabajo juegos tradicionales y populares
Modelo para trabajo juegos  tradicionales y  popularesModelo para trabajo juegos  tradicionales y  populares
Modelo para trabajo juegos tradicionales y populares
 
Los animales
Los animalesLos animales
Los animales
 
Paisajes de la argentina8 bis
Paisajes de la argentina8 bisPaisajes de la argentina8 bis
Paisajes de la argentina8 bis
 
Modulo8
Modulo8Modulo8
Modulo8
 
Antonny parez
Antonny parezAntonny parez
Antonny parez
 
Trabajo final
Trabajo final   Trabajo final
Trabajo final
 
Qué es la cultura
Qué es la culturaQué es la cultura
Qué es la cultura
 
Manual de mantenimiento
Manual de mantenimientoManual de mantenimiento
Manual de mantenimiento
 
Mesa PappsPresentación Paco Camaralles
Mesa PappsPresentación Paco CamarallesMesa PappsPresentación Paco Camaralles
Mesa PappsPresentación Paco Camaralles
 
Globalizacion
GlobalizacionGlobalizacion
Globalizacion
 
Slide show loubriel
Slide show loubrielSlide show loubriel
Slide show loubriel
 
Características cinéticas de los hemoderivados: Importancia clínica, individu...
Características cinéticas de los hemoderivados: Importancia clínica, individu...Características cinéticas de los hemoderivados: Importancia clínica, individu...
Características cinéticas de los hemoderivados: Importancia clínica, individu...
 
Plan de ruta 2013
Plan de ruta 2013Plan de ruta 2013
Plan de ruta 2013
 
El turismo en el cuyo
El turismo en el cuyoEl turismo en el cuyo
El turismo en el cuyo
 
El estres
El estresEl estres
El estres
 
Sdf p4
Sdf p4Sdf p4
Sdf p4
 

Similar a Alexis romero

Relaciones binarias
Relaciones binariasRelaciones binarias
Relaciones binarias
Russmel
 
Chano saya
Chano sayaChano saya
Chano saya
Luis_R
 
Logica...
Logica...Logica...
Logica...
nerdito
 
Relaciones binarias power point
Relaciones binarias power pointRelaciones binarias power point
Relaciones binarias power point
raymel-2411
 
Tema 01 relaciones en ir
Tema 01 relaciones en irTema 01 relaciones en ir
Tema 01 relaciones en ir
349juan
 

Similar a Alexis romero (20)

Relaciones binarias
Relaciones binariasRelaciones binarias
Relaciones binarias
 
Chano saya
Chano sayaChano saya
Chano saya
 
Revista matematica2 (1)
Revista matematica2 (1)Revista matematica2 (1)
Revista matematica2 (1)
 
Logica...
Logica...Logica...
Logica...
 
Relaciones binarias power point
Relaciones binarias power pointRelaciones binarias power point
Relaciones binarias power point
 
Relaciones y grafos
Relaciones y grafosRelaciones y grafos
Relaciones y grafos
 
Guía de Estudio sobre Relaciones y Funciones
Guía de Estudio sobre Relaciones y FuncionesGuía de Estudio sobre Relaciones y Funciones
Guía de Estudio sobre Relaciones y Funciones
 
Relacion y grafos
Relacion y grafosRelacion y grafos
Relacion y grafos
 
Semana 1 Calculo I.pptx
Semana 1 Calculo I.pptxSemana 1 Calculo I.pptx
Semana 1 Calculo I.pptx
 
relacion de equivalencia
relacion de equivalencia relacion de equivalencia
relacion de equivalencia
 
Relaciones y Grafos
Relaciones y GrafosRelaciones y Grafos
Relaciones y Grafos
 
Naudys bouquet
Naudys bouquetNaudys bouquet
Naudys bouquet
 
7.1 relaciones
7.1 relaciones7.1 relaciones
7.1 relaciones
 
7.1 relaciones
7.1 relaciones7.1 relaciones
7.1 relaciones
 
Tema 01 relaciones en ir
Tema 01 relaciones en irTema 01 relaciones en ir
Tema 01 relaciones en ir
 
Algebra
AlgebraAlgebra
Algebra
 
Relaciones y Grafos
Relaciones y GrafosRelaciones y Grafos
Relaciones y Grafos
 
DOC-20230621-WA0002..pdf
DOC-20230621-WA0002..pdfDOC-20230621-WA0002..pdf
DOC-20230621-WA0002..pdf
 
Relaciones-y-funciones.pdf
Relaciones-y-funciones.pdfRelaciones-y-funciones.pdf
Relaciones-y-funciones.pdf
 
2014 iii 12 relaciones binarias
2014 iii 12 relaciones binarias2014 iii 12 relaciones binarias
2014 iii 12 relaciones binarias
 

Más de Alexis Romero P (14)

alexis romero
alexis romero alexis romero
alexis romero
 
Romero alexis
Romero alexisRomero alexis
Romero alexis
 
teleprocesos
teleprocesosteleprocesos
teleprocesos
 
uts barqusimeto un porc sobre la informatica y su historia
uts barqusimeto un  porc sobre la informatica y su historiauts barqusimeto un  porc sobre la informatica y su historia
uts barqusimeto un porc sobre la informatica y su historia
 
Alexis
AlexisAlexis
Alexis
 
Alexis
AlexisAlexis
Alexis
 
Alexis
AlexisAlexis
Alexis
 
CONTABILIDAD LIBROS AXILIARES
CONTABILIDAD LIBROS AXILIARES CONTABILIDAD LIBROS AXILIARES
CONTABILIDAD LIBROS AXILIARES
 
Trabajo le
Trabajo leTrabajo le
Trabajo le
 
Trabajo le
Trabajo leTrabajo le
Trabajo le
 
E l proceso de inferencia
E l proceso de inferenciaE l proceso de inferencia
E l proceso de inferencia
 
algebra
algebra algebra
algebra
 
Enfoques Subdesarrollo
Enfoques SubdesarrolloEnfoques Subdesarrollo
Enfoques Subdesarrollo
 
Algebra de boole circuitos y puertas logicas
Algebra de boole circuitos y puertas logicasAlgebra de boole circuitos y puertas logicas
Algebra de boole circuitos y puertas logicas
 

Alexis romero

  • 1. Republica bolibariana de venezuela Ministerio del poder popular para educasion Instituto Universitarion de tecnologia Antoni jose de sucre Extencion_barquisimeto Algebra
  • 2. Temas Relaciones Binarias Dominio y Rango Representacion grafica de Relaciones Matriz Binaria Relacion Inversa Composicion de Relaciones Relaciones Binarias
  • 3. Sean X e Y dos conjuntos. Una relación de X en Y es un subconjunto R del producto cartesiano X x Y. El conjunto X es llamado conjunto de partida de la relación R; e Y es el conjunto de llegada. En el caso de que Y = X, en lugar de decir que R es una relación de X en X, diremos que R es una relación en X. Los elementos de R son pares ordenados. Si (x, y) es un elemento de R, en lugar de escribir (x, y) Î R, escribiremos X R Y y leeremos: "X está relacionado con Y", según la relación R". Usaremos las letras R, S, T, etc., para representar relaciones. Ejemplos 1. Si X = {a, b, c, d} e Y = {1, 2, 3, 4, 5}, una relación de X en Y es R = {(a, 2), (b, 1), (b, 4), (c, 5)} 2. La siguiente relación S de R en R S = { (X, Y) Î R x R / X £ Y } es la relación "menor o igual" en R. En este caso X S Y Û X £ Y 3. Sea U el conjunto referencial. La relación de inclusión en P(U) es la relación R = { (A, B) Î P(U) x P(U) / A Ì B } Dominio y Rango U1t1img4.4.jpgDefinición: Sea R una relación de X en Y El Dominio de R es el conjunto Dom(R) = { xÎ X / (x,y) Î R, para algún y Î Y} El Rango o imagen de R es el conjunto Rang(R) = { y Î Y / (x, y) Î R, para algún x Î X } En otros términos, el dominio y la imagen de una relación están constituidos por los primeros y segundos componentes respectivamente de los pares ordenados que constituyen la relación. Ejemplo: La relación R= { (a, 2) , (b, 1) , (b, 4) , (c, 5) } tiene como dominio el conjunto Dom (R) = { a, b, c} y rango a rang (R) = { 1, 2, 4, 5 }, ya que a,b y c están en el primer componente de los pares ordenados y 1,2,4,5 están en el segund componente de cada par. Representacion grafica de Relaciones U1t1img4.5.jpgExisten varias formas de representar gráficamente una relación. Las más usuales son las siguientes: Representación Cartesiana, Matricial y Sagitaria. Representación Cartesiana
  • 4. Para obtener una representación cartesiana de una relación, se toman como abscisas los elementos del conjunto de partida; y como ordenadas, el conjunto de llegada. En el plano se marcan los pares ordenados que conforma la relación. Esta representación alcanza su mayor importancia cuando el conjunto de partida y el de llegada son subconjuntos de R. Ejemplo 1 si X={ a, b, c, d} e Y={ 1, 2, 3, 4, 5} una relación de X en Y R={ (a, 2), (b, 1), (b, 4), (c, 5) } La representación cartesiana es el diagrama adjunto. Representación Sagital La representación sagital es la más popular de las representaciones. Ésta, igual que la matricial, se usa cuando los conjuntos de partida y llegada son finitos. La representación sagital se obtiene representando mediante diagramas de Venn el conjunto de partida y el de llegada; uniendo luego, con flechas, los elementos relacionados. Así, la representación sagital de la relación del ejemplo 1 es el siguiente diagrama: Si el conjunto de partida y el de llegada coinciden, se usa un solo diagrama de Venn y las flechas se representan interiormente. Así, el diagrama siguiente representa a la siguiente relación en X={ a, b, c, d } S= { (a, b), (b, b), (a, d), (b, c), ( d, d) } Matriz Binaria U1t1img4.6.jpgLa representación matricial se usa cuando los conjuntos de partida y de llegada de la relación son conjuntos finitos con pocos elementos. Para obtener tal representación, se asigna a cada elemento del conjunto de llegada una columna; y a cada elemento del conjunto de partida, una fila. Si (x, y) está en la relación, en la intersección de la fila que corresponde a x con la columna que corresponde a Y, escribimos 1; y escribiremos 0 en caso contrario. La configuración rectangular de ceros y unos que se obtiene se llama matriz binaria de la relación. Así, la matriz de la relación. R={(a, 2), (b, 1), (b, 4), (c, 5)} Relacion Inversa Sea R una relación de X en Y. Se llama relación inversa de R a la relación R-1 de Y en X dada por: R-1 = { (y, x) Î Y x X / (x, y) Î R} O sea, Y R-1 X Û X R Y Es evidente que se verifica que: dom(R-1)= rang(R) 2. Rang( R-1)= dom( R) Ejemplo
  • 5. Si X= { a, b, c } Y= { 1, 2, 3, 4 } y R Ì X x Y es dado por R= { (a, 3) , (a, 1) , (b, 1) , (c, 4) } R-1= { (3, a) , ( 1, a) , (1, b) , (4, c) } Además domR-1= { 1, 3, 4 } = rang( R) Rang(R-1)= { a, b, c } = dom( R) El siguiente teorema nos dice que la inversa de la inversa de una relación es la misma relación. Teorema: Sea R una relación de X en Y. Entonces (R-1)-1 = R Demostración X(R-1)-1 Y Û Y R-1 X definición de relación inversa ÛXRY Luego, (R-1)-1 = R Composicion de Relaciones U1t1img4.9.jpgSea R una relación de X a Y y S una relación de Y en Z. Se llama composición de R con S a la siguiente relación de X en Z: X(S o R) Z Û $ YÎ Y, X R Y Ù Y S Z En la composición de R con S, es necesario que el conjunto de llegada de R sea igual al conjunto de partida de S. Este requisito puede ser aligerado exigiendo solamente que el conjunto de llegada de R esté contenido en el conjunto de partida de S. Observar también que el orden en que se escriben R y S en la composición S o R es inverso al orden en que se dan R y S. Ejemplo Sean X={ 2, 3, 5 } , Y= { a, b, c, d } y Z= { 1, 4, 9 } Si R y S son las relaciones de X en Y y de Y en Z respectivamente, dadas por R= { (2, a) , (2, d) , (3, c) , (5, a) } , S= { (a, 9) , (b, 1) , (d, 4) } Entonces: SoR = { (2, 9) , (2, 4) , (5, 9) } Teorema: Si R es una relación de X en Y, S es una relación de Y en Z y T es una relación de Z en W, entonces: To(SoR)=(ToS)oR Demostración
  • 6. X( T o ( S o R ) W Û $ z Î Z , x(S o R)z Ù z T w Û $ z Î Z, ( $ y Î Y, x R y Ù y S z) Ù zTw Û $ y Î Y, x R y Ù ($ z Î Z, y S z Ù z T w )$ y Î Y, x R y Ù y(T o S) w Û x ( ( T o S ) o R )w Luego, T o ( S o R ) = ( T o S ) o R Teorema: Si R es una relación de X en Y y S en una relación de Y en Z, entonces (S o R)-1 = R-1 o S-1 Demostración z ( S o R )-1 x Û x ( S o R )z Û$yÎY,xRyÙySz Û $ y Î Y , y R-1 x Ù z S-1 y Û $ y Î Y, z S-1 y Ù y R-1 x Û z( R-1 o S-1)x Luego, ( S o R )-1 = R-1 o S-1 Problemas Propuestos Sea X={2, 3, 4} e Y= {4, 5, 6, 7} y R la relación de X en Y dada por: X R Y Û X divide a Y Hallar los elementos de R. Representar a R matricialmente y sagitalmente. Hallar la relación inversa R-1 . Sean X= {1, 2, 3, 4, 5} , Y= {1, 4, 6, 9, 16, 25} y Z= {2, 3, 8, 25/2} Si R es la relación de X en Y dada por Hallar S o R b. R-1 o S-1