SlideShare ist ein Scribd-Unternehmen logo
1 von 111
Geophysical Investigations
Unit-II
• Geophysical methods of groundwater exploration
• Electrical resistivity method, Seismic refraction
method, determination of aquifer
thickness, determination of top of the sloping aquifer
Geophysical Investigations
• Geophysical investigations involve simple
methods of study made on the surface with the
aim of ascertaining subsurface detail. This is
achieved by measuring certain physical
properties and interpreting them mainly in
terms of subsurface geology.
Importance of Geophysical
Investigations
• Geophysical methods are gaining importance very
rapidly because of their success in solving a vast
variety of problems.
• These investigations are carried out quickly. This
means large area can be investigated in a reasonable
short period and hence time is saved.
• The geophysical instruments used in the field are
simple, portable and can be operated easily. This means
fieldwork is not laborious.
• Since the work is carried out quickly and only physical
observations are made. Without the use of
consumables (like Chemicals), it is economical too.
Importance of Geophysical
Investigations
Importance of Geophysical
Investigations
• Different interferences to suit different
purposes can be drawn from the same field
data, for example electric resistivity data can
be interpreted for knowing subsurface of rock
types, geological structures, groundwater
conditions, ore deposits depth to the bed
rock, etc. Hence the investigations are
multipurpose.
Applications of Geophysical
Investigations
• Geophysical explorations are
numerous, important and widely varied.
• Investigations aimed in solving problems of
regional geology.
• Investigations aimed at locating and estimating
economically important mineral deposits.
• Investigations aimed at locating and assessing
groundwater potential and its quality
• Investigations aimed at solving problems
connected with geology.
Classification of Geophysical
Methods
• There are many kinds of geophysical methods
of investigation. These method are
• Gravimetric method
• Magnetic method
• Electrical method
• Seismic method
• Radiometric method
• Geothermal method
Gravity Methods
• Gravity method represent a set of geophysical methods
which make use of the natural gravity field of the earth.
• Physical Property
• Density of the material is the controlling physical property.
• Principle
• In gravimetric method, the nature of distribution of
gravity g on the surface is analyzed. The gravity is
influenced positively if the causative body is heavier, larger
and occurs at a shallow depth.
• The gravimeter, used in relative gravity measurement is
a mass loaded spring. If the subsurface has a relatively
heavier body, the gravity pull is more there (+g) and the
spring extends becoming longer. If the subsurface has
relatively a lighter body there the gravity pull is less (-g)
and the spring contracts and become shorter.
Gravity Methods
Gravity Methods
Gravity Methods
Gravity Methods
• Thus in a particular region, if surface bodies
such as (ore deposits, coal seams and salt
domes) whose densities are different from the
surrounding rocks exist, the gravity field
deviates from the normal value then expected
from this deviations it is possible to locate the
inhomogeneous bodies in the surface.
Gravity Investigations
• Gravity investigations are useful in
• Exploration of ore deposits
• In solving regional geological problem
• In exploration of oil and natural gas deposits
• In solving some engineering problems
• Gravity investigations are carried out always during oil
and gas investigations because of their special success
in that area.
• In case of engineering problems, mapping of dam
sites, earthquake problems, tracing buried river
channels gravity method are considerably useful.
Gravity Investigations
Magnetic Methods
• Like gravity methods, these investigations also take advantage of
natural magnetic field associated with the earth and its relation to
subsurface geology.
Controlling property
• The main controlling physical property in magnetic method is
magnetic susceptibility.
Principle
• The magnetic methods are based on the fact that the magnetic bodies
present in the earth’s surface contribute to the magnetic field of the
earth.
• In general, when the magnetic field of the earth or one of its
components is measured on the surface, bodies possessing magnetic
moments different from those of the surrounding rocks contribute to
the deviations in the measured quantities. From the magnetic
anomalies, it is possible to locate anomalous objects.
Magnetic Methods
• The different parameters measured during magnetic
investigations are total magnetic field (intensity and
direction) and different space components
• Magnetic surveys have a certain inherit limitations.
Hence for unique and accurate solutions, magnetic
prospecting is often carried out along with the
gravity or other methods.
Magnetic Methods
Magnetic Methods
Application of magnetic investigations
• For delineation of large structural forms
favorable for the accumulation of oil and gases.
• For detection of and location of faults.
• For locating strongly magnetic iron ores.
• By virtue of their inexpensive nature and easy
operation, magnetic method are widely used for
detection of ore deposits, geological structures.
Magnetic Methods
Electrical Methods
• Among the methods different geophysical
• Methods electrical method are numerous and
more versatile, They are more popular because
they are successful in dealing with a variety of
problems like groundwater studies, subsurface
structure, and many others.
Controlling Properties
• In electromagnetic methods, electrical
conductivity, magmatic permeability and
dielectric constant of subsurface bodies are the
relevant properties.
Electrical Methods
Electrical Methods
Electrical Methods
Electrical Methods
Principle
• Electric methods are based on the fact that the
subsurface formation, structures, ore
deposits, etc. possess different electrical
properties. These differences are investigated
suitably and exploited to draw the necessary
conclusion.
Electrical methods
• Electrical resistivity
methods, electromagnetic methods, self-
potential methods and induce polarization
methods are the very important categories of
electrical methods.
Electrical Methods
Electrical Methods
Electrical Methods
Electrical Methods
• Electrical Resistivity Method
• Principle
• The electrical resistivity's of subsurface formation
vary from one another if they are inhomogeneous
and are studied with the help of resistivity
method. In the case of a resistive subsurface
body, current lines move away from it and in
the case of a conductive subsurface body, the
current lines move towards it.
Electrical Resistivity method
• Profiling and Sounding are two types of
resistivity investigations. Profiling is done to
detect lateral changes in resistivity. This
throws light on the change in the subsurface
lithology or structure from place to place.
• Sounding is done to determine the vertical
changes in resistivity. In other words, this
study reveals changes in lithology, etc. at a
particular place with increasing depth.
Electrical Resistivity method
Seismic Methods
• Controlling Properties
• Elastic property differences in rocks is the controlling
property.
• Principle
• Seismic method of study is based on the principle that
subsurface rock formations bear different elastic properties.
Because of this, the velocities of propagation of seismic waves
through the subsurface layers of earth, suffer reflection or
critical reflection arrive at the surface of the earth where they
are detected by geophones. From the time taken by the waves
to travel through the subsurface formation and from the
seismic wave velocities of the media. It is possible to
determine the depth of various elastic boundaries.
Seismic Methods
• With the help of geophones fixed at suitable
intervals on the ground, the different seismic
waves reaching the surface are recorded and
from the times of their arrival, time –distance
curves are constructed. The direct waves are
the first to reach the geophones placed
between point and the distance beyond the
point is called the critical distance.
Seismic Methods
• Depending upon whether reflected waves or
refracted waves are used in the
investigation, there are two types of
methods, namely, seismic reflection method
and seismic refraction method.
• A geophone an amplifier and a galvanometer
are the basic units required for reflected or
refracted wave registrations.
Seismic Methods
• Seismic refraction studies are effective for
depths more than 100m but are not suitable for
shallow exploration
• Refraction methods are employed for
investigating depths from close to the surface
to several kilometer deep. These methods are
also followed for the investigation of deeper crust
under seismic studies.
• Shallow seismic refraction have found effective
application in investigating the suitability of
foundation sites for civil engineering structures.
Geophone
39
• Seismic Refraction: the signal returns to the surface
by refraction at subsurface interfaces, and is recorded
at distances much greater than depth of investigation
• Seismic Reflection: the seismic signal is reflected
back to the surface at layer interfaces, and is recorded
at distances less than depth of investigation
Refraction Vs. Reflection
0
5
10
15
20
25
30
35
40
45
50
55
60
0 100 200 300 400 500 600
X = 150 ft
Ti=22ms
Distance (ft)
Time(ms)
Seismic Refraction
Radiometric Methods
• Controlling property
• Natural radioactivity of rocks and ores
• Principle
• The normal radioactivity is different in different types
of rocks. In igneous rocks, it decreases with decreasing
acidity. If rock contains radioactivity ore bodies, such
areas will exhibit very high radioactivity, giving rise to
anomalies during surveys. Thus based on the study of
radioactivity. It is not only possible to distinguish
different rock types but also to detect radioactive ore
bodies. The profile drawn clearly brings out the
subsurface lithology, structure and ore body.
Radiometric Methods
Radiometric Methods
Radiometric Methods
• Instruments used in radiometric prospecting are called
radiometer. A radiometer consist of three basic components
• (I) a detector
• (ii) an amplifier or recording unit.
• (iii) a power supply unit.
• Radiometric methods of investigation are useful in many ways
• Exploration of radioactive substances such as uranium and
thorium
• Location of some rare minerals
• Geological mapping
• Exploration of oil & gas
• Ground water studies
Geothermal Methods
• These methods are latest addition to the group of geophysical method.
Controlling Property
• Thermal conductivity
Principle
• Temperature distribution on the surface of the earth is due to three different
sources.
• They are
• (I) heat received from the sun;
• (ii) Heat conveyed from the hot interior of the earth due to conduction and
convection processes.
• (iii) heat due to decay of radioactive minerals in the crust of the earth.
• By applying the necessary corrections, it is possible to eliminate the solar heat
component and also the heat contribution of radioactive mineral decay. When
this is done, the residual values of temperature distribution on the earth’s
surface can be interpreted in terms of subsurface structures, rock formation and
ore bodies. This forms the principle and basis for geothermal method of
investigation.
Geothermal Methods
Geothermal Methods
• For the measurement of the temperature on the
surface of the earth, in shallow holes or in deep
bore holes, thermistors thermometers are used.
Other instruments such as crystal detectors and
radiometers are used.
• The geothermal methods find application in
deep structural studies, ore
deposits, groundwater studies, for delineation
of salt-water fresh water interfaces. Etc.
Geothermal Methods
Geothermal Methods
Electrical Resistivity Method
Electrical Resistivity Method
• All geological formations have a property
called electrical resistivity which determines
the ease with which electric current flows
through them. This resistivity is expressed in
the units of Ώm ohms meter and is indicated by
the symbol ᵖ
Electrical Resistivity Method
Electrical Resisitivity Measurements
Electrical Resisitivity
Measurements
Electrical Resisitivity Measurements
Electrical Resisitivity Measurements
Electrical Resistivity
Electromagnetic Conductivity (EM)
Magnetometer Surveys (MS)
Measure relative changes
in the earths' magnetic
field across a site.
Applicability of In-Situ Tests
0.0001 0.001 0.01 0.1 1 10 100 1000
Grain Size (mm)
In-SituTestMethod
SPT
CPT
DMT
PMT
VST
Geophysics
CLAYS SILTS SANDS GRAVELS Cobbles/ Boulders
Electrical Resistivity Method
Factors Influencing Electrical Resistivity
• The various geological factors which influence the electrical
resistivity are ; mineral content, compactness, moisture
content, salinity of moisture and texture of rocks.
• Mineral Content
• Most of the rock forming minerals have high resistivity, whereas
sulphide mineral possess a high conductivity.
• Moisture content
• Moisture may occur in the rock either as ground water or mere
moisture in the pore spaces. Then the resistivity decreases
considerably. But this change is not of the same order in all
formation.
• Further the resistivity of water is dependent on its salt content and
temperature.
Electrical Resistivity Method
Electrical Resistivity Method
Electrical Resistivity Method
Resistivity method and measurement of
Resistivity
• For the principle of the electrical resistivity
method of exploration and for measurement of
resistivity. A high resistive overburden is a
disadvantage for resistivity studies. This is so
because very little current penetrates the
ground which means that the investigation of
deeper layer is not possible.
Electrical Resistivity Method
Classification of Resistivity Methods
• The resistivity method are classified as profiling
type, sounding type, and potential type of
methods.
• Profiling method is used for measurement of
resistivity in lateral direction. Sounding type in
which measurement are made in vertical
direction. Potential methods are used in ore
prospecting and are of not of engineering
relevance.
Types of Electrode Configurations
• In profiling or in sounding, there is scope for electrode
arrangements to be made in different ways in the
field, and such arrangements are called”
Configurations”.
• The different electrode configurations are.
• Number of electrodes
• Mutual interval of electrodes
• Mode of arrangement of electrodes
• Whether the electrode are arranged symmetrical or
not with reference to the point of investigations.
Types of Electrode Configurations
(a) Symmetrical Electrode Configurations
• In this set-up, four electrode are placed in line (i.e..
collinear) on the surface, two for energizing the earth
and the other two for measuring the resultant voltage
(potential difference). These are arranged
symmetrically on either side of the point of
investigation. The Wenner and Schlumberger
configuration belong to this category.
The Wenner Configuration
• This was developed by Wenner in 1915. In this
configuration, the outer electrode C1 and C2, are used
to send current into the ground and the inner
electrode P1 and P2 are used to measure the potential.
The important feature of this set-up is that the distance
between any two successive electrodes is equal. The
apparent resistivity measured with the wenner array is
given by pa= 2 ∏a[∆v] /I ,
• where a= electrode separation,
• v= potential difference measured and
• I= current sent into the ground.
The Wenner Configuration
The Wenner Configuration
The Schlumberger configuration
• This was developed by Schlumberger in 1916.
This method measures the potential gradient
rather than the potential difference. For this
purpose, potential electrodes are kept at smaller
separation compared to the current .Here A
and B are the current electrode and M and N
are the potential electrodes. Electrodes. In
general MN≤1/5 AB relation is maintained in
this investigation.
The Schlumberger configuration
The Schlumberger configuration
Advantages and Disadvantages of Wenner and Schlumberger Arrays
The following table lists some of the strengths and weaknesses of Schlumberger and
Wenner sounding methods.
Schlumberger Wenner
Advantage Disadvantage Advantage Disadvantage
Need to move the two
potential electrodes only
for most readings. This
can significantly decrease
the time required to
acquire a sounding.
All four electrodes, two current and two
potential must be moved to acquire each
reading.
Because the potential electrode
spacing is small compared to
the current electrode
spacing, for large current
electrode spacing's very
sensitive voltmeters are
required.
Potential electrode
spacing increases as
current electrode
spacing increases.
Less sensitive
voltmeters are
required.
Because the potential
electrodes remain in fixed
location, the effects of
near-surface lateral
variations in resistivity are
reduced.
Because all electrodes are moved for
each reading, this method can be more
susceptible to near-
surface, lateral, variations in resistivity.
These near-surface lateral variations
could potentially be misinterpreted in
terms of depth variations in resistivity.
In general, interpretations
based on DC soundings will be
limited to simple, horizontally
layered structures.
In general, interpretations based on DC
soundings will be limited to
simple, horizontally layered structures.
Types of Electrode Configurations
• In the Wenner method, all electrode are shifted to
new position whenever the reading are taken. But in
the Schlumberger method, only current electrode are
shifted to new positions, while potential electrodes are
kept undisturbed for 3 to 4 readings. In the
Schlumberger method, since potential electrode
remain in the same place, the local inhomogenities will
have less bearing and this factor is desirable.
Double Distance Symmetrical Electrode
Configuration
• This is similar to the preceding one, but differ in
that it utilizes two more current electrode (A‟ and
B‟). The distance A‟O is greater than AO. By using
first the AB pair of current electrode pa is known.
next by using A‟ B‟ current electrode p‟a is known.
In both the operations, the potential electrode are
kept at the same place. The configuration is more
useful because it indicates the subsurface structure
in a clearer manner. This technique is also called
“multiseperation resistivity profiling”
Asymmetrical Electrode Configurations
(Used in profiling)
• The dipole-dipole, three electrode and central gradient configuration
belong to this group.
• Dipole-dipole type: In this, two dipoles are used, each consisting of
two similar electrodes. One pair is used for energizing and the other
pair for measuring potential difference. In this set-up the distance
between electrodes of a pair should be less than 5 to 6 times the
distance between the centres of two dipoles.
• Three electrode type: In this system, either one current or one
potential electrode is kept at infinity and the other three electrode
remain in their positions as in the symmetrical set-up. In
profiling, this set-up of three electrode is moved and pa reading are
obtained.
• Central Gradient type: In this system, the current electrodes remain
fixed, a large distance apart, and the potential electrodes are moved in
the central regions.
Dipole-dipole type
Circular or Radial Method
• When dykes, veins or joints set are present below
the surface, they cause differences in pa value
when measured in different directions. In such
cases, profiling is done along different directions.
In such cases, profiling is done along different
directions over the same point by using any one
configuration. When the corresponding value are
plotted along the different directions, the
asymmetry of the figure obtained gives the detail of
the strike and dip directions of the subsurface
inhomogenity.
Profiling
• This is also known as electrical profiling or
lateral electrical investigation. In this process,
the electrode array as a whole is moved from
place to place along the chosen traverse and the
pa value at each of these stations is determined.
The changes in pa indicates lateral variations in
the subsurface corresponding to a certain
depth. If the current- electrode separation is
more, then the depth of investigation is more
Profiling
• Profiling technique will be useful in detecting
only vertical or steeply inclined structures (such
as vertical beds, faults and dykes) because, only
then the measured value pa differ from place to
place. On the other hand, if the bed are
horizontal, the pa value will remain more or
less unchanged. This means the depth-wise
variation cannot be known.
Profiling
• Profiling may be carried out in one or a few traverses with the
intention of obtaining an outline of the geology or structure of an area
or in a grid pattern. In order to produce a resistivity map of the area
for proper profiling the following points should be kept in mind.
• Normally the interval between stations on a profile has to be chosen
depending on the minimum dimensions of the body to be
demarcated.
• The distance between profiles shall be two to five times the station
interval.
• The choice of configuration is also important factor. Asymmetrical
configuration are well suited to demark thin beds or dykes or vein,
which are vertical or steeply inclined. But in dealing with geological
mapping or thick beds, symmetrical configurations are preferable.
• The electrode spacing should be chosen such that the distance
between the current electrodes and potential electrodes permits the
investigation of targets at a desired depth.
Profiling
• The presentation of profiling data is done in two ways, i.e...
as profiling graphs and a contour maps. In the first case, the
pa is plotted as a function of the position of the centre of
electrode configuration of the ground. The midpoint of the
two potential electrode is designated as the station.
• In the second case, the pa value for a particular electrode
separation (i.e.. electrode interval) are noted against the
positions where they are measured. The map is then
contoured with the line along which pa value are the same.
Such map are called “ isoresistivity contour map”. The
contour interval can be fixed suitably.
• The interpretation of the profiling data is mainly of
qualitative importance.
Sounding
• This method is popularly known as vertical electrical
sounding. It is also described as „depth probing‟.
„electrical coring‟, etc. In this method, a number of pa
value are measured at the same place by increasing the
distance between the current electrodes each time after
taking reading. This kind of successive increasing in
distance makes the current penetrate more and more
deeply. Hence the change in pa value measured indicate
the vertical variations in the subsurface at the investigated
point. Thus the sounding technique is useful in
investigating only horizontal or gently inclined structures.
This is so because, under such conditions only pa value
shows variation when the successive readings are taken.
Planning of Sounding Studies
• As in the case of profiling, sounding also can be done either along a selected
traverse or in a grid pattern.
• The depth at which the bedrock occur will be known on interpretation at
each point of investigation.
• This also measures the thickness of loose overburden at the place of study.
However it is important to have proper planning, before taking up sounding
surveys to suit the aim of investigation.
• If the purpose is to obtain the bedrock profile along a selected area such as
along the axis of a proposed dam, sounding should be done at close intervals
along the direction. The bedrock depths at these points are plotted on a
graph to get the required bed rock profile.
• In the case of ground water studies, however, to avoid undesirable mutual
interferences of the well or borewells, they should be located mutually at
considerable distances. This means sounding studies should not be made at
closed distances. If the sounding is carried out in the grid pattern, the
bedrock contour can be drawn which will give more information relevant to
ground water conditions.
Application of Electrical Resistivity Studies
• From the civil engineering point of view the
„resistivity‟ investigations are useful in solving a
number of geological problems. They are
aimed at
• (i) foundation studies
• (ii) location of suitable building material
• (iii) ground water studies
Application of Electrical Resistivity
Studies
• Some of the specific problems are listed below
• To determine the thickness of loose overburden or the depth of
the bed at the site.
• To detect fractures.
• To ascertain the subsurface rock type and their compactness.
• To locate dykes or vein in foundation rocks.
• To know the strike and dip of rocks
• To detect structural defects like foundation rock
• To detect the structural defects like faults at the foundation site
• To locate suitable building material if required near the project site
• To know the ground water conditions.
Seismic Refraction Method
• In seismic method of prospecting, artificial exploration
are made and elastic deformation are induced in rock
present in the ground. The propagation of such
seismic(elastic) waves through the geological formation is
studied. Seismic waves are similar to light waves, since
prospecting can be done by making use of direct wave,
reflected waves or refracted waves. The two chief types
of seismic exploration are by seismic refraction methods
and seismic refraction methods. Compared to the light
waves, the seismic waves are extremely slow in their
velocities. The light have a velocity of 300,000 km/sec.
whereas the seismic wave velocity is only 0.31 km/s to
0.36 km/sec in air.
Factors Influencing Seismic Wave Velocities
• The geological factor which influence the seismic wave
velocities are mainly the composition of rocks, compaction of
rocks, and saturation of rocks with ground water.
• Composition
• The seismic wave velocities depend on the composition of
rocks. This may be inferred from the following example
• Rock type Seismic Wave Velocity
• Granite 4-6 km /sec
• Basalt 5-6.5 km/sec
• Sandstone 1.5 to 4 km /sec
• Limestone 2.5 to 6 km/sec
Factors Influencing Seismic Wave
Velocities
Compaction
• This refer to the porosity or fracturing or degree of
consolidation of rock. The velocity of seismic waves in
rocks is influenced considerably by this factor, the wave
velocity is more in denser/ compact formations. This
may be observed from the following data:
• Formation Seismic Wave Velocity
• Loose sand and soil 0.1 to 0.5 km /sec
• Moist Clay 1.5 to 2.5 km/sec
• Sandstone 1.5 to 4 km /sec
• Shale 2.1 to 4 km/sec
Factors Influencing Seismic Wave
Velocities
Saturation
• The Seismic wave velocity increases with the increase
of moisture content in the formation. For ex
• (I) Loose soil has a velocity of 0.1 to 0.5 km/sec, while
moist clay has a velocity of 1.5 to 2.5 km/sec
• (ii) Dry sand has a velocity of 0.15 to 0.4 km/sec,
while wet sand has a velocity of 0.6 to 1.8 km/sec.
Travel-Time Curves
• The Seismic studies are carried out by means
of “Travel Time Curves”. These are also
known as “ Travel Distance Curves” or
“Hodographs” These curves are obtained as
follows In the field, by using a number of
detectors at regular intervals, the timings
required for the seismic waves to reach the
different detectors from the shot point are
noted and plotted. Such points when joined
gives hodographs. These indicate the degree
of fracturing or weathering and the geological
boundaries in the subsurface.
Travel-Time Curves
Nature of Seismic Refraction
Studies
• The two common methods of seismic exploration are
known as “reflection Shooting” and “refraction
Shooting”. Refraction methods and others are better
suited to study lesser depths. Since exploration of civil
engineering interest are of the shallow type, only the
refraction and other methods are chosen for
description.
• The seismic refraction methods are based on the
phenomenon of total internal refraction of seismic
energy which, consequently is directed to travel along
the boundary. The refracted head wave then sends out
waves towards the surface which enables the
deciphering of the refraction boundaries. This is
possible only when the overlying layer are less dense
and underlying layer are more dense.
Types of Refraction Studies
• There are three types of refraction shooting
namely, fan shooting, arc shooting and profile
shooting. The difference between these
methods lies in the manner in which the
geophones are laid with respect to the location
of the shot point. While the first two methods
are followed for reconnaissance
investigations, the profile shooting is the most
common method followed for reconnaissance
or detailed studies
Instruments Used in Seismic Studies
• The basic components of seismic instruments
are meant to take into account the chief
functions involved in prospecting. These chief
functions are (i) detection of signal, (ii)
differentiation of signal followed by its
amplification, (iii) recording of that signal.
These functions are performed by the
geophones, amplifier and galvanometer.
Instruments Used in Seismic Studies
• The geophone (detector), which is planted in the
ground, picks up the signal and, depending on the
consequent ground displacement velocity (i.e. the
intensity of disturbances suffered by the geophones),
gives out a proportional voltage.
• This Voltage, after undergoing unwanted frequency
filtration, is amplified in electrical circuit (i.e.. signal).
The entire job is done by amplifier.
• The voltage is fed to the seismic galvanometer which has
the mechanism to give out a trace of the signal on
photographic paper. This photograph is the seismic
record which is used for interpretation.
Geophone
• The geophone consist of a casing, magnet, a
coil and its spring, of these either the magnet or
the coil is fixed permanently to the casing. The
other one, i.e.. either coil or magnet hangs
suspended by a spring.
• At the time of disturbance a relative movement
occurs proportional to the disturbances and
voltage is induced in the coil.
Geophone
Amplifier
• Actual ground movements caused by signals in
seismic prospecting are only of the order of a
few microns, therefore, the voltage obtained
from the geophone will be very small. The
purpose of amplifier is to magnify this voltage
millionfold if necessary. Simultaneously, the
amplifier also filters and suppresses the
unwanted or spurious signals.
Amplifier
Galvanometer
• The seismic galvanometer represents a very
complex system mainly comprising of the source
of light, mirror, magnet, galvanometer, oscillograph
and recording system.
• The galvanometer acts in conjunction with the
oscillograph (for marking time) and the recording
system. A light beam which is horizontal is focused
against the photograph. This paper moves
vertically downward and the light beam, as
controlled by the voltage, makes the mark on the
photopaper. Thus seismic record is produced.
Applications of Seismic Refraction
• Refraction methods are useful in many respect
such as oil exploration, prospecting for some
economic minerals, geological mapping, ground
water studies and bed-rock studies at
foundation sites of civil engineering projects
• In ground water studies, this method helps in
detecting fractured zones which have the
potential for ground water occurrence.
Thanks

Weitere ähnliche Inhalte

Was ist angesagt?

Geological site investigation for Civil Engineering Foundations
Geological site investigation for Civil Engineering FoundationsGeological site investigation for Civil Engineering Foundations
Geological site investigation for Civil Engineering FoundationsDr.Anil Deshpande
 
Gravity and magmetic method
Gravity and magmetic methodGravity and magmetic method
Gravity and magmetic methodShah Naseer
 
Seismic Refraction Test
Seismic Refraction TestSeismic Refraction Test
Seismic Refraction TestMaliha Mehr
 
GEOLOGICAL CONDITIONS NECESSARY FOR CONSTRUCTION OF DAMS
GEOLOGICAL CONDITIONS NECESSARY FOR CONSTRUCTION OF DAMSGEOLOGICAL CONDITIONS NECESSARY FOR CONSTRUCTION OF DAMS
GEOLOGICAL CONDITIONS NECESSARY FOR CONSTRUCTION OF DAMSLorevieOlaes
 
Tunnels and tunneling (Engineering Geology)
Tunnels and tunneling (Engineering Geology)Tunnels and tunneling (Engineering Geology)
Tunnels and tunneling (Engineering Geology)SudhanKumarSubedi
 
Fundamentals of engineering geology
Fundamentals of engineering geologyFundamentals of engineering geology
Fundamentals of engineering geologyWan Zuhairi Yaacob
 
Index properties of rock
Index properties of rockIndex properties of rock
Index properties of rockShah Naseer
 
Seismic Refraction Surveying
Seismic Refraction SurveyingSeismic Refraction Surveying
Seismic Refraction SurveyingAli Osman Öncel
 
Self Potential Method (Electrical Survey)
Self Potential Method (Electrical Survey)Self Potential Method (Electrical Survey)
Self Potential Method (Electrical Survey)SudhanKumarSubedi
 
Folding mechanisms
Folding mechanismsFolding mechanisms
Folding mechanismsGEOLOGY
 

Was ist angesagt? (20)

Presentation on geophysical methods
Presentation on geophysical methodsPresentation on geophysical methods
Presentation on geophysical methods
 
Scope of studying engineering geology
Scope of studying engineering geologyScope of studying engineering geology
Scope of studying engineering geology
 
Geological site investigation for Civil Engineering Foundations
Geological site investigation for Civil Engineering FoundationsGeological site investigation for Civil Engineering Foundations
Geological site investigation for Civil Engineering Foundations
 
Gravity and magmetic method
Gravity and magmetic methodGravity and magmetic method
Gravity and magmetic method
 
Geological Site Investigation Methods
Geological Site Investigation MethodsGeological Site Investigation Methods
Geological Site Investigation Methods
 
Seismic Refraction Test
Seismic Refraction TestSeismic Refraction Test
Seismic Refraction Test
 
Subsurface exploration
Subsurface exploration  Subsurface exploration
Subsurface exploration
 
GEOLOGICAL CONDITIONS NECESSARY FOR CONSTRUCTION OF DAMS
GEOLOGICAL CONDITIONS NECESSARY FOR CONSTRUCTION OF DAMSGEOLOGICAL CONDITIONS NECESSARY FOR CONSTRUCTION OF DAMS
GEOLOGICAL CONDITIONS NECESSARY FOR CONSTRUCTION OF DAMS
 
Rock failure criteria
Rock failure criteriaRock failure criteria
Rock failure criteria
 
Tunnels and tunneling (Engineering Geology)
Tunnels and tunneling (Engineering Geology)Tunnels and tunneling (Engineering Geology)
Tunnels and tunneling (Engineering Geology)
 
Introduction to Seismic Method
Introduction to Seismic Method Introduction to Seismic Method
Introduction to Seismic Method
 
Fundamentals of engineering geology
Fundamentals of engineering geologyFundamentals of engineering geology
Fundamentals of engineering geology
 
Structural Geology
Structural Geology Structural Geology
Structural Geology
 
Index properties of rock
Index properties of rockIndex properties of rock
Index properties of rock
 
Ground water exploration
Ground water explorationGround water exploration
Ground water exploration
 
Seismic Refraction Surveying
Seismic Refraction SurveyingSeismic Refraction Surveying
Seismic Refraction Surveying
 
Self Potential Method (Electrical Survey)
Self Potential Method (Electrical Survey)Self Potential Method (Electrical Survey)
Self Potential Method (Electrical Survey)
 
Geological Considerations - Dam
Geological Considerations - DamGeological Considerations - Dam
Geological Considerations - Dam
 
Folding mechanisms
Folding mechanismsFolding mechanisms
Folding mechanisms
 
Geology & its branches
Geology & its branchesGeology & its branches
Geology & its branches
 

Andere mochten auch

Geophysical methods of soil/Foundation testing
Geophysical methods of soil/Foundation testing Geophysical methods of soil/Foundation testing
Geophysical methods of soil/Foundation testing Pirpasha Ujede
 
1)methods of exploration
1)methods of exploration1)methods of exploration
1)methods of explorationjagadish108
 
Detection of Low-Speed Layer (Lvl) In Seismic Refraction Survey Using Combine...
Detection of Low-Speed Layer (Lvl) In Seismic Refraction Survey Using Combine...Detection of Low-Speed Layer (Lvl) In Seismic Refraction Survey Using Combine...
Detection of Low-Speed Layer (Lvl) In Seismic Refraction Survey Using Combine...iosrjce
 
Chapter 2 soil investigation
Chapter 2 soil investigationChapter 2 soil investigation
Chapter 2 soil investigationAmiRul AFiq
 
Soil exploration/Investigation method, purpose depth of exploration (Usefulse...
Soil exploration/Investigation method, purpose depth of exploration (Usefulse...Soil exploration/Investigation method, purpose depth of exploration (Usefulse...
Soil exploration/Investigation method, purpose depth of exploration (Usefulse...Make Mannan
 
site investigation
site investigationsite investigation
site investigationolvive1208
 
Study of tunnel engineering
Study of tunnel engineeringStudy of tunnel engineering
Study of tunnel engineeringAdil Shaikh
 

Andere mochten auch (9)

Geophysical methods of soil/Foundation testing
Geophysical methods of soil/Foundation testing Geophysical methods of soil/Foundation testing
Geophysical methods of soil/Foundation testing
 
1)methods of exploration
1)methods of exploration1)methods of exploration
1)methods of exploration
 
Soil Exploration
Soil ExplorationSoil Exploration
Soil Exploration
 
Detection of Low-Speed Layer (Lvl) In Seismic Refraction Survey Using Combine...
Detection of Low-Speed Layer (Lvl) In Seismic Refraction Survey Using Combine...Detection of Low-Speed Layer (Lvl) In Seismic Refraction Survey Using Combine...
Detection of Low-Speed Layer (Lvl) In Seismic Refraction Survey Using Combine...
 
Chapter 2 soil investigation
Chapter 2 soil investigationChapter 2 soil investigation
Chapter 2 soil investigation
 
Soil exploration/Investigation method, purpose depth of exploration (Usefulse...
Soil exploration/Investigation method, purpose depth of exploration (Usefulse...Soil exploration/Investigation method, purpose depth of exploration (Usefulse...
Soil exploration/Investigation method, purpose depth of exploration (Usefulse...
 
site investigation
site investigationsite investigation
site investigation
 
Study of tunnel engineering
Study of tunnel engineeringStudy of tunnel engineering
Study of tunnel engineering
 
Tunnel engineering
  Tunnel engineering  Tunnel engineering
Tunnel engineering
 

Ähnlich wie Geo-Physical Investigations

Geophysical investigation
Geophysical investigation Geophysical investigation
Geophysical investigation shruthiv19
 
Gravity Survey Method
Gravity Survey MethodGravity Survey Method
Gravity Survey MethodMANZIL NATH
 
Similarities between gravity and magnetics and application of different geoph...
Similarities between gravity and magnetics and application of different geoph...Similarities between gravity and magnetics and application of different geoph...
Similarities between gravity and magnetics and application of different geoph...Jyoti Khatiwada
 
Groundwater Investigation Techniques-Geophysical Methods
Groundwater Investigation Techniques-Geophysical MethodsGroundwater Investigation Techniques-Geophysical Methods
Groundwater Investigation Techniques-Geophysical MethodsGowri Prabhu
 
Ground water Survey and Water Quality
Ground water Survey and Water QualityGround water Survey and Water Quality
Ground water Survey and Water Qualitykeyur pansara
 
Geophysical studies
Geophysical studiesGeophysical studies
Geophysical studiesDr. M Prasad
 
lect 4- petroleum exploration- part1.pdf
lect 4- petroleum exploration- part1.pdflect 4- petroleum exploration- part1.pdf
lect 4- petroleum exploration- part1.pdftahahaider8
 
Geophysical Methods of Hydrocarbon Exploration
Geophysical Methods of Hydrocarbon ExplorationGeophysical Methods of Hydrocarbon Exploration
Geophysical Methods of Hydrocarbon ExplorationM.T.H Group
 
01 - Overview of Geophysical Methods.pptx
01 - Overview of Geophysical Methods.pptx01 - Overview of Geophysical Methods.pptx
01 - Overview of Geophysical Methods.pptxAgnikulakshatriyasan
 
Marine Geophysics
Marine GeophysicsMarine Geophysics
Marine GeophysicsHafez Ahmad
 
Applications Gravity survey Magnetic survey Electrical resistivity survey Sei...
Applications Gravity survey Magnetic survey Electrical resistivity survey Sei...Applications Gravity survey Magnetic survey Electrical resistivity survey Sei...
Applications Gravity survey Magnetic survey Electrical resistivity survey Sei...University of Azad Jammu & Kashmir
 
Geophysical methods brief summary
Geophysical methods brief summaryGeophysical methods brief summary
Geophysical methods brief summaryJyoti Khatiwada
 
Geothermal Energy: Unleashing Earth's Power: Harnessing Geothermal Energy for...
Geothermal Energy: Unleashing Earth's Power: Harnessing Geothermal Energy for...Geothermal Energy: Unleashing Earth's Power: Harnessing Geothermal Energy for...
Geothermal Energy: Unleashing Earth's Power: Harnessing Geothermal Energy for...Kalpajyoti Mazumdar
 
Webinar-ERI-complete.pdf
Webinar-ERI-complete.pdfWebinar-ERI-complete.pdf
Webinar-ERI-complete.pdfDhirendra56
 

Ähnlich wie Geo-Physical Investigations (20)

Geophysical investigation
Geophysical investigation Geophysical investigation
Geophysical investigation
 
Gravity Survey Method
Gravity Survey MethodGravity Survey Method
Gravity Survey Method
 
Similarities between gravity and magnetics and application of different geoph...
Similarities between gravity and magnetics and application of different geoph...Similarities between gravity and magnetics and application of different geoph...
Similarities between gravity and magnetics and application of different geoph...
 
Groundwater Investigation Techniques-Geophysical Methods
Groundwater Investigation Techniques-Geophysical MethodsGroundwater Investigation Techniques-Geophysical Methods
Groundwater Investigation Techniques-Geophysical Methods
 
Unit 5
Unit 5Unit 5
Unit 5
 
Ground water Survey and Water Quality
Ground water Survey and Water QualityGround water Survey and Water Quality
Ground water Survey and Water Quality
 
Geomagnetic method
Geomagnetic methodGeomagnetic method
Geomagnetic method
 
Gravity method report
Gravity method reportGravity method report
Gravity method report
 
Geophysical studies
Geophysical studiesGeophysical studies
Geophysical studies
 
lect 4- petroleum exploration- part1.pdf
lect 4- petroleum exploration- part1.pdflect 4- petroleum exploration- part1.pdf
lect 4- petroleum exploration- part1.pdf
 
Geophysical Methods of Hydrocarbon Exploration
Geophysical Methods of Hydrocarbon ExplorationGeophysical Methods of Hydrocarbon Exploration
Geophysical Methods of Hydrocarbon Exploration
 
01 - Overview of Geophysical Methods.pptx
01 - Overview of Geophysical Methods.pptx01 - Overview of Geophysical Methods.pptx
01 - Overview of Geophysical Methods.pptx
 
Marine Geophysics
Marine GeophysicsMarine Geophysics
Marine Geophysics
 
Applications Gravity survey Magnetic survey Electrical resistivity survey Sei...
Applications Gravity survey Magnetic survey Electrical resistivity survey Sei...Applications Gravity survey Magnetic survey Electrical resistivity survey Sei...
Applications Gravity survey Magnetic survey Electrical resistivity survey Sei...
 
Methods
MethodsMethods
Methods
 
Geophysical methods brief summary
Geophysical methods brief summaryGeophysical methods brief summary
Geophysical methods brief summary
 
Lecture-10.pptx
Lecture-10.pptxLecture-10.pptx
Lecture-10.pptx
 
Geothermal Energy: Unleashing Earth's Power: Harnessing Geothermal Energy for...
Geothermal Energy: Unleashing Earth's Power: Harnessing Geothermal Energy for...Geothermal Energy: Unleashing Earth's Power: Harnessing Geothermal Energy for...
Geothermal Energy: Unleashing Earth's Power: Harnessing Geothermal Energy for...
 
Webinar-ERI-complete.pdf
Webinar-ERI-complete.pdfWebinar-ERI-complete.pdf
Webinar-ERI-complete.pdf
 
Geotechnical investigation
Geotechnical investigationGeotechnical investigation
Geotechnical investigation
 

Mehr von GAURAV. H .TANDON

Suicide Prevention through Architecture (Building) and City Planning
Suicide Prevention through  Architecture (Building) and City PlanningSuicide Prevention through  Architecture (Building) and City Planning
Suicide Prevention through Architecture (Building) and City PlanningGAURAV. H .TANDON
 
Suicide Prevention through Architecture (Building) and City Planning
Suicide Prevention through  Architecture (Building) and City PlanningSuicide Prevention through  Architecture (Building) and City Planning
Suicide Prevention through Architecture (Building) and City PlanningGAURAV. H .TANDON
 
Digital Detoxing in Smart Cities
Digital Detoxing in Smart CitiesDigital Detoxing in Smart Cities
Digital Detoxing in Smart CitiesGAURAV. H .TANDON
 
Digital Detoxing in Smart Cities
Digital Detoxing in Smart CitiesDigital Detoxing in Smart Cities
Digital Detoxing in Smart CitiesGAURAV. H .TANDON
 
Crash for Cash-Organized Crime (COC).pptx
Crash for Cash-Organized Crime (COC).pptxCrash for Cash-Organized Crime (COC).pptx
Crash for Cash-Organized Crime (COC).pptxGAURAV. H .TANDON
 
Ecological Footprint (1).pptx
Ecological Footprint (1).pptxEcological Footprint (1).pptx
Ecological Footprint (1).pptxGAURAV. H .TANDON
 
The unethical practice of gift giving to doctors by pharma companies
The unethical practice of gift giving to doctors by pharma companiesThe unethical practice of gift giving to doctors by pharma companies
The unethical practice of gift giving to doctors by pharma companiesGAURAV. H .TANDON
 
Gamification of Smart Cities
Gamification of Smart Cities Gamification of Smart Cities
Gamification of Smart Cities GAURAV. H .TANDON
 
Collusion and Fraud Detection on Electronic Energy Meters
Collusion and Fraud Detection on Electronic Energy Meters Collusion and Fraud Detection on Electronic Energy Meters
Collusion and Fraud Detection on Electronic Energy Meters GAURAV. H .TANDON
 
Cyber Security in Smart Buildings
Cyber Security in Smart Buildings Cyber Security in Smart Buildings
Cyber Security in Smart Buildings GAURAV. H .TANDON
 

Mehr von GAURAV. H .TANDON (20)

Suicide Prevention through Architecture (Building) and City Planning
Suicide Prevention through  Architecture (Building) and City PlanningSuicide Prevention through  Architecture (Building) and City Planning
Suicide Prevention through Architecture (Building) and City Planning
 
Suicide Prevention through Architecture (Building) and City Planning
Suicide Prevention through  Architecture (Building) and City PlanningSuicide Prevention through  Architecture (Building) and City Planning
Suicide Prevention through Architecture (Building) and City Planning
 
Digital Detoxing in Smart Cities
Digital Detoxing in Smart CitiesDigital Detoxing in Smart Cities
Digital Detoxing in Smart Cities
 
Digital Detoxing in Smart Cities
Digital Detoxing in Smart CitiesDigital Detoxing in Smart Cities
Digital Detoxing in Smart Cities
 
Premerital Sceening .pptx
Premerital Sceening .pptxPremerital Sceening .pptx
Premerital Sceening .pptx
 
Polymath(Renaissance man)
Polymath(Renaissance man)Polymath(Renaissance man)
Polymath(Renaissance man)
 
Crash for Cash-Organized Crime (COC).pptx
Crash for Cash-Organized Crime (COC).pptxCrash for Cash-Organized Crime (COC).pptx
Crash for Cash-Organized Crime (COC).pptx
 
Voting Age .pptx
Voting Age .pptxVoting Age .pptx
Voting Age .pptx
 
Ecological Footprint (1).pptx
Ecological Footprint (1).pptxEcological Footprint (1).pptx
Ecological Footprint (1).pptx
 
Urban Heat Island Effect
Urban Heat Island EffectUrban Heat Island Effect
Urban Heat Island Effect
 
Communication Skills
Communication SkillsCommunication Skills
Communication Skills
 
The unethical practice of gift giving to doctors by pharma companies
The unethical practice of gift giving to doctors by pharma companiesThe unethical practice of gift giving to doctors by pharma companies
The unethical practice of gift giving to doctors by pharma companies
 
Compassionate Cities
Compassionate CitiesCompassionate Cities
Compassionate Cities
 
Gamification of Smart Cities
Gamification of Smart Cities Gamification of Smart Cities
Gamification of Smart Cities
 
Anti-Microbial Copper
Anti-Microbial Copper Anti-Microbial Copper
Anti-Microbial Copper
 
Smart Forest City
Smart Forest City Smart Forest City
Smart Forest City
 
Smart forest cities
Smart forest cities Smart forest cities
Smart forest cities
 
Automotive Hacking
Automotive Hacking Automotive Hacking
Automotive Hacking
 
Collusion and Fraud Detection on Electronic Energy Meters
Collusion and Fraud Detection on Electronic Energy Meters Collusion and Fraud Detection on Electronic Energy Meters
Collusion and Fraud Detection on Electronic Energy Meters
 
Cyber Security in Smart Buildings
Cyber Security in Smart Buildings Cyber Security in Smart Buildings
Cyber Security in Smart Buildings
 

Kürzlich hochgeladen

GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)cama23
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
Food processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsFood processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsManeerUddin
 

Kürzlich hochgeladen (20)

GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
Food processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsFood processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture hons
 

Geo-Physical Investigations

  • 2. • Geophysical methods of groundwater exploration • Electrical resistivity method, Seismic refraction method, determination of aquifer thickness, determination of top of the sloping aquifer
  • 3. Geophysical Investigations • Geophysical investigations involve simple methods of study made on the surface with the aim of ascertaining subsurface detail. This is achieved by measuring certain physical properties and interpreting them mainly in terms of subsurface geology.
  • 4. Importance of Geophysical Investigations • Geophysical methods are gaining importance very rapidly because of their success in solving a vast variety of problems. • These investigations are carried out quickly. This means large area can be investigated in a reasonable short period and hence time is saved. • The geophysical instruments used in the field are simple, portable and can be operated easily. This means fieldwork is not laborious. • Since the work is carried out quickly and only physical observations are made. Without the use of consumables (like Chemicals), it is economical too.
  • 6. Importance of Geophysical Investigations • Different interferences to suit different purposes can be drawn from the same field data, for example electric resistivity data can be interpreted for knowing subsurface of rock types, geological structures, groundwater conditions, ore deposits depth to the bed rock, etc. Hence the investigations are multipurpose.
  • 7. Applications of Geophysical Investigations • Geophysical explorations are numerous, important and widely varied. • Investigations aimed in solving problems of regional geology. • Investigations aimed at locating and estimating economically important mineral deposits. • Investigations aimed at locating and assessing groundwater potential and its quality • Investigations aimed at solving problems connected with geology.
  • 8. Classification of Geophysical Methods • There are many kinds of geophysical methods of investigation. These method are • Gravimetric method • Magnetic method • Electrical method • Seismic method • Radiometric method • Geothermal method
  • 9. Gravity Methods • Gravity method represent a set of geophysical methods which make use of the natural gravity field of the earth. • Physical Property • Density of the material is the controlling physical property. • Principle • In gravimetric method, the nature of distribution of gravity g on the surface is analyzed. The gravity is influenced positively if the causative body is heavier, larger and occurs at a shallow depth. • The gravimeter, used in relative gravity measurement is a mass loaded spring. If the subsurface has a relatively heavier body, the gravity pull is more there (+g) and the spring extends becoming longer. If the subsurface has relatively a lighter body there the gravity pull is less (-g) and the spring contracts and become shorter.
  • 13.
  • 14. Gravity Methods • Thus in a particular region, if surface bodies such as (ore deposits, coal seams and salt domes) whose densities are different from the surrounding rocks exist, the gravity field deviates from the normal value then expected from this deviations it is possible to locate the inhomogeneous bodies in the surface.
  • 15. Gravity Investigations • Gravity investigations are useful in • Exploration of ore deposits • In solving regional geological problem • In exploration of oil and natural gas deposits • In solving some engineering problems • Gravity investigations are carried out always during oil and gas investigations because of their special success in that area. • In case of engineering problems, mapping of dam sites, earthquake problems, tracing buried river channels gravity method are considerably useful.
  • 17. Magnetic Methods • Like gravity methods, these investigations also take advantage of natural magnetic field associated with the earth and its relation to subsurface geology. Controlling property • The main controlling physical property in magnetic method is magnetic susceptibility. Principle • The magnetic methods are based on the fact that the magnetic bodies present in the earth’s surface contribute to the magnetic field of the earth. • In general, when the magnetic field of the earth or one of its components is measured on the surface, bodies possessing magnetic moments different from those of the surrounding rocks contribute to the deviations in the measured quantities. From the magnetic anomalies, it is possible to locate anomalous objects.
  • 18. Magnetic Methods • The different parameters measured during magnetic investigations are total magnetic field (intensity and direction) and different space components • Magnetic surveys have a certain inherit limitations. Hence for unique and accurate solutions, magnetic prospecting is often carried out along with the gravity or other methods.
  • 20. Magnetic Methods Application of magnetic investigations • For delineation of large structural forms favorable for the accumulation of oil and gases. • For detection of and location of faults. • For locating strongly magnetic iron ores. • By virtue of their inexpensive nature and easy operation, magnetic method are widely used for detection of ore deposits, geological structures.
  • 22. Electrical Methods • Among the methods different geophysical • Methods electrical method are numerous and more versatile, They are more popular because they are successful in dealing with a variety of problems like groundwater studies, subsurface structure, and many others. Controlling Properties • In electromagnetic methods, electrical conductivity, magmatic permeability and dielectric constant of subsurface bodies are the relevant properties.
  • 26. Electrical Methods Principle • Electric methods are based on the fact that the subsurface formation, structures, ore deposits, etc. possess different electrical properties. These differences are investigated suitably and exploited to draw the necessary conclusion.
  • 27. Electrical methods • Electrical resistivity methods, electromagnetic methods, self- potential methods and induce polarization methods are the very important categories of electrical methods.
  • 31. Electrical Methods • Electrical Resistivity Method • Principle • The electrical resistivity's of subsurface formation vary from one another if they are inhomogeneous and are studied with the help of resistivity method. In the case of a resistive subsurface body, current lines move away from it and in the case of a conductive subsurface body, the current lines move towards it.
  • 32. Electrical Resistivity method • Profiling and Sounding are two types of resistivity investigations. Profiling is done to detect lateral changes in resistivity. This throws light on the change in the subsurface lithology or structure from place to place. • Sounding is done to determine the vertical changes in resistivity. In other words, this study reveals changes in lithology, etc. at a particular place with increasing depth.
  • 34. Seismic Methods • Controlling Properties • Elastic property differences in rocks is the controlling property. • Principle • Seismic method of study is based on the principle that subsurface rock formations bear different elastic properties. Because of this, the velocities of propagation of seismic waves through the subsurface layers of earth, suffer reflection or critical reflection arrive at the surface of the earth where they are detected by geophones. From the time taken by the waves to travel through the subsurface formation and from the seismic wave velocities of the media. It is possible to determine the depth of various elastic boundaries.
  • 35. Seismic Methods • With the help of geophones fixed at suitable intervals on the ground, the different seismic waves reaching the surface are recorded and from the times of their arrival, time –distance curves are constructed. The direct waves are the first to reach the geophones placed between point and the distance beyond the point is called the critical distance.
  • 36. Seismic Methods • Depending upon whether reflected waves or refracted waves are used in the investigation, there are two types of methods, namely, seismic reflection method and seismic refraction method. • A geophone an amplifier and a galvanometer are the basic units required for reflected or refracted wave registrations.
  • 37. Seismic Methods • Seismic refraction studies are effective for depths more than 100m but are not suitable for shallow exploration • Refraction methods are employed for investigating depths from close to the surface to several kilometer deep. These methods are also followed for the investigation of deeper crust under seismic studies. • Shallow seismic refraction have found effective application in investigating the suitability of foundation sites for civil engineering structures.
  • 39. 39
  • 40. • Seismic Refraction: the signal returns to the surface by refraction at subsurface interfaces, and is recorded at distances much greater than depth of investigation • Seismic Reflection: the seismic signal is reflected back to the surface at layer interfaces, and is recorded at distances less than depth of investigation Refraction Vs. Reflection
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47. 0 5 10 15 20 25 30 35 40 45 50 55 60 0 100 200 300 400 500 600 X = 150 ft Ti=22ms Distance (ft) Time(ms) Seismic Refraction
  • 48. Radiometric Methods • Controlling property • Natural radioactivity of rocks and ores • Principle • The normal radioactivity is different in different types of rocks. In igneous rocks, it decreases with decreasing acidity. If rock contains radioactivity ore bodies, such areas will exhibit very high radioactivity, giving rise to anomalies during surveys. Thus based on the study of radioactivity. It is not only possible to distinguish different rock types but also to detect radioactive ore bodies. The profile drawn clearly brings out the subsurface lithology, structure and ore body.
  • 51. Radiometric Methods • Instruments used in radiometric prospecting are called radiometer. A radiometer consist of three basic components • (I) a detector • (ii) an amplifier or recording unit. • (iii) a power supply unit. • Radiometric methods of investigation are useful in many ways • Exploration of radioactive substances such as uranium and thorium • Location of some rare minerals • Geological mapping • Exploration of oil & gas • Ground water studies
  • 52. Geothermal Methods • These methods are latest addition to the group of geophysical method. Controlling Property • Thermal conductivity Principle • Temperature distribution on the surface of the earth is due to three different sources. • They are • (I) heat received from the sun; • (ii) Heat conveyed from the hot interior of the earth due to conduction and convection processes. • (iii) heat due to decay of radioactive minerals in the crust of the earth. • By applying the necessary corrections, it is possible to eliminate the solar heat component and also the heat contribution of radioactive mineral decay. When this is done, the residual values of temperature distribution on the earth’s surface can be interpreted in terms of subsurface structures, rock formation and ore bodies. This forms the principle and basis for geothermal method of investigation.
  • 54. Geothermal Methods • For the measurement of the temperature on the surface of the earth, in shallow holes or in deep bore holes, thermistors thermometers are used. Other instruments such as crystal detectors and radiometers are used. • The geothermal methods find application in deep structural studies, ore deposits, groundwater studies, for delineation of salt-water fresh water interfaces. Etc.
  • 58. Electrical Resistivity Method • All geological formations have a property called electrical resistivity which determines the ease with which electric current flows through them. This resistivity is expressed in the units of Ώm ohms meter and is indicated by the symbol ᵖ
  • 66. Magnetometer Surveys (MS) Measure relative changes in the earths' magnetic field across a site.
  • 67. Applicability of In-Situ Tests 0.0001 0.001 0.01 0.1 1 10 100 1000 Grain Size (mm) In-SituTestMethod SPT CPT DMT PMT VST Geophysics CLAYS SILTS SANDS GRAVELS Cobbles/ Boulders
  • 68. Electrical Resistivity Method Factors Influencing Electrical Resistivity • The various geological factors which influence the electrical resistivity are ; mineral content, compactness, moisture content, salinity of moisture and texture of rocks. • Mineral Content • Most of the rock forming minerals have high resistivity, whereas sulphide mineral possess a high conductivity. • Moisture content • Moisture may occur in the rock either as ground water or mere moisture in the pore spaces. Then the resistivity decreases considerably. But this change is not of the same order in all formation. • Further the resistivity of water is dependent on its salt content and temperature.
  • 71. Electrical Resistivity Method Resistivity method and measurement of Resistivity • For the principle of the electrical resistivity method of exploration and for measurement of resistivity. A high resistive overburden is a disadvantage for resistivity studies. This is so because very little current penetrates the ground which means that the investigation of deeper layer is not possible.
  • 72. Electrical Resistivity Method Classification of Resistivity Methods • The resistivity method are classified as profiling type, sounding type, and potential type of methods. • Profiling method is used for measurement of resistivity in lateral direction. Sounding type in which measurement are made in vertical direction. Potential methods are used in ore prospecting and are of not of engineering relevance.
  • 73. Types of Electrode Configurations • In profiling or in sounding, there is scope for electrode arrangements to be made in different ways in the field, and such arrangements are called” Configurations”. • The different electrode configurations are. • Number of electrodes • Mutual interval of electrodes • Mode of arrangement of electrodes • Whether the electrode are arranged symmetrical or not with reference to the point of investigations.
  • 74. Types of Electrode Configurations (a) Symmetrical Electrode Configurations • In this set-up, four electrode are placed in line (i.e.. collinear) on the surface, two for energizing the earth and the other two for measuring the resultant voltage (potential difference). These are arranged symmetrically on either side of the point of investigation. The Wenner and Schlumberger configuration belong to this category.
  • 75. The Wenner Configuration • This was developed by Wenner in 1915. In this configuration, the outer electrode C1 and C2, are used to send current into the ground and the inner electrode P1 and P2 are used to measure the potential. The important feature of this set-up is that the distance between any two successive electrodes is equal. The apparent resistivity measured with the wenner array is given by pa= 2 ∏a[∆v] /I , • where a= electrode separation, • v= potential difference measured and • I= current sent into the ground.
  • 78. The Schlumberger configuration • This was developed by Schlumberger in 1916. This method measures the potential gradient rather than the potential difference. For this purpose, potential electrodes are kept at smaller separation compared to the current .Here A and B are the current electrode and M and N are the potential electrodes. Electrodes. In general MN≤1/5 AB relation is maintained in this investigation.
  • 81. Advantages and Disadvantages of Wenner and Schlumberger Arrays The following table lists some of the strengths and weaknesses of Schlumberger and Wenner sounding methods. Schlumberger Wenner Advantage Disadvantage Advantage Disadvantage Need to move the two potential electrodes only for most readings. This can significantly decrease the time required to acquire a sounding. All four electrodes, two current and two potential must be moved to acquire each reading. Because the potential electrode spacing is small compared to the current electrode spacing, for large current electrode spacing's very sensitive voltmeters are required. Potential electrode spacing increases as current electrode spacing increases. Less sensitive voltmeters are required. Because the potential electrodes remain in fixed location, the effects of near-surface lateral variations in resistivity are reduced. Because all electrodes are moved for each reading, this method can be more susceptible to near- surface, lateral, variations in resistivity. These near-surface lateral variations could potentially be misinterpreted in terms of depth variations in resistivity. In general, interpretations based on DC soundings will be limited to simple, horizontally layered structures. In general, interpretations based on DC soundings will be limited to simple, horizontally layered structures.
  • 82. Types of Electrode Configurations • In the Wenner method, all electrode are shifted to new position whenever the reading are taken. But in the Schlumberger method, only current electrode are shifted to new positions, while potential electrodes are kept undisturbed for 3 to 4 readings. In the Schlumberger method, since potential electrode remain in the same place, the local inhomogenities will have less bearing and this factor is desirable.
  • 83. Double Distance Symmetrical Electrode Configuration • This is similar to the preceding one, but differ in that it utilizes two more current electrode (A‟ and B‟). The distance A‟O is greater than AO. By using first the AB pair of current electrode pa is known. next by using A‟ B‟ current electrode p‟a is known. In both the operations, the potential electrode are kept at the same place. The configuration is more useful because it indicates the subsurface structure in a clearer manner. This technique is also called “multiseperation resistivity profiling”
  • 84. Asymmetrical Electrode Configurations (Used in profiling) • The dipole-dipole, three electrode and central gradient configuration belong to this group. • Dipole-dipole type: In this, two dipoles are used, each consisting of two similar electrodes. One pair is used for energizing and the other pair for measuring potential difference. In this set-up the distance between electrodes of a pair should be less than 5 to 6 times the distance between the centres of two dipoles. • Three electrode type: In this system, either one current or one potential electrode is kept at infinity and the other three electrode remain in their positions as in the symmetrical set-up. In profiling, this set-up of three electrode is moved and pa reading are obtained. • Central Gradient type: In this system, the current electrodes remain fixed, a large distance apart, and the potential electrodes are moved in the central regions.
  • 86. Circular or Radial Method • When dykes, veins or joints set are present below the surface, they cause differences in pa value when measured in different directions. In such cases, profiling is done along different directions. In such cases, profiling is done along different directions over the same point by using any one configuration. When the corresponding value are plotted along the different directions, the asymmetry of the figure obtained gives the detail of the strike and dip directions of the subsurface inhomogenity.
  • 87. Profiling • This is also known as electrical profiling or lateral electrical investigation. In this process, the electrode array as a whole is moved from place to place along the chosen traverse and the pa value at each of these stations is determined. The changes in pa indicates lateral variations in the subsurface corresponding to a certain depth. If the current- electrode separation is more, then the depth of investigation is more
  • 88. Profiling • Profiling technique will be useful in detecting only vertical or steeply inclined structures (such as vertical beds, faults and dykes) because, only then the measured value pa differ from place to place. On the other hand, if the bed are horizontal, the pa value will remain more or less unchanged. This means the depth-wise variation cannot be known.
  • 89. Profiling • Profiling may be carried out in one or a few traverses with the intention of obtaining an outline of the geology or structure of an area or in a grid pattern. In order to produce a resistivity map of the area for proper profiling the following points should be kept in mind. • Normally the interval between stations on a profile has to be chosen depending on the minimum dimensions of the body to be demarcated. • The distance between profiles shall be two to five times the station interval. • The choice of configuration is also important factor. Asymmetrical configuration are well suited to demark thin beds or dykes or vein, which are vertical or steeply inclined. But in dealing with geological mapping or thick beds, symmetrical configurations are preferable. • The electrode spacing should be chosen such that the distance between the current electrodes and potential electrodes permits the investigation of targets at a desired depth.
  • 90. Profiling • The presentation of profiling data is done in two ways, i.e... as profiling graphs and a contour maps. In the first case, the pa is plotted as a function of the position of the centre of electrode configuration of the ground. The midpoint of the two potential electrode is designated as the station. • In the second case, the pa value for a particular electrode separation (i.e.. electrode interval) are noted against the positions where they are measured. The map is then contoured with the line along which pa value are the same. Such map are called “ isoresistivity contour map”. The contour interval can be fixed suitably. • The interpretation of the profiling data is mainly of qualitative importance.
  • 91. Sounding • This method is popularly known as vertical electrical sounding. It is also described as „depth probing‟. „electrical coring‟, etc. In this method, a number of pa value are measured at the same place by increasing the distance between the current electrodes each time after taking reading. This kind of successive increasing in distance makes the current penetrate more and more deeply. Hence the change in pa value measured indicate the vertical variations in the subsurface at the investigated point. Thus the sounding technique is useful in investigating only horizontal or gently inclined structures. This is so because, under such conditions only pa value shows variation when the successive readings are taken.
  • 92. Planning of Sounding Studies • As in the case of profiling, sounding also can be done either along a selected traverse or in a grid pattern. • The depth at which the bedrock occur will be known on interpretation at each point of investigation. • This also measures the thickness of loose overburden at the place of study. However it is important to have proper planning, before taking up sounding surveys to suit the aim of investigation. • If the purpose is to obtain the bedrock profile along a selected area such as along the axis of a proposed dam, sounding should be done at close intervals along the direction. The bedrock depths at these points are plotted on a graph to get the required bed rock profile. • In the case of ground water studies, however, to avoid undesirable mutual interferences of the well or borewells, they should be located mutually at considerable distances. This means sounding studies should not be made at closed distances. If the sounding is carried out in the grid pattern, the bedrock contour can be drawn which will give more information relevant to ground water conditions.
  • 93. Application of Electrical Resistivity Studies • From the civil engineering point of view the „resistivity‟ investigations are useful in solving a number of geological problems. They are aimed at • (i) foundation studies • (ii) location of suitable building material • (iii) ground water studies
  • 94. Application of Electrical Resistivity Studies • Some of the specific problems are listed below • To determine the thickness of loose overburden or the depth of the bed at the site. • To detect fractures. • To ascertain the subsurface rock type and their compactness. • To locate dykes or vein in foundation rocks. • To know the strike and dip of rocks • To detect structural defects like foundation rock • To detect the structural defects like faults at the foundation site • To locate suitable building material if required near the project site • To know the ground water conditions.
  • 95. Seismic Refraction Method • In seismic method of prospecting, artificial exploration are made and elastic deformation are induced in rock present in the ground. The propagation of such seismic(elastic) waves through the geological formation is studied. Seismic waves are similar to light waves, since prospecting can be done by making use of direct wave, reflected waves or refracted waves. The two chief types of seismic exploration are by seismic refraction methods and seismic refraction methods. Compared to the light waves, the seismic waves are extremely slow in their velocities. The light have a velocity of 300,000 km/sec. whereas the seismic wave velocity is only 0.31 km/s to 0.36 km/sec in air.
  • 96. Factors Influencing Seismic Wave Velocities • The geological factor which influence the seismic wave velocities are mainly the composition of rocks, compaction of rocks, and saturation of rocks with ground water. • Composition • The seismic wave velocities depend on the composition of rocks. This may be inferred from the following example • Rock type Seismic Wave Velocity • Granite 4-6 km /sec • Basalt 5-6.5 km/sec • Sandstone 1.5 to 4 km /sec • Limestone 2.5 to 6 km/sec
  • 97. Factors Influencing Seismic Wave Velocities Compaction • This refer to the porosity or fracturing or degree of consolidation of rock. The velocity of seismic waves in rocks is influenced considerably by this factor, the wave velocity is more in denser/ compact formations. This may be observed from the following data: • Formation Seismic Wave Velocity • Loose sand and soil 0.1 to 0.5 km /sec • Moist Clay 1.5 to 2.5 km/sec • Sandstone 1.5 to 4 km /sec • Shale 2.1 to 4 km/sec
  • 98. Factors Influencing Seismic Wave Velocities Saturation • The Seismic wave velocity increases with the increase of moisture content in the formation. For ex • (I) Loose soil has a velocity of 0.1 to 0.5 km/sec, while moist clay has a velocity of 1.5 to 2.5 km/sec • (ii) Dry sand has a velocity of 0.15 to 0.4 km/sec, while wet sand has a velocity of 0.6 to 1.8 km/sec.
  • 99. Travel-Time Curves • The Seismic studies are carried out by means of “Travel Time Curves”. These are also known as “ Travel Distance Curves” or “Hodographs” These curves are obtained as follows In the field, by using a number of detectors at regular intervals, the timings required for the seismic waves to reach the different detectors from the shot point are noted and plotted. Such points when joined gives hodographs. These indicate the degree of fracturing or weathering and the geological boundaries in the subsurface.
  • 101. Nature of Seismic Refraction Studies • The two common methods of seismic exploration are known as “reflection Shooting” and “refraction Shooting”. Refraction methods and others are better suited to study lesser depths. Since exploration of civil engineering interest are of the shallow type, only the refraction and other methods are chosen for description. • The seismic refraction methods are based on the phenomenon of total internal refraction of seismic energy which, consequently is directed to travel along the boundary. The refracted head wave then sends out waves towards the surface which enables the deciphering of the refraction boundaries. This is possible only when the overlying layer are less dense and underlying layer are more dense.
  • 102. Types of Refraction Studies • There are three types of refraction shooting namely, fan shooting, arc shooting and profile shooting. The difference between these methods lies in the manner in which the geophones are laid with respect to the location of the shot point. While the first two methods are followed for reconnaissance investigations, the profile shooting is the most common method followed for reconnaissance or detailed studies
  • 103. Instruments Used in Seismic Studies • The basic components of seismic instruments are meant to take into account the chief functions involved in prospecting. These chief functions are (i) detection of signal, (ii) differentiation of signal followed by its amplification, (iii) recording of that signal. These functions are performed by the geophones, amplifier and galvanometer.
  • 104. Instruments Used in Seismic Studies • The geophone (detector), which is planted in the ground, picks up the signal and, depending on the consequent ground displacement velocity (i.e. the intensity of disturbances suffered by the geophones), gives out a proportional voltage. • This Voltage, after undergoing unwanted frequency filtration, is amplified in electrical circuit (i.e.. signal). The entire job is done by amplifier. • The voltage is fed to the seismic galvanometer which has the mechanism to give out a trace of the signal on photographic paper. This photograph is the seismic record which is used for interpretation.
  • 105. Geophone • The geophone consist of a casing, magnet, a coil and its spring, of these either the magnet or the coil is fixed permanently to the casing. The other one, i.e.. either coil or magnet hangs suspended by a spring. • At the time of disturbance a relative movement occurs proportional to the disturbances and voltage is induced in the coil.
  • 107. Amplifier • Actual ground movements caused by signals in seismic prospecting are only of the order of a few microns, therefore, the voltage obtained from the geophone will be very small. The purpose of amplifier is to magnify this voltage millionfold if necessary. Simultaneously, the amplifier also filters and suppresses the unwanted or spurious signals.
  • 109. Galvanometer • The seismic galvanometer represents a very complex system mainly comprising of the source of light, mirror, magnet, galvanometer, oscillograph and recording system. • The galvanometer acts in conjunction with the oscillograph (for marking time) and the recording system. A light beam which is horizontal is focused against the photograph. This paper moves vertically downward and the light beam, as controlled by the voltage, makes the mark on the photopaper. Thus seismic record is produced.
  • 110. Applications of Seismic Refraction • Refraction methods are useful in many respect such as oil exploration, prospecting for some economic minerals, geological mapping, ground water studies and bed-rock studies at foundation sites of civil engineering projects • In ground water studies, this method helps in detecting fractured zones which have the potential for ground water occurrence.
  • 111. Thanks