SlideShare ist ein Scribd-Unternehmen logo
1 von 5
Downloaden Sie, um offline zu lesen
General  Solutions  for  Unsymmetrical  Bending  of  Beams  with  Arbitrary  Cross  Sections  
                                                                                                                 y

                                                                                                   M                 My
                                                                 y
                                                                                                       dA
                                                                                                             z
                                                                                                                     θ
                                                                                               α        yθ
                                                          z                            x   z
                                                                                                       Mz
                                                          P
                                                                                               P
                                       Figure 1 A Beam with An Arbitrary Cross Section
Consider  a  cantilever  beam  subjected  to  an  end  force  P  acting  in  the  plane  inclined  at  an  angle   θ   to  the  y-­‐‑
axis  as  shown.    The  bending  moment  M,  produced  by  the  force  P,  is  oriented  in  the  direction  making  an  
angle   θ   to  the  z-­‐‑axis  as  shown.    The  components  of  M  in  the  y  and  z-­‐‑directions,  denoted  by   M y   and   M z ,  
respectively,  are  given  by  
                                                My = M sinθ          Mz = M cosθ                                                    (a)  
Consider  the  special  case  where   θ = 90 .    From  (a)  we  have My = M   and   Mz = 0 ,  then  the  beam  would  
                                                      


deflect  in  the  xz  plane,  and  the  neutral  axis  would  coincide  with  the  y-­‐‑aixs.    With  the  “cross  sections  
remain  plane”  assumption,  we  have  
                                                                  z
                                                     ε x = κ z z =                                                             (b)  
                                                                         ρz
where   κ z   and   ρ z   are  the  curvature  and  radius  of  curvature,  respectively,  of  the  beam  in  the  xz  plane.    On  
the  other  hand,  if   θ = 0 ,  then   Mz = M   and   My = 0 ,  the  beam  would  deflect  in  the  xy  plane  and  the  
neutral  axis  would  coincide  with  the  z-­‐‑aixs.    Again,  with  the  “cross  sections  remain  plane”  assumption,  
we  have  
                                                                              y
                                                          ε x = −κ y y = −                                                          (c)  
                                                                             ρy
where   κ y   and   ρ y   are  the  curvature  and  radius  of  curvature,  respectively,  of  the  beam  in  the  yz  plane.    It  
is  noted  that  the  negative  sign  in  (c)  indicates  that  a  line  element  located  above  the  z-­‐‑axis  would  be  under  
compression  when  a  positive   M z   is  applied.  
Now  consider  the  general  cases  in  which  the  value  of  angle   θ is  arbitrary.    Since  the  “cross  sections  
remain  plane”  assumption  is  still  valid,  we  can  express  the  strain  in  the  x  direction  in  the  following  linear  
equation  in  y  and  z:  
                                                ε x = aʹ′ + bʹ′y + cʹ′z                                                    (d)  
where   aʹ′ ,   bʹ′ ,  and   cʹ′   are  constants.    The  stress  is  then  given  by  
                                                        σ x = Eε x = a + by + cz                                                    (e)  
where   E   is  the  Young’s  modulus  and   a = Eaʹ′ ,   b = Ebʹ′ ,  and   c = Ec ʹ′ .    For  a  beam  subjected  to  pure  
bending,  the  stress  resultant  over  the  cross  section  must  vanish,  i.e.,  
                                            ∫ σ x dA = a ∫ dA + b∫ ydA + c ∫ zdA = 0                                                (f)  
If  the  origin  of  the  coordinate  system  coincides  with  the  centroid  of  the  cross  section,  then

                                                y=
                                                      ∫ ydA = 0,      z=
                                                                             ∫ zdA = 0   
                                                       ∫ dA                   ∫ dA

                                                                         1
Consequently,   a = 0   and  (e)  becomes  
                                                           σ x = by + cz                                                          (g)  
The  resultant  moments  on  the  cross  section  are  given  by  
                                      M y = ∫ σ x zdA = b ∫ yzdA + c ∫ z 2 dA = bI yz + cI y                                      (h)  
                                   M z = − ∫ σ x ydA = −b ∫ y 2 dA − c ∫ yzdA = −bI z − cI yz                                      (i)  
where  
                                         I y = ∫ z 2 dA , I z = ∫ y 2 dA , I yz = ∫ yzdA   
are  the  moments  of  inertia  of  the  cross  section.    Solving  (h)  and  (i)  simultaneously  yields  
                                           M z I y + M y I yz      M y I z + M z I yz
                                     b=−                 2
                                                              , c=                 2
                                                                                                                                   (j)  
                                             I y I z − I yz            I y I z − I yz
Substituting  (j)  into  (g)  gives  
                                                  M z I y + M y I yz           M y I z + M z I yz
                                         σx = −                 2
                                                                        y+                    2
                                                                                                    z                             (k)  
                                                     IyIz − I   yz                I y I z − I yz
The  neutral  axis,  by  definition,  is  the  line  along  which  stress  vanishes.    Thus,  by  setting   σ x = 0   in  (k),  we  
have  
                                         y M y I z + M z I yz I yz + I z tan θ I z + I yz cot θ
                              tan α =     =                  =                =                                                    (l)  
                                         z M z I y + M y I yz I y + I yz tan θ I yz + I y cot θ
in  which   α (see  Fig.  1)  is  the  angle  measured  clockwise  from  the  z-­‐‑axis  to  the  neutral  axis,  and    
                                                       My                  M
                                               tan θ =    ,    or    cotθ = z                                                    (m)  
                                                       Mz                  My
Combining  (k)  and  (m)  and  eliminating   M y ,  we  obtain  the  following  simplified  equation  in  terms  of   M z   
and  angle   α   for  calculating  the  stresses:  
                                                             Mz (y − z tanα )
                                                    σx = −                                                                        (n)  
                                                              I z − I yz tan α
If  the  y-­‐‑  and  z-­‐‑axes  coincide  with  the  principal  axes,  then   I yz = 0   and  (l)  reduces  to    
                                                                       Iz
                                                        tan α =           tan θ   
                                                                       Iy
which  is  the  same  as  (6-­‐‑19)  in  the  textbook.    Furthermore,  if   θ = 0   (i.e.,   Mz = M   and   My = 0 ),  then   α = 0   
and  (n)  becomes  
                                                                        Mz y
                                                           σx = −              
                                                                         Iz
  
Example:  
A  5.0  m  long  simply-­‐‑supported  beam  is  subjected  to  a  force   P = 4  kN   at  a  point  that  is  2.0  m  away  from  
the  far  end,  as  shown  in  the  figure.    The  dimensions  of  the  L-­‐‑shaped  cross  section  are  shown  in  the  figure.    
If  the  force  P  is  applied  in  an  inclined  plane  making  a  10°  angle  with  the  y-­‐‑axis,  determine  the  locations  
and  magnitudes  of  the  maximum  tensile  and  compressive  stresses  in  the  beam.    
Solution:  
(a) Locate  the  centroid  of  the  cross  section  (in  terms  of  distances   y 0   and   z0   measured  from  point  A):  
                                           (120 × 10)(60) + (70 × 10)(5 )
                                      y0 =                                = 39.74  mm
                                              (120 × 10) + (70 × 10)
                                                                                        
                                           (120 × 10)(5) + (70 × 10)(45)
                                      z0 =                                = 19.74  mm
                                              (120 × 10) + (70 × 10)

                                                                           2
P            y
                                                                                             10



                                                                                                  B


                                                                                                          10  mm



                      2  m     P                                               120  mm


                                                                               α
                                                                          z         M
                                                                              10
                                                                                                                   10  mm
                                            3  m                                                            y0


                                                                                     A
                                                                                             z0
                                                                                                          80  mm
                     Figure 2 Umsymmetric Bending of A Simply-Supported Beam
(b) Determine  the  moments  of  inertia:  
                 (120)(10)3                               (10)(70)3
          Iy =                + (120)(10)(19.74 − 5)2 +           + (10)(70)(45 − 19.74 )2 = 1.003 × 106   mm 4   
                     12                                    12
                 (10)(120)3                              (70)(10)3
          Iz =              + (10)(120)(60 − 39.74 )2 +            + (70)(10)(39.74 − 5)2 = 2.783 × 106   mm 4   
                     12                                     12
            I yz = (10)(1120)(60 − 39.74 )(19.74 − 5) + (70)(10)(5 − 39.74)(19.74 − 45) = 0.973 × 106   mm 4   
(c) Determine  the  neutral  axis:  
    Since   θ = −10   (i.e.,  positive   θ   measured  clockwise  from  the  z  axis),  we  have,  from  (l),    
                                     I yz + I z tan θ 0.973 × 10 6 + 2.783 × 10 6 × tan − 10(        )
                          tan α =                    =                                        = 0.580   
                                     I y + I yz tan θ 1.003 × 10 6 + 0.973 × 10 6 × tan − 10(        )
    The  neutral  axis  thus  is  oriented  at  the  angle  
                                      α = tan−1 (0.580) = 0.526  rad = 30.12   
(d) Determine  the  maximum  stresses  in  the  beam:  
    The  maximum  bending  moment  along  the  beam  occurs  at  the  point  where  the  load  P  is  applied,  i.e.,  
                                  Pab (4.0 )(2.0)(3.0)
                        Mmax =           =                     = 4.8  kN ⋅ m = 4.8 × 106   N ⋅ mm   
                                    L             5.0
    where   L = 5.0  m ,   a = 2.0  m ,  and   b = 3.0  m .    The  y  and  z  components  of  this  moment  are  
                                     My = Mmax sin θ = −0.834 × 106   N ⋅ mm   
                                         Mz = Mmax cos θ = 4.727 × 106   N ⋅ mm   
     From  Fig.2  it  is  easy  to  see  that  the  two  locations  denoted  by  A  and  B  are  the  farthest  from  the  neutral  
     axis,  hence  would  experience  the  highest  tensile  or  compressive  stresses.    The  y  and  z  coordinates  of  
     those  two  points  are   A(−39.74 ,  19.74 )   and   B(80.26 ,  9.74 ) ,  respectively.    The  maximum  tensile  stress,  
     occurs  at  point  A,  is  given  by  




                                                                      3
M z (y − z tan α )
                                 σx = −
                                             I z − I yz tan α

                                      =−
                                            (4.727 × 10 )[− 39.74 − (19.74)tan(30.12 )]  
                                                           6                                         


                                               2.783 × 10 − (0.973 × 10 )tan(30.12 )
                                                               6                      6          


                                                N
                                      = 109.0 × 106   
                                                     = 109.0  MPa
                                              mm 2
     The  maximum  compressive  stress,  occurs  at  point  B,  is  given  by  
                                  M (y − z tan α )
                          σx = − z
                                    I z − I yz tan α

                                          =−
                                               (4.727 × 10 )[80.26 − (9.74)tan(30.12 )]   
                                                               6                                 


                                                2.783 × 10 − (0.973 × 10 )tan(30.12 )
                                                               6                      6          


                                                         N
                                          = −159.0 × 106      = −159.0  MPa
                                                        mm 2
(e) Solve  the  same  problem  by  using  the  method  outlined  in  Section  6-­‐‑5  of  the  textbook:  
    The  principal  axes  are  denoted  as  Y  and  Z,  respectively,  in  Fig.3.    The  directions  of  the  principal  axes  
    and  the  principal  moments  of  inertia  of  the  cross  section  can  be  obtained  by  using  (A-­‐‑11)  and  (A-­‐‑12)  
    in  the  textbook.    Let   β   be  the  angle  between  the  principal  axis  and  y-­‐‑axis  (see  Fig.2),  then  from  (A-­‐‑11)  
                                                      2 I yz                 2(0.973 × 106 )
                        tan 2θ p = tan 2 β = −                     =−                               = 1.093   
                                                     Iy − Iz            1.003 × 10 6 − 2.783 × 10 6
     and  
                                              1
                                                   β = tan −1 (1.093) = 23.8   
                                              2
     The  principal  moments  of  inertia  can  be  obtained  by  substituting  the  value  of   β   in  (A-­‐‑10),  or  using  
     (A-­‐‑12):  
                                                                    P                 y
                                                     Y
                                                                              10



                                                                                  B

                                                                          β
                                                                                            π
                                                                                                 −β
                                                                                             2




                                           ψ          α
                                  z                                M
                                                    10
                                               β


                                      Z
                                                                    A

                                          Figure 3 Neutral Axis and Principal Axes




                                                                              4
2
                          Iy + Iz     ⎛ I y − I z ⎞ 2          6    4                     6    4
            I max,min =               ⎜ 2 ⎟ + I yz = 3.212 × 10   mm ,          0.574 × 10   mm ,   
                                    ± ⎜           ⎟
                            2         ⎝           ⎠
Thus,  
                                IY = 0.574 × 106   mm 4      I Z = 3.212 × 106   mm 4   
The  components  of  M  in  the  Y  and  Z  directions,  respectively,  are  now  given  by  
                                    MY = M sin(β − 10 ) = 1.143 × 106   N ⋅ mm
                                                                                       
                                    MZ = M cos(β − 10 ) = 4.662 × 106   N ⋅ mm
The  angle   ψ ,  which  determines  the  orientation  of  neutral  axis  and  is  measured  clockwise  from  the  Z-­‐‑
axis  as  shown  in  Fig.3,  is  given  by  
                                        Y M I    I
                                                                   (
                              tan ψ = = Y Z = Z tan β − 10 = 1.374   
                                        Z MZ I Y I Y
                                                                              )
from  which  
                                             ψ = tan −1 (1.374 ) = 53.9   
It  can  be  seen  from  Fig.3  that  
                                                 α = ψ − β = 30.1   
which  matches  the  value  obtained  previously.    With  respect  to  the  principal  axes,  the  stresses  are  
given  by  
                                            M Z M Y
                                       σ x = Y − Z   
                                             IY        IZ
At  point  A,  the  coordinates  are  
                                YA = y A cos β + z A sin β = −28.4  mm
                                                                           
                                Z A = − y A sin β + z A cos β = 34.1  mm
and  the  stress  is  given  by  
                   MY Z MZY (1.143 × 10 3 )(34.1) (4.662 × 10 3 )(− 28.4 )
            σx =          −       =                      −                      = 109.0  MPa   
                     IY       IZ        0.574 × 106             3.212 × 106
At  point  B,  the  coordinates  are  
                                  YB = y B cos β + zB sin β = 77.4  mm
                                                                              
                                  ZB = − y B sin β + zB cos β = −23.5  mm
and  the  stress  is  given  by  
                  M Z M Y (1.143 × 10 3 )(− 23.5 ) (4.662 × 10 3 )(77.4 )
           σx = Y − Z =                                   −                    = −159.0  MPa   
                    IY       IZ          0.574 × 106            3.212 × 106




                                                               5

Weitere ähnliche Inhalte

Was ist angesagt?

Design of steel structure as per is 800(2007)
Design of steel structure as per is 800(2007)Design of steel structure as per is 800(2007)
Design of steel structure as per is 800(2007)ahsanrabbani
 
CE72.52 - Lecture 2 - Material Behavior
CE72.52 - Lecture 2 - Material BehaviorCE72.52 - Lecture 2 - Material Behavior
CE72.52 - Lecture 2 - Material BehaviorFawad Najam
 
11-Introduction to Axially Compression Members (Steel Structural Design & Pro...
11-Introduction to Axially Compression Members (Steel Structural Design & Pro...11-Introduction to Axially Compression Members (Steel Structural Design & Pro...
11-Introduction to Axially Compression Members (Steel Structural Design & Pro...Hossam Shafiq II
 
Membrane - Plate - Shell
Membrane - Plate - ShellMembrane - Plate - Shell
Membrane - Plate - Shellneikrof
 
Assignment shear and bending
Assignment shear and bendingAssignment shear and bending
Assignment shear and bendingYatin Singh
 
Forming process forging
Forming process forgingForming process forging
Forming process forgingN.Prakasan
 
Thuyết minh giải pháp kết cấu hầm cho xe 30T, đặt ống ở dưới
Thuyết minh giải pháp kết cấu hầm cho xe 30T, đặt ống ở dướiThuyết minh giải pháp kết cấu hầm cho xe 30T, đặt ống ở dưới
Thuyết minh giải pháp kết cấu hầm cho xe 30T, đặt ống ở dướiLơ Đãng
 
Introduction to Theory of elasticity and plasticity Att 6521
Introduction to Theory of elasticity and plasticity Att 6521Introduction to Theory of elasticity and plasticity Att 6521
Introduction to Theory of elasticity and plasticity Att 6521Shekh Muhsen Uddin Ahmed
 
fracture mechanics presentation
fracture mechanics presentationfracture mechanics presentation
fracture mechanics presentationM Shahid Khan
 
Deflection of simply supported beam and cantilever
Deflection of simply supported beam and cantileverDeflection of simply supported beam and cantilever
Deflection of simply supported beam and cantileveryashdeep nimje
 
Shear Stress Distribution For Square Cross-section
Shear Stress Distribution For Square Cross-sectionShear Stress Distribution For Square Cross-section
Shear Stress Distribution For Square Cross-sectionNeeraj Gautam
 
Moment Co-efficient Method
Moment Co-efficient MethodMoment Co-efficient Method
Moment Co-efficient MethodYousuf Bin Aziz
 
Singly reinforced beam ast - over reinforced
Singly reinforced beam   ast - over reinforcedSingly reinforced beam   ast - over reinforced
Singly reinforced beam ast - over reinforcedSelvakumar Palanisamy
 

Was ist angesagt? (20)

Design of steel structure as per is 800(2007)
Design of steel structure as per is 800(2007)Design of steel structure as per is 800(2007)
Design of steel structure as per is 800(2007)
 
CE72.52 - Lecture 2 - Material Behavior
CE72.52 - Lecture 2 - Material BehaviorCE72.52 - Lecture 2 - Material Behavior
CE72.52 - Lecture 2 - Material Behavior
 
Ch07[1]
Ch07[1]Ch07[1]
Ch07[1]
 
11-Introduction to Axially Compression Members (Steel Structural Design & Pro...
11-Introduction to Axially Compression Members (Steel Structural Design & Pro...11-Introduction to Axially Compression Members (Steel Structural Design & Pro...
11-Introduction to Axially Compression Members (Steel Structural Design & Pro...
 
Impact test on metals
Impact test on metalsImpact test on metals
Impact test on metals
 
Torsion
TorsionTorsion
Torsion
 
Membrane - Plate - Shell
Membrane - Plate - ShellMembrane - Plate - Shell
Membrane - Plate - Shell
 
Assignment shear and bending
Assignment shear and bendingAssignment shear and bending
Assignment shear and bending
 
Forming process forging
Forming process forgingForming process forging
Forming process forging
 
Thuyết minh giải pháp kết cấu hầm cho xe 30T, đặt ống ở dưới
Thuyết minh giải pháp kết cấu hầm cho xe 30T, đặt ống ở dướiThuyết minh giải pháp kết cấu hầm cho xe 30T, đặt ống ở dưới
Thuyết minh giải pháp kết cấu hầm cho xe 30T, đặt ống ở dưới
 
Introduction to Theory of elasticity and plasticity Att 6521
Introduction to Theory of elasticity and plasticity Att 6521Introduction to Theory of elasticity and plasticity Att 6521
Introduction to Theory of elasticity and plasticity Att 6521
 
4 pure bending
4 pure bending4 pure bending
4 pure bending
 
fracture mechanics presentation
fracture mechanics presentationfracture mechanics presentation
fracture mechanics presentation
 
Deflection of simply supported beam and cantilever
Deflection of simply supported beam and cantileverDeflection of simply supported beam and cantilever
Deflection of simply supported beam and cantilever
 
Deflection in simply supported beam
Deflection in simply supported beamDeflection in simply supported beam
Deflection in simply supported beam
 
Shear Stress Distribution For Square Cross-section
Shear Stress Distribution For Square Cross-sectionShear Stress Distribution For Square Cross-section
Shear Stress Distribution For Square Cross-section
 
Moment Co-efficient Method
Moment Co-efficient MethodMoment Co-efficient Method
Moment Co-efficient Method
 
Singly reinforced beam ast - over reinforced
Singly reinforced beam   ast - over reinforcedSingly reinforced beam   ast - over reinforced
Singly reinforced beam ast - over reinforced
 
report
reportreport
report
 
SHEAR CENTRE
SHEAR CENTRESHEAR CENTRE
SHEAR CENTRE
 

Ähnlich wie Unsymmetrical bending

Ähnlich wie Unsymmetrical bending (20)

Beam theory
Beam theoryBeam theory
Beam theory
 
Lecture 02
Lecture 02Lecture 02
Lecture 02
 
Engg. mathematics iii
Engg. mathematics iiiEngg. mathematics iii
Engg. mathematics iii
 
Em03 t
Em03 tEm03 t
Em03 t
 
Unit1
Unit1Unit1
Unit1
 
12 quadric surfaces
12 quadric surfaces12 quadric surfaces
12 quadric surfaces
 
C Sanchez Reduction Saetas
C Sanchez Reduction SaetasC Sanchez Reduction Saetas
C Sanchez Reduction Saetas
 
A. Micu - Tests of Heterotic – F-Theory Duality with Fluxes
A. Micu - Tests of Heterotic – F-Theory Duality with FluxesA. Micu - Tests of Heterotic – F-Theory Duality with Fluxes
A. Micu - Tests of Heterotic – F-Theory Duality with Fluxes
 
Day 04
Day 04Day 04
Day 04
 
Moh'r circle2
Moh'r circle2Moh'r circle2
Moh'r circle2
 
Figures
FiguresFigures
Figures
 
TRACING OF CURVE (CARTESIAN AND POLAR)
TRACING OF CURVE (CARTESIAN AND POLAR)TRACING OF CURVE (CARTESIAN AND POLAR)
TRACING OF CURVE (CARTESIAN AND POLAR)
 
Normal
NormalNormal
Normal
 
21 lagrange multipliers
21 lagrange multipliers21 lagrange multipliers
21 lagrange multipliers
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
 
Complex numbers org.ppt
Complex numbers org.pptComplex numbers org.ppt
Complex numbers org.ppt
 
Cg
CgCg
Cg
 
002 equation of_a_line
002 equation of_a_line002 equation of_a_line
002 equation of_a_line
 
ComplexNumber.ppt
ComplexNumber.pptComplexNumber.ppt
ComplexNumber.ppt
 
Sheet1 simplified
Sheet1 simplifiedSheet1 simplified
Sheet1 simplified
 

Kürzlich hochgeladen

Top Rated Pune Call Girls Tingre Nagar ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Tingre Nagar ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Tingre Nagar ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Tingre Nagar ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Reinventing Corporate Philanthropy_ Strategies for Meaningful Impact by Leko ...
Reinventing Corporate Philanthropy_ Strategies for Meaningful Impact by Leko ...Reinventing Corporate Philanthropy_ Strategies for Meaningful Impact by Leko ...
Reinventing Corporate Philanthropy_ Strategies for Meaningful Impact by Leko ...Leko Durda
 
Independent Escorts in Lucknow (Adult Only) 👩🏽‍❤️‍💋‍👩🏼 8923113531 ♛ Escort S...
Independent Escorts in Lucknow  (Adult Only) 👩🏽‍❤️‍💋‍👩🏼 8923113531 ♛ Escort S...Independent Escorts in Lucknow  (Adult Only) 👩🏽‍❤️‍💋‍👩🏼 8923113531 ♛ Escort S...
Independent Escorts in Lucknow (Adult Only) 👩🏽‍❤️‍💋‍👩🏼 8923113531 ♛ Escort S...gurkirankumar98700
 
Call Girls Anjuna beach Mariott Resort ₰8588052666
Call Girls Anjuna beach Mariott Resort ₰8588052666Call Girls Anjuna beach Mariott Resort ₰8588052666
Call Girls Anjuna beach Mariott Resort ₰8588052666nishakur201
 
CALL ON ➥8923113531 🔝Call Girls Mahanagar Lucknow best sexual service
CALL ON ➥8923113531 🔝Call Girls Mahanagar Lucknow best sexual serviceCALL ON ➥8923113531 🔝Call Girls Mahanagar Lucknow best sexual service
CALL ON ➥8923113531 🔝Call Girls Mahanagar Lucknow best sexual serviceanilsa9823
 
The Selfspace Journal Preview by Mindbrush
The Selfspace Journal Preview by MindbrushThe Selfspace Journal Preview by Mindbrush
The Selfspace Journal Preview by MindbrushShivain97
 
9892124323, Call Girls in mumbai, Vashi Call Girls , Kurla Call girls
9892124323, Call Girls in mumbai, Vashi Call Girls , Kurla Call girls9892124323, Call Girls in mumbai, Vashi Call Girls , Kurla Call girls
9892124323, Call Girls in mumbai, Vashi Call Girls , Kurla Call girlsPooja Nehwal
 
Lilac Illustrated Social Psychology Presentation.pptx
Lilac Illustrated Social Psychology Presentation.pptxLilac Illustrated Social Psychology Presentation.pptx
Lilac Illustrated Social Psychology Presentation.pptxABMWeaklings
 
CALL ON ➥8923113531 🔝Call Girls Adil Nagar Lucknow best Female service
CALL ON ➥8923113531 🔝Call Girls Adil Nagar Lucknow best Female serviceCALL ON ➥8923113531 🔝Call Girls Adil Nagar Lucknow best Female service
CALL ON ➥8923113531 🔝Call Girls Adil Nagar Lucknow best Female serviceanilsa9823
 
《塔夫斯大学毕业证成绩单购买》做Tufts文凭毕业证成绩单/伪造美国假文凭假毕业证书图片Q微信741003700《塔夫斯大学毕业证购买》《Tufts毕业文...
《塔夫斯大学毕业证成绩单购买》做Tufts文凭毕业证成绩单/伪造美国假文凭假毕业证书图片Q微信741003700《塔夫斯大学毕业证购买》《Tufts毕业文...《塔夫斯大学毕业证成绩单购买》做Tufts文凭毕业证成绩单/伪造美国假文凭假毕业证书图片Q微信741003700《塔夫斯大学毕业证购买》《Tufts毕业文...
《塔夫斯大学毕业证成绩单购买》做Tufts文凭毕业证成绩单/伪造美国假文凭假毕业证书图片Q微信741003700《塔夫斯大学毕业证购买》《Tufts毕业文...ur8mqw8e
 
call girls in candolim beach 9870370636] NORTH GOA ..
call girls in candolim beach 9870370636] NORTH GOA ..call girls in candolim beach 9870370636] NORTH GOA ..
call girls in candolim beach 9870370636] NORTH GOA ..nishakur201
 
办理国外毕业证学位证《原版美国montana文凭》蒙大拿州立大学毕业证制作成绩单修改
办理国外毕业证学位证《原版美国montana文凭》蒙大拿州立大学毕业证制作成绩单修改办理国外毕业证学位证《原版美国montana文凭》蒙大拿州立大学毕业证制作成绩单修改
办理国外毕业证学位证《原版美国montana文凭》蒙大拿州立大学毕业证制作成绩单修改atducpo
 
$ Love Spells^ 💎 (310) 882-6330 in West Virginia, WV | Psychic Reading Best B...
$ Love Spells^ 💎 (310) 882-6330 in West Virginia, WV | Psychic Reading Best B...$ Love Spells^ 💎 (310) 882-6330 in West Virginia, WV | Psychic Reading Best B...
$ Love Spells^ 💎 (310) 882-6330 in West Virginia, WV | Psychic Reading Best B...PsychicRuben LoveSpells
 
CALL ON ➥8923113531 🔝Call Girls Aliganj Lucknow best sexual service
CALL ON ➥8923113531 🔝Call Girls Aliganj Lucknow best sexual serviceCALL ON ➥8923113531 🔝Call Girls Aliganj Lucknow best sexual service
CALL ON ➥8923113531 🔝Call Girls Aliganj Lucknow best sexual serviceanilsa9823
 
Understanding Relationship Anarchy: A Guide to Liberating Love | CIO Women Ma...
Understanding Relationship Anarchy: A Guide to Liberating Love | CIO Women Ma...Understanding Relationship Anarchy: A Guide to Liberating Love | CIO Women Ma...
Understanding Relationship Anarchy: A Guide to Liberating Love | CIO Women Ma...CIOWomenMagazine
 
REFLECTIONS Newsletter Jan-Jul 2024.pdf.pdf
REFLECTIONS Newsletter Jan-Jul 2024.pdf.pdfREFLECTIONS Newsletter Jan-Jul 2024.pdf.pdf
REFLECTIONS Newsletter Jan-Jul 2024.pdf.pdfssusere8ea60
 
Breath, Brain & Beyond_A Holistic Approach to Peak Performance.pdf
Breath, Brain & Beyond_A Holistic Approach to Peak Performance.pdfBreath, Brain & Beyond_A Holistic Approach to Peak Performance.pdf
Breath, Brain & Beyond_A Holistic Approach to Peak Performance.pdfJess Walker
 
Call Girls in Kalyan Vihar Delhi 💯 Call Us 🔝8264348440🔝
Call Girls in Kalyan Vihar Delhi 💯 Call Us 🔝8264348440🔝Call Girls in Kalyan Vihar Delhi 💯 Call Us 🔝8264348440🔝
Call Girls in Kalyan Vihar Delhi 💯 Call Us 🔝8264348440🔝soniya singh
 
文凭办理《原版美国USU学位证书》犹他州立大学毕业证制作成绩单修改
文凭办理《原版美国USU学位证书》犹他州立大学毕业证制作成绩单修改文凭办理《原版美国USU学位证书》犹他州立大学毕业证制作成绩单修改
文凭办理《原版美国USU学位证书》犹他州立大学毕业证制作成绩单修改atducpo
 
8377087607 Full Enjoy @24/7-CLEAN-Call Girls In Chhatarpur,
8377087607 Full Enjoy @24/7-CLEAN-Call Girls In Chhatarpur,8377087607 Full Enjoy @24/7-CLEAN-Call Girls In Chhatarpur,
8377087607 Full Enjoy @24/7-CLEAN-Call Girls In Chhatarpur,dollysharma2066
 

Kürzlich hochgeladen (20)

Top Rated Pune Call Girls Tingre Nagar ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Tingre Nagar ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Tingre Nagar ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Tingre Nagar ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Reinventing Corporate Philanthropy_ Strategies for Meaningful Impact by Leko ...
Reinventing Corporate Philanthropy_ Strategies for Meaningful Impact by Leko ...Reinventing Corporate Philanthropy_ Strategies for Meaningful Impact by Leko ...
Reinventing Corporate Philanthropy_ Strategies for Meaningful Impact by Leko ...
 
Independent Escorts in Lucknow (Adult Only) 👩🏽‍❤️‍💋‍👩🏼 8923113531 ♛ Escort S...
Independent Escorts in Lucknow  (Adult Only) 👩🏽‍❤️‍💋‍👩🏼 8923113531 ♛ Escort S...Independent Escorts in Lucknow  (Adult Only) 👩🏽‍❤️‍💋‍👩🏼 8923113531 ♛ Escort S...
Independent Escorts in Lucknow (Adult Only) 👩🏽‍❤️‍💋‍👩🏼 8923113531 ♛ Escort S...
 
Call Girls Anjuna beach Mariott Resort ₰8588052666
Call Girls Anjuna beach Mariott Resort ₰8588052666Call Girls Anjuna beach Mariott Resort ₰8588052666
Call Girls Anjuna beach Mariott Resort ₰8588052666
 
CALL ON ➥8923113531 🔝Call Girls Mahanagar Lucknow best sexual service
CALL ON ➥8923113531 🔝Call Girls Mahanagar Lucknow best sexual serviceCALL ON ➥8923113531 🔝Call Girls Mahanagar Lucknow best sexual service
CALL ON ➥8923113531 🔝Call Girls Mahanagar Lucknow best sexual service
 
The Selfspace Journal Preview by Mindbrush
The Selfspace Journal Preview by MindbrushThe Selfspace Journal Preview by Mindbrush
The Selfspace Journal Preview by Mindbrush
 
9892124323, Call Girls in mumbai, Vashi Call Girls , Kurla Call girls
9892124323, Call Girls in mumbai, Vashi Call Girls , Kurla Call girls9892124323, Call Girls in mumbai, Vashi Call Girls , Kurla Call girls
9892124323, Call Girls in mumbai, Vashi Call Girls , Kurla Call girls
 
Lilac Illustrated Social Psychology Presentation.pptx
Lilac Illustrated Social Psychology Presentation.pptxLilac Illustrated Social Psychology Presentation.pptx
Lilac Illustrated Social Psychology Presentation.pptx
 
CALL ON ➥8923113531 🔝Call Girls Adil Nagar Lucknow best Female service
CALL ON ➥8923113531 🔝Call Girls Adil Nagar Lucknow best Female serviceCALL ON ➥8923113531 🔝Call Girls Adil Nagar Lucknow best Female service
CALL ON ➥8923113531 🔝Call Girls Adil Nagar Lucknow best Female service
 
《塔夫斯大学毕业证成绩单购买》做Tufts文凭毕业证成绩单/伪造美国假文凭假毕业证书图片Q微信741003700《塔夫斯大学毕业证购买》《Tufts毕业文...
《塔夫斯大学毕业证成绩单购买》做Tufts文凭毕业证成绩单/伪造美国假文凭假毕业证书图片Q微信741003700《塔夫斯大学毕业证购买》《Tufts毕业文...《塔夫斯大学毕业证成绩单购买》做Tufts文凭毕业证成绩单/伪造美国假文凭假毕业证书图片Q微信741003700《塔夫斯大学毕业证购买》《Tufts毕业文...
《塔夫斯大学毕业证成绩单购买》做Tufts文凭毕业证成绩单/伪造美国假文凭假毕业证书图片Q微信741003700《塔夫斯大学毕业证购买》《Tufts毕业文...
 
call girls in candolim beach 9870370636] NORTH GOA ..
call girls in candolim beach 9870370636] NORTH GOA ..call girls in candolim beach 9870370636] NORTH GOA ..
call girls in candolim beach 9870370636] NORTH GOA ..
 
办理国外毕业证学位证《原版美国montana文凭》蒙大拿州立大学毕业证制作成绩单修改
办理国外毕业证学位证《原版美国montana文凭》蒙大拿州立大学毕业证制作成绩单修改办理国外毕业证学位证《原版美国montana文凭》蒙大拿州立大学毕业证制作成绩单修改
办理国外毕业证学位证《原版美国montana文凭》蒙大拿州立大学毕业证制作成绩单修改
 
$ Love Spells^ 💎 (310) 882-6330 in West Virginia, WV | Psychic Reading Best B...
$ Love Spells^ 💎 (310) 882-6330 in West Virginia, WV | Psychic Reading Best B...$ Love Spells^ 💎 (310) 882-6330 in West Virginia, WV | Psychic Reading Best B...
$ Love Spells^ 💎 (310) 882-6330 in West Virginia, WV | Psychic Reading Best B...
 
CALL ON ➥8923113531 🔝Call Girls Aliganj Lucknow best sexual service
CALL ON ➥8923113531 🔝Call Girls Aliganj Lucknow best sexual serviceCALL ON ➥8923113531 🔝Call Girls Aliganj Lucknow best sexual service
CALL ON ➥8923113531 🔝Call Girls Aliganj Lucknow best sexual service
 
Understanding Relationship Anarchy: A Guide to Liberating Love | CIO Women Ma...
Understanding Relationship Anarchy: A Guide to Liberating Love | CIO Women Ma...Understanding Relationship Anarchy: A Guide to Liberating Love | CIO Women Ma...
Understanding Relationship Anarchy: A Guide to Liberating Love | CIO Women Ma...
 
REFLECTIONS Newsletter Jan-Jul 2024.pdf.pdf
REFLECTIONS Newsletter Jan-Jul 2024.pdf.pdfREFLECTIONS Newsletter Jan-Jul 2024.pdf.pdf
REFLECTIONS Newsletter Jan-Jul 2024.pdf.pdf
 
Breath, Brain & Beyond_A Holistic Approach to Peak Performance.pdf
Breath, Brain & Beyond_A Holistic Approach to Peak Performance.pdfBreath, Brain & Beyond_A Holistic Approach to Peak Performance.pdf
Breath, Brain & Beyond_A Holistic Approach to Peak Performance.pdf
 
Call Girls in Kalyan Vihar Delhi 💯 Call Us 🔝8264348440🔝
Call Girls in Kalyan Vihar Delhi 💯 Call Us 🔝8264348440🔝Call Girls in Kalyan Vihar Delhi 💯 Call Us 🔝8264348440🔝
Call Girls in Kalyan Vihar Delhi 💯 Call Us 🔝8264348440🔝
 
文凭办理《原版美国USU学位证书》犹他州立大学毕业证制作成绩单修改
文凭办理《原版美国USU学位证书》犹他州立大学毕业证制作成绩单修改文凭办理《原版美国USU学位证书》犹他州立大学毕业证制作成绩单修改
文凭办理《原版美国USU学位证书》犹他州立大学毕业证制作成绩单修改
 
8377087607 Full Enjoy @24/7-CLEAN-Call Girls In Chhatarpur,
8377087607 Full Enjoy @24/7-CLEAN-Call Girls In Chhatarpur,8377087607 Full Enjoy @24/7-CLEAN-Call Girls In Chhatarpur,
8377087607 Full Enjoy @24/7-CLEAN-Call Girls In Chhatarpur,
 

Unsymmetrical bending

  • 1. General  Solutions  for  Unsymmetrical  Bending  of  Beams  with  Arbitrary  Cross  Sections   y M My y dA z θ α yθ z x z Mz P P Figure 1 A Beam with An Arbitrary Cross Section Consider  a  cantilever  beam  subjected  to  an  end  force  P  acting  in  the  plane  inclined  at  an  angle   θ  to  the  y-­‐‑ axis  as  shown.    The  bending  moment  M,  produced  by  the  force  P,  is  oriented  in  the  direction  making  an   angle   θ  to  the  z-­‐‑axis  as  shown.    The  components  of  M  in  the  y  and  z-­‐‑directions,  denoted  by   M y  and   M z ,   respectively,  are  given  by     My = M sinθ Mz = M cosθ   (a)   Consider  the  special  case  where   θ = 90 .    From  (a)  we  have My = M  and   Mz = 0 ,  then  the  beam  would    deflect  in  the  xz  plane,  and  the  neutral  axis  would  coincide  with  the  y-­‐‑aixs.    With  the  “cross  sections   remain  plane”  assumption,  we  have   z   ε x = κ z z =   (b)   ρz where   κ z  and   ρ z  are  the  curvature  and  radius  of  curvature,  respectively,  of  the  beam  in  the  xz  plane.    On   the  other  hand,  if   θ = 0 ,  then   Mz = M  and   My = 0 ,  the  beam  would  deflect  in  the  xy  plane  and  the   neutral  axis  would  coincide  with  the  z-­‐‑aixs.    Again,  with  the  “cross  sections  remain  plane”  assumption,   we  have   y   ε x = −κ y y = −   (c)   ρy where   κ y  and   ρ y  are  the  curvature  and  radius  of  curvature,  respectively,  of  the  beam  in  the  yz  plane.    It   is  noted  that  the  negative  sign  in  (c)  indicates  that  a  line  element  located  above  the  z-­‐‑axis  would  be  under   compression  when  a  positive   M z  is  applied.   Now  consider  the  general  cases  in  which  the  value  of  angle   θ is  arbitrary.    Since  the  “cross  sections   remain  plane”  assumption  is  still  valid,  we  can  express  the  strain  in  the  x  direction  in  the  following  linear   equation  in  y  and  z:     ε x = aʹ′ + bʹ′y + cʹ′z   (d)   where   aʹ′ ,   bʹ′ ,  and   cʹ′  are  constants.    The  stress  is  then  given  by     σ x = Eε x = a + by + cz   (e)   where   E  is  the  Young’s  modulus  and   a = Eaʹ′ ,   b = Ebʹ′ ,  and   c = Ec ʹ′ .    For  a  beam  subjected  to  pure   bending,  the  stress  resultant  over  the  cross  section  must  vanish,  i.e.,     ∫ σ x dA = a ∫ dA + b∫ ydA + c ∫ zdA = 0   (f)   If  the  origin  of  the  coordinate  system  coincides  with  the  centroid  of  the  cross  section,  then   y= ∫ ydA = 0, z= ∫ zdA = 0   ∫ dA ∫ dA 1
  • 2. Consequently,   a = 0  and  (e)  becomes     σ x = by + cz   (g)   The  resultant  moments  on  the  cross  section  are  given  by     M y = ∫ σ x zdA = b ∫ yzdA + c ∫ z 2 dA = bI yz + cI y   (h)     M z = − ∫ σ x ydA = −b ∫ y 2 dA − c ∫ yzdA = −bI z − cI yz   (i)   where     I y = ∫ z 2 dA , I z = ∫ y 2 dA , I yz = ∫ yzdA   are  the  moments  of  inertia  of  the  cross  section.    Solving  (h)  and  (i)  simultaneously  yields   M z I y + M y I yz M y I z + M z I yz   b=− 2 , c= 2   (j)   I y I z − I yz I y I z − I yz Substituting  (j)  into  (g)  gives   M z I y + M y I yz M y I z + M z I yz   σx = − 2 y+ 2 z   (k)   IyIz − I yz I y I z − I yz The  neutral  axis,  by  definition,  is  the  line  along  which  stress  vanishes.    Thus,  by  setting   σ x = 0  in  (k),  we   have   y M y I z + M z I yz I yz + I z tan θ I z + I yz cot θ   tan α = = = =   (l)   z M z I y + M y I yz I y + I yz tan θ I yz + I y cot θ in  which   α (see  Fig.  1)  is  the  angle  measured  clockwise  from  the  z-­‐‑axis  to  the  neutral  axis,  and     My M   tan θ = ,    or    cotθ = z   (m)   Mz My Combining  (k)  and  (m)  and  eliminating   M y ,  we  obtain  the  following  simplified  equation  in  terms  of   M z   and  angle   α  for  calculating  the  stresses:   Mz (y − z tanα )   σx = −   (n)   I z − I yz tan α If  the  y-­‐‑  and  z-­‐‑axes  coincide  with  the  principal  axes,  then   I yz = 0  and  (l)  reduces  to     Iz   tan α = tan θ   Iy which  is  the  same  as  (6-­‐‑19)  in  the  textbook.    Furthermore,  if   θ = 0  (i.e.,   Mz = M  and   My = 0 ),  then   α = 0   and  (n)  becomes   Mz y   σx = −   Iz   Example:   A  5.0  m  long  simply-­‐‑supported  beam  is  subjected  to  a  force   P = 4  kN  at  a  point  that  is  2.0  m  away  from   the  far  end,  as  shown  in  the  figure.    The  dimensions  of  the  L-­‐‑shaped  cross  section  are  shown  in  the  figure.     If  the  force  P  is  applied  in  an  inclined  plane  making  a  10°  angle  with  the  y-­‐‑axis,  determine  the  locations   and  magnitudes  of  the  maximum  tensile  and  compressive  stresses  in  the  beam.     Solution:   (a) Locate  the  centroid  of  the  cross  section  (in  terms  of  distances   y 0  and   z0  measured  from  point  A):   (120 × 10)(60) + (70 × 10)(5 ) y0 = = 39.74  mm (120 × 10) + (70 × 10)     (120 × 10)(5) + (70 × 10)(45) z0 = = 19.74  mm (120 × 10) + (70 × 10) 2
  • 3. P y 10 B 10  mm 2  m P 120  mm α z M 10 10  mm 3  m y0 A z0 80  mm Figure 2 Umsymmetric Bending of A Simply-Supported Beam (b) Determine  the  moments  of  inertia:   (120)(10)3 (10)(70)3   Iy = + (120)(10)(19.74 − 5)2 + + (10)(70)(45 − 19.74 )2 = 1.003 × 106  mm 4   12 12 (10)(120)3 (70)(10)3   Iz = + (10)(120)(60 − 39.74 )2 + + (70)(10)(39.74 − 5)2 = 2.783 × 106  mm 4   12 12   I yz = (10)(1120)(60 − 39.74 )(19.74 − 5) + (70)(10)(5 − 39.74)(19.74 − 45) = 0.973 × 106  mm 4   (c) Determine  the  neutral  axis:   Since   θ = −10  (i.e.,  positive   θ  measured  clockwise  from  the  z  axis),  we  have,  from  (l),     I yz + I z tan θ 0.973 × 10 6 + 2.783 × 10 6 × tan − 10( ) tan α = = = 0.580   I y + I yz tan θ 1.003 × 10 6 + 0.973 × 10 6 × tan − 10( ) The  neutral  axis  thus  is  oriented  at  the  angle     α = tan−1 (0.580) = 0.526  rad = 30.12   (d) Determine  the  maximum  stresses  in  the  beam:   The  maximum  bending  moment  along  the  beam  occurs  at  the  point  where  the  load  P  is  applied,  i.e.,   Pab (4.0 )(2.0)(3.0)   Mmax = = = 4.8  kN ⋅ m = 4.8 × 106  N ⋅ mm   L 5.0 where   L = 5.0  m ,   a = 2.0  m ,  and   b = 3.0  m .    The  y  and  z  components  of  this  moment  are     My = Mmax sin θ = −0.834 × 106  N ⋅ mm     Mz = Mmax cos θ = 4.727 × 106  N ⋅ mm   From  Fig.2  it  is  easy  to  see  that  the  two  locations  denoted  by  A  and  B  are  the  farthest  from  the  neutral   axis,  hence  would  experience  the  highest  tensile  or  compressive  stresses.    The  y  and  z  coordinates  of   those  two  points  are   A(−39.74 ,  19.74 )  and   B(80.26 ,  9.74 ) ,  respectively.    The  maximum  tensile  stress,   occurs  at  point  A,  is  given  by   3
  • 4. M z (y − z tan α ) σx = − I z − I yz tan α   =− (4.727 × 10 )[− 39.74 − (19.74)tan(30.12 )]   6  2.783 × 10 − (0.973 × 10 )tan(30.12 ) 6 6  N = 109.0 × 106   = 109.0  MPa mm 2 The  maximum  compressive  stress,  occurs  at  point  B,  is  given  by   M (y − z tan α ) σx = − z I z − I yz tan α   =− (4.727 × 10 )[80.26 − (9.74)tan(30.12 )]   6  2.783 × 10 − (0.973 × 10 )tan(30.12 ) 6 6  N = −159.0 × 106   = −159.0  MPa mm 2 (e) Solve  the  same  problem  by  using  the  method  outlined  in  Section  6-­‐‑5  of  the  textbook:   The  principal  axes  are  denoted  as  Y  and  Z,  respectively,  in  Fig.3.    The  directions  of  the  principal  axes   and  the  principal  moments  of  inertia  of  the  cross  section  can  be  obtained  by  using  (A-­‐‑11)  and  (A-­‐‑12)   in  the  textbook.    Let   β  be  the  angle  between  the  principal  axis  and  y-­‐‑axis  (see  Fig.2),  then  from  (A-­‐‑11)   2 I yz 2(0.973 × 106 )   tan 2θ p = tan 2 β = − =− = 1.093   Iy − Iz 1.003 × 10 6 − 2.783 × 10 6 and   1   β = tan −1 (1.093) = 23.8   2 The  principal  moments  of  inertia  can  be  obtained  by  substituting  the  value  of   β  in  (A-­‐‑10),  or  using   (A-­‐‑12):   P y Y 10 B β π −β 2 ψ α z M 10 β Z A Figure 3 Neutral Axis and Principal Axes 4
  • 5. 2 Iy + Iz ⎛ I y − I z ⎞ 2 6 4 6 4   I max,min = ⎜ 2 ⎟ + I yz = 3.212 × 10  mm ,          0.574 × 10  mm ,   ± ⎜ ⎟ 2 ⎝ ⎠ Thus,     IY = 0.574 × 106  mm 4 I Z = 3.212 × 106  mm 4   The  components  of  M  in  the  Y  and  Z  directions,  respectively,  are  now  given  by   MY = M sin(β − 10 ) = 1.143 × 106  N ⋅ mm     MZ = M cos(β − 10 ) = 4.662 × 106  N ⋅ mm The  angle   ψ ,  which  determines  the  orientation  of  neutral  axis  and  is  measured  clockwise  from  the  Z-­‐‑ axis  as  shown  in  Fig.3,  is  given  by   Y M I I   ( tan ψ = = Y Z = Z tan β − 10 = 1.374   Z MZ I Y I Y ) from  which     ψ = tan −1 (1.374 ) = 53.9   It  can  be  seen  from  Fig.3  that     α = ψ − β = 30.1   which  matches  the  value  obtained  previously.    With  respect  to  the  principal  axes,  the  stresses  are   given  by   M Z M Y   σ x = Y − Z   IY IZ At  point  A,  the  coordinates  are   YA = y A cos β + z A sin β = −28.4  mm     Z A = − y A sin β + z A cos β = 34.1  mm and  the  stress  is  given  by   MY Z MZY (1.143 × 10 3 )(34.1) (4.662 × 10 3 )(− 28.4 )   σx = − = − = 109.0  MPa   IY IZ 0.574 × 106 3.212 × 106 At  point  B,  the  coordinates  are   YB = y B cos β + zB sin β = 77.4  mm     ZB = − y B sin β + zB cos β = −23.5  mm and  the  stress  is  given  by   M Z M Y (1.143 × 10 3 )(− 23.5 ) (4.662 × 10 3 )(77.4 )   σx = Y − Z = − = −159.0  MPa   IY IZ 0.574 × 106 3.212 × 106 5