SlideShare ist ein Scribd-Unternehmen logo
1 von 21
Lecture 10
Temperature. Thermometers.
Thermal expansion.
Matter is very complex
A simple cup of coffee contains ~ 1023 atoms

Numerically impossible to follow trajectory of each
atom, use Newton’s laws for force, acceleration etc..

Two options
1. Statistical: probability distribution of molecule velocities
2. Macroscopic: a few variables (temperature, pressure,
volume…) characterize the bulk properties of matter
These variables are called state variables.
Temperature and thermal equilbrium
Temperature ~ average kinetic energy of atoms
Two pieces of matter in thermal contact exchange
energy until their temperatures (T ) are the same
(0th law of thermodynamics)
Example:
Molecules in coffee transfer energy to the air molecules.
Eventually all coffee molecules have the same average
kinetic energy as the molecules of air in this room
Reaching equilibrium (same T ) requires transfer of energy

This energy in transit is called heat Q.
ACT: Temperature
When a series of blocks are connected thermally, heat starts to flow
between the blocks as shown. What does this tell us about relative
temperatures of the blocks?
1

Q

A. T1 = T2 = T3 = T4
B. T1 > T2 > T3 > T4
C. T1 < T2 < T3 < T4

2

Q’

3

Q’’

4

This is how the sequence is
established empirically.
Also: You just applied the 2nd
law of thermodynamics....
Temperature scales: Celsius, Fahrenheit
Celsius
Based on the boiling and freezing points of water.
0°C = freezing point of water
100°C = boiling point of water

Fahrenheit
Based on the boiling and freezing points of alcohol.
Connection to Celsius: 0°C = 32°F
100°C = 212°F

9
TF = TC + 32
5
Constant volume gas thermometers
For gases, p is proportional toT for constant volume (Charles’ law).
p

p
= constant
T
T

gas
(He)

Liquid
(Hg)
Temperature scales: Kelvin
p(T) for different gases:
p

Extrapolation of ALL
lines points to
T = −273.15°C
T (°C)

Kelvin scale

0 K = −273.15°C (lowest energy state, quantum motion only)
2nd fixed point: 273.16 K (=0.01°C) is the triple-point for H 2O (ice, water,
steam coexist)
TK =TC + 273.15
With this choice, 1°C = 1K (equal increments)
Thermal expansion of a bar
A bar of length L0 expands ΔL when temperature is increased by ΔT.
Experimentally,

∆L = α L0 ∆T
α = coefficient of linear expansion (depends on material)

Basis for many thermometers
e.g. liquid mercury
Critically important in many engineering projects (expansion
joints)
In-class example: Bimetallic strips
Which of the following bimetallic strips will bend the furthest to the right
when heated from room temperature to 100°C?
α (µJ/m K)

Invar

Al

Al

Invar

Brass

C

Al

Brass

D

Ag

Au

E

Al/Invar have the largest difference in α. Aluminum
expands more than invar, so A will bend to the right.

1.3

Brass

B

A

24

Invar

Al

Al

21

Au

14

Ag

19

DEMO:
Bimetallic
strips
A couple of applications
Bimetallic strips can be used as mechanical thermometers.

About invar: Fe-Ni alloy with very small α
Train tracks have expansion joints (gaps) to prevent buckling in
hot weather.
(origin of the “clickety-clac, clickety-clac”)
High speed trains cannot afford the vibrations produced by
these gaps. Alloys with small α to build tracks are a key
development.
Area Thermal Expansion

b

b +Δb

ΔT

a

a +Δa

Afinal = (a + ∆a )(b + ∆b )
= ab + a ∆b + b ∆a + very small terms

≈ ab + a (bα∆T ) + b (a α∆T )
= ab + 2ab α∆T
∆
A

∆A = 2α A0 ∆T
ACT: Washer

DEMO:
Balls and rings

A circular piece of metal with a round hole is
heated so that its temperature increases. Which
diagram best represents the final shape of the
initial shape
metal?
A. Both inner, outer radii larger
B. Inner radius smaller, outer
radius larger
C. Same size
All lengths increase: a 2-D object grows in length and breadth
Opening tight jar lids

αglass = 0.4-0.9 × 10-5 K−1
αbrass = 2.0 × 10-5 K−1

If you place the jar top under the hot water faucet,
the brass expands more than the glass.
Volume Thermal Expansion

c
a

c +Δc

ΔT

b

a +Δa

b +Δb

Vfinal = (a + ∆a )(b + ∆b )(c + ∆c )
= abc + ab ∆c + ac ∆b + bc ∆a + smaller terms

≈ abc + 3abc (α∆T )
≈ V0 + 3 0α∆T
V
∆V

∆V = βV0 ∆T

β = 3α
Coefficient of volume expansion
The special case of water
Most materials expand when temperature increases.

Water between 0 and 4°C is the exception.

V
Maximum
density

Ice is less dense than
cold (< 4°C ) water.
Ice floats

α has an important dependence on T

0

4°C

T

This prevents lakes from freezing from the bottom up,
which would kill all forms of life.
Microscopic Model of Solids
Consider atoms on a lattice, interacting
with each other as if connected by a spring
movie
Microscopic Model of Expansion
(attempt 1)
Model potential
energy of atoms

U =

U

1
k (x − l0 )2 + const
2

vibration at high T
vibration at low T

l0
spacing l0

separation x

Vibrating atoms spend equal time at x > l0 as at x < l0
→ average separation of atoms = l0 , at both low and high T
→ material same size at low and high T
→ This spring model of matter does not describe expansion
Microscopic Model of Expansion (2)
Change model to non-ideal spring

U

U ≠

1
k (x − l 0 )2
2

asymmetric
parabola
vibration at high T
vibration at low T

spacing lT

lhighT
llowT

x

At high T, the average separation of atoms increases → solid expands
(Now we need another parameter in model, asymmetry of parabola)
Why two models?
Is this more useful compared to empirical ∆L = λ L0 ∆T ?

The empirical formula can be used for simple cases.

Example: for designing structures to take into account expansion.

The microscopic model of expansion (non-ideal spring) can be used
in wider number of cases.
Example: thermal expansion while also under high-pressure in a
chemical engineering plant
Thermal stress
A rod of length L0 and cross-sectional area A fits perfectly between
two walls. We want its length to remain constant when we increase the
temperature.
Constant length = zero net strain
 ∆L 
 ∆L 
 ∆L 
=
+
=0

÷
÷
÷
 L0  all  L0  thermal  L0  applied stress

α∆T +

F
=0
YA

F
= −αY ∆T
A
Thermal stress (stress
walls need to provide to
keep length constant)
Application of thermal stress
For very tight fitting of pieces (like wheels):

Wheel is heated
and then axle
inserted.

Wheel cools down and
shrinks around axle,
very tight.

Weitere ähnliche Inhalte

Was ist angesagt?

1.1 electric charge
1.1 electric charge1.1 electric charge
1.1 electric chargesitizalina96
 
Physics chapter 12
Physics chapter 12Physics chapter 12
Physics chapter 12shaffelder
 
Heat transfer 5th ed incropera solution manual
Heat transfer 5th ed incropera solution manualHeat transfer 5th ed incropera solution manual
Heat transfer 5th ed incropera solution manualManish Kumar
 
Linear heat conduction(Brass 25)
Linear heat conduction(Brass 25)Linear heat conduction(Brass 25)
Linear heat conduction(Brass 25)sarkawtn
 
Engineering physics 1(Electrical conductivity)
Engineering physics 1(Electrical conductivity)Engineering physics 1(Electrical conductivity)
Engineering physics 1(Electrical conductivity)Nexus
 
Potential difference and power.ppt
Potential difference and power.pptPotential difference and power.ppt
Potential difference and power.pptmrmeredith
 
Ideal Transformers
           Ideal Transformers           Ideal Transformers
Ideal Transformersmasum heera
 
k11180 Sourabh rac ppt
k11180 Sourabh rac pptk11180 Sourabh rac ppt
k11180 Sourabh rac pptSourabh Gupta
 
267258402 heat-4e-chap03-lecture
267258402 heat-4e-chap03-lecture267258402 heat-4e-chap03-lecture
267258402 heat-4e-chap03-lectureFahad Gmail Gmail
 
p-k-nag-solution thermodynamics by sk mondal
 p-k-nag-solution thermodynamics by sk mondal p-k-nag-solution thermodynamics by sk mondal
p-k-nag-solution thermodynamics by sk mondalEr Deepak Sharma
 

Was ist angesagt? (20)

B.Sc. Sem II Kinetic Theory of Gases
B.Sc. Sem II Kinetic Theory of GasesB.Sc. Sem II Kinetic Theory of Gases
B.Sc. Sem II Kinetic Theory of Gases
 
1.1 electric charge
1.1 electric charge1.1 electric charge
1.1 electric charge
 
Physics chapter 12
Physics chapter 12Physics chapter 12
Physics chapter 12
 
Heat transfer 5th ed incropera solution manual
Heat transfer 5th ed incropera solution manualHeat transfer 5th ed incropera solution manual
Heat transfer 5th ed incropera solution manual
 
Linear heat conduction(Brass 25)
Linear heat conduction(Brass 25)Linear heat conduction(Brass 25)
Linear heat conduction(Brass 25)
 
Thermal expansion
Thermal expansionThermal expansion
Thermal expansion
 
Engineering physics 1(Electrical conductivity)
Engineering physics 1(Electrical conductivity)Engineering physics 1(Electrical conductivity)
Engineering physics 1(Electrical conductivity)
 
Thermal expansion
Thermal expansionThermal expansion
Thermal expansion
 
Ideal gas law firs tthis one
Ideal gas law firs tthis oneIdeal gas law firs tthis one
Ideal gas law firs tthis one
 
Physics ppt
Physics pptPhysics ppt
Physics ppt
 
Potential difference and power.ppt
Potential difference and power.pptPotential difference and power.ppt
Potential difference and power.ppt
 
Lees disc
Lees discLees disc
Lees disc
 
Basic Properties of Electric Charge | Physics
Basic Properties of Electric Charge | PhysicsBasic Properties of Electric Charge | Physics
Basic Properties of Electric Charge | Physics
 
Circuit lab 5 kirchoff’s voltage law (kvl)@taj
Circuit lab 5  kirchoff’s voltage law (kvl)@tajCircuit lab 5  kirchoff’s voltage law (kvl)@taj
Circuit lab 5 kirchoff’s voltage law (kvl)@taj
 
Induction Heating
Induction HeatingInduction Heating
Induction Heating
 
Ideal Transformers
           Ideal Transformers           Ideal Transformers
Ideal Transformers
 
Thermal Expansion.
Thermal Expansion. Thermal Expansion.
Thermal Expansion.
 
k11180 Sourabh rac ppt
k11180 Sourabh rac pptk11180 Sourabh rac ppt
k11180 Sourabh rac ppt
 
267258402 heat-4e-chap03-lecture
267258402 heat-4e-chap03-lecture267258402 heat-4e-chap03-lecture
267258402 heat-4e-chap03-lecture
 
p-k-nag-solution thermodynamics by sk mondal
 p-k-nag-solution thermodynamics by sk mondal p-k-nag-solution thermodynamics by sk mondal
p-k-nag-solution thermodynamics by sk mondal
 

Andere mochten auch

Applications of Thermal Expansion
Applications of Thermal ExpansionApplications of Thermal Expansion
Applications of Thermal ExpansionNajma Alam
 
Lect2 up170 (100420)
Lect2 up170 (100420)Lect2 up170 (100420)
Lect2 up170 (100420)aicdesign
 
4.1 Understanding Thermal Equilibrium
4.1 Understanding Thermal Equilibrium4.1 Understanding Thermal Equilibrium
4.1 Understanding Thermal Equilibriumroszelan
 
4.1 Thermal Equilibrium
4.1 Thermal Equilibrium4.1 Thermal Equilibrium
4.1 Thermal EquilibriumNur Farizan
 
Thermodynamics lecture 2
Thermodynamics lecture 2Thermodynamics lecture 2
Thermodynamics lecture 2Archit Gadhok
 
AP Physics - Chapter 15 Powerpoint
AP Physics - Chapter 15 PowerpointAP Physics - Chapter 15 Powerpoint
AP Physics - Chapter 15 PowerpointMrreynon
 
Physics 0625 - Paper 3 version 1 - Mark scheme - May Jun 2013
Physics 0625 - Paper 3 version 1 - Mark scheme - May Jun 2013Physics 0625 - Paper 3 version 1 - Mark scheme - May Jun 2013
Physics 0625 - Paper 3 version 1 - Mark scheme - May Jun 2013JakKy Kitmanacharounpong
 
Lecture 2 3 Compression, Condition Assess
Lecture 2 3 Compression, Condition AssessLecture 2 3 Compression, Condition Assess
Lecture 2 3 Compression, Condition AssessTeja Ande
 
Alexander Kalkman, Marketingmanager MKB en grootzakelijke markt Vodafone
Alexander Kalkman, Marketingmanager MKB en grootzakelijke markt VodafoneAlexander Kalkman, Marketingmanager MKB en grootzakelijke markt Vodafone
Alexander Kalkman, Marketingmanager MKB en grootzakelijke markt VodafoneKennisKring Amsterdam
 
自然エネルギー葛生プロジェクト
自然エネルギー葛生プロジェクト自然エネルギー葛生プロジェクト
自然エネルギー葛生プロジェクトYutaka Kamioka
 
As media powerpoint
As media  powerpointAs media  powerpoint
As media powerpointHartfordsam
 

Andere mochten auch (20)

Applications of Thermal Expansion
Applications of Thermal ExpansionApplications of Thermal Expansion
Applications of Thermal Expansion
 
Thermal Expansion
Thermal ExpansionThermal Expansion
Thermal Expansion
 
Lect2 up170 (100420)
Lect2 up170 (100420)Lect2 up170 (100420)
Lect2 up170 (100420)
 
4.1 Understanding Thermal Equilibrium
4.1 Understanding Thermal Equilibrium4.1 Understanding Thermal Equilibrium
4.1 Understanding Thermal Equilibrium
 
4.1 Thermal Equilibrium
4.1 Thermal Equilibrium4.1 Thermal Equilibrium
4.1 Thermal Equilibrium
 
Thermodynamics lecture 2
Thermodynamics lecture 2Thermodynamics lecture 2
Thermodynamics lecture 2
 
Thermal equilibrium
Thermal equilibriumThermal equilibrium
Thermal equilibrium
 
Thermal expansion
Thermal expansionThermal expansion
Thermal expansion
 
Measure 3rd lec
Measure 3rd lecMeasure 3rd lec
Measure 3rd lec
 
C Language Unit-7
C Language Unit-7C Language Unit-7
C Language Unit-7
 
15 lecture outline
15 lecture outline15 lecture outline
15 lecture outline
 
AP Physics - Chapter 15 Powerpoint
AP Physics - Chapter 15 PowerpointAP Physics - Chapter 15 Powerpoint
AP Physics - Chapter 15 Powerpoint
 
Physics 0625 - Paper 3 version 1 - Mark scheme - May Jun 2013
Physics 0625 - Paper 3 version 1 - Mark scheme - May Jun 2013Physics 0625 - Paper 3 version 1 - Mark scheme - May Jun 2013
Physics 0625 - Paper 3 version 1 - Mark scheme - May Jun 2013
 
Lecture 2 3 Compression, Condition Assess
Lecture 2 3 Compression, Condition AssessLecture 2 3 Compression, Condition Assess
Lecture 2 3 Compression, Condition Assess
 
Heat and temperature
Heat and temperatureHeat and temperature
Heat and temperature
 
XXII - Rodman & Renshaw Research Report - May 2011
XXII - Rodman & Renshaw Research Report - May 2011XXII - Rodman & Renshaw Research Report - May 2011
XXII - Rodman & Renshaw Research Report - May 2011
 
Alexander Kalkman, Marketingmanager MKB en grootzakelijke markt Vodafone
Alexander Kalkman, Marketingmanager MKB en grootzakelijke markt VodafoneAlexander Kalkman, Marketingmanager MKB en grootzakelijke markt Vodafone
Alexander Kalkman, Marketingmanager MKB en grootzakelijke markt Vodafone
 
自然エネルギー葛生プロジェクト
自然エネルギー葛生プロジェクト自然エネルギー葛生プロジェクト
自然エネルギー葛生プロジェクト
 
As media powerpoint
As media  powerpointAs media  powerpoint
As media powerpoint
 
Hans Haveman gemeente Enschede
Hans Haveman gemeente EnschedeHans Haveman gemeente Enschede
Hans Haveman gemeente Enschede
 

Ähnlich wie Thermal Expansion and Temperature Scales

427962671-HT3-Unsteady-State-Heat-Transfer-f-pptx-Lipika-Mam-Ppt.pptx
427962671-HT3-Unsteady-State-Heat-Transfer-f-pptx-Lipika-Mam-Ppt.pptx427962671-HT3-Unsteady-State-Heat-Transfer-f-pptx-Lipika-Mam-Ppt.pptx
427962671-HT3-Unsteady-State-Heat-Transfer-f-pptx-Lipika-Mam-Ppt.pptxKajalMIshra63
 
HT3_Unsteady State Heat Transfer_f.pptx
HT3_Unsteady State Heat Transfer_f.pptxHT3_Unsteady State Heat Transfer_f.pptx
HT3_Unsteady State Heat Transfer_f.pptxVaishaleeApoorva
 
Heat transfer By Ankita Yagnik
Heat transfer By Ankita YagnikHeat transfer By Ankita Yagnik
Heat transfer By Ankita YagnikAnkita Yagnik
 
:Heat Transfer "Lumped Parameter Analysis "
:Heat Transfer "Lumped Parameter Analysis ":Heat Transfer "Lumped Parameter Analysis "
:Heat Transfer "Lumped Parameter Analysis "Harsh Pathak
 
Etht grp 10 ,140080125005 006-007-008
Etht grp 10 ,140080125005 006-007-008Etht grp 10 ,140080125005 006-007-008
Etht grp 10 ,140080125005 006-007-008Yash Dobariya
 
Ch 13 Transfer of Heat
Ch 13 Transfer of Heat Ch 13 Transfer of Heat
Ch 13 Transfer of Heat Scott Thomas
 
Thermal expansion
Thermal expansionThermal expansion
Thermal expansionMussaOmary3
 
Transient heat-conduction-Part-I
Transient heat-conduction-Part-ITransient heat-conduction-Part-I
Transient heat-conduction-Part-Itmuliya
 
Fisica para ingenieria y ciencias Bauer Vol I - solucioario capitulo 17
Fisica para ingenieria y ciencias  Bauer Vol I - solucioario capitulo 17Fisica para ingenieria y ciencias  Bauer Vol I - solucioario capitulo 17
Fisica para ingenieria y ciencias Bauer Vol I - solucioario capitulo 17Luis Acuña
 

Ähnlich wie Thermal Expansion and Temperature Scales (20)

Lecture 12 heat transfer.
Lecture 12   heat transfer.Lecture 12   heat transfer.
Lecture 12 heat transfer.
 
Lecture26
Lecture26Lecture26
Lecture26
 
427962671-HT3-Unsteady-State-Heat-Transfer-f-pptx-Lipika-Mam-Ppt.pptx
427962671-HT3-Unsteady-State-Heat-Transfer-f-pptx-Lipika-Mam-Ppt.pptx427962671-HT3-Unsteady-State-Heat-Transfer-f-pptx-Lipika-Mam-Ppt.pptx
427962671-HT3-Unsteady-State-Heat-Transfer-f-pptx-Lipika-Mam-Ppt.pptx
 
HT3_Unsteady State Heat Transfer_f.pptx
HT3_Unsteady State Heat Transfer_f.pptxHT3_Unsteady State Heat Transfer_f.pptx
HT3_Unsteady State Heat Transfer_f.pptx
 
Lecture23
Lecture23Lecture23
Lecture23
 
Lecture23
Lecture23Lecture23
Lecture23
 
Heat transfer By Ankita Yagnik
Heat transfer By Ankita YagnikHeat transfer By Ankita Yagnik
Heat transfer By Ankita Yagnik
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Tutorial.pptx
Tutorial.pptxTutorial.pptx
Tutorial.pptx
 
:Heat Transfer "Lumped Parameter Analysis "
:Heat Transfer "Lumped Parameter Analysis ":Heat Transfer "Lumped Parameter Analysis "
:Heat Transfer "Lumped Parameter Analysis "
 
Etht grp 10 ,140080125005 006-007-008
Etht grp 10 ,140080125005 006-007-008Etht grp 10 ,140080125005 006-007-008
Etht grp 10 ,140080125005 006-007-008
 
Tutorial#2.pptx
Tutorial#2.pptxTutorial#2.pptx
Tutorial#2.pptx
 
Ch 13 Transfer of Heat
Ch 13 Transfer of Heat Ch 13 Transfer of Heat
Ch 13 Transfer of Heat
 
EXPERIMENT HEAT-CONDUCTION.pdf
EXPERIMENT HEAT-CONDUCTION.pdfEXPERIMENT HEAT-CONDUCTION.pdf
EXPERIMENT HEAT-CONDUCTION.pdf
 
M2tempyleyestermo.pdf
M2tempyleyestermo.pdfM2tempyleyestermo.pdf
M2tempyleyestermo.pdf
 
Thermal expansion
Thermal expansionThermal expansion
Thermal expansion
 
Rtds & thermistors
Rtds & thermistorsRtds & thermistors
Rtds & thermistors
 
Transient heat-conduction-Part-I
Transient heat-conduction-Part-ITransient heat-conduction-Part-I
Transient heat-conduction-Part-I
 
Physics 15
Physics 15Physics 15
Physics 15
 
Fisica para ingenieria y ciencias Bauer Vol I - solucioario capitulo 17
Fisica para ingenieria y ciencias  Bauer Vol I - solucioario capitulo 17Fisica para ingenieria y ciencias  Bauer Vol I - solucioario capitulo 17
Fisica para ingenieria y ciencias Bauer Vol I - solucioario capitulo 17
 

Mehr von Albania Energy Association

Albania an important energy hub for the Southern Gas Corridor Realistic over...
Albania an important energy hub for the Southern Gas Corridor  Realistic over...Albania an important energy hub for the Southern Gas Corridor  Realistic over...
Albania an important energy hub for the Southern Gas Corridor Realistic over...Albania Energy Association
 
Albania investments and Hydropower development 2017
Albania investments and Hydropower development 2017Albania investments and Hydropower development 2017
Albania investments and Hydropower development 2017Albania Energy Association
 
The revival and transformation of Europe’s largest onshore oilfield; the Pato...
The revival and transformation of Europe’s largest onshore oilfield; the Pato...The revival and transformation of Europe’s largest onshore oilfield; the Pato...
The revival and transformation of Europe’s largest onshore oilfield; the Pato...Albania Energy Association
 
Trans Adriatic Pipeline (TAP) – The European leg of the Southern Gas Corridor
Trans Adriatic Pipeline (TAP) – The European leg of the Southern Gas CorridorTrans Adriatic Pipeline (TAP) – The European leg of the Southern Gas Corridor
Trans Adriatic Pipeline (TAP) – The European leg of the Southern Gas CorridorAlbania Energy Association
 
Overall analysis of the onshore sector of Albania and current developments
Overall analysis of the onshore sector of Albania and current developmentsOverall analysis of the onshore sector of Albania and current developments
Overall analysis of the onshore sector of Albania and current developmentsAlbania Energy Association
 
The fiscal regime in Albania for upstream oil and gas operations
The fiscal regime in Albania for upstream oil and gas operationsThe fiscal regime in Albania for upstream oil and gas operations
The fiscal regime in Albania for upstream oil and gas operationsAlbania Energy Association
 
How Albanian legislation facilitates the exploration and development of hydro...
How Albanian legislation facilitates the exploration and development of hydro...How Albanian legislation facilitates the exploration and development of hydro...
How Albanian legislation facilitates the exploration and development of hydro...Albania Energy Association
 
Albpetrol status update in the era of privatisation
Albpetrol status update in the era of privatisationAlbpetrol status update in the era of privatisation
Albpetrol status update in the era of privatisationAlbania Energy Association
 
Eagle LNG Terminal and Pipeline - Efficient solutions for the Balkans
Eagle LNG Terminal and Pipeline - Efficient solutions for the BalkansEagle LNG Terminal and Pipeline - Efficient solutions for the Balkans
Eagle LNG Terminal and Pipeline - Efficient solutions for the BalkansAlbania Energy Association
 
vercoming challenges in the exploration of Albania’s high potential carbonate...
vercoming challenges in the exploration of Albania’s high potential carbonate...vercoming challenges in the exploration of Albania’s high potential carbonate...
vercoming challenges in the exploration of Albania’s high potential carbonate...Albania Energy Association
 
Qendrat e perpunimit te mallrave dhe njerzve (pasagjereve)
Qendrat e perpunimit te mallrave dhe njerzve (pasagjereve)Qendrat e perpunimit te mallrave dhe njerzve (pasagjereve)
Qendrat e perpunimit te mallrave dhe njerzve (pasagjereve)Albania Energy Association
 
Si duhet ta shikojme/studjojme rrealisht nje statistike ne fushen e transportit
Si duhet ta shikojme/studjojme rrealisht nje statistike ne fushen e transportitSi duhet ta shikojme/studjojme rrealisht nje statistike ne fushen e transportit
Si duhet ta shikojme/studjojme rrealisht nje statistike ne fushen e transportitAlbania Energy Association
 

Mehr von Albania Energy Association (20)

Albania an important energy hub for the Southern Gas Corridor Realistic over...
Albania an important energy hub for the Southern Gas Corridor  Realistic over...Albania an important energy hub for the Southern Gas Corridor  Realistic over...
Albania an important energy hub for the Southern Gas Corridor Realistic over...
 
Albania investments and Hydropower development 2017
Albania investments and Hydropower development 2017Albania investments and Hydropower development 2017
Albania investments and Hydropower development 2017
 
Impiantet Termoteknike, Ngrohje-Ftohje-HVAC
Impiantet Termoteknike, Ngrohje-Ftohje-HVACImpiantet Termoteknike, Ngrohje-Ftohje-HVAC
Impiantet Termoteknike, Ngrohje-Ftohje-HVAC
 
The revival and transformation of Europe’s largest onshore oilfield; the Pato...
The revival and transformation of Europe’s largest onshore oilfield; the Pato...The revival and transformation of Europe’s largest onshore oilfield; the Pato...
The revival and transformation of Europe’s largest onshore oilfield; the Pato...
 
Trans Adriatic Pipeline (TAP) – The European leg of the Southern Gas Corridor
Trans Adriatic Pipeline (TAP) – The European leg of the Southern Gas CorridorTrans Adriatic Pipeline (TAP) – The European leg of the Southern Gas Corridor
Trans Adriatic Pipeline (TAP) – The European leg of the Southern Gas Corridor
 
Overall analysis of the onshore sector of Albania and current developments
Overall analysis of the onshore sector of Albania and current developmentsOverall analysis of the onshore sector of Albania and current developments
Overall analysis of the onshore sector of Albania and current developments
 
The fiscal regime in Albania for upstream oil and gas operations
The fiscal regime in Albania for upstream oil and gas operationsThe fiscal regime in Albania for upstream oil and gas operations
The fiscal regime in Albania for upstream oil and gas operations
 
How Albanian legislation facilitates the exploration and development of hydro...
How Albanian legislation facilitates the exploration and development of hydro...How Albanian legislation facilitates the exploration and development of hydro...
How Albanian legislation facilitates the exploration and development of hydro...
 
Albpetrol status update in the era of privatisation
Albpetrol status update in the era of privatisationAlbpetrol status update in the era of privatisation
Albpetrol status update in the era of privatisation
 
Eagle LNG Terminal and Pipeline - Efficient solutions for the Balkans
Eagle LNG Terminal and Pipeline - Efficient solutions for the BalkansEagle LNG Terminal and Pipeline - Efficient solutions for the Balkans
Eagle LNG Terminal and Pipeline - Efficient solutions for the Balkans
 
vercoming challenges in the exploration of Albania’s high potential carbonate...
vercoming challenges in the exploration of Albania’s high potential carbonate...vercoming challenges in the exploration of Albania’s high potential carbonate...
vercoming challenges in the exploration of Albania’s high potential carbonate...
 
Albania Oil and Gas & Energy 2015 Summit
Albania Oil and Gas & Energy 2015 SummitAlbania Oil and Gas & Energy 2015 Summit
Albania Oil and Gas & Energy 2015 Summit
 
Transporti me litare
Transporti me litareTransporti me litare
Transporti me litare
 
Kerkesa per parkim
Kerkesa per parkimKerkesa per parkim
Kerkesa per parkim
 
Semaforet (Sinjalet ne infrastrukture)
Semaforet (Sinjalet ne infrastrukture)Semaforet (Sinjalet ne infrastrukture)
Semaforet (Sinjalet ne infrastrukture)
 
Qendrat e perpunimit te mallrave dhe njerzve (pasagjereve)
Qendrat e perpunimit te mallrave dhe njerzve (pasagjereve)Qendrat e perpunimit te mallrave dhe njerzve (pasagjereve)
Qendrat e perpunimit te mallrave dhe njerzve (pasagjereve)
 
Parashikimi per transport
Parashikimi per transportParashikimi per transport
Parashikimi per transport
 
Si duhet ta shikojme/studjojme rrealisht nje statistike ne fushen e transportit
Si duhet ta shikojme/studjojme rrealisht nje statistike ne fushen e transportitSi duhet ta shikojme/studjojme rrealisht nje statistike ne fushen e transportit
Si duhet ta shikojme/studjojme rrealisht nje statistike ne fushen e transportit
 
Teoria e grafeve
Teoria e grafeveTeoria e grafeve
Teoria e grafeve
 
Transporti Intermodale (shume menyrash)
Transporti Intermodale (shume menyrash)Transporti Intermodale (shume menyrash)
Transporti Intermodale (shume menyrash)
 

Kürzlich hochgeladen

Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 

Kürzlich hochgeladen (20)

Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 

Thermal Expansion and Temperature Scales

  • 2. Matter is very complex A simple cup of coffee contains ~ 1023 atoms Numerically impossible to follow trajectory of each atom, use Newton’s laws for force, acceleration etc.. Two options 1. Statistical: probability distribution of molecule velocities 2. Macroscopic: a few variables (temperature, pressure, volume…) characterize the bulk properties of matter These variables are called state variables.
  • 3. Temperature and thermal equilbrium Temperature ~ average kinetic energy of atoms Two pieces of matter in thermal contact exchange energy until their temperatures (T ) are the same (0th law of thermodynamics) Example: Molecules in coffee transfer energy to the air molecules. Eventually all coffee molecules have the same average kinetic energy as the molecules of air in this room Reaching equilibrium (same T ) requires transfer of energy This energy in transit is called heat Q.
  • 4. ACT: Temperature When a series of blocks are connected thermally, heat starts to flow between the blocks as shown. What does this tell us about relative temperatures of the blocks? 1 Q A. T1 = T2 = T3 = T4 B. T1 > T2 > T3 > T4 C. T1 < T2 < T3 < T4 2 Q’ 3 Q’’ 4 This is how the sequence is established empirically. Also: You just applied the 2nd law of thermodynamics....
  • 5. Temperature scales: Celsius, Fahrenheit Celsius Based on the boiling and freezing points of water. 0°C = freezing point of water 100°C = boiling point of water Fahrenheit Based on the boiling and freezing points of alcohol. Connection to Celsius: 0°C = 32°F 100°C = 212°F 9 TF = TC + 32 5
  • 6. Constant volume gas thermometers For gases, p is proportional toT for constant volume (Charles’ law). p p = constant T T gas (He) Liquid (Hg)
  • 7. Temperature scales: Kelvin p(T) for different gases: p Extrapolation of ALL lines points to T = −273.15°C T (°C) Kelvin scale 0 K = −273.15°C (lowest energy state, quantum motion only) 2nd fixed point: 273.16 K (=0.01°C) is the triple-point for H 2O (ice, water, steam coexist) TK =TC + 273.15 With this choice, 1°C = 1K (equal increments)
  • 8. Thermal expansion of a bar A bar of length L0 expands ΔL when temperature is increased by ΔT. Experimentally, ∆L = α L0 ∆T α = coefficient of linear expansion (depends on material) Basis for many thermometers e.g. liquid mercury Critically important in many engineering projects (expansion joints)
  • 9. In-class example: Bimetallic strips Which of the following bimetallic strips will bend the furthest to the right when heated from room temperature to 100°C? α (µJ/m K) Invar Al Al Invar Brass C Al Brass D Ag Au E Al/Invar have the largest difference in α. Aluminum expands more than invar, so A will bend to the right. 1.3 Brass B A 24 Invar Al Al 21 Au 14 Ag 19 DEMO: Bimetallic strips
  • 10. A couple of applications Bimetallic strips can be used as mechanical thermometers. About invar: Fe-Ni alloy with very small α Train tracks have expansion joints (gaps) to prevent buckling in hot weather. (origin of the “clickety-clac, clickety-clac”) High speed trains cannot afford the vibrations produced by these gaps. Alloys with small α to build tracks are a key development.
  • 11. Area Thermal Expansion b b +Δb ΔT a a +Δa Afinal = (a + ∆a )(b + ∆b ) = ab + a ∆b + b ∆a + very small terms ≈ ab + a (bα∆T ) + b (a α∆T ) = ab + 2ab α∆T ∆ A ∆A = 2α A0 ∆T
  • 12. ACT: Washer DEMO: Balls and rings A circular piece of metal with a round hole is heated so that its temperature increases. Which diagram best represents the final shape of the initial shape metal? A. Both inner, outer radii larger B. Inner radius smaller, outer radius larger C. Same size All lengths increase: a 2-D object grows in length and breadth
  • 13. Opening tight jar lids αglass = 0.4-0.9 × 10-5 K−1 αbrass = 2.0 × 10-5 K−1 If you place the jar top under the hot water faucet, the brass expands more than the glass.
  • 14. Volume Thermal Expansion c a c +Δc ΔT b a +Δa b +Δb Vfinal = (a + ∆a )(b + ∆b )(c + ∆c ) = abc + ab ∆c + ac ∆b + bc ∆a + smaller terms ≈ abc + 3abc (α∆T ) ≈ V0 + 3 0α∆T V ∆V ∆V = βV0 ∆T β = 3α Coefficient of volume expansion
  • 15. The special case of water Most materials expand when temperature increases. Water between 0 and 4°C is the exception. V Maximum density Ice is less dense than cold (< 4°C ) water. Ice floats α has an important dependence on T 0 4°C T This prevents lakes from freezing from the bottom up, which would kill all forms of life.
  • 16. Microscopic Model of Solids Consider atoms on a lattice, interacting with each other as if connected by a spring movie
  • 17. Microscopic Model of Expansion (attempt 1) Model potential energy of atoms U = U 1 k (x − l0 )2 + const 2 vibration at high T vibration at low T l0 spacing l0 separation x Vibrating atoms spend equal time at x > l0 as at x < l0 → average separation of atoms = l0 , at both low and high T → material same size at low and high T → This spring model of matter does not describe expansion
  • 18. Microscopic Model of Expansion (2) Change model to non-ideal spring U U ≠ 1 k (x − l 0 )2 2 asymmetric parabola vibration at high T vibration at low T spacing lT lhighT llowT x At high T, the average separation of atoms increases → solid expands (Now we need another parameter in model, asymmetry of parabola)
  • 19. Why two models? Is this more useful compared to empirical ∆L = λ L0 ∆T ? The empirical formula can be used for simple cases. Example: for designing structures to take into account expansion. The microscopic model of expansion (non-ideal spring) can be used in wider number of cases. Example: thermal expansion while also under high-pressure in a chemical engineering plant
  • 20. Thermal stress A rod of length L0 and cross-sectional area A fits perfectly between two walls. We want its length to remain constant when we increase the temperature. Constant length = zero net strain  ∆L   ∆L   ∆L  = + =0  ÷ ÷ ÷  L0  all  L0  thermal  L0  applied stress α∆T + F =0 YA F = −αY ∆T A Thermal stress (stress walls need to provide to keep length constant)
  • 21. Application of thermal stress For very tight fitting of pieces (like wheels): Wheel is heated and then axle inserted. Wheel cools down and shrinks around axle, very tight.