SlideShare ist ein Scribd-Unternehmen logo
1 von 1
 <br />171450147617En el agua corporal se hallan disueltos diverso elementos químicos denominados electrólitos, que intervienen directamente con el comportamiento celular, estos son: sales de potasio, magnesio, sodio, calcio, proteínas, fosfatos, sulfatos y en menor proporción ácidos grasos, bicarbonato y cloro, así que como se podrá ver, el agua, no es solamente agua sino los componentes que son vitales para el organismo. <br />Pero, para qué sirve cada uno de los electrolitos?:<br />- Potasio, ayuda en la función muscular, en la conducción de los impulsos nerviosos, la acción enzimática, el funcionamiento de la membrana celular, la conducción del ritmo cardiaco, el funcionamiento del riñón, el almacenamiento de glucógeno y el equilibrio de hidatación.- Sodio, ayuda a la regulación de la hidratación, disminuye la pérdida de fluidos por la orina y participa en la transmisión de impulsos electroquímicos a través de los nervios y músculos. La transpiración excesiva provoca pérdida de sodio. <br />- Calcio, participa en la activación de nervios y músculos y en la contracción muscular. Es el principal componente de huesos y dientes. Actúa como un ión esencial para muchas enzimas y es un elemento de proteínas y sangre, que fortalece las funciones nerviosas.- Magnesio, participa en la activación enzimática, en el metabolismo de proteínas en la función muscular. Las principales fuentes dietéticas incluyen cereales, nueces, productos lácteos y vegetales de hoja verde. El magnesio ejerce sus efectos fisiológicos en el sistema nervioso, en forma semejante al calcio. Una elevación en su concentración sanguínea produce sedación y depresión del sistema nerviosos central y periférico, una concentración baja determina desorientación y convulsiones.La pérdida de cualquiera de los electrolitos ocasiona cambios en la función metabólica, que se pueden ver reflejados de diversas maneras: mareos, desmayos, pérdida de peso, inconciencia y otros síntomas. <br />La pérdida de electrolitos sucede por varias razones: - Deshidratación por vómitos y diarrea constante.- Insolación. - Fiebre intensa.- Enfermedades como la bulimia y anorexia.- Enfermedades infecciosas diversas. <br />Es muy importante evitar la pérdida reestablecerlos de inmediato para evitar complicaciones, por ello se deben tomar diariamente de litro y medio a dos litros de agua y en caso de deshidratación, acudir a un centro de salud para la aplicación de suero, ya sea vía oral o intravenosa<br />La conductividad es una variable que se controla en muchos sectores, desde la industria química a la agricultura. Esta variable depende de la cantidad de sales disueltas presentes en un líquido y es inversamente proporcional a la resistividad del mismo.Con los instrumentos convencionales, la medida de la conductividad se obtiene aplicando un voltaje entre dos electrodos y midiendo la resistencia de la solución. Las soluciones con conductividad alta producen corrientes más altas. Para contener la intensidad de la corriente en una solución altamente conductiva, es necesario disminuir la superficie de la sonda o incrementar la distancia entre los polos. Por esta razón se deben usar sondas diferentes para rangos de medida diferentes.Sólo el método de 4 anillos puede medir distintos rangos usando una única sonda. Las ventajas de este método respecto al de dos puntas (método amperímetrico) son numerosas: lecturas lineales en un amplio rango, sin ninguna polarización, y sin necesidad de limpiezas exhaustivas por las incrustaciones.INFOAGRO ofrece una amplia gama de medidores Amperimétricos y Potenciométricos. Están disponibles modelos particulares para la medida de muchos parámetros con un solo instrumento (CE, TDS, pH y temperatura), o estudiados para aplicaciones específicas (por ejemplo: la termo-hidráulica y la agricultura).Conductividad (CE) y sólidos totales disueltos (TDS)Conductividad eléctrica<br />Definición<br />La conductividad se define como la capacidad de una sutancia de conducir la corriente eléctrica y es lo contrario de la resistencia.La unidad de medición utilizada comúnmente es el Siemens/cm (S/cm), con una magnitud de 10 elevado a -6 , es decir microSiemens/cm (µS/cm), o en 10 elevado a -3, es decir, miliSiemens (mS/cm).<br />Conductividad del aguaAgua pura: 0.055 µS/cmAgua destilada: 0.5 µS/cmAgua de montaña: 1.0 µS/cmAgua para uso doméstico: 500 a 800 µS/cmMáx. para agua potable: 10055 µS/cmAgua de mar: 52 µS/cm<br />En el caso de medidas en soluciones acuosas, el valor de la conductividad es directamente proporcional a la concentración de sólidos disueltos, por lo tanto, cuanto mayor sea dicha concentración, mayor será la conductividad. La relación entre conductividad y sólidos disueltos se expresa, dependiendo de las aplicaciones, con una buena aproximación por la siguiente regla:<br />grados inglesesgrados americanos1.4 µS/cm = 1ppm o 2 µS/cm = 1 ppm (partes por millón de CaCO3)<br />donde 1 ppm = 1 mg/L es la unidad de medida para sólidos disueltos.Además de los normales conductivímetros, existen instrumentos que convierten automáticamente el valor de conductividad en ppm, ofreciendo directamente las medidas de la concentración de sólidos disueltos.La conductividad de una solución se determina por un movimiento molecular. <br />Equivalente  Químico<br />El peso equivalente tiene dimensiones y unidades de masa, a diferencia del peso atómico, que es una magnitud adimensional. Los pesos equivalentes fueron determinados originalmente de forma experimental, pero (tal como se utilizan ahora) se obtienen de las masas molares. Además, el peso equivalente de un compuesto se puede calcular dividiendo el peso molecular por el número de cargas eléctricas positivas o negativas que resultan de la disolución del compuesto. Las primeras tablas de pesos equivalentes fueron publicadas para los ácidos y las bases por Carl Friedrich Wenzel en 1777. Un conjunto más amplio de tablas fue preparada, posiblemente de forma independiente, por Jeremias Benjamin Richter, a partir de 1792. Sin embargo, ni Wenzel ni Richter tenían un punto de referencia único para sus tablas, por lo que tuvieron que publicar tablas separadas para cada par ácido-base.[2]<br />La primera tabla de pesos atómicos de John Dalton (1808) proponía un punto de referencia, al menos para los elementos: tomar el peso equivalente del hidrógeno como una unidad de masa. Sin embargo, la teoría atómica de Dalton estaba lejos de ser universalmente aceptada en el siglo XIX<br />                                              LEYES DE FARADAY<br />La Ley de inducción electromagnética de Faraday (o simplemente Ley de Faraday) se basa en los experimentos que Michael Faraday realizó en 1831 y establece que el voltaje inducido en un circuito cerrado es directamente proporcional a la rapidez con que cambia en el tiempo el flujo magnético que atraviesa una superficie cualquiera con el circuito como borde:<br />donde es el campo eléctrico, es el elemento infinitesimal del contorno C, es la densidad de campo magnético y S es una superficie arbitraria, cuyo borde es C. Las direcciones del contorno C y de están dadas por la regla de la mano derecha.<br />La permutación de la integral de superficie y la derivada temporal se puede hacer siempre y cuando la superficie de integración no cambie con el tiempo.<br />Por medio del teorema de Stokes puede obtenerse una forma diferencial de esta ley:<br />Aplicaciones de la Electrólisis1Producción de aluminio, litio, sodio, potasio y magnesio2Producción de hidróxido de sodio, clorato de sodio y clorato de potasio.3Producción de hidrógeno con múltiples usos en la industria: como combustible, en soldaduras, etc. Ver más en hidrógeno diatómico.4La electrólisis de una solución salina permite producir hipoclorito (cloro): este método se emplea para conseguir una cloración ecológica del agua de las piscinas.5La electrometalurgia es un proceso para separar el metal puro de compuestos usando la electrólisis. Por ejemplo, el hidróxido de sodio es separado en sodio puro, oxígeno puro y agua.6La anodización es usada para proteger los metales de la corrosión.7La galvanoplastia, también usada para evitar la corrosión de metales, crea una película delgada de un metal menos corrosible sobre otro metal<br />                                Electrolisis <br />

Weitere ähnliche Inhalte

Was ist angesagt?

Solubilidad y conductividad electrica de las sales
Solubilidad y conductividad electrica de las salesSolubilidad y conductividad electrica de las sales
Solubilidad y conductividad electrica de las sales2311998
 
Agua, buffer y electrolitos (1)
Agua, buffer y electrolitos (1)Agua, buffer y electrolitos (1)
Agua, buffer y electrolitos (1)Rosario Guerra
 
H2O-Propiedades Bioquímicas del Agua
H2O-Propiedades Bioquímicas del AguaH2O-Propiedades Bioquímicas del Agua
H2O-Propiedades Bioquímicas del AguaMary Carmen Aguilar
 
Agua, PH y Buffers.
Agua, PH y Buffers.Agua, PH y Buffers.
Agua, PH y Buffers.David Poleo
 
Solubilidad y conductividad eléctrica de las sales.
Solubilidad y conductividad eléctrica de las sales.Solubilidad y conductividad eléctrica de las sales.
Solubilidad y conductividad eléctrica de las sales.Shania González
 
Informe 1 enlaces (1) unprg
Informe 1 enlaces (1) unprgInforme 1 enlaces (1) unprg
Informe 1 enlaces (1) unprglilisaar
 
Practica n° 02
Practica n° 02Practica n° 02
Practica n° 02dopeca
 
Práctica enlace (2)
Práctica enlace (2)Práctica enlace (2)
Práctica enlace (2)Susana Rojas
 
LABORATORIO ENLACES QUÍMICOS Y FISICOS
LABORATORIO ENLACES QUÍMICOS Y FISICOSLABORATORIO ENLACES QUÍMICOS Y FISICOS
LABORATORIO ENLACES QUÍMICOS Y FISICOSJacky Pmt
 
Enlace químico- práctica de laboratorio
Enlace químico- práctica de laboratorioEnlace químico- práctica de laboratorio
Enlace químico- práctica de laboratorioLu G.
 
COMPUESTOS IONICOS Y COVALENTES
COMPUESTOS IONICOS Y COVALENTESCOMPUESTOS IONICOS Y COVALENTES
COMPUESTOS IONICOS Y COVALENTESLaura_Viquez
 
Informe de laboratorio 02: ENLACES QUÍMICOS Y FÍSICOS
Informe de laboratorio 02: ENLACES QUÍMICOS Y FÍSICOS  Informe de laboratorio 02: ENLACES QUÍMICOS Y FÍSICOS
Informe de laboratorio 02: ENLACES QUÍMICOS Y FÍSICOS Ana Melendez Angulo
 
Liquidos y electrolitos corporales
Liquidos y electrolitos corporalesLiquidos y electrolitos corporales
Liquidos y electrolitos corporalesEdgar Perez Lara
 
practica quimica 8
practica quimica 8practica quimica 8
practica quimica 8shadow-li
 
Sesión 2: ENLACES QUÍMICOS Y FÍSICOS
Sesión 2: ENLACES QUÍMICOS Y FÍSICOSSesión 2: ENLACES QUÍMICOS Y FÍSICOS
Sesión 2: ENLACES QUÍMICOS Y FÍSICOSSarita Liza
 

Was ist angesagt? (20)

Solubilidad y conductividad electrica de las sales
Solubilidad y conductividad electrica de las salesSolubilidad y conductividad electrica de las sales
Solubilidad y conductividad electrica de las sales
 
Agua, buffer y electrolitos (1)
Agua, buffer y electrolitos (1)Agua, buffer y electrolitos (1)
Agua, buffer y electrolitos (1)
 
H2O-Propiedades Bioquímicas del Agua
H2O-Propiedades Bioquímicas del AguaH2O-Propiedades Bioquímicas del Agua
H2O-Propiedades Bioquímicas del Agua
 
Agua, PH y Buffers.
Agua, PH y Buffers.Agua, PH y Buffers.
Agua, PH y Buffers.
 
Electrolitos
ElectrolitosElectrolitos
Electrolitos
 
Electrolito
ElectrolitoElectrolito
Electrolito
 
Solubilidad y conductividad eléctrica de las sales.
Solubilidad y conductividad eléctrica de las sales.Solubilidad y conductividad eléctrica de las sales.
Solubilidad y conductividad eléctrica de las sales.
 
Agua
AguaAgua
Agua
 
Informe 1 enlaces (1) unprg
Informe 1 enlaces (1) unprgInforme 1 enlaces (1) unprg
Informe 1 enlaces (1) unprg
 
Bioquimica agua
Bioquimica aguaBioquimica agua
Bioquimica agua
 
Practica n° 02
Practica n° 02Practica n° 02
Practica n° 02
 
Práctica enlace (2)
Práctica enlace (2)Práctica enlace (2)
Práctica enlace (2)
 
LABORATORIO ENLACES QUÍMICOS Y FISICOS
LABORATORIO ENLACES QUÍMICOS Y FISICOSLABORATORIO ENLACES QUÍMICOS Y FISICOS
LABORATORIO ENLACES QUÍMICOS Y FISICOS
 
Enlace químico- práctica de laboratorio
Enlace químico- práctica de laboratorioEnlace químico- práctica de laboratorio
Enlace químico- práctica de laboratorio
 
COMPUESTOS IONICOS Y COVALENTES
COMPUESTOS IONICOS Y COVALENTESCOMPUESTOS IONICOS Y COVALENTES
COMPUESTOS IONICOS Y COVALENTES
 
Informe de laboratorio 02: ENLACES QUÍMICOS Y FÍSICOS
Informe de laboratorio 02: ENLACES QUÍMICOS Y FÍSICOS  Informe de laboratorio 02: ENLACES QUÍMICOS Y FÍSICOS
Informe de laboratorio 02: ENLACES QUÍMICOS Y FÍSICOS
 
Liquidos y electrolitos corporales
Liquidos y electrolitos corporalesLiquidos y electrolitos corporales
Liquidos y electrolitos corporales
 
practica quimica 8
practica quimica 8practica quimica 8
practica quimica 8
 
Sesion 2 enlaces quimicos y fisicos
Sesion 2 enlaces quimicos y fisicosSesion 2 enlaces quimicos y fisicos
Sesion 2 enlaces quimicos y fisicos
 
Sesión 2: ENLACES QUÍMICOS Y FÍSICOS
Sesión 2: ENLACES QUÍMICOS Y FÍSICOSSesión 2: ENLACES QUÍMICOS Y FÍSICOS
Sesión 2: ENLACES QUÍMICOS Y FÍSICOS
 

Ähnlich wie Los electrolitos cumplen funciones muy importantes que tienen que ver con el funcionamiento adecuado del organismo

CONDUCTIVIDAD --- 6-Métodos_Normalizados_CONDUCTIVIDAD_seccion_2510_p2-63.pdf
CONDUCTIVIDAD --- 6-Métodos_Normalizados_CONDUCTIVIDAD_seccion_2510_p2-63.pdfCONDUCTIVIDAD --- 6-Métodos_Normalizados_CONDUCTIVIDAD_seccion_2510_p2-63.pdf
CONDUCTIVIDAD --- 6-Métodos_Normalizados_CONDUCTIVIDAD_seccion_2510_p2-63.pdfoscardaza10
 
Carpeta Primer Parcial Biofisica
Carpeta Primer Parcial BiofisicaCarpeta Primer Parcial Biofisica
Carpeta Primer Parcial BiofisicaStefania Pow
 
Metodos Electroquimicos de Analisis
Metodos Electroquimicos de AnalisisMetodos Electroquimicos de Analisis
Metodos Electroquimicos de AnalisisMagdiely Henriquez
 
Porth. Fisiopatología, Alteraciones de la Salud 9ª Edición.-1870-1943.pdf
Porth. Fisiopatología, Alteraciones de la Salud 9ª Edición.-1870-1943.pdfPorth. Fisiopatología, Alteraciones de la Salud 9ª Edición.-1870-1943.pdf
Porth. Fisiopatología, Alteraciones de la Salud 9ª Edición.-1870-1943.pdfMarcosMolinaNina
 
Practica V: Electrólisis del agua
Practica V: Electrólisis del aguaPractica V: Electrólisis del agua
Practica V: Electrólisis del aguaIvan Mendoza
 
Métodos Electoquímicos de Analisis
Métodos Electoquímicos de AnalisisMétodos Electoquímicos de Analisis
Métodos Electoquímicos de AnalisisAdagni Andradez
 
dispositivo agua
dispositivo aguadispositivo agua
dispositivo aguapalomaan
 
Tema 2. disoluciones de electrolitos 21 22
Tema 2. disoluciones de electrolitos 21 22Tema 2. disoluciones de electrolitos 21 22
Tema 2. disoluciones de electrolitos 21 22JnBilbaoMallona
 
2a. Clase. Estructura del Agua. Clase 2 Bioquimica.pptx
2a. Clase.  Estructura del Agua. Clase 2 Bioquimica.pptx2a. Clase.  Estructura del Agua. Clase 2 Bioquimica.pptx
2a. Clase. Estructura del Agua. Clase 2 Bioquimica.pptxadelyprof
 
Sistema nervioso autónomo
Sistema nervioso autónomoSistema nervioso autónomo
Sistema nervioso autónomoBRENDAGRANADOS14
 

Ähnlich wie Los electrolitos cumplen funciones muy importantes que tienen que ver con el funcionamiento adecuado del organismo (20)

CONDUCTIVIDAD --- 6-Métodos_Normalizados_CONDUCTIVIDAD_seccion_2510_p2-63.pdf
CONDUCTIVIDAD --- 6-Métodos_Normalizados_CONDUCTIVIDAD_seccion_2510_p2-63.pdfCONDUCTIVIDAD --- 6-Métodos_Normalizados_CONDUCTIVIDAD_seccion_2510_p2-63.pdf
CONDUCTIVIDAD --- 6-Métodos_Normalizados_CONDUCTIVIDAD_seccion_2510_p2-63.pdf
 
Química Analítica-Métodos electroquímicos
Química Analítica-Métodos electroquímicosQuímica Analítica-Métodos electroquímicos
Química Analítica-Métodos electroquímicos
 
Conductividad eléctrica maria gina gomez
Conductividad eléctrica maria gina gomezConductividad eléctrica maria gina gomez
Conductividad eléctrica maria gina gomez
 
Carpeta Primer Parcial Biofisica
Carpeta Primer Parcial BiofisicaCarpeta Primer Parcial Biofisica
Carpeta Primer Parcial Biofisica
 
Metodos Electroquimicos de Analisis
Metodos Electroquimicos de AnalisisMetodos Electroquimicos de Analisis
Metodos Electroquimicos de Analisis
 
tema13.pdf
tema13.pdftema13.pdf
tema13.pdf
 
conductividad eléctrica.ppt
conductividad eléctrica.pptconductividad eléctrica.ppt
conductividad eléctrica.ppt
 
Conductividad del agua
Conductividad del aguaConductividad del agua
Conductividad del agua
 
Porth. Fisiopatología, Alteraciones de la Salud 9ª Edición.-1870-1943.pdf
Porth. Fisiopatología, Alteraciones de la Salud 9ª Edición.-1870-1943.pdfPorth. Fisiopatología, Alteraciones de la Salud 9ª Edición.-1870-1943.pdf
Porth. Fisiopatología, Alteraciones de la Salud 9ª Edición.-1870-1943.pdf
 
Practica V: Electrólisis del agua
Practica V: Electrólisis del aguaPractica V: Electrólisis del agua
Practica V: Electrólisis del agua
 
Métodos Electoquímicos de Analisis
Métodos Electoquímicos de AnalisisMétodos Electoquímicos de Analisis
Métodos Electoquímicos de Analisis
 
Calidad del Agua_.pdf
Calidad del Agua_.pdfCalidad del Agua_.pdf
Calidad del Agua_.pdf
 
Scei10
Scei10Scei10
Scei10
 
dispositivo agua
dispositivo aguadispositivo agua
dispositivo agua
 
Metodos electroquimicos
Metodos electroquimicosMetodos electroquimicos
Metodos electroquimicos
 
Tema 2. disoluciones de electrolitos 21 22
Tema 2. disoluciones de electrolitos 21 22Tema 2. disoluciones de electrolitos 21 22
Tema 2. disoluciones de electrolitos 21 22
 
2a. Clase. Estructura del Agua. Clase 2 Bioquimica.pptx
2a. Clase.  Estructura del Agua. Clase 2 Bioquimica.pptx2a. Clase.  Estructura del Agua. Clase 2 Bioquimica.pptx
2a. Clase. Estructura del Agua. Clase 2 Bioquimica.pptx
 
5 conductividad
5 conductividad5 conductividad
5 conductividad
 
conductividad.pdf
conductividad.pdfconductividad.pdf
conductividad.pdf
 
Sistema nervioso autónomo
Sistema nervioso autónomoSistema nervioso autónomo
Sistema nervioso autónomo
 

Los electrolitos cumplen funciones muy importantes que tienen que ver con el funcionamiento adecuado del organismo

  • 1.  <br />171450147617En el agua corporal se hallan disueltos diverso elementos químicos denominados electrólitos, que intervienen directamente con el comportamiento celular, estos son: sales de potasio, magnesio, sodio, calcio, proteínas, fosfatos, sulfatos y en menor proporción ácidos grasos, bicarbonato y cloro, así que como se podrá ver, el agua, no es solamente agua sino los componentes que son vitales para el organismo. <br />Pero, para qué sirve cada uno de los electrolitos?:<br />- Potasio, ayuda en la función muscular, en la conducción de los impulsos nerviosos, la acción enzimática, el funcionamiento de la membrana celular, la conducción del ritmo cardiaco, el funcionamiento del riñón, el almacenamiento de glucógeno y el equilibrio de hidatación.- Sodio, ayuda a la regulación de la hidratación, disminuye la pérdida de fluidos por la orina y participa en la transmisión de impulsos electroquímicos a través de los nervios y músculos. La transpiración excesiva provoca pérdida de sodio. <br />- Calcio, participa en la activación de nervios y músculos y en la contracción muscular. Es el principal componente de huesos y dientes. Actúa como un ión esencial para muchas enzimas y es un elemento de proteínas y sangre, que fortalece las funciones nerviosas.- Magnesio, participa en la activación enzimática, en el metabolismo de proteínas en la función muscular. Las principales fuentes dietéticas incluyen cereales, nueces, productos lácteos y vegetales de hoja verde. El magnesio ejerce sus efectos fisiológicos en el sistema nervioso, en forma semejante al calcio. Una elevación en su concentración sanguínea produce sedación y depresión del sistema nerviosos central y periférico, una concentración baja determina desorientación y convulsiones.La pérdida de cualquiera de los electrolitos ocasiona cambios en la función metabólica, que se pueden ver reflejados de diversas maneras: mareos, desmayos, pérdida de peso, inconciencia y otros síntomas. <br />La pérdida de electrolitos sucede por varias razones: - Deshidratación por vómitos y diarrea constante.- Insolación. - Fiebre intensa.- Enfermedades como la bulimia y anorexia.- Enfermedades infecciosas diversas. <br />Es muy importante evitar la pérdida reestablecerlos de inmediato para evitar complicaciones, por ello se deben tomar diariamente de litro y medio a dos litros de agua y en caso de deshidratación, acudir a un centro de salud para la aplicación de suero, ya sea vía oral o intravenosa<br />La conductividad es una variable que se controla en muchos sectores, desde la industria química a la agricultura. Esta variable depende de la cantidad de sales disueltas presentes en un líquido y es inversamente proporcional a la resistividad del mismo.Con los instrumentos convencionales, la medida de la conductividad se obtiene aplicando un voltaje entre dos electrodos y midiendo la resistencia de la solución. Las soluciones con conductividad alta producen corrientes más altas. Para contener la intensidad de la corriente en una solución altamente conductiva, es necesario disminuir la superficie de la sonda o incrementar la distancia entre los polos. Por esta razón se deben usar sondas diferentes para rangos de medida diferentes.Sólo el método de 4 anillos puede medir distintos rangos usando una única sonda. Las ventajas de este método respecto al de dos puntas (método amperímetrico) son numerosas: lecturas lineales en un amplio rango, sin ninguna polarización, y sin necesidad de limpiezas exhaustivas por las incrustaciones.INFOAGRO ofrece una amplia gama de medidores Amperimétricos y Potenciométricos. Están disponibles modelos particulares para la medida de muchos parámetros con un solo instrumento (CE, TDS, pH y temperatura), o estudiados para aplicaciones específicas (por ejemplo: la termo-hidráulica y la agricultura).Conductividad (CE) y sólidos totales disueltos (TDS)Conductividad eléctrica<br />Definición<br />La conductividad se define como la capacidad de una sutancia de conducir la corriente eléctrica y es lo contrario de la resistencia.La unidad de medición utilizada comúnmente es el Siemens/cm (S/cm), con una magnitud de 10 elevado a -6 , es decir microSiemens/cm (µS/cm), o en 10 elevado a -3, es decir, miliSiemens (mS/cm).<br />Conductividad del aguaAgua pura: 0.055 µS/cmAgua destilada: 0.5 µS/cmAgua de montaña: 1.0 µS/cmAgua para uso doméstico: 500 a 800 µS/cmMáx. para agua potable: 10055 µS/cmAgua de mar: 52 µS/cm<br />En el caso de medidas en soluciones acuosas, el valor de la conductividad es directamente proporcional a la concentración de sólidos disueltos, por lo tanto, cuanto mayor sea dicha concentración, mayor será la conductividad. La relación entre conductividad y sólidos disueltos se expresa, dependiendo de las aplicaciones, con una buena aproximación por la siguiente regla:<br />grados inglesesgrados americanos1.4 µS/cm = 1ppm o 2 µS/cm = 1 ppm (partes por millón de CaCO3)<br />donde 1 ppm = 1 mg/L es la unidad de medida para sólidos disueltos.Además de los normales conductivímetros, existen instrumentos que convierten automáticamente el valor de conductividad en ppm, ofreciendo directamente las medidas de la concentración de sólidos disueltos.La conductividad de una solución se determina por un movimiento molecular. <br />Equivalente Químico<br />El peso equivalente tiene dimensiones y unidades de masa, a diferencia del peso atómico, que es una magnitud adimensional. Los pesos equivalentes fueron determinados originalmente de forma experimental, pero (tal como se utilizan ahora) se obtienen de las masas molares. Además, el peso equivalente de un compuesto se puede calcular dividiendo el peso molecular por el número de cargas eléctricas positivas o negativas que resultan de la disolución del compuesto. Las primeras tablas de pesos equivalentes fueron publicadas para los ácidos y las bases por Carl Friedrich Wenzel en 1777. Un conjunto más amplio de tablas fue preparada, posiblemente de forma independiente, por Jeremias Benjamin Richter, a partir de 1792. Sin embargo, ni Wenzel ni Richter tenían un punto de referencia único para sus tablas, por lo que tuvieron que publicar tablas separadas para cada par ácido-base.[2]<br />La primera tabla de pesos atómicos de John Dalton (1808) proponía un punto de referencia, al menos para los elementos: tomar el peso equivalente del hidrógeno como una unidad de masa. Sin embargo, la teoría atómica de Dalton estaba lejos de ser universalmente aceptada en el siglo XIX<br /> LEYES DE FARADAY<br />La Ley de inducción electromagnética de Faraday (o simplemente Ley de Faraday) se basa en los experimentos que Michael Faraday realizó en 1831 y establece que el voltaje inducido en un circuito cerrado es directamente proporcional a la rapidez con que cambia en el tiempo el flujo magnético que atraviesa una superficie cualquiera con el circuito como borde:<br />donde es el campo eléctrico, es el elemento infinitesimal del contorno C, es la densidad de campo magnético y S es una superficie arbitraria, cuyo borde es C. Las direcciones del contorno C y de están dadas por la regla de la mano derecha.<br />La permutación de la integral de superficie y la derivada temporal se puede hacer siempre y cuando la superficie de integración no cambie con el tiempo.<br />Por medio del teorema de Stokes puede obtenerse una forma diferencial de esta ley:<br />Aplicaciones de la Electrólisis1Producción de aluminio, litio, sodio, potasio y magnesio2Producción de hidróxido de sodio, clorato de sodio y clorato de potasio.3Producción de hidrógeno con múltiples usos en la industria: como combustible, en soldaduras, etc. Ver más en hidrógeno diatómico.4La electrólisis de una solución salina permite producir hipoclorito (cloro): este método se emplea para conseguir una cloración ecológica del agua de las piscinas.5La electrometalurgia es un proceso para separar el metal puro de compuestos usando la electrólisis. Por ejemplo, el hidróxido de sodio es separado en sodio puro, oxígeno puro y agua.6La anodización es usada para proteger los metales de la corrosión.7La galvanoplastia, también usada para evitar la corrosión de metales, crea una película delgada de un metal menos corrosible sobre otro metal<br /> Electrolisis <br />