SlideShare ist ein Scribd-Unternehmen logo
1 von 14
Energy Metering ICs with  Active Real Power ,[object Object]
Introduction ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Features ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Functional Block Diagram
16-Bit Delta-Sigma A/D Converters ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],SINC Filter Magnitude Response (MCLK = 3.58 MHz).
Power-On Reset (POR) Power-on Reset Operation ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
High-Pass Filters and Multiplier / Low-Pass Filter and DTF Converter HPF Magnitude Response LPF Magnitude Response ,[object Object],[object Object],[object Object],[object Object]
Device Pin Features ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Device Input Pin Functionalities ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Current Sensing And Dynamic Range Requirements ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
MCP3905A/06A Energy Meter Reference Design ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Stand-Alone MCP3905A Energy Meter Photograph of Complete, Stand-Alone MCP3905A Energy Meter ,[object Object],[object Object]
MCP3905 Energy Meter Eval Board MCP3905 Evaluation Board
Additional Resource ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Newark Farnell

Weitere ähnliche Inhalte

Was ist angesagt?

Hybrid Transistor Model with Two Port Network
Hybrid Transistor Model with Two Port NetworkHybrid Transistor Model with Two Port Network
Hybrid Transistor Model with Two Port NetworkRidwanul Hoque
 
ENABLING EVTOL WITH BREAKTHROUGH BATTERIES
ENABLING EVTOL WITH BREAKTHROUGH BATTERIESENABLING EVTOL WITH BREAKTHROUGH BATTERIES
ENABLING EVTOL WITH BREAKTHROUGH BATTERIESiQHub
 
Battery Manufacturing
Battery ManufacturingBattery Manufacturing
Battery ManufacturingAntonio Reis
 
BATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLES
BATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLESBATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLES
BATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLESBhagavathyP
 
Programmable Logic Devices Plds
Programmable Logic Devices PldsProgrammable Logic Devices Plds
Programmable Logic Devices PldsGaditek
 
INDUSTRIAL TRAINING REPORT ON BATTERIES & INVERTERS
INDUSTRIAL TRAINING REPORT ON BATTERIES & INVERTERSINDUSTRIAL TRAINING REPORT ON BATTERIES & INVERTERS
INDUSTRIAL TRAINING REPORT ON BATTERIES & INVERTERSArpit Kurel
 
Interfacing of io device to 8085
Interfacing of io device to 8085Interfacing of io device to 8085
Interfacing of io device to 8085Nitin Ahire
 
Power electronics Introduction
Power electronics   IntroductionPower electronics   Introduction
Power electronics IntroductionBurdwan University
 
Switching characteristics of power electronic devices
Switching characteristics of power electronic devicesSwitching characteristics of power electronic devices
Switching characteristics of power electronic devicesSunny Purani
 
Microprocessor based system design
Microprocessor based system designMicroprocessor based system design
Microprocessor based system designTHANDAIAH PRABU
 
STATE-SPACE AVERAGING METHOD
STATE-SPACE AVERAGING METHOD STATE-SPACE AVERAGING METHOD
STATE-SPACE AVERAGING METHOD Slobodan Cuk
 
Battery Management System Introduction - Penelope Bise - June 2013
Battery Management System Introduction - Penelope Bise - June 2013Battery Management System Introduction - Penelope Bise - June 2013
Battery Management System Introduction - Penelope Bise - June 2013Oldenburg University
 

Was ist angesagt? (20)

BUCK CONVERTER
BUCK CONVERTERBUCK CONVERTER
BUCK CONVERTER
 
Hybrid Transistor Model with Two Port Network
Hybrid Transistor Model with Two Port NetworkHybrid Transistor Model with Two Port Network
Hybrid Transistor Model with Two Port Network
 
Switch level modeling
Switch level modelingSwitch level modeling
Switch level modeling
 
ENABLING EVTOL WITH BREAKTHROUGH BATTERIES
ENABLING EVTOL WITH BREAKTHROUGH BATTERIESENABLING EVTOL WITH BREAKTHROUGH BATTERIES
ENABLING EVTOL WITH BREAKTHROUGH BATTERIES
 
Battery Manufacturing
Battery ManufacturingBattery Manufacturing
Battery Manufacturing
 
Hvdc notes
Hvdc notesHvdc notes
Hvdc notes
 
AC AC converters
AC AC convertersAC AC converters
AC AC converters
 
BATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLES
BATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLESBATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLES
BATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLES
 
Programmable Logic Devices Plds
Programmable Logic Devices PldsProgrammable Logic Devices Plds
Programmable Logic Devices Plds
 
INDUSTRIAL TRAINING REPORT ON BATTERIES & INVERTERS
INDUSTRIAL TRAINING REPORT ON BATTERIES & INVERTERSINDUSTRIAL TRAINING REPORT ON BATTERIES & INVERTERS
INDUSTRIAL TRAINING REPORT ON BATTERIES & INVERTERS
 
Interfacing of io device to 8085
Interfacing of io device to 8085Interfacing of io device to 8085
Interfacing of io device to 8085
 
Power electronics Introduction
Power electronics   IntroductionPower electronics   Introduction
Power electronics Introduction
 
Switching characteristics of power electronic devices
Switching characteristics of power electronic devicesSwitching characteristics of power electronic devices
Switching characteristics of power electronic devices
 
Basic plc-programming
Basic plc-programmingBasic plc-programming
Basic plc-programming
 
Microprocessor based system design
Microprocessor based system designMicroprocessor based system design
Microprocessor based system design
 
Lcd
LcdLcd
Lcd
 
HVDC & FACTS
HVDC & FACTSHVDC & FACTS
HVDC & FACTS
 
STATE-SPACE AVERAGING METHOD
STATE-SPACE AVERAGING METHOD STATE-SPACE AVERAGING METHOD
STATE-SPACE AVERAGING METHOD
 
Interfacing LCD with 8051 Microcontroller
Interfacing LCD with 8051 MicrocontrollerInterfacing LCD with 8051 Microcontroller
Interfacing LCD with 8051 Microcontroller
 
Battery Management System Introduction - Penelope Bise - June 2013
Battery Management System Introduction - Penelope Bise - June 2013Battery Management System Introduction - Penelope Bise - June 2013
Battery Management System Introduction - Penelope Bise - June 2013
 

Ähnlich wie Energy Metering ICs with Active Real Power

Analog & Digital Integrated Circuits - Material (Short Answers)
Analog & Digital Integrated Circuits -  Material (Short Answers) Analog & Digital Integrated Circuits -  Material (Short Answers)
Analog & Digital Integrated Circuits - Material (Short Answers) Mathankumar S
 
An Integrated PFC Rectifier In CCM By Using DSP Controller With Reduced Harmo...
An Integrated PFC Rectifier In CCM By Using DSP Controller With Reduced Harmo...An Integrated PFC Rectifier In CCM By Using DSP Controller With Reduced Harmo...
An Integrated PFC Rectifier In CCM By Using DSP Controller With Reduced Harmo...mkanth
 
Grid synchronisation
Grid synchronisationGrid synchronisation
Grid synchronisationmanogna gwen
 
power grid synchronization failure detection
power grid synchronization failure detectionpower grid synchronization failure detection
power grid synchronization failure detectionJay Hind
 
L6561 Power Factor Corrector
L6561 Power Factor CorrectorL6561 Power Factor Corrector
L6561 Power Factor CorrectorPremier Farnell
 
Voltage & frequency monitoring through lcd
Voltage & frequency monitoring through lcdVoltage & frequency monitoring through lcd
Voltage & frequency monitoring through lcdHariKishore Karanapu
 
Frequency to voltage converter.final
Frequency to voltage converter.finalFrequency to voltage converter.final
Frequency to voltage converter.finalprashant singh
 
4_INFRARED REMOTE USED FOR 8
4_INFRARED REMOTE USED FOR 84_INFRARED REMOTE USED FOR 8
4_INFRARED REMOTE USED FOR 8SURAJ MAHAPATRA
 
IRJET- Automatic HF Antenna Tuner
IRJET-  	  Automatic HF Antenna TunerIRJET-  	  Automatic HF Antenna Tuner
IRJET- Automatic HF Antenna TunerIRJET Journal
 
A DAPTIVE S UPPLY V OLTAGE M ANAGEMENT F OR L OW P OWER L OGIC C IRCU...
A DAPTIVE  S UPPLY  V OLTAGE  M ANAGEMENT  F OR  L OW  P OWER  L OGIC  C IRCU...A DAPTIVE  S UPPLY  V OLTAGE  M ANAGEMENT  F OR  L OW  P OWER  L OGIC  C IRCU...
A DAPTIVE S UPPLY V OLTAGE M ANAGEMENT F OR L OW P OWER L OGIC C IRCU...VLSICS Design
 
Two-Phase Interleaved CCM PFC Controller
Two-Phase Interleaved CCM PFC ControllerTwo-Phase Interleaved CCM PFC Controller
Two-Phase Interleaved CCM PFC ControllerPremier Farnell
 
RBEFC Magnetic Flow Converter/Transmitter Catalog 2016
RBEFC Magnetic Flow Converter/Transmitter Catalog 2016RBEFC Magnetic Flow Converter/Transmitter Catalog 2016
RBEFC Magnetic Flow Converter/Transmitter Catalog 2016jessy Lee RB Flowmeter
 
Basic Protection of transformer using microcontroller based relay
Basic Protection of transformer using microcontroller based relayBasic Protection of transformer using microcontroller based relay
Basic Protection of transformer using microcontroller based relaySatish Dharpure
 
Speed Control of DC motor using AT89C52 IC
Speed Control of DC motor using AT89C52 ICSpeed Control of DC motor using AT89C52 IC
Speed Control of DC motor using AT89C52 ICDisha Modi
 
Original Power Supply IC TNY176PN DIP-7 New Power Integrations
Original Power Supply IC TNY176PN DIP-7 New Power IntegrationsOriginal Power Supply IC TNY176PN DIP-7 New Power Integrations
Original Power Supply IC TNY176PN DIP-7 New Power IntegrationsAUTHELECTRONIC
 
Origial Power Supply IC TNY279PN TNY279PN TNY279PN DIP-7 New
Origial Power Supply IC TNY279PN TNY279PN TNY279PN DIP-7 NewOrigial Power Supply IC TNY279PN TNY279PN TNY279PN DIP-7 New
Origial Power Supply IC TNY279PN TNY279PN TNY279PN DIP-7 NewAUTHELECTRONIC
 
Original Power Supply IC LNK616PG LNK616P LNK616 DIP-7 New
Original Power Supply IC LNK616PG LNK616P LNK616 DIP-7 NewOriginal Power Supply IC LNK616PG LNK616P LNK616 DIP-7 New
Original Power Supply IC LNK616PG LNK616P LNK616 DIP-7 NewAUTHELECTRONIC
 

Ähnlich wie Energy Metering ICs with Active Real Power (20)

Speed control of motor
Speed control of motorSpeed control of motor
Speed control of motor
 
Analog & Digital Integrated Circuits - Material (Short Answers)
Analog & Digital Integrated Circuits -  Material (Short Answers) Analog & Digital Integrated Circuits -  Material (Short Answers)
Analog & Digital Integrated Circuits - Material (Short Answers)
 
An Integrated PFC Rectifier In CCM By Using DSP Controller With Reduced Harmo...
An Integrated PFC Rectifier In CCM By Using DSP Controller With Reduced Harmo...An Integrated PFC Rectifier In CCM By Using DSP Controller With Reduced Harmo...
An Integrated PFC Rectifier In CCM By Using DSP Controller With Reduced Harmo...
 
Apfc final seminar
Apfc final seminarApfc final seminar
Apfc final seminar
 
Grid synchronisation
Grid synchronisationGrid synchronisation
Grid synchronisation
 
power grid synchronization failure detection
power grid synchronization failure detectionpower grid synchronization failure detection
power grid synchronization failure detection
 
L6561 Power Factor Corrector
L6561 Power Factor CorrectorL6561 Power Factor Corrector
L6561 Power Factor Corrector
 
Voltage & frequency monitoring through lcd
Voltage & frequency monitoring through lcdVoltage & frequency monitoring through lcd
Voltage & frequency monitoring through lcd
 
Frequency to voltage converter.final
Frequency to voltage converter.finalFrequency to voltage converter.final
Frequency to voltage converter.final
 
4_INFRARED REMOTE USED FOR 8
4_INFRARED REMOTE USED FOR 84_INFRARED REMOTE USED FOR 8
4_INFRARED REMOTE USED FOR 8
 
IRJET- Automatic HF Antenna Tuner
IRJET-  	  Automatic HF Antenna TunerIRJET-  	  Automatic HF Antenna Tuner
IRJET- Automatic HF Antenna Tuner
 
A DAPTIVE S UPPLY V OLTAGE M ANAGEMENT F OR L OW P OWER L OGIC C IRCU...
A DAPTIVE  S UPPLY  V OLTAGE  M ANAGEMENT  F OR  L OW  P OWER  L OGIC  C IRCU...A DAPTIVE  S UPPLY  V OLTAGE  M ANAGEMENT  F OR  L OW  P OWER  L OGIC  C IRCU...
A DAPTIVE S UPPLY V OLTAGE M ANAGEMENT F OR L OW P OWER L OGIC C IRCU...
 
Two-Phase Interleaved CCM PFC Controller
Two-Phase Interleaved CCM PFC ControllerTwo-Phase Interleaved CCM PFC Controller
Two-Phase Interleaved CCM PFC Controller
 
RBEFC Magnetic Flow Converter/Transmitter Catalog 2016
RBEFC Magnetic Flow Converter/Transmitter Catalog 2016RBEFC Magnetic Flow Converter/Transmitter Catalog 2016
RBEFC Magnetic Flow Converter/Transmitter Catalog 2016
 
About Sine Pulse Width Modulation
About Sine Pulse Width Modulation About Sine Pulse Width Modulation
About Sine Pulse Width Modulation
 
Basic Protection of transformer using microcontroller based relay
Basic Protection of transformer using microcontroller based relayBasic Protection of transformer using microcontroller based relay
Basic Protection of transformer using microcontroller based relay
 
Speed Control of DC motor using AT89C52 IC
Speed Control of DC motor using AT89C52 ICSpeed Control of DC motor using AT89C52 IC
Speed Control of DC motor using AT89C52 IC
 
Original Power Supply IC TNY176PN DIP-7 New Power Integrations
Original Power Supply IC TNY176PN DIP-7 New Power IntegrationsOriginal Power Supply IC TNY176PN DIP-7 New Power Integrations
Original Power Supply IC TNY176PN DIP-7 New Power Integrations
 
Origial Power Supply IC TNY279PN TNY279PN TNY279PN DIP-7 New
Origial Power Supply IC TNY279PN TNY279PN TNY279PN DIP-7 NewOrigial Power Supply IC TNY279PN TNY279PN TNY279PN DIP-7 New
Origial Power Supply IC TNY279PN TNY279PN TNY279PN DIP-7 New
 
Original Power Supply IC LNK616PG LNK616P LNK616 DIP-7 New
Original Power Supply IC LNK616PG LNK616P LNK616 DIP-7 NewOriginal Power Supply IC LNK616PG LNK616P LNK616 DIP-7 New
Original Power Supply IC LNK616PG LNK616P LNK616 DIP-7 New
 

Mehr von Premier Farnell

Being a business assistant with element14 in krakow
Being a business assistant with element14 in krakowBeing a business assistant with element14 in krakow
Being a business assistant with element14 in krakowPremier Farnell
 
PSA-T Series Spectrum Analyser: PSA1301T/ PSA2701T
PSA-T Series Spectrum Analyser: PSA1301T/ PSA2701TPSA-T Series Spectrum Analyser: PSA1301T/ PSA2701T
PSA-T Series Spectrum Analyser: PSA1301T/ PSA2701TPremier Farnell
 
TPS2492/93 – High Voltage Hotswap Controller
TPS2492/93 – High Voltage Hotswap ControllerTPS2492/93 – High Voltage Hotswap Controller
TPS2492/93 – High Voltage Hotswap ControllerPremier Farnell
 
Stellaris® 9000 Family of ARM® Cortex™-M3
Stellaris® 9000 Family of ARM® Cortex™-M3 Stellaris® 9000 Family of ARM® Cortex™-M3
Stellaris® 9000 Family of ARM® Cortex™-M3 Premier Farnell
 
Piccolo F2806x Microcontrollers
Piccolo F2806x MicrocontrollersPiccolo F2806x Microcontrollers
Piccolo F2806x MicrocontrollersPremier Farnell
 
Introduce to AM37x Sitara™ Processors
Introduce to AM37x Sitara™ ProcessorsIntroduce to AM37x Sitara™ Processors
Introduce to AM37x Sitara™ ProcessorsPremier Farnell
 
ETRX3 ZigBee Module: ETRX3
ETRX3 ZigBee Module: ETRX3ETRX3 ZigBee Module: ETRX3
ETRX3 ZigBee Module: ETRX3Premier Farnell
 
DMM4000 Benchtop Digital Multimeters
DMM4000 Benchtop Digital MultimetersDMM4000 Benchtop Digital Multimeters
DMM4000 Benchtop Digital MultimetersPremier Farnell
 
Discovering Board for STM8L15x MCUs
Discovering Board for STM8L15x MCUsDiscovering Board for STM8L15x MCUs
Discovering Board for STM8L15x MCUsPremier Farnell
 
An Overview Study on MEMS digital output motion sensor: LIS331DLH
An Overview Study on MEMS digital output motion sensor: LIS331DLHAn Overview Study on MEMS digital output motion sensor: LIS331DLH
An Overview Study on MEMS digital output motion sensor: LIS331DLHPremier Farnell
 
LED Solar Garden Lighting Solution From STMicroelectronics
LED Solar Garden Lighting Solution From STMicroelectronicsLED Solar Garden Lighting Solution From STMicroelectronics
LED Solar Garden Lighting Solution From STMicroelectronicsPremier Farnell
 
Solution on Handheld Signal Generator
Solution on Handheld Signal Generator Solution on Handheld Signal Generator
Solution on Handheld Signal Generator Premier Farnell
 
Medium Performance Gyroscopes
Medium Performance GyroscopesMedium Performance Gyroscopes
Medium Performance GyroscopesPremier Farnell
 
Getting to Know the R8C/2A, 2B Group MCUs
Getting to Know the R8C/2A, 2B Group MCUs Getting to Know the R8C/2A, 2B Group MCUs
Getting to Know the R8C/2A, 2B Group MCUs Premier Farnell
 
SEARAY™ Open Pin Field Interconnects
SEARAY™ Open Pin Field InterconnectsSEARAY™ Open Pin Field Interconnects
SEARAY™ Open Pin Field InterconnectsPremier Farnell
 
PWM Controller for Power Supplies
PWM Controller for Power SuppliesPWM Controller for Power Supplies
PWM Controller for Power SuppliesPremier Farnell
 
Handheld Point of Sale Terminal
Handheld Point of Sale TerminalHandheld Point of Sale Terminal
Handheld Point of Sale TerminalPremier Farnell
 
Reflective Optical Switch: SFH774X
Reflective Optical Switch: SFH774X Reflective Optical Switch: SFH774X
Reflective Optical Switch: SFH774X Premier Farnell
 

Mehr von Premier Farnell (20)

Being a business assistant with element14 in krakow
Being a business assistant with element14 in krakowBeing a business assistant with element14 in krakow
Being a business assistant with element14 in krakow
 
Optical Encoders
Optical EncodersOptical Encoders
Optical Encoders
 
PSA-T Series Spectrum Analyser: PSA1301T/ PSA2701T
PSA-T Series Spectrum Analyser: PSA1301T/ PSA2701TPSA-T Series Spectrum Analyser: PSA1301T/ PSA2701T
PSA-T Series Spectrum Analyser: PSA1301T/ PSA2701T
 
TPS2492/93 – High Voltage Hotswap Controller
TPS2492/93 – High Voltage Hotswap ControllerTPS2492/93 – High Voltage Hotswap Controller
TPS2492/93 – High Voltage Hotswap Controller
 
Stellaris® 9000 Family of ARM® Cortex™-M3
Stellaris® 9000 Family of ARM® Cortex™-M3 Stellaris® 9000 Family of ARM® Cortex™-M3
Stellaris® 9000 Family of ARM® Cortex™-M3
 
Piccolo F2806x Microcontrollers
Piccolo F2806x MicrocontrollersPiccolo F2806x Microcontrollers
Piccolo F2806x Microcontrollers
 
Introduce to AM37x Sitara™ Processors
Introduce to AM37x Sitara™ ProcessorsIntroduce to AM37x Sitara™ Processors
Introduce to AM37x Sitara™ Processors
 
ETRX3 ZigBee Module: ETRX3
ETRX3 ZigBee Module: ETRX3ETRX3 ZigBee Module: ETRX3
ETRX3 ZigBee Module: ETRX3
 
DMM4000 Benchtop Digital Multimeters
DMM4000 Benchtop Digital MultimetersDMM4000 Benchtop Digital Multimeters
DMM4000 Benchtop Digital Multimeters
 
Discovering Board for STM8L15x MCUs
Discovering Board for STM8L15x MCUsDiscovering Board for STM8L15x MCUs
Discovering Board for STM8L15x MCUs
 
Yaw-rate Gyroscopes
Yaw-rate GyroscopesYaw-rate Gyroscopes
Yaw-rate Gyroscopes
 
An Overview Study on MEMS digital output motion sensor: LIS331DLH
An Overview Study on MEMS digital output motion sensor: LIS331DLHAn Overview Study on MEMS digital output motion sensor: LIS331DLH
An Overview Study on MEMS digital output motion sensor: LIS331DLH
 
LED Solar Garden Lighting Solution From STMicroelectronics
LED Solar Garden Lighting Solution From STMicroelectronicsLED Solar Garden Lighting Solution From STMicroelectronics
LED Solar Garden Lighting Solution From STMicroelectronics
 
Solution on Handheld Signal Generator
Solution on Handheld Signal Generator Solution on Handheld Signal Generator
Solution on Handheld Signal Generator
 
Medium Performance Gyroscopes
Medium Performance GyroscopesMedium Performance Gyroscopes
Medium Performance Gyroscopes
 
Getting to Know the R8C/2A, 2B Group MCUs
Getting to Know the R8C/2A, 2B Group MCUs Getting to Know the R8C/2A, 2B Group MCUs
Getting to Know the R8C/2A, 2B Group MCUs
 
SEARAY™ Open Pin Field Interconnects
SEARAY™ Open Pin Field InterconnectsSEARAY™ Open Pin Field Interconnects
SEARAY™ Open Pin Field Interconnects
 
PWM Controller for Power Supplies
PWM Controller for Power SuppliesPWM Controller for Power Supplies
PWM Controller for Power Supplies
 
Handheld Point of Sale Terminal
Handheld Point of Sale TerminalHandheld Point of Sale Terminal
Handheld Point of Sale Terminal
 
Reflective Optical Switch: SFH774X
Reflective Optical Switch: SFH774X Reflective Optical Switch: SFH774X
Reflective Optical Switch: SFH774X
 

Kürzlich hochgeladen

The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...Aggregage
 
COMPUTER 10 Lesson 8 - Building a Website
COMPUTER 10 Lesson 8 - Building a WebsiteCOMPUTER 10 Lesson 8 - Building a Website
COMPUTER 10 Lesson 8 - Building a Websitedgelyza
 
Designing A Time bound resource download URL
Designing A Time bound resource download URLDesigning A Time bound resource download URL
Designing A Time bound resource download URLRuncy Oommen
 
COMPUTER 10: Lesson 7 - File Storage and Online Collaboration
COMPUTER 10: Lesson 7 - File Storage and Online CollaborationCOMPUTER 10: Lesson 7 - File Storage and Online Collaboration
COMPUTER 10: Lesson 7 - File Storage and Online Collaborationbruanjhuli
 
20230202 - Introduction to tis-py
20230202 - Introduction to tis-py20230202 - Introduction to tis-py
20230202 - Introduction to tis-pyJamie (Taka) Wang
 
UiPath Studio Web workshop series - Day 8
UiPath Studio Web workshop series - Day 8UiPath Studio Web workshop series - Day 8
UiPath Studio Web workshop series - Day 8DianaGray10
 
Linked Data in Production: Moving Beyond Ontologies
Linked Data in Production: Moving Beyond OntologiesLinked Data in Production: Moving Beyond Ontologies
Linked Data in Production: Moving Beyond OntologiesDavid Newbury
 
Machine Learning Model Validation (Aijun Zhang 2024).pdf
Machine Learning Model Validation (Aijun Zhang 2024).pdfMachine Learning Model Validation (Aijun Zhang 2024).pdf
Machine Learning Model Validation (Aijun Zhang 2024).pdfAijun Zhang
 
OpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability AdventureOpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability AdventureEric D. Schabell
 
Building Your Own AI Instance (TBLC AI )
Building Your Own AI Instance (TBLC AI )Building Your Own AI Instance (TBLC AI )
Building Your Own AI Instance (TBLC AI )Brian Pichman
 
Introduction to Matsuo Laboratory (ENG).pptx
Introduction to Matsuo Laboratory (ENG).pptxIntroduction to Matsuo Laboratory (ENG).pptx
Introduction to Matsuo Laboratory (ENG).pptxMatsuo Lab
 
UiPath Studio Web workshop series - Day 6
UiPath Studio Web workshop series - Day 6UiPath Studio Web workshop series - Day 6
UiPath Studio Web workshop series - Day 6DianaGray10
 
Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1DianaGray10
 
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfJamie (Taka) Wang
 
9 Steps For Building Winning Founding Team
9 Steps For Building Winning Founding Team9 Steps For Building Winning Founding Team
9 Steps For Building Winning Founding TeamAdam Moalla
 
IaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdf
IaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdfIaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdf
IaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdfDaniel Santiago Silva Capera
 
Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration WorkflowsIgniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration WorkflowsSafe Software
 
Nanopower In Semiconductor Industry.pdf
Nanopower  In Semiconductor Industry.pdfNanopower  In Semiconductor Industry.pdf
Nanopower In Semiconductor Industry.pdfPedro Manuel
 

Kürzlich hochgeladen (20)

The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...
 
COMPUTER 10 Lesson 8 - Building a Website
COMPUTER 10 Lesson 8 - Building a WebsiteCOMPUTER 10 Lesson 8 - Building a Website
COMPUTER 10 Lesson 8 - Building a Website
 
Designing A Time bound resource download URL
Designing A Time bound resource download URLDesigning A Time bound resource download URL
Designing A Time bound resource download URL
 
COMPUTER 10: Lesson 7 - File Storage and Online Collaboration
COMPUTER 10: Lesson 7 - File Storage and Online CollaborationCOMPUTER 10: Lesson 7 - File Storage and Online Collaboration
COMPUTER 10: Lesson 7 - File Storage and Online Collaboration
 
20230202 - Introduction to tis-py
20230202 - Introduction to tis-py20230202 - Introduction to tis-py
20230202 - Introduction to tis-py
 
UiPath Studio Web workshop series - Day 8
UiPath Studio Web workshop series - Day 8UiPath Studio Web workshop series - Day 8
UiPath Studio Web workshop series - Day 8
 
Linked Data in Production: Moving Beyond Ontologies
Linked Data in Production: Moving Beyond OntologiesLinked Data in Production: Moving Beyond Ontologies
Linked Data in Production: Moving Beyond Ontologies
 
Machine Learning Model Validation (Aijun Zhang 2024).pdf
Machine Learning Model Validation (Aijun Zhang 2024).pdfMachine Learning Model Validation (Aijun Zhang 2024).pdf
Machine Learning Model Validation (Aijun Zhang 2024).pdf
 
20230104 - machine vision
20230104 - machine vision20230104 - machine vision
20230104 - machine vision
 
OpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability AdventureOpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability Adventure
 
Building Your Own AI Instance (TBLC AI )
Building Your Own AI Instance (TBLC AI )Building Your Own AI Instance (TBLC AI )
Building Your Own AI Instance (TBLC AI )
 
Introduction to Matsuo Laboratory (ENG).pptx
Introduction to Matsuo Laboratory (ENG).pptxIntroduction to Matsuo Laboratory (ENG).pptx
Introduction to Matsuo Laboratory (ENG).pptx
 
UiPath Studio Web workshop series - Day 6
UiPath Studio Web workshop series - Day 6UiPath Studio Web workshop series - Day 6
UiPath Studio Web workshop series - Day 6
 
Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1
 
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
 
9 Steps For Building Winning Founding Team
9 Steps For Building Winning Founding Team9 Steps For Building Winning Founding Team
9 Steps For Building Winning Founding Team
 
201610817 - edge part1
201610817 - edge part1201610817 - edge part1
201610817 - edge part1
 
IaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdf
IaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdfIaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdf
IaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdf
 
Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration WorkflowsIgniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration Workflows
 
Nanopower In Semiconductor Industry.pdf
Nanopower  In Semiconductor Industry.pdfNanopower  In Semiconductor Industry.pdf
Nanopower In Semiconductor Industry.pdf
 

Energy Metering ICs with Active Real Power

Hinweis der Redaktion

  1. This is a training module on Microchip Energy Metering ICs with Active Real Power
  2. Welcome to the training module on Energy Metering ICs with Active Real Power . This training module gives you a brief introduction to Energy meter ICs with Real power measurement.
  3. The MCP3905 and MCP3906 devices from Microchip Technology Inc. are two fully functional, stand-alone energy-measurement ICs that output average and instantaneous real power. They are highly accurate solutions for single-phase energy measurement in residential power meters and industrial applications. The MCP390X energy-measurement ICs address the growing market for electronic-based energy meters, particularly in worldwide emerging markets. The new chips each integrate two 16-bit delta-sigma analog-to-digital converters (ADCs), an internal voltage reference, plus all of the digital circuitry needed to calculate average and instantaneous real power from voltage and current channels. The MCP3905 features a programmable gain amplifier (PGA) with a maximum gain of 16. For energy meters requiring higher accuracy, the MCP3906 has a maximum gain of 32. In addition, these solutions meet or exceed the requirements of the International Electro technical Commission IEC62053 international energy-metering specifications.
  4. The MCP3905A/05L/06A devices are energy metering ICs that supply a frequency output proportional to active (real) power, and higher frequency output proportional to the instantaneous power for meter calibration. Both channels use 16-bit, second-order, delta sigma ADCs that oversample the input at a frequency equal to MCLK/4, allowing for wide dynamic range input signals. A Programmable Gain Amplifier (PGA) increases the usable range on the current input channel (Channel 0). The calculation of the active power, and the filtering associated with this calculation is performed in the digital domain, ensuring better stability and drift performance. Two digital high-pass filters cancel the system offset on both channels such that the real-power calculation does not include any circuit or system offset. After being high-pass filtered, the voltage and current signals are multiplied to give the instantaneous power signal.
  5. The ADCs used in the MCP3905A/05L/06A for both current and voltage channel measurements are delta sigma ADCs. They comprise a second-order, delta sigma modulator using a multi-bit DAC and a third order SINC filter. The delta-sigma architecture is very appropriate for the applications since it is a waveform-oriented converter architecture that can offer both high linearity and low distortion performance throughout a wide input dynamic range. The clocking signals for the ADCs are equally distributed between the two channels in order to minimize phase delays to less than 1 MCLK period
  6. This devices contain an internal POR circuit that monitors analog supply voltage AVDD during operation. This circuit ensures correct device startup at system power-up and system power-down events. The POR circuit has built-in hysteresis and a timer to give a high degree of immunity to potential ripple and noise on the power supplies, allowing proper settling of the power supply during power-up. Once a power-up event has occurred, an internal timer prevents the part from outputting any pulse for approximately 1s, thereby preventing potential meta stability due to intermittent resets caused by an unsettled regulated power supply.
  7. The active real-power value is extracted from the DC instantaneous power. Therefore, any DC offset component present on Channel 0 and Channel 1 affects the DC component of the instantaneous power and will cause the real-power calculation to be erroneous. In order to remove DC offset components from the instantaneous power signal, a high-pass filter has been introduced on each channel. The MCP3905A/05L/06A low-pass filter is a first-order IIR filter that extracts the active real-power information from the instantaneous power signal. The output of the low-pass filter is accumulated in the digital-to-frequency converter. This accumulation is compared to a different digital threshold.
  8. This page describes the current channel, voltage channel, and digital input.
  9. This page is in continuation to previous page describing about the analog supply pin, and frequency output pin.
  10. This page gives you an overview about the current sensing methods. Shunt type and Current transformer connecting types.
  11. The MCP3905A/06A Energy Meter Reference Design is a stand-alone, single-phase residential meter design for active-energy meter designs. For advanced microcontroller-based meter products, this design also serves as the design of the Analog Front-End (AFE). This design includes a low-cost DC power supply circuit and the necessary protection for IEC62053 EMC compliance.
  12. This reference design keeps all of the major components on the back-side of the PCB. This minimizes any ill effects from the environment in the situation that a meter case experiences failure. Only the necessary components for calibration, jumper selection and external connections are placed on the front-side of the board. Keeping the larger DC power supply components on the back-side of the board is also necessary for installation in some meter cases with PCB standoffs.
  13. This evaluation board is designed to test out a variety of energy meter designs. On the input side high-voltage line and load AC-plug headers are included, along with mounting holes for shunts, current transformers and screw-type connections for wiring. On the output side a large prototype area is included along with optical isolation and a standard PIC tail header for experiments with a variety of PIC MCU-based energy meter designs.
  14. Thank you for taking the time to view this presentation on “Energy Metering ICs with Active Real Power ” . If you would like to learn more or go on to purchase some of these devices, you may either click on the part list link, or simply call our sales hotline. For more technical information you may either visit the Microchip Technology site, or if you would prefer to speak to someone live, please call our hotline number, or even use our ‘live chat’ online facility. You may visit Element 14 e-community to post your questions.