SlideShare ist ein Scribd-Unternehmen logo
1 von 10
International Journal of Engineering Inventions
e-ISSN: 2278-7461, p-ISBN: 2319-6491
Volume 2, Issue 3 (February 2013) PP: 49-58
www.ijeijournal.com P a g e | 49
Further Generalizations of Enestrom-Kakeya Theorem
M. H. Gulzar
Department of Mathematics, University of Kashmir, Srinagar 190006
Abstract:- Many generalizations of the Enestrom –Kakeya Theorem are available in the literature. In this paper
we prove some results which further generalize some known results.
Mathematics Subject Classification: 30C10,30C15
Keywords and phrases:- Complex number, Polynomial , Zero, Enestrom – Kakeya Theorem.
I. INTRODUCTION AND STATEMENT OF RESULTS
The Enestrom –Kakeya Theorem (see[6]) is well known in the theory of the distribution of zeros of
polynomials and is often stated as follows:
Theorem A: Let 

n
j
j
j zazP
0
)( be a polynomial of degree n whose coefficients satisfy
0...... 011   aaaa nn .
Then P(z) has all its zeros in the closed unit disk 1z .
In the literature there exist several generalizations and extensions of this result. Joyal et al [5] extended
it to polynomials with general monotonic coefficients and proved the following result:
Theorem B: Let 

n
j
j
j zazP
0
)( be a polynomial of degree n whose coefficients satisfy
011 ...... aaaa nn   .
Then P(z) has all its zeros in
n
n
a
aaa
z
00 
 .
Aziz and zargar [1] generalized the result of Joyal et al [6] as follows:
Theorem C: Let 

n
j
j
j zazP
0
)( be a polynomial of degree n such that for some 1k
011 ...... aaaka nn   .
Then P(z) has all its zeros in
n
n
a
aaka
kz
00
1

 .
For polynomials ,whose coefficients are not necessarily real, Govil and Rahman [2] proved the following
generalization of Theorem A:
Theorem C: If 

n
j
j
j zazP
0
)( is a polynomial of degree n with jja )Re( and jja )Im( ,
j=0,1,2,……,n, such that
0...... 011    nn ,
where 0n , then P(z) has all its zeros in
))(
2
(1
0


n
j
j
n
z 

.
Govil and Mc-tume [3] proved the following generalisations of Theorems B and C:
Further Generalizations of Enestrom-Kakeya Theorem
www.ijeijournal.com P a g e | 50
Theorem D: Let 

n
j
j
j zazP
0
)( be a polynomial of degree n with jja )Re( and jja )Im( ,
j=0,1,2,……,n. If for some 1k ,
011 ......   nnk ,
then P(z) has all its zeros in
n
n
j
jnk
kz

 


0
00 2
1 .
Theorem E: Let 

n
j
j
j zazP
0
)( be a polynomial of degree n with jja )Re( and jja )Im( ,
j=0,1,2,……,n. If for some 1k ,
011 ......   nnk ,
then P(z) has all its zeros in
n
n
j
jnk
kz

 


0
00 2
1 .
M. H. Gulzar [4] proved the following generalizations of Theorems D and E:
Theorem F: Let 

n
j
j
j zazP
0
)( be a polynomial of degree n with jja )Re( and jja )Im( ,
j=0,1,2,……,n. If for some real numbers 0 , ,10  
011 ......   nn ,
then P(z) has all its zeros in the disk
n
n
j
jn
n
z







0
000 2)(2
.
Theorem G: Let 

n
j
j
j zazP
0
)( be a polynomial of degree n with jja )Re( and jja )Im( ,
j=0,1,2,……,n. If for some real number 0 ,
011 ......   nn ,
then P(z) has all its zeros in the disk
n
n
j
jn
n
z







0
000 2)(2
.
In this paper we give generalization of Theorems F and G. In fact, we prove the following:
Theorem 1: Let 

n
j
j
j zazP
0
)( be a polynomial of degree n with jja )Re( and jja )Im( ,
j=0,1,2,……,n. If for some real numbers  , 0 , ,10,0,1   knank
01111 ......    knknknnn ,
and ,1 knkn    then P(z) has all its zeros in the disk
n
n
j
jknknn
n aa
z

 

0
000 2(21)1( 

,
and if ,1  knkn  then P(z) has all its zeros in the disk
Further Generalizations of Enestrom-Kakeya Theorem
www.ijeijournal.com P a g e | 51
n
n
j
jknknn
n aa
z

 

0
000 2(21)1( 

Remark 1: Taking 1 , Theorem 1 reduces to Theorem F.
If ja are real i.e. 0j for all j, we get the following result:
Corollary 1: Let 

n
j
j
j zazP
0
)( be a polynomial of degree n. If for some real numbers  , 0 ,
,0,1  knank ,10  
01111 ...... aaaaaaa knknknnn    ,
and ,1 knkn aa   then P(z) has all its zeros in the disk
n
knknn
n a
aaaaaa
a
z
)(21)1( 000 

 
,,
and if ,1  knkn aa then P(z) has all its zeros in the disk
n
knknn
n a
aaaaaa
a
z
)(21)1( 000 

 
If we apply Theorem 1 to the polynomial –iP(z) , we easily get the following result:
Theorem 2: Let 

n
j
j
j zazP
0
)( be a polynomial of degree n with jja )Re( and jja )Im( ,
j=0,1, 2,……,n. If for some real numbers  , 0 , ,0,1  knank ,10  
01111 ......    knknknnn ,
and ,1 knkn    then P(z) has all its zeros in the disk
n
n
j
jknknn
n aa
z

 

0
000 2)(21)1( 

,
and if ,1  knkn  then P(z) has all its zeros in the disk
n
n
j
jknknn
n aa
z

 

0
000 2)(21)1( 

Remark 2: Taking 1 , Theorem 2 reduces to Theorem G.
Theorem 3: Let 

n
j
j
j zazP
0
)( be a polynomial of degree n such that for some real numbers  , 0 ,
,10,,0,1   knank ,
01111 ...... aaaaaaa knknknnn   
and
.,......,1,0,
2
arg nja j 


If knkn aa  1 (i.e. 1 ) , then P(z) has all its zeros in the disk
Further Generalizations of Enestrom-Kakeya Theorem
www.ijeijournal.com P a g e | 52
n
n
knjj
j
knn
n a
aaa
aa
a
z







1
,1
00 ]sin22)1cos(sin
)1sincossin(cos)sin(cos[



If 1  knkn aa (i.e. 1 ), then P(z) has all its zeros in the disk
n
n
knjj
j
knn
n a
aaa
aa
a
z







1
,1
00 ]sin22)1cos(sin
)1sincossin(cos)sin(cos[



Remark 3: Taking 1 in Theorem 3 , we get the following result:
Corollary 2: Let 

n
j
j
j zazP
0
)( be a polynomial of degree n. If for some real numbers 0 , ,10  
011 ...... aaaa nn    ,
then P(z) has all its zeros in the disk
n
n
j
jn
n a
aaaa
a
z





1
,1
00 ]sin22)1cos(sin)sin(cos[ 

.
Remark 4: Taking 1,)1(  kak n in Cor.2, we get the following result:
Corollary 3: Let 

n
j
j
j zazP
0
)( be a polynomial of degree n. If for some real numbers 0 , ,10  
011 ...... aaaak nn   ,
then P(z) has all its zeros in the disk
n
n
j
jn
n a
aaaak
a
z





1
,1
00 ]sin22)1cos(sin)sin(cos[ 

Taking 1,)1(  kak n , and 1 in Cor. 3, we get a result of Shah and Liman [7,Theorem 1].
II. LEMMAS
For the proofs of the above results , we need the following results:
Lemma 1: . Let P(z)= 
n
j
j
j za
0
be a polynomial of degree n with complex coefficients such that
fornjaj ,,...1,0,
2
arg 

 some real . Then for some t>0,
    .sincos 111  
  j
aataatata jjjjj
The proof of lemma 1 follows from a lemma due to Govil and Rahman [2].
Lemma 2.If p(z) is regular ,p(0)  0 and Mzp )( in ,1z then the number of zeros of p(z)in
,10,  z does not exceed
)0(
log
1
log
1
p
M

(see[8],p171).
Further Generalizations of Enestrom-Kakeya Theorem
www.ijeijournal.com P a g e | 53
III. PROOFS OF THEOREMS
Proof of Theorem 1: Consider the polynomial
)()1()( zPzzF 
kn
knkn
kn
knkn
n
nn
n
n
n
n
n
n
zaazaazaaza
azazazaz









)()(......)(
)......)(1(
1
1
11
1
01
1
1
001
1
21 )(......)( azaazaa kn
knkn  

1
11
1
)(......)()( 


 kn
knkn
n
nn
n
nn zzzi 
0
1
100
01
1
211
)()1(
)(......)()(


iziz
zzz
n
j
j
jj
kn
knkn
kn
knkn








If ,1 knkn    then ,1 knkn    and we have
1
11
1
)(......)()()( 


 kn
knkn
n
nn
nn
nn zzzzizF 
......)()1()( 1
211  





kn
knkn
kn
kn
kn
knkn zzaz 
.)()1()( 0
1
10001  izizz
n
j
j
jj  

For 1z ,
1
1
1
211
1
)(......)()()( 




 kn
knkn
n
nn
n
nn
nn
n zzzzzazF 
0
1
10001
1
211
)()1()(
......)()1()(


izizz
zzaz
n
j
j
jj
kn
knkn
kn
kn
kn
knkn













  11211
1
)(......
1
)()( kknknnnnnn
n
zz
zaz 
n
n
j
jnjjnnn
knknkknkknkn
z
i
z
i
zzz
kzz
0
1
1
0
1
0
101
211
1
)()1(
1
)(
....
1
1
)(
1
)1(
1
)(












 knknnnnnn
n
zaz    1211 ......
 0
1
100
01211
1
......1







n
j
jj
knknknknkn
 11211 ......    knnknknnnnnn
n
kn
zaz 
 



n
j
j
knknkn
0
0
00121
2
)1(......1


Further Generalizations of Enestrom-Kakeya Theorem
www.ijeijournal.com P a g e | 54





n
j
j
knknnn
n
zaz
0
000
2
2)(1)1({[


>0
if

 
n
j
jknknnn za
0
000 22)(1)1( 
This shows that the zeros of F(z) whose modulus is greater than 1 lie in
n
n
j
jknknn
n aa
z

 

0
000 2)(21)1( 

.
But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the
zeros of F(z) lie in
n
n
j
jknknn
n aa
z

 

0
000 2)(21)1( 

.
Since the zeros of P(z) are also the zeros of F(z), it follows that all the zeros of P(z) lie in
n
n
j
jknknn
n aa
z

 

0
000 2)(21)1( 

.
If ,1  knkn  then ,1  knkn  and we have
1
11
1
)(......)()()( 


 kn
knkn
n
nn
nn
nn zzzzizF 
.)()1()(
......)()1()(
0
1
10001
1
21
1
1


izizz
zzz
n
j
j
jj
kn
knkn
kn
kn
kn
knkn










For 1z ,
1
1
1
211
1
)(......)()()( 




 kn
knkn
n
nn
n
nn
nn
n zzzzzazF 
0
1
10001
1
21
1
1
)()1()(
......)()1()(


izizz
zzz
n
j
j
jj
kn
knkn
kn
kn
kn
knkn













  11211
1
)(......
1
)()( kknknnnnnn
n
zz
zaz 
n
n
j
jnjjnnn
kknknkknkknkn
z
i
z
i
zzz
zzz
0
1
1
0
1
0
101
12111
1
)()1(
1
)(
....
1
)(
1
)1(
1
)(










 knknnnnnn
n
zaz    1211 ......
Further Generalizations of Enestrom-Kakeya Theorem
www.ijeijournal.com P a g e | 55
 0
1
100
01211
1
......1







n
j
jj
knknknknkn
 11211 ......    knnknknnnnnn
n
kn
zaz 
 



n
j
j
knknkn
0
0
00121
2
)1(......1

















n
j
j
knknnn
n
za
z
0
0
00
}22
)(1)1({


>0
if

 
n
j
jknknnn za
0
000 22)(1)1( 
This shows that the zeros of F(z) whose modulus is greater than 1 lie in
n
n
j
jknknn
n aa
z

 

0
000 2)(21)1( 

.
But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the
zeros of F(z) lie in
n
n
j
jknknn
n aa
z

 

0
000 2)(21)1( 

.
Since the zeros of P(z) are also the zeros of F(z), it follows that all the zeros of P(z) lie in
n
n
j
jknknn
n aa
z

 

0
000 2)(21)1( 

.
That proves Theorem 1.
Proof of Theorem 3: Consider the polynomial
)()1()( zPzzF 
kn
knkn
kn
knkn
n
nn
n
n
n
n
n
n
zaazaazaaza
azazazaz









)()(......)(
)......)(1(
1
1
11
1
01
1
1
001
1
21 )(......)( azaazaa kn
knkn  
 .
If knkn aa  1 , then knkn aa  1 , 1 and we have, for 1z , by using Lemma1,
1
1
1
211
1
)(......)()()( 




 kn
knkn
n
nn
n
nn
nn
n zaazaazaazzazF 
0001
1
211
)1()(
......)()1()(
azazaa
zaazazaa kn
knkn
kn
kn
kn
knkn

 







Further Generalizations of Enestrom-Kakeya Theorem
www.ijeijournal.com P a g e | 56



  11211
1
)(......
1
)()( kknknnnnnn
n
z
aa
z
aaaazaz 
nnn
kknknkknkknkn
z
a
z
a
z
aa
z
aa
z
a
z
aa
0
1
0
101
1211
)1(
1
)(
....
1
)(
1
)1(
1
)(






 knknnnnnn
n
aaaaaazaz   1211 ......
 00
01211
1
......1
aa
aaaaaaa knknknknkn

 


  sin)(cos){( 11   nnnnn
n
aaaazaz
 cos)(......sin)(cos)( 12121 knknnnnn aaaaaa  
(  sin)(cos)(sin) 111   knknknknknkn aaaaaa
 sin)(cos)(1 2121   knknknknkn aaaaa
})1(sin)(cos)(...... 000101 aaaaaa  
  sincossin(cos)sin(cos{  knnn
n
aazaz
}sin22)1cos(sin)1
1
,1
00 



n
knjj
jaaa 
0
if
  sincossin(cos)sin(cos  knnn aaza




1
,1
00 sin22)1cos(sin)1
n
knjj
jaaa 
This shows that the zeros of F(z) whose modulus is greater than 1 lie in
n
n
knjj
j
knn
n a
aaa
aa
a
z







1
,1
00 ]sin22)1cos(sin
)1sincossin(cos)sin(cos[



. .
But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the
zeros of F(z) lie in
n
n
knjj
j
knn
n a
aaa
aa
a
z







1
,1
00 ]sin22)1cos(sin
)1sincossin(cos)sin(cos[



.
Since the zeros of P(z) are also the zeros of F(z), it follows that all the zeros of P(z) lie in
n
n
knjj
j
knn
n a
aaa
aa
a
z







1
,1
00 ]sin22)1cos(sin
)1sincossin(cos)sin(cos[



Further Generalizations of Enestrom-Kakeya Theorem
www.ijeijournal.com P a g e | 57
If 1  knkn aa , then 1  knkn aa , 1 and we have, for 1z , by using Lemma 1,
1
1
1
211
1
)(......)()()( 




 kn
knkn
n
nn
n
nn
nn
n zaazaazaazzazF 
0001
1
21
1
1
)1()(
......)()1()(
azazaa
zaazazaa kn
knkn
kn
kn
kn
knkn

 










  11211
1
)(......
1
)()( kknknnnnnn
n
z
aa
z
aaaazaz 
nnn
kknknkknkknkn
z
a
z
a
z
aa
z
aa
z
a
z
aa
0
1
0
101
12111
)1(
1
)(
....
1
)(
1
)1(
1
)(






 knknnnnnn
n
aaaaaazaz    1211 ......
 00
01211
1
......1
aa
aaaaaaa knknknknkn

 


  sin)(cos){( 11   nnnnn
n
aaaazaz
 cos)(......sin)(cos)( 12121 knknnnnn aaaaaa  
(  sin)(cos)(sin) 111   knknknknknkn aaaaaa
 sin)(cos)(1 2121   knknknknkn aaaaa
})1(sin)(cos)(...... 000101 aaaaaa  
  sincossin(cos)sin(cos{  knnn
n
aazaz
}sin22)1cos(sin)1
1
,1
00 



n
knjj
jaaa 
0
if
  sincossin(cos)sin(cos  knnn aaza




1
,1
00 sin22)1cos(sin)1
n
knjj
jaaa 
This shows that the zeros of F(z) whose modulus is greater than 1 lie in
n
n
knjj
j
knn
n a
aaa
aa
a
z







1
,1
00 ]sin22)1cos(sin
)1sincossin(cos)sin(cos[



.
But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the
zeros of F(z) and therefore P(z) lie in
n
n
knjj
j
knn
n a
aaa
aa
a
z







1
,1
00 ]sin22)1cos(sin
)1sincossin(cos)sin(cos[



That proves Theorem 3.
Further Generalizations of Enestrom-Kakeya Theorem
www.ijeijournal.com P a g e | 58
REFERENCES
1) A.Aziz and B.A.Zargar, Some extensions of the Enestrom-Kakeya Theorem , Glasnik Mathematiki,
31(1996) , 239-244.
2) N.K.Govil and Q.I.Rehman, On the Enestrom-Kakeya Theorem, Tohoku Math. J.,20(1968) , 126-136.
3) N.K.Govil and G.N.Mc-tume, Some extensions of the Enestrom- Kakeya Theorem , Int.J.Appl.Math.
Vol.11,No.3,2002, 246-253.
4) M. H. Gulzar, On the Zeros of polynomials, International Journal of Modern Engineering Research,
Vol.2,Issue 6, Nov-Dec. 2012, 4318- 4322.
5) A. Joyal, G. Labelle, Q.I. Rahman, On the location of zeros of polynomials, Canadian Math.
Bull.,10(1967) , 55-63.
6) M. Marden , Geometry of Polynomials, IInd Ed.Math. Surveys, No. 3, Amer. Math. Soc. Providence,R.
I,1996.
7) W. M. Shah and A.Liman, On Enestrom-Kakeya Theorem and related Analytic Functions, Proc.
Indian Acad. Sci. (Math. Sci.), 117(2007), 359-370.
8) E C. Titchmarsh,The Theory of Functions,2nd
edition,Oxford University Press,London,1939.

Weitere ähnliche Inhalte

Was ist angesagt?

Vcla - Inner Products
Vcla - Inner ProductsVcla - Inner Products
Vcla - Inner ProductsPreetshah1212
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Solovay Kitaev theorem
Solovay Kitaev theoremSolovay Kitaev theorem
Solovay Kitaev theoremJamesMa54
 
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...JamesMa54
 
Solving the energy problem of helium final report
Solving the energy problem of helium final reportSolving the energy problem of helium final report
Solving the energy problem of helium final reportJamesMa54
 
Perfect method for Frames
Perfect method for FramesPerfect method for Frames
Perfect method for Framesandreslahe
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceresearchinventy
 
Existence of positive solutions for fractional q-difference equations involvi...
Existence of positive solutions for fractional q-difference equations involvi...Existence of positive solutions for fractional q-difference equations involvi...
Existence of positive solutions for fractional q-difference equations involvi...IJRTEMJOURNAL
 
On approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials withinOn approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials withineSAT Publishing House
 
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...IOSR Journals
 
Hw5sol
Hw5solHw5sol
Hw5soluxxdqq
 
A Note on Over-replicated Softmax Model
A Note on Over-replicated Softmax ModelA Note on Over-replicated Softmax Model
A Note on Over-replicated Softmax ModelTomonari Masada
 
SPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSyeilendra Pramuditya
 
Properties of field induced Josephson junction(s)
Properties of field induced Josephson junction(s)Properties of field induced Josephson junction(s)
Properties of field induced Josephson junction(s)Krzysztof Pomorski
 
Fuzzy calculation
Fuzzy calculationFuzzy calculation
Fuzzy calculationAmir Rafati
 

Was ist angesagt? (20)

Vcla - Inner Products
Vcla - Inner ProductsVcla - Inner Products
Vcla - Inner Products
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Solovay Kitaev theorem
Solovay Kitaev theoremSolovay Kitaev theorem
Solovay Kitaev theorem
 
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
 
MA8353 TPDE
MA8353 TPDEMA8353 TPDE
MA8353 TPDE
 
Solving the energy problem of helium final report
Solving the energy problem of helium final reportSolving the energy problem of helium final report
Solving the energy problem of helium final report
 
P1 . norm vector space
P1 . norm vector spaceP1 . norm vector space
P1 . norm vector space
 
Perfect method for Frames
Perfect method for FramesPerfect method for Frames
Perfect method for Frames
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
Existence of positive solutions for fractional q-difference equations involvi...
Existence of positive solutions for fractional q-difference equations involvi...Existence of positive solutions for fractional q-difference equations involvi...
Existence of positive solutions for fractional q-difference equations involvi...
 
On approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials withinOn approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials within
 
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
 
QMC: Transition Workshop - How to Efficiently Implement Multivariate Decompos...
QMC: Transition Workshop - How to Efficiently Implement Multivariate Decompos...QMC: Transition Workshop - How to Efficiently Implement Multivariate Decompos...
QMC: Transition Workshop - How to Efficiently Implement Multivariate Decompos...
 
Hw5sol
Hw5solHw5sol
Hw5sol
 
D02402033039
D02402033039D02402033039
D02402033039
 
A Note on Over-replicated Softmax Model
A Note on Over-replicated Softmax ModelA Note on Over-replicated Softmax Model
A Note on Over-replicated Softmax Model
 
41-50
41-5041-50
41-50
 
SPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta Methods
 
Properties of field induced Josephson junction(s)
Properties of field induced Josephson junction(s)Properties of field induced Josephson junction(s)
Properties of field induced Josephson junction(s)
 
Fuzzy calculation
Fuzzy calculationFuzzy calculation
Fuzzy calculation
 

Ähnlich wie Further Generalizations of Enestrom-Kakeya Theorem

Location of Regions Containing all or Some Zeros of a Polynomial
Location of Regions Containing all or Some Zeros of a PolynomialLocation of Regions Containing all or Some Zeros of a Polynomial
Location of Regions Containing all or Some Zeros of a Polynomialijceronline
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Stability Result of Iterative procedure in normed space
Stability Result of Iterative procedure in normed spaceStability Result of Iterative procedure in normed space
Stability Result of Iterative procedure in normed spaceKomal Goyal
 
On Convergence of Jungck Type Iteration for Certain Contractive Conditions
On Convergence of Jungck Type Iteration for Certain Contractive ConditionsOn Convergence of Jungck Type Iteration for Certain Contractive Conditions
On Convergence of Jungck Type Iteration for Certain Contractive Conditionsresearchinventy
 
E041046051
E041046051E041046051
E041046051inventy
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...ieijjournal
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...ieijjournal
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
The existence of common fixed point theorems of generalized contractive mappi...
The existence of common fixed point theorems of generalized contractive mappi...The existence of common fixed point theorems of generalized contractive mappi...
The existence of common fixed point theorems of generalized contractive mappi...Alexander Decker
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...mathsjournal
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...mathsjournal
 

Ähnlich wie Further Generalizations of Enestrom-Kakeya Theorem (20)

Location of Regions Containing all or Some Zeros of a Polynomial
Location of Regions Containing all or Some Zeros of a PolynomialLocation of Regions Containing all or Some Zeros of a Polynomial
Location of Regions Containing all or Some Zeros of a Polynomial
 
Zeros of a Polynomial in a given Circle
Zeros of a Polynomial in a given CircleZeros of a Polynomial in a given Circle
Zeros of a Polynomial in a given Circle
 
B02606010
B02606010B02606010
B02606010
 
On the Zeros of Complex Polynomials
On the Zeros of Complex PolynomialsOn the Zeros of Complex Polynomials
On the Zeros of Complex Polynomials
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Ak03102250234
Ak03102250234Ak03102250234
Ak03102250234
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Stability Result of Iterative procedure in normed space
Stability Result of Iterative procedure in normed spaceStability Result of Iterative procedure in normed space
Stability Result of Iterative procedure in normed space
 
On Convergence of Jungck Type Iteration for Certain Contractive Conditions
On Convergence of Jungck Type Iteration for Certain Contractive ConditionsOn Convergence of Jungck Type Iteration for Certain Contractive Conditions
On Convergence of Jungck Type Iteration for Certain Contractive Conditions
 
B02806010
B02806010B02806010
B02806010
 
E041046051
E041046051E041046051
E041046051
 
Nokton theory-en
Nokton theory-enNokton theory-en
Nokton theory-en
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
The existence of common fixed point theorems of generalized contractive mappi...
The existence of common fixed point theorems of generalized contractive mappi...The existence of common fixed point theorems of generalized contractive mappi...
The existence of common fixed point theorems of generalized contractive mappi...
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
 
Ae03401720180
Ae03401720180Ae03401720180
Ae03401720180
 
On the Zeros of Analytic Functions inside the Unit Disk
On the Zeros of Analytic Functions inside the Unit DiskOn the Zeros of Analytic Functions inside the Unit Disk
On the Zeros of Analytic Functions inside the Unit Disk
 

Mehr von International Journal of Engineering Inventions www.ijeijournal.com

Mehr von International Journal of Engineering Inventions www.ijeijournal.com (20)

H04124548
H04124548H04124548
H04124548
 
G04123844
G04123844G04123844
G04123844
 
F04123137
F04123137F04123137
F04123137
 
E04122330
E04122330E04122330
E04122330
 
C04121115
C04121115C04121115
C04121115
 
B04120610
B04120610B04120610
B04120610
 
A04120105
A04120105A04120105
A04120105
 
F04113640
F04113640F04113640
F04113640
 
E04112135
E04112135E04112135
E04112135
 
D04111520
D04111520D04111520
D04111520
 
C04111114
C04111114C04111114
C04111114
 
B04110710
B04110710B04110710
B04110710
 
A04110106
A04110106A04110106
A04110106
 
I04105358
I04105358I04105358
I04105358
 
H04104952
H04104952H04104952
H04104952
 
G04103948
G04103948G04103948
G04103948
 
F04103138
F04103138F04103138
F04103138
 
E04102330
E04102330E04102330
E04102330
 
D04101822
D04101822D04101822
D04101822
 
C04101217
C04101217C04101217
C04101217
 

Kürzlich hochgeladen

04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...gurkirankumar98700
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 

Kürzlich hochgeladen (20)

04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 

Further Generalizations of Enestrom-Kakeya Theorem

  • 1. International Journal of Engineering Inventions e-ISSN: 2278-7461, p-ISBN: 2319-6491 Volume 2, Issue 3 (February 2013) PP: 49-58 www.ijeijournal.com P a g e | 49 Further Generalizations of Enestrom-Kakeya Theorem M. H. Gulzar Department of Mathematics, University of Kashmir, Srinagar 190006 Abstract:- Many generalizations of the Enestrom –Kakeya Theorem are available in the literature. In this paper we prove some results which further generalize some known results. Mathematics Subject Classification: 30C10,30C15 Keywords and phrases:- Complex number, Polynomial , Zero, Enestrom – Kakeya Theorem. I. INTRODUCTION AND STATEMENT OF RESULTS The Enestrom –Kakeya Theorem (see[6]) is well known in the theory of the distribution of zeros of polynomials and is often stated as follows: Theorem A: Let   n j j j zazP 0 )( be a polynomial of degree n whose coefficients satisfy 0...... 011   aaaa nn . Then P(z) has all its zeros in the closed unit disk 1z . In the literature there exist several generalizations and extensions of this result. Joyal et al [5] extended it to polynomials with general monotonic coefficients and proved the following result: Theorem B: Let   n j j j zazP 0 )( be a polynomial of degree n whose coefficients satisfy 011 ...... aaaa nn   . Then P(z) has all its zeros in n n a aaa z 00   . Aziz and zargar [1] generalized the result of Joyal et al [6] as follows: Theorem C: Let   n j j j zazP 0 )( be a polynomial of degree n such that for some 1k 011 ...... aaaka nn   . Then P(z) has all its zeros in n n a aaka kz 00 1   . For polynomials ,whose coefficients are not necessarily real, Govil and Rahman [2] proved the following generalization of Theorem A: Theorem C: If   n j j j zazP 0 )( is a polynomial of degree n with jja )Re( and jja )Im( , j=0,1,2,……,n, such that 0...... 011    nn , where 0n , then P(z) has all its zeros in ))( 2 (1 0   n j j n z   . Govil and Mc-tume [3] proved the following generalisations of Theorems B and C:
  • 2. Further Generalizations of Enestrom-Kakeya Theorem www.ijeijournal.com P a g e | 50 Theorem D: Let   n j j j zazP 0 )( be a polynomial of degree n with jja )Re( and jja )Im( , j=0,1,2,……,n. If for some 1k , 011 ......   nnk , then P(z) has all its zeros in n n j jnk kz      0 00 2 1 . Theorem E: Let   n j j j zazP 0 )( be a polynomial of degree n with jja )Re( and jja )Im( , j=0,1,2,……,n. If for some 1k , 011 ......   nnk , then P(z) has all its zeros in n n j jnk kz      0 00 2 1 . M. H. Gulzar [4] proved the following generalizations of Theorems D and E: Theorem F: Let   n j j j zazP 0 )( be a polynomial of degree n with jja )Re( and jja )Im( , j=0,1,2,……,n. If for some real numbers 0 , ,10   011 ......   nn , then P(z) has all its zeros in the disk n n j jn n z        0 000 2)(2 . Theorem G: Let   n j j j zazP 0 )( be a polynomial of degree n with jja )Re( and jja )Im( , j=0,1,2,……,n. If for some real number 0 , 011 ......   nn , then P(z) has all its zeros in the disk n n j jn n z        0 000 2)(2 . In this paper we give generalization of Theorems F and G. In fact, we prove the following: Theorem 1: Let   n j j j zazP 0 )( be a polynomial of degree n with jja )Re( and jja )Im( , j=0,1,2,……,n. If for some real numbers  , 0 , ,10,0,1   knank 01111 ......    knknknnn , and ,1 knkn    then P(z) has all its zeros in the disk n n j jknknn n aa z     0 000 2(21)1(   , and if ,1  knkn  then P(z) has all its zeros in the disk
  • 3. Further Generalizations of Enestrom-Kakeya Theorem www.ijeijournal.com P a g e | 51 n n j jknknn n aa z     0 000 2(21)1(   Remark 1: Taking 1 , Theorem 1 reduces to Theorem F. If ja are real i.e. 0j for all j, we get the following result: Corollary 1: Let   n j j j zazP 0 )( be a polynomial of degree n. If for some real numbers  , 0 , ,0,1  knank ,10   01111 ...... aaaaaaa knknknnn    , and ,1 knkn aa   then P(z) has all its zeros in the disk n knknn n a aaaaaa a z )(21)1( 000     ,, and if ,1  knkn aa then P(z) has all its zeros in the disk n knknn n a aaaaaa a z )(21)1( 000     If we apply Theorem 1 to the polynomial –iP(z) , we easily get the following result: Theorem 2: Let   n j j j zazP 0 )( be a polynomial of degree n with jja )Re( and jja )Im( , j=0,1, 2,……,n. If for some real numbers  , 0 , ,0,1  knank ,10   01111 ......    knknknnn , and ,1 knkn    then P(z) has all its zeros in the disk n n j jknknn n aa z     0 000 2)(21)1(   , and if ,1  knkn  then P(z) has all its zeros in the disk n n j jknknn n aa z     0 000 2)(21)1(   Remark 2: Taking 1 , Theorem 2 reduces to Theorem G. Theorem 3: Let   n j j j zazP 0 )( be a polynomial of degree n such that for some real numbers  , 0 , ,10,,0,1   knank , 01111 ...... aaaaaaa knknknnn    and .,......,1,0, 2 arg nja j    If knkn aa  1 (i.e. 1 ) , then P(z) has all its zeros in the disk
  • 4. Further Generalizations of Enestrom-Kakeya Theorem www.ijeijournal.com P a g e | 52 n n knjj j knn n a aaa aa a z        1 ,1 00 ]sin22)1cos(sin )1sincossin(cos)sin(cos[    If 1  knkn aa (i.e. 1 ), then P(z) has all its zeros in the disk n n knjj j knn n a aaa aa a z        1 ,1 00 ]sin22)1cos(sin )1sincossin(cos)sin(cos[    Remark 3: Taking 1 in Theorem 3 , we get the following result: Corollary 2: Let   n j j j zazP 0 )( be a polynomial of degree n. If for some real numbers 0 , ,10   011 ...... aaaa nn    , then P(z) has all its zeros in the disk n n j jn n a aaaa a z      1 ,1 00 ]sin22)1cos(sin)sin(cos[   . Remark 4: Taking 1,)1(  kak n in Cor.2, we get the following result: Corollary 3: Let   n j j j zazP 0 )( be a polynomial of degree n. If for some real numbers 0 , ,10   011 ...... aaaak nn   , then P(z) has all its zeros in the disk n n j jn n a aaaak a z      1 ,1 00 ]sin22)1cos(sin)sin(cos[   Taking 1,)1(  kak n , and 1 in Cor. 3, we get a result of Shah and Liman [7,Theorem 1]. II. LEMMAS For the proofs of the above results , we need the following results: Lemma 1: . Let P(z)=  n j j j za 0 be a polynomial of degree n with complex coefficients such that fornjaj ,,...1,0, 2 arg    some real . Then for some t>0,     .sincos 111     j aataatata jjjjj The proof of lemma 1 follows from a lemma due to Govil and Rahman [2]. Lemma 2.If p(z) is regular ,p(0)  0 and Mzp )( in ,1z then the number of zeros of p(z)in ,10,  z does not exceed )0( log 1 log 1 p M  (see[8],p171).
  • 5. Further Generalizations of Enestrom-Kakeya Theorem www.ijeijournal.com P a g e | 53 III. PROOFS OF THEOREMS Proof of Theorem 1: Consider the polynomial )()1()( zPzzF  kn knkn kn knkn n nn n n n n n n zaazaazaaza azazazaz          )()(......)( )......)(1( 1 1 11 1 01 1 1 001 1 21 )(......)( azaazaa kn knkn    1 11 1 )(......)()(     kn knkn n nn n nn zzzi  0 1 100 01 1 211 )()1( )(......)()(   iziz zzz n j j jj kn knkn kn knkn         If ,1 knkn    then ,1 knkn    and we have 1 11 1 )(......)()()(     kn knkn n nn nn nn zzzzizF  ......)()1()( 1 211        kn knkn kn kn kn knkn zzaz  .)()1()( 0 1 10001  izizz n j j jj    For 1z , 1 1 1 211 1 )(......)()()(       kn knkn n nn n nn nn n zzzzzazF  0 1 10001 1 211 )()1()( ......)()1()(   izizz zzaz n j j jj kn knkn kn kn kn knkn                11211 1 )(...... 1 )()( kknknnnnnn n zz zaz  n n j jnjjnnn knknkknkknkn z i z i zzz kzz 0 1 1 0 1 0 101 211 1 )()1( 1 )( .... 1 1 )( 1 )1( 1 )(              knknnnnnn n zaz    1211 ......  0 1 100 01211 1 ......1        n j jj knknknknkn  11211 ......    knnknknnnnnn n kn zaz       n j j knknkn 0 0 00121 2 )1(......1  
  • 6. Further Generalizations of Enestrom-Kakeya Theorem www.ijeijournal.com P a g e | 54      n j j knknnn n zaz 0 000 2 2)(1)1({[   >0 if    n j jknknnn za 0 000 22)(1)1(  This shows that the zeros of F(z) whose modulus is greater than 1 lie in n n j jknknn n aa z     0 000 2)(21)1(   . But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the zeros of F(z) lie in n n j jknknn n aa z     0 000 2)(21)1(   . Since the zeros of P(z) are also the zeros of F(z), it follows that all the zeros of P(z) lie in n n j jknknn n aa z     0 000 2)(21)1(   . If ,1  knkn  then ,1  knkn  and we have 1 11 1 )(......)()()(     kn knkn n nn nn nn zzzzizF  .)()1()( ......)()1()( 0 1 10001 1 21 1 1   izizz zzz n j j jj kn knkn kn kn kn knkn           For 1z , 1 1 1 211 1 )(......)()()(       kn knkn n nn n nn nn n zzzzzazF  0 1 10001 1 21 1 1 )()1()( ......)()1()(   izizz zzz n j j jj kn knkn kn kn kn knkn                11211 1 )(...... 1 )()( kknknnnnnn n zz zaz  n n j jnjjnnn kknknkknkknkn z i z i zzz zzz 0 1 1 0 1 0 101 12111 1 )()1( 1 )( .... 1 )( 1 )1( 1 )(            knknnnnnn n zaz    1211 ......
  • 7. Further Generalizations of Enestrom-Kakeya Theorem www.ijeijournal.com P a g e | 55  0 1 100 01211 1 ......1        n j jj knknknknkn  11211 ......    knnknknnnnnn n kn zaz       n j j knknkn 0 0 00121 2 )1(......1                  n j j knknnn n za z 0 0 00 }22 )(1)1({   >0 if    n j jknknnn za 0 000 22)(1)1(  This shows that the zeros of F(z) whose modulus is greater than 1 lie in n n j jknknn n aa z     0 000 2)(21)1(   . But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the zeros of F(z) lie in n n j jknknn n aa z     0 000 2)(21)1(   . Since the zeros of P(z) are also the zeros of F(z), it follows that all the zeros of P(z) lie in n n j jknknn n aa z     0 000 2)(21)1(   . That proves Theorem 1. Proof of Theorem 3: Consider the polynomial )()1()( zPzzF  kn knkn kn knkn n nn n n n n n n zaazaazaaza azazazaz          )()(......)( )......)(1( 1 1 11 1 01 1 1 001 1 21 )(......)( azaazaa kn knkn    . If knkn aa  1 , then knkn aa  1 , 1 and we have, for 1z , by using Lemma1, 1 1 1 211 1 )(......)()()(       kn knkn n nn n nn nn n zaazaazaazzazF  0001 1 211 )1()( ......)()1()( azazaa zaazazaa kn knkn kn kn kn knkn          
  • 8. Further Generalizations of Enestrom-Kakeya Theorem www.ijeijournal.com P a g e | 56      11211 1 )(...... 1 )()( kknknnnnnn n z aa z aaaazaz  nnn kknknkknkknkn z a z a z aa z aa z a z aa 0 1 0 101 1211 )1( 1 )( .... 1 )( 1 )1( 1 )(        knknnnnnn n aaaaaazaz   1211 ......  00 01211 1 ......1 aa aaaaaaa knknknknkn        sin)(cos){( 11   nnnnn n aaaazaz  cos)(......sin)(cos)( 12121 knknnnnn aaaaaa   (  sin)(cos)(sin) 111   knknknknknkn aaaaaa  sin)(cos)(1 2121   knknknknkn aaaaa })1(sin)(cos)(...... 000101 aaaaaa     sincossin(cos)sin(cos{  knnn n aazaz }sin22)1cos(sin)1 1 ,1 00     n knjj jaaa  0 if   sincossin(cos)sin(cos  knnn aaza     1 ,1 00 sin22)1cos(sin)1 n knjj jaaa  This shows that the zeros of F(z) whose modulus is greater than 1 lie in n n knjj j knn n a aaa aa a z        1 ,1 00 ]sin22)1cos(sin )1sincossin(cos)sin(cos[    . . But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the zeros of F(z) lie in n n knjj j knn n a aaa aa a z        1 ,1 00 ]sin22)1cos(sin )1sincossin(cos)sin(cos[    . Since the zeros of P(z) are also the zeros of F(z), it follows that all the zeros of P(z) lie in n n knjj j knn n a aaa aa a z        1 ,1 00 ]sin22)1cos(sin )1sincossin(cos)sin(cos[   
  • 9. Further Generalizations of Enestrom-Kakeya Theorem www.ijeijournal.com P a g e | 57 If 1  knkn aa , then 1  knkn aa , 1 and we have, for 1z , by using Lemma 1, 1 1 1 211 1 )(......)()()(       kn knkn n nn n nn nn n zaazaazaazzazF  0001 1 21 1 1 )1()( ......)()1()( azazaa zaazazaa kn knkn kn kn kn knkn                11211 1 )(...... 1 )()( kknknnnnnn n z aa z aaaazaz  nnn kknknkknkknkn z a z a z aa z aa z a z aa 0 1 0 101 12111 )1( 1 )( .... 1 )( 1 )1( 1 )(        knknnnnnn n aaaaaazaz    1211 ......  00 01211 1 ......1 aa aaaaaaa knknknknkn        sin)(cos){( 11   nnnnn n aaaazaz  cos)(......sin)(cos)( 12121 knknnnnn aaaaaa   (  sin)(cos)(sin) 111   knknknknknkn aaaaaa  sin)(cos)(1 2121   knknknknkn aaaaa })1(sin)(cos)(...... 000101 aaaaaa     sincossin(cos)sin(cos{  knnn n aazaz }sin22)1cos(sin)1 1 ,1 00     n knjj jaaa  0 if   sincossin(cos)sin(cos  knnn aaza     1 ,1 00 sin22)1cos(sin)1 n knjj jaaa  This shows that the zeros of F(z) whose modulus is greater than 1 lie in n n knjj j knn n a aaa aa a z        1 ,1 00 ]sin22)1cos(sin )1sincossin(cos)sin(cos[    . But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the zeros of F(z) and therefore P(z) lie in n n knjj j knn n a aaa aa a z        1 ,1 00 ]sin22)1cos(sin )1sincossin(cos)sin(cos[    That proves Theorem 3.
  • 10. Further Generalizations of Enestrom-Kakeya Theorem www.ijeijournal.com P a g e | 58 REFERENCES 1) A.Aziz and B.A.Zargar, Some extensions of the Enestrom-Kakeya Theorem , Glasnik Mathematiki, 31(1996) , 239-244. 2) N.K.Govil and Q.I.Rehman, On the Enestrom-Kakeya Theorem, Tohoku Math. J.,20(1968) , 126-136. 3) N.K.Govil and G.N.Mc-tume, Some extensions of the Enestrom- Kakeya Theorem , Int.J.Appl.Math. Vol.11,No.3,2002, 246-253. 4) M. H. Gulzar, On the Zeros of polynomials, International Journal of Modern Engineering Research, Vol.2,Issue 6, Nov-Dec. 2012, 4318- 4322. 5) A. Joyal, G. Labelle, Q.I. Rahman, On the location of zeros of polynomials, Canadian Math. Bull.,10(1967) , 55-63. 6) M. Marden , Geometry of Polynomials, IInd Ed.Math. Surveys, No. 3, Amer. Math. Soc. Providence,R. I,1996. 7) W. M. Shah and A.Liman, On Enestrom-Kakeya Theorem and related Analytic Functions, Proc. Indian Acad. Sci. (Math. Sci.), 117(2007), 359-370. 8) E C. Titchmarsh,The Theory of Functions,2nd edition,Oxford University Press,London,1939.