SlideShare ist ein Scribd-Unternehmen logo
1 von 5
SABER DIREITO
                              www.itbsite.blogspot.com


                             FUNÇÃO LOGARÍTMICA

       A função f:IR+IR definida por f(x)=logax, com a≠1 e a>0, é
chamada função logarítmica de base a. O domínio dessa função é o conjunto
IR+ (reais positivos, maiores que zero) e o contradomínio é IR (reais).


             GRÁFICO CARTESIANO DA FUNÇÃO LOGARÍTMICA

        Temos 2 casos a considerar:
         quando a>1;
         quando 0<a<1.

        Acompanhe nos exemplos seguintes, a construção do gráfico em cada
caso:

1)   y=log2x (nesse caso, a=2, logo a>1)
     Atribuindo alguns valores a x e calculando os correspondentes valores de
     y, obtemos a tabela e o gráfico abaixo:


               x       1/4       1/2         1           2    4
               y       -2        -1          0           1    2



2)   y=log(1/2)x (nesse caso, a=1/2, logo 0<a<1)
     Atribuindo alguns valores a x e calculando os correspondentes valores de
     y, obtemos a tabela e o gráfico abaixo:



               x       1/4       1/2         1           2    4
               y        2         1          0           -1   -2
SABER DIREITO
                           www.itbsite.blogspot.com



  Nos dois exemplos, podemos observar que
  a) o gráfico nunca intercepta o eixo vertical;
  b) o gráfico corta o eixo horizontal no ponto (1,0). A raiz da função é x=1;
  c) y assume todos os valores reais, portanto o conjunto imagem é Im=IR.

  Além disso, podemos estabelecer o seguinte:

               a>1                                    0<a<1




      f(x) é crescente e Im=IR               f(x) é decrescente e Im=IR
 Para quaisquer x1 e x2 do domínio:      Para quaisquer x1 e x2 do domínio:
x2>x1 ⇒ y2>y1 (as desigualdades têm     x2>x1 ⇒ y2<y1 (as desigualdades têm
           mesmo sentido)                        sentidos diferentes)
SABER DIREITO
                             www.itbsite.blogspot.com


                           EQUAÇÕES LOGARÍTMICAS

       Chamamos de equações logarítmicas toda equação que envolve
logaritmos com a incógnita aparecendo no logaritmando, na base ou em
ambos.

Exemplos de equações logarítmicas:
1)   log3x =5 (a solução é x=243)
2)   log(x2-1) = log 3 (as soluções são x’=-2 e x’’=2)
3)   log2(x+3) + log2(x-3) = log27 (a solução é x=4)
4)   logx+1(x2-x)=2 (a solução é x=-1/3)

Alguns exemplos resolvidos:
1) log3(x+5) = 2
   Resolução: condição de existência: x+5>0 => x>-5
   log3(x+5) = 2 => x+5 = 32 => x=9-5 => x=4
   Como x=4 satisfaz a condição de existência, então o conjunto
solução é S={4}.

2) log2(log4 x) = 1
   Resolução: condição de existência: x>0 e log4x>0
   log2(log4 x) = 1 ; sabemos que 1 = log2(2), então
   log2(log4x) = log2(2) => log4x = 2 => 42 = x => x=16
   Como x=16 satisfaz as condições de existência, então o conjunto
solução é S={16}.

3) Resolva o sistema:
log x + log y = 7

3. log x − 2. log y = 1

Resolução: condições de existência: x>0 e y>0
Da primeira equação temos:
log x+log y=7 => log y = 7-log x
Substituindo log y na segunda equação temos:
3.log x – 2.(7-log x)=1 => 3.log x-14+2.log x = 1 => 5.log x = 15 =>
SABER DIREITO
                           www.itbsite.blogspot.com


=> log x =3 => x=103
Substituindo x= 103 em log y = 7-log x temos:
log y = 7- log 103 => log y = 7-3 => log y =4 => y=104.
Como essas raízes satisfazem as condições de existência, então o conjunto
solução é S={(103;104)}.


                       INEQUAÇÕES LOGARÍTMICAS

       Chamamos de inequações logarítmicas toda inequação que envolve
logaritmos com a incógnita aparecendo no logaritmando, na base ou em
ambos.

Exemplos de inequações logarítmicas:
  1) log2x > 0 (a solução é x>1)
  2) log4(x+3) ≤ 1 (a solução é –3<x≤1)

   Para resolver inequações logarítmicas, devemos realizar dois passos
importantes:
   1º) redução dos dois membros da inequação a logaritmos de mesma
base;
   2º) aplicação da propriedade:

                 a>1                                    0<a<1
   logam > logan ⇒ m>n>0                   logam > logan ⇒ 0<m<n
(as desigualdades têm mesmo sentido)       (as desigualdades têm sentidos
                                                     diferentes)


EXERCÍCIOS RESOLVIDOS:

1) log2(x+2) > log28
   Resolução:
   Condições de existência: x+2>0, ou seja, x>-2 (S1)
   Como a base (2) é maior que 1, temos:
   x+2>8 e, daí, x>6 (S2)
   O conjunto solução é S= S1 ∩ S2 = {x ∈ IR| x>6}.
SABER DIREITO
                            www.itbsite.blogspot.com

   Portanto a solução final é a intersecção de S1 e S2, como está representado
logo abaixo no desenho:




2) log2(log3x) ≥ 0
   Resolução:
   Condições de existência: x>0 e log3x>0
   Como log21=0, a inequação pode ser escrita assim:
   log2(log3x) ≥ log21
   Sendo a base (2) maior que 1, temos: log3x ≥ 1.
   Como log33 = 1, então, log3x ≥ log33 e, daí, x ≥ 3, porque a base (3) é
   maior que 1.
   As condições de existência estão satisfeitas, portanto S={x ∈ IR| x ≥ 3}.

Weitere ähnliche Inhalte

Was ist angesagt?

Cálculo limites, derivadas e integrais
Cálculo   limites, derivadas e integraisCálculo   limites, derivadas e integrais
Cálculo limites, derivadas e integrais
Maick Henrique
 
Mat exercicios resolvidos 005
Mat exercicios resolvidos  005Mat exercicios resolvidos  005
Mat exercicios resolvidos 005
trigono_metrico
 
07 logaritmo funçao
07 logaritmo funçao07 logaritmo funçao
07 logaritmo funçao
Helen Milene
 
Funcoes primeiro ano
Funcoes  primeiro anoFuncoes  primeiro ano
Funcoes primeiro ano
ISJ
 
Cálculo diferencial e integral de várias variáveis unid iii
Cálculo diferencial e integral de várias variáveis   unid iiiCálculo diferencial e integral de várias variáveis   unid iii
Cálculo diferencial e integral de várias variáveis unid iii
Bruno Luz
 
Cadeno 1 integrais duplos e intregrais de linha
Cadeno 1 integrais duplos e intregrais de linhaCadeno 1 integrais duplos e intregrais de linha
Cadeno 1 integrais duplos e intregrais de linha
Bowman Guimaraes
 
Mat utfrs 11. fracoes algebricas
Mat utfrs 11. fracoes algebricasMat utfrs 11. fracoes algebricas
Mat utfrs 11. fracoes algebricas
trigono_metria
 
Resumo sobre Integração de Funções Racionais e Frações Parciais
Resumo sobre Integração de Funções Racionais e Frações ParciaisResumo sobre Integração de Funções Racionais e Frações Parciais
Resumo sobre Integração de Funções Racionais e Frações Parciais
Gustavo Fernandes
 
Integral Indefinida E Definida
Integral Indefinida E DefinidaIntegral Indefinida E Definida
Integral Indefinida E Definida
educacao f
 

Was ist angesagt? (19)

www.AulasDeMatematicaApoio.com - Matemática - Função Afim
www.AulasDeMatematicaApoio.com  - Matemática - Função Afimwww.AulasDeMatematicaApoio.com  - Matemática - Função Afim
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
 
www.AulasDeMatematicaApoio.com.br - Matemática - Função Afim
 www.AulasDeMatematicaApoio.com.br  - Matemática - Função Afim www.AulasDeMatematicaApoio.com.br  - Matemática - Função Afim
www.AulasDeMatematicaApoio.com.br - Matemática - Função Afim
 
Cálculo limites, derivadas e integrais
Cálculo   limites, derivadas e integraisCálculo   limites, derivadas e integrais
Cálculo limites, derivadas e integrais
 
Livro texto - unidade ii
Livro  texto - unidade iiLivro  texto - unidade ii
Livro texto - unidade ii
 
Mat exercicios resolvidos 005
Mat exercicios resolvidos  005Mat exercicios resolvidos  005
Mat exercicios resolvidos 005
 
07 logaritmo funçao
07 logaritmo funçao07 logaritmo funçao
07 logaritmo funçao
 
Funcoes primeiro ano
Funcoes  primeiro anoFuncoes  primeiro ano
Funcoes primeiro ano
 
Mat69a
Mat69aMat69a
Mat69a
 
Cálculo diferencial e integral de várias variáveis unid iii
Cálculo diferencial e integral de várias variáveis   unid iiiCálculo diferencial e integral de várias variáveis   unid iii
Cálculo diferencial e integral de várias variáveis unid iii
 
Cadeno 1 integrais duplos e intregrais de linha
Cadeno 1 integrais duplos e intregrais de linhaCadeno 1 integrais duplos e intregrais de linha
Cadeno 1 integrais duplos e intregrais de linha
 
Tecnica de integracao resumo
Tecnica de integracao   resumoTecnica de integracao   resumo
Tecnica de integracao resumo
 
Mat utfrs 11. fracoes algebricas
Mat utfrs 11. fracoes algebricasMat utfrs 11. fracoes algebricas
Mat utfrs 11. fracoes algebricas
 
Resumo sobre Integração de Funções Racionais e Frações Parciais
Resumo sobre Integração de Funções Racionais e Frações ParciaisResumo sobre Integração de Funções Racionais e Frações Parciais
Resumo sobre Integração de Funções Racionais e Frações Parciais
 
Inequação exponencial
Inequação exponencialInequação exponencial
Inequação exponencial
 
Integral Indefinida E Definida
Integral Indefinida E DefinidaIntegral Indefinida E Definida
Integral Indefinida E Definida
 
Função exponencial
Função exponencialFunção exponencial
Função exponencial
 
www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas
 www.AulasDeMatematicaApoio.com  - Matemática -  Frações Algébricas www.AulasDeMatematicaApoio.com  - Matemática -  Frações Algébricas
www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas
 
Apostila integrais
Apostila integraisApostila integrais
Apostila integrais
 
Regra da cadeia
Regra da cadeiaRegra da cadeia
Regra da cadeia
 

Andere mochten auch (20)

Trabalho Final CFQ
Trabalho Final CFQTrabalho Final CFQ
Trabalho Final CFQ
 
Getting Around Our Country~
Getting Around Our Country~Getting Around Our Country~
Getting Around Our Country~
 
Biolim 2 Avesp Dibujo Tecnico
Biolim 2 Avesp Dibujo TecnicoBiolim 2 Avesp Dibujo Tecnico
Biolim 2 Avesp Dibujo Tecnico
 
Oración Simple
Oración SimpleOración Simple
Oración Simple
 
O REI DO PHOTOSHOP
O REI DO PHOTOSHOPO REI DO PHOTOSHOP
O REI DO PHOTOSHOP
 
Past simple
Past simplePast simple
Past simple
 
A natureza
A naturezaA natureza
A natureza
 
SMANCIP_X2_PlaneT_JoviaN™
SMANCIP_X2_PlaneT_JoviaN™SMANCIP_X2_PlaneT_JoviaN™
SMANCIP_X2_PlaneT_JoviaN™
 
September 10 -7. present tense questions
September 10 -7. present tense questionsSeptember 10 -7. present tense questions
September 10 -7. present tense questions
 
Violência Doméstica 9º C Grupo 1
Violência Doméstica 9º C Grupo 1Violência Doméstica 9º C Grupo 1
Violência Doméstica 9º C Grupo 1
 
Lição de vida
Lição de vidaLição de vida
Lição de vida
 
Modals 2
Modals 2Modals 2
Modals 2
 
Impresionismo
ImpresionismoImpresionismo
Impresionismo
 
53. vans suspeitas
53. vans suspeitas53. vans suspeitas
53. vans suspeitas
 
Chapter 1 lesson 2
Chapter 1 lesson 2Chapter 1 lesson 2
Chapter 1 lesson 2
 
Ch.2A Subject Pronouns
Ch.2A Subject PronounsCh.2A Subject Pronouns
Ch.2A Subject Pronouns
 
Encarte discográfico Bad
Encarte discográfico BadEncarte discográfico Bad
Encarte discográfico Bad
 
Teclado
TecladoTeclado
Teclado
 
Aprentacao projetor
Aprentacao projetorAprentacao projetor
Aprentacao projetor
 
Grecia
GreciaGrecia
Grecia
 

Ähnlich wie Func log

Doc matematica _250829635
Doc matematica _250829635Doc matematica _250829635
Doc matematica _250829635
Joel Augusto
 
Mat funcao exponencial logaritmica
Mat funcao exponencial logaritmicaMat funcao exponencial logaritmica
Mat funcao exponencial logaritmica
trigono_metrico
 
Exame matematica
Exame matematicaExame matematica
Exame matematica
João Pinto
 
Teorema do confronto
Teorema do confrontoTeorema do confronto
Teorema do confronto
calculogrupo
 

Ähnlich wie Func log (20)

Mat logaritmos 004
Mat logaritmos  004Mat logaritmos  004
Mat logaritmos 004
 
Func exp
Func expFunc exp
Func exp
 
Mat logaritmos 005
Mat logaritmos  005Mat logaritmos  005
Mat logaritmos 005
 
Func exp
Func expFunc exp
Func exp
 
Matemática - Módulo 02
Matemática - Módulo 02Matemática - Módulo 02
Matemática - Módulo 02
 
Doc matematica _250829635
Doc matematica _250829635Doc matematica _250829635
Doc matematica _250829635
 
www.AulasDeMatematicanoRJ.Com.Br -Matemática - Função Afim
 www.AulasDeMatematicanoRJ.Com.Br  -Matemática -  Função Afim www.AulasDeMatematicanoRJ.Com.Br  -Matemática -  Função Afim
www.AulasDeMatematicanoRJ.Com.Br -Matemática - Função Afim
 
Trabalho de mat.pptx
Trabalho de mat.pptxTrabalho de mat.pptx
Trabalho de mat.pptx
 
Funcao exponencial
Funcao exponencialFuncao exponencial
Funcao exponencial
 
Mat funcao exponencial logaritmica
Mat funcao exponencial logaritmicaMat funcao exponencial logaritmica
Mat funcao exponencial logaritmica
 
www.aulaparticularonline.net.br - Matemática - Função Afim
www.aulaparticularonline.net.br - Matemática -  Função Afimwww.aulaparticularonline.net.br - Matemática -  Função Afim
www.aulaparticularonline.net.br - Matemática - Função Afim
 
Exame matematica
Exame matematicaExame matematica
Exame matematica
 
Aula de Logaritmos
Aula de LogaritmosAula de Logaritmos
Aula de Logaritmos
 
Função logarítmica
Função logarítmicaFunção logarítmica
Função logarítmica
 
Apostila pré cálculo
Apostila pré cálculoApostila pré cálculo
Apostila pré cálculo
 
Apostila logaritmos
Apostila logaritmosApostila logaritmos
Apostila logaritmos
 
12 aula eda_21102019
12 aula eda_2110201912 aula eda_21102019
12 aula eda_21102019
 
Logaritmo
LogaritmoLogaritmo
Logaritmo
 
79 logaritimos (1)
79 logaritimos (1)79 logaritimos (1)
79 logaritimos (1)
 
Teorema do confronto
Teorema do confrontoTeorema do confronto
Teorema do confronto
 

Mehr von Dinho Paulo Clakly (20)

Música traduzida
Música traduzidaMúsica traduzida
Música traduzida
 
3ª aula
3ª aula3ª aula
3ª aula
 
Inglês fácil 2
Inglês fácil 2Inglês fácil 2
Inglês fácil 2
 
Música e tradução
Música e traduçãoMúsica e tradução
Música e tradução
 
Aula 1
Aula 1Aula 1
Aula 1
 
Equações trigonométricas
Equações trigonométricasEquações trigonométricas
Equações trigonométricas
 
Sistemas lineares
Sistemas linearesSistemas lineares
Sistemas lineares
 
Função quadrática
Função quadráticaFunção quadrática
Função quadrática
 
Função de 1º grau
Função de 1º grauFunção de 1º grau
Função de 1º grau
 
Binômio de newton
Binômio de newtonBinômio de newton
Binômio de newton
 
Binômio de newton
Binômio de newtonBinômio de newton
Binômio de newton
 
Binômio de newton
Binômio de newtonBinômio de newton
Binômio de newton
 
Binômio de newton
Binômio de newtonBinômio de newton
Binômio de newton
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Func mod
Func modFunc mod
Func mod
 
Func log
Func logFunc log
Func log
 
Identidades trigonométricas
Identidades trigonométricasIdentidades trigonométricas
Identidades trigonométricas
 
Progressões geométricas
Progressões geométricasProgressões geométricas
Progressões geométricas
 
Pa
PaPa
Pa
 
Prodnot
ProdnotProdnot
Prodnot
 

Kürzlich hochgeladen

Slide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemáticaSlide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemática
sh5kpmr7w7
 
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
HELENO FAVACHO
 
19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf
marlene54545
 
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
PatriciaCaetano18
 

Kürzlich hochgeladen (20)

Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdfProjeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
 
Slide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemáticaSlide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemática
 
Cartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptxCartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptx
 
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdfApresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
 
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
 
Sistema de Bibliotecas UCS - Cantos do fim do século
Sistema de Bibliotecas UCS  - Cantos do fim do séculoSistema de Bibliotecas UCS  - Cantos do fim do século
Sistema de Bibliotecas UCS - Cantos do fim do século
 
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
 
Educação Financeira - Cartão de crédito665933.pptx
Educação Financeira - Cartão de crédito665933.pptxEducação Financeira - Cartão de crédito665933.pptx
Educação Financeira - Cartão de crédito665933.pptx
 
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIAPROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
 
19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf
 
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
 
aula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.pptaula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.ppt
 
Produção de Texto - 5º ano - CRÔNICA.pptx
Produção de Texto - 5º ano - CRÔNICA.pptxProdução de Texto - 5º ano - CRÔNICA.pptx
Produção de Texto - 5º ano - CRÔNICA.pptx
 
Estudar, para quê? Ciência, para quê? Parte 1 e Parte 2
Estudar, para quê?  Ciência, para quê? Parte 1 e Parte 2Estudar, para quê?  Ciência, para quê? Parte 1 e Parte 2
Estudar, para quê? Ciência, para quê? Parte 1 e Parte 2
 
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdfRecomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
 
migração e trabalho 2º ano.pptx fenomenos
migração e trabalho 2º ano.pptx fenomenosmigração e trabalho 2º ano.pptx fenomenos
migração e trabalho 2º ano.pptx fenomenos
 
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdfProjeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
 
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdfTCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
 
About Vila Galé- Cadeia Empresarial de Hotéis
About Vila Galé- Cadeia Empresarial de HotéisAbout Vila Galé- Cadeia Empresarial de Hotéis
About Vila Galé- Cadeia Empresarial de Hotéis
 
Camadas da terra -Litosfera conteúdo 6º ano
Camadas da terra -Litosfera  conteúdo 6º anoCamadas da terra -Litosfera  conteúdo 6º ano
Camadas da terra -Litosfera conteúdo 6º ano
 

Func log

  • 1. SABER DIREITO www.itbsite.blogspot.com FUNÇÃO LOGARÍTMICA A função f:IR+IR definida por f(x)=logax, com a≠1 e a>0, é chamada função logarítmica de base a. O domínio dessa função é o conjunto IR+ (reais positivos, maiores que zero) e o contradomínio é IR (reais). GRÁFICO CARTESIANO DA FUNÇÃO LOGARÍTMICA Temos 2 casos a considerar:  quando a>1;  quando 0<a<1. Acompanhe nos exemplos seguintes, a construção do gráfico em cada caso: 1) y=log2x (nesse caso, a=2, logo a>1) Atribuindo alguns valores a x e calculando os correspondentes valores de y, obtemos a tabela e o gráfico abaixo: x 1/4 1/2 1 2 4 y -2 -1 0 1 2 2) y=log(1/2)x (nesse caso, a=1/2, logo 0<a<1) Atribuindo alguns valores a x e calculando os correspondentes valores de y, obtemos a tabela e o gráfico abaixo: x 1/4 1/2 1 2 4 y 2 1 0 -1 -2
  • 2. SABER DIREITO www.itbsite.blogspot.com Nos dois exemplos, podemos observar que a) o gráfico nunca intercepta o eixo vertical; b) o gráfico corta o eixo horizontal no ponto (1,0). A raiz da função é x=1; c) y assume todos os valores reais, portanto o conjunto imagem é Im=IR. Além disso, podemos estabelecer o seguinte: a>1 0<a<1 f(x) é crescente e Im=IR f(x) é decrescente e Im=IR Para quaisquer x1 e x2 do domínio: Para quaisquer x1 e x2 do domínio: x2>x1 ⇒ y2>y1 (as desigualdades têm x2>x1 ⇒ y2<y1 (as desigualdades têm mesmo sentido) sentidos diferentes)
  • 3. SABER DIREITO www.itbsite.blogspot.com EQUAÇÕES LOGARÍTMICAS Chamamos de equações logarítmicas toda equação que envolve logaritmos com a incógnita aparecendo no logaritmando, na base ou em ambos. Exemplos de equações logarítmicas: 1) log3x =5 (a solução é x=243) 2) log(x2-1) = log 3 (as soluções são x’=-2 e x’’=2) 3) log2(x+3) + log2(x-3) = log27 (a solução é x=4) 4) logx+1(x2-x)=2 (a solução é x=-1/3) Alguns exemplos resolvidos: 1) log3(x+5) = 2 Resolução: condição de existência: x+5>0 => x>-5 log3(x+5) = 2 => x+5 = 32 => x=9-5 => x=4 Como x=4 satisfaz a condição de existência, então o conjunto solução é S={4}. 2) log2(log4 x) = 1 Resolução: condição de existência: x>0 e log4x>0 log2(log4 x) = 1 ; sabemos que 1 = log2(2), então log2(log4x) = log2(2) => log4x = 2 => 42 = x => x=16 Como x=16 satisfaz as condições de existência, então o conjunto solução é S={16}. 3) Resolva o sistema: log x + log y = 7  3. log x − 2. log y = 1 Resolução: condições de existência: x>0 e y>0 Da primeira equação temos: log x+log y=7 => log y = 7-log x Substituindo log y na segunda equação temos: 3.log x – 2.(7-log x)=1 => 3.log x-14+2.log x = 1 => 5.log x = 15 =>
  • 4. SABER DIREITO www.itbsite.blogspot.com => log x =3 => x=103 Substituindo x= 103 em log y = 7-log x temos: log y = 7- log 103 => log y = 7-3 => log y =4 => y=104. Como essas raízes satisfazem as condições de existência, então o conjunto solução é S={(103;104)}. INEQUAÇÕES LOGARÍTMICAS Chamamos de inequações logarítmicas toda inequação que envolve logaritmos com a incógnita aparecendo no logaritmando, na base ou em ambos. Exemplos de inequações logarítmicas: 1) log2x > 0 (a solução é x>1) 2) log4(x+3) ≤ 1 (a solução é –3<x≤1) Para resolver inequações logarítmicas, devemos realizar dois passos importantes: 1º) redução dos dois membros da inequação a logaritmos de mesma base; 2º) aplicação da propriedade: a>1 0<a<1 logam > logan ⇒ m>n>0 logam > logan ⇒ 0<m<n (as desigualdades têm mesmo sentido) (as desigualdades têm sentidos diferentes) EXERCÍCIOS RESOLVIDOS: 1) log2(x+2) > log28 Resolução: Condições de existência: x+2>0, ou seja, x>-2 (S1) Como a base (2) é maior que 1, temos: x+2>8 e, daí, x>6 (S2) O conjunto solução é S= S1 ∩ S2 = {x ∈ IR| x>6}.
  • 5. SABER DIREITO www.itbsite.blogspot.com Portanto a solução final é a intersecção de S1 e S2, como está representado logo abaixo no desenho: 2) log2(log3x) ≥ 0 Resolução: Condições de existência: x>0 e log3x>0 Como log21=0, a inequação pode ser escrita assim: log2(log3x) ≥ log21 Sendo a base (2) maior que 1, temos: log3x ≥ 1. Como log33 = 1, então, log3x ≥ log33 e, daí, x ≥ 3, porque a base (3) é maior que 1. As condições de existência estão satisfeitas, portanto S={x ∈ IR| x ≥ 3}.