SlideShare ist ein Scribd-Unternehmen logo
1 von 38
A Unified Music Recommender System Using
Users’ Listening Habits and Semantics of Tags
Hyon Hee Kim
Department of Statistics and Information Science,
Dongduk Women’s University
Outline
• Motivation & Objectives
• Overview of the System
• Generation of User Profiles
• A Unified Music Recommendation
• Performance Evaluation
• Related Work
• Conclusions and Future Work
Motivation (1/3)
• In a Social Music Site
– Music recommendation is essential.
– Music recommendation is different from other product recommendation
• Explicit information : Rating system
• Implicit information : the number of plays
• Listening habits-based User Profiling
– Cold Start Problem
• A new users with little information
• A new items with only a few ratings
– Data Sparsity Problem
• Data is very small compared to needed music items
Classic rock
british
pop
rock
• Collaborative Tagging
– A tool for users to represent their preferences about web resources
– Users add keywords which are freely chosen by themselves to web resources
– Using tag data for user profiling in personalized recommender systems
• Tag-based User Profiling
– More Easily added tags without listening to music
– Semantically meaningful tags
Motivation (2/3)
Motivation (3/3)
• In the case of last.fm
• Factual Tags
– 85% of tags
– genre, region, instrumentation
• Emotional Tags
– 10% of tags
– opinion, sentiment, mood
• Personal Tags
– 5% of tags
– to organize, to browse, etc.
Objectives
• A Novel Approach to Music Recommendation
– Combining listening habits and semantics of tags
• Using a Tag Ontology and an Emotion Ontology
– UniTag: Resolving semantic ambiguity of tags
– UniEmotion: Assigning weighted values to the emotional tags
→ Semantically Enhanced Music Recommendation
Outline
• Motivation & Objectives
• Overview of the System
• Generation of User Profiles
• A Unified Music Recommendation
• Performance Evaluation
• Related Work
• Conclusions and Future Work
Overview of the System
Outline
• Motivation & Objectives
• Overview of the System
• Tag-based User Profiling
– Preprocessing of tags
– Algorithms for generating user profiles
– Preliminary experimental results
• A Unified Music Recommendation
• Performance Evaluation
• Related Work
• Conclusions and Future Work
Preprocessing of Tags (1/3)
• A tag does not have any pre-defined term or hierarchies of a term
• Problems of tag data
– Synonymy
• Different words represents the same meaning
• E.g., hiphop, hip-hop, hip hop/ R & B, Rhythm and Blues, Blues
– Polysemy
• A single word contains multiple meanings
• E.g., French => French rock, French pop, French artist
– Spelling variants
• misspelling
• Foreign language
Preprocessing of Tags (2/3)
• Tag Ontology
– Tags, users, items
• UniTag Ontology
– uniTag:Users
• uniTag:userID, uniTag:hasAdded, uniTag:hasAddedTo
– uniTag:Items
• uniTag:itemID
– uniTag:Tags
• uniTag:tagID, uniTag:tagName, uniTag:RTag, uniTag:subTag,
• uniTag:Rtags {rock, hiphop, electronic, metal, jazz, rap, funk, folk, blues, reggae}
• uniTag:classifiedAs, uniTag:isKindOf, uniTag:istheSameAs, uniTag:tagVariation
Preprocessing of Tags (3/3)
• Rules for reasoning prefix
– French rock, progressive rock, post rock=> rock
(Tag (?t) ^ tagPrefix (?t, ?p) ^ Prefix(?p) ^ subTag(?t, ?s) ^ Rtags (?s) ->
classifiedAs (?t, ?s)
• Rules for reasoning expert knowledge
– Soul => rhythm and blues, rhythm and blues => blues then Soul => blues
(Tag (?t) ^ isKindof (?t, ?A) ^ isKindof (?A, ?B) -> isKindof (?t, ?B)
• Rules for reasoning synonym
– Hip-hop, hiphop => hip hop
(Tag(?t) ^tagVariation (?t, ?R) ^ istheSameAs (?t, ?s) -> tagVariation (?s, ?R)
Algorithm for Generating User Profiles (1/2)
Algorithm 1. Generation of A Tag-based Profile
Input: set of Representative tags Tr, set of a user’s tag Tu
Output: set of frequencey for each representative tag of the user FTr
var RTags[] = {rock, hiphop, electronic, metal, jazz, rap, funk, folk, blues, reggae}
var tagFrequency[] = { }, tempFrequency [] = { }
var RTag = null
while ∃next tag t in Tu do
RTag = FindRTag (t)
If Rtag == RTags [i] then
{ tempFrequency[i] = tempFrequency[i] + 1
tagFrequency [i] = tempFrequency [i] }
else
tagFrequency [i] = tempFrequency [i]
endwhile rock hiphop electronic metal jazz rap funk folk blues reggae
user1 6 2 2 3 2 4 3 1 1 1
user2 5 0 0 0 0 0 0 0 1 0
user3 2 2 1 1 1 1 2 0 0 1
user4 10 1 0 1 2 0 2 3 3 1
user5 1 4 0 0 0 4 1 0 0 0
Table 1. An example of tag-based profiles
Algorithm for generating User Profiles (2/2)
Algorithm 2. Generation of A Track-based Profile
Input: set of tracks of a usr TRu, set of Representative tags Tr
Output: set of number of a user’s tracks for each representative musical genre Tn
var RTags[] = {rock, hiphop, electronic, metal, jazz, rap, funk, folk, blues, reggae}
var numTrack[ ] = { }, tempnumTrack [ ] = { }
var RTrack = null
while ∃next tag t in Tu do
RTrack = FindGenre (t)
If Rtrack == RTags [i] then
{ tempnumTrack [i] = tempnumTrack[i] + 1
numTrack[i] = tempnumTrack [i] }
else
numTrack [i] = tempnumTrack [i]
endwhile rock hiphop electronic metal jazz rap funk folk blues reggae
User1 65 176 5 4 0 168 0 3 0 0
User2 411 8 11 109 3 5 8 1 0 0
User3 157 7 11 10 6 2 1 39 4 2
User4 257 20 9 18 2 5 0 9 0 0
User5 110 277 15 8 6 85 10 3 2 7
Table 2. An example of track-based profiles
Preliminary Experimental Results (1/3)
• 1,000 user data set from Last.fm
– Users, tags, music items
• Standardization
– To remove extensive preference
• K-Means clustering algorithm
– Canopy Clustering
– 6 centroid points and 6 clusters
Preliminary Experimental Results (2/3)
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
Cluster1 0.241 1.472 0.626 0.130 1.267 1.621 2.168 0.274 1.078 0.381
Cluster2 2.171 0.032 0.517 3.052 0.011 -0.030 0.328 1.533 1.245 0.162
Cluster3 -0.206 -0.273 -0.517 -0.178 -0.180 -0.294 -0.233 -0.171 -0.204 -0.136
Cluster4 -0.341 0.660 -0.459 -0.284 -0.208 1.178 -0.179 -0.321 -0.166 0.273
Cluster5 -0.074 -0.155 1.320 -0.230 -0.115 -0.261 -0.209 -0.070 -0.172 -0.071
Cluster6 2.815 7.640 5.168 -0.136 9.254 6.135 7.000 4.286 4.421 5.254
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
Cluster1 -0.411 0.495 0.406 -0.338 1.565 0.131 1.632 -0.135 0.147 0.812
Cluster2 0.200 -0.444 0.007 -0.341 0.907 -0.468 -0.288 2.617 1.097 0.020
Cluster3 -0.897 1.651 -0.539 -0.442 -0.213 1.836 0.059 -0.507 -0.415 0.034
Cluster4 1.925 -0.590 -0.404 0.852 -0.264 -0.491 0.655 -0.002 2.850 -0.108
Cluster5 0.914 -0.557 -0.216 0.794 -0.296 -0.511 -0.297 0.014 -0.157 -0.147
Cluster6 -0.472 -0.327 0.380 -0.373 -0.184 -0.371 -0.241 -0.205 -0.300 -0.093
Table 3. Values of Centers of Tag-based Profiles
Table 4. Values of Centers of Track-based Profiles
• Clustering Validity
– Inter-cluster distances
– Distances between all pairs of centroids using cosine distance measure
Preliminary Experimental Results (3/3)
– T-test
• Mean of inter-cluster distances of tag-based profiles
• Mean of inter-cluster distances of track-based profiles
N Mean Std Dev t p-value
Tag-based profiles 15 0.8325 0.6834
2.55 0.0165
Track-based profiles 15 0.3785 0.0885
Table 5. T-test result for the means of inter-cluster distances
Outline
• Motivation & Objectives
• Overview of the System
• Generation of User Profiles
• A Unified Music Recommendation
– UniEmotion Ontology
– Generation of User Profiles
– Music Recommendation Algorithm
• Performance Evaluation
• Related Work
• Conclusions and Future Work
UniEmotion Ontology (1/5)
[Plutchik’s model]
UniEmotion Ontology (2/5)
P: 0.625, O: 0.25, N: 0.125
P: 0.375, O: 0.625, N: 0
P: 1.0, O: 0, N: 0
• Definition of the intensity of emotional tags
• SentiWordNet, http://sentiwordnet.isti.cnr.it/
UniEmotion Ontology (3/5)
• Intensity of emotional tags
– Strong
• Positive value >= 0.75 or Negative value>= 0.75
– Middle
• 0.25 <= Positive value <= 0.75 or
• 0.25 <= Negative value <= 0.75
– Weak
• Positive value < 0.25 and Negative value < 0.25
UniEmotion Ontology (4/5)
• Assigning the weights to the tags
– Factual tags: 1
– Positive tags
• Strong: 2.5
• Middle: 2
• Weak: 1.5
– Negative tags
• Strong: -2.5
• Middle: -2
• Weak: -1.5
• Final score of an item => sum of the weights
UniEmotion Ontology (5/5)
• Two classes
– UniEmotion:Positive
• Emotional tags belonging to the positive emotional categories
• trust, surprise, anticipation, and happiness
– UniEmotion:Negative
• Emotional tags belonging to the negative emotional categories
• disgust, anger, fear, and sadness
• Two properties
– UniEmotion:Intensity
• Specifying the intensity of tags
– UniEmotion:Weight
• Specifying the weight of tags
Generation of User Profiles (1/2)
1. Listening habits-based User Profiles
– U1 = {u1, u2, …, um}, I1 = {i1, i2, …, in},
– <u, I, n>
• N: number of plays
2. Tag score-based User Profiles
– U2 = {u1, u2, …, um}, I2 = {i1, i2, …, in},
– <u, I, s>
• S: scores of tags assigned by UniEmotion ontology
3. Hybrid User Profiles
– U3 = {u1, u2, …, um}, I3 = I1 ∩ I2,
– <u, I, m>
• M = α * n +(1- α) * s; α = 0.5
Generation of User Profiles (2/2)
1. Listening habits-based
User profiles
2. Tag score-based
User profiles
3. Hybrid
User profiles
Music Recommendation Algorithm (1/2)
• Finding Similar Users
– Pearson Correlation Similarity
• Calculating scores of items
– Considering the similar users’ rates
• Recommending top n items
Music Recommendation Algorithm (2/2)
Input: a set of user profiles UP
Output: a set of recommended items RI
1. For all yi ∈ U
Compute a similarity s between X and yi.
2. Sort by similarity
3. Select top n neighbors
4.
5. For all
Compute a similarity t between x and
For all
preference +=t * pref
6. Rank by preference
7. Select top n items
Outline
• Motivation & Objectives
• Overview of the System
• Generation of User Profiles
• A Unified Music Recommendation
• Performance Evaluation
• Related Work
• Conclusions and Future Work
Performance Evaluation
• Implementation Environment: Apache Web Server
– User database : MySQL 5.0
– Listening habits collector, tag score generator: PHP
– Recommendation Engine: Apache Mahout
– UniTag and UniEmotion Ontology: JDK6.0
• Experimental Data
– 1, 000 user information from last.fm [http://mir.dcs.gla.ac.uk/]
– Containing 18,700 artist and 12,600 tags
– 70% training data, 30% test data
Performance Evaluation
• Evaluation Model
– Recommended items
• Items which users are interested in (True Positive, TP)
• Items which users are not (False Positive, FP)
– Items which are not recommended
• Items which users are interested in (False Negative, FN)
• Items which users are not interested in (True Negative, TN)
– Precision P = TP/ TP+ FP
• # of correct recommendation/# of all recommended items
– Recall R = TP / TP+FN
• # of correct recommendation/# of preferred items
– F-measure F = 2* P* R / P+R
• Harmonic average between precision and recall
Experimental Results (1/3)
• Precisions
[Number of similar users] [Number of recommended items]
A: Listening habits-based approach
B: Tag-based approach
C: Hybrid approach
Experimental Results (2/3)
• Recalls
[Number of similar users] [Number of recommended items]
A: Listening habits-based approach
B: Tag-based approach
C: Hybrid approach
Experimental Results (3/3)
• F-measure
[Number of similar users] [Number of recommended items]
A: Listening habits-based approach
B: Tag-based approach
C: Hybrid approach
Statistical Validation
• One-way ANOVA about three groups
– Method1: listening habits-based approach
– Method2: tag-based approach
– Method3: hybrid approach
• Tukey Multiple Comparison Test
– Asymmetric distributions
• Log transformation
– Different characters in case two groups have significant
difference
Method 1 2 3 F
Mean of log(prec) -3.962B -4.036B -2.879A 34.27***
Mean
Precision(SD)
0.020
(0.006)
0.020
(0.009)
0.068
(0.040)
N 24 24 24
Method 1 2 3 F
Mean of log(recall) -3.285B -4.099c -2.635A 26.80***
Mean
Recall (SD)
0.044
(0.023)
0.019
(0.010)
0.093
(0.056)
N 24 24 24
<Table1. test for precision> ***: p<0.001
<Table2. test for recall> ***:p<0.001
Method 1 2 3 F
Mean of log(F-measure) -3.748B -4.117c -2.894A 41.31***
Mean
F-measure (SD)
0.024
(0.006)
0.018
(0.008)
0.06
(0.034)
N 24 24 24
<Table2. test for F-measure> ***: p<0.001
Related Work
• MusicBox
– A personalized music recommender system based on social tags
– 3-order tensors model
– The method improves the recommendation quality
• Foafing the music
– Collecting music information in a semantic web environment
– User information, music information, concert information
– Recommendation of similar music items
• OntoEmotions
– An ontology of emotional categories covering the basic emotions
– Armeteo art portal
– New relations can be inferred by reasoning on the ontology of emotions
Conclusions
• Solution to Cold Start Problem
– It takes time to collect users’ listening habits.
– Adding tags is easily done
– Tags look like word-of-mouth
• Performance Enhancement
– Precision, Recall, F-measure
– Hybrid approach > listening habits-based approach, tag-based approach
Future Work
• Elaborating UniEmotion Ontology
– Emerging Internet Slangs
• Item Selection
– Product Network Analysis Considering Tags
– Analyzing short description

Weitere ähnliche Inhalte

Andere mochten auch

온라인 데이터 분석을 통한 선거예측- 김찬우, 조인호
온라인 데이터 분석을 통한 선거예측- 김찬우, 조인호온라인 데이터 분석을 통한 선거예측- 김찬우, 조인호
온라인 데이터 분석을 통한 선거예측- 김찬우, 조인호datasciencekorea
 
International Collaboration Networks in the Emerging (Big) Data Science
International Collaboration Networks in the Emerging (Big) Data ScienceInternational Collaboration Networks in the Emerging (Big) Data Science
International Collaboration Networks in the Emerging (Big) Data Sciencedatasciencekorea
 
농업 빅데이터를 활용한 병해충 발생 예측 모형
농업 빅데이터를 활용한 병해충 발생 예측 모형농업 빅데이터를 활용한 병해충 발생 예측 모형
농업 빅데이터를 활용한 병해충 발생 예측 모형datasciencekorea
 
DATA CENTRIC EDUCATION & LEARNING
 DATA CENTRIC EDUCATION & LEARNING DATA CENTRIC EDUCATION & LEARNING
DATA CENTRIC EDUCATION & LEARNINGdatasciencekorea
 
Data Centric Art, Science, and Humanities
Data Centric Art, Science, and HumanitiesData Centric Art, Science, and Humanities
Data Centric Art, Science, and Humanitiesdatasciencekorea
 
데이터사이언스학회 5월 세미나 데이터저널리즘과 트위터네트워크 분석
데이터사이언스학회 5월 세미나 데이터저널리즘과 트위터네트워크 분석데이터사이언스학회 5월 세미나 데이터저널리즘과 트위터네트워크 분석
데이터사이언스학회 5월 세미나 데이터저널리즘과 트위터네트워크 분석datasciencekorea
 
국가의 신성장 동력으로서 공간정보의 가치와 활용 2016-0603
국가의 신성장 동력으로서 공간정보의 가치와 활용 2016-0603국가의 신성장 동력으로서 공간정보의 가치와 활용 2016-0603
국가의 신성장 동력으로서 공간정보의 가치와 활용 2016-0603datasciencekorea
 
Structures of Twitter Crowds and Conversations Six distinct types of crowds t...
Structures of Twitter Crowds and Conversations Six distinct types of crowds t...Structures of Twitter Crowds and Conversations Six distinct types of crowds t...
Structures of Twitter Crowds and Conversations Six distinct types of crowds t...datasciencekorea
 
2015-4 혁신기술로서의 빅데이터 국내 기술수용 초기 특성연구- 김정선
2015-4 혁신기술로서의 빅데이터 국내 기술수용 초기 특성연구- 김정선2015-4 혁신기술로서의 빅데이터 국내 기술수용 초기 특성연구- 김정선
2015-4 혁신기술로서의 빅데이터 국내 기술수용 초기 특성연구- 김정선datasciencekorea
 
텍스톰을 이용한 SNA 분석 -전채남
텍스톰을 이용한 SNA 분석 -전채남텍스톰을 이용한 SNA 분석 -전채남
텍스톰을 이용한 SNA 분석 -전채남datasciencekorea
 
Data-driven biomedical science: implications for human disease and public health
Data-driven biomedical science: implications for human disease and public healthData-driven biomedical science: implications for human disease and public health
Data-driven biomedical science: implications for human disease and public healthdatasciencekorea
 
소셜 텍스트 빅 테이터를 통해 분석한 화장품 유통구조 시사점
소셜 텍스트 빅 테이터를 통해 분석한 화장품 유통구조 시사점소셜 텍스트 빅 테이터를 통해 분석한 화장품 유통구조 시사점
소셜 텍스트 빅 테이터를 통해 분석한 화장품 유통구조 시사점datasciencekorea
 
R의 이해와 활용_데이터사이언스학회
R의 이해와 활용_데이터사이언스학회R의 이해와 활용_데이터사이언스학회
R의 이해와 활용_데이터사이언스학회datasciencekorea
 
데이터시장의 트렌드와 예측 - 이영환
데이터시장의 트렌드와 예측 - 이영환 데이터시장의 트렌드와 예측 - 이영환
데이터시장의 트렌드와 예측 - 이영환 datasciencekorea
 
소셜미디어 분석방법론과 사례
소셜미디어 분석방법론과 사례소셜미디어 분석방법론과 사례
소셜미디어 분석방법론과 사례datasciencekorea
 
데이터 시각화의 글로벌 동향 20140819 - 고영혁
데이터 시각화의 글로벌 동향   20140819 - 고영혁데이터 시각화의 글로벌 동향   20140819 - 고영혁
데이터 시각화의 글로벌 동향 20140819 - 고영혁datasciencekorea
 
스마트 시티의 빅데이터 분석론 - 최준영
스마트 시티의 빅데이터 분석론 - 최준영스마트 시티의 빅데이터 분석론 - 최준영
스마트 시티의 빅데이터 분석론 - 최준영datasciencekorea
 
Bayesian Network 을 활용한 예측 분석
Bayesian Network 을 활용한 예측 분석Bayesian Network 을 활용한 예측 분석
Bayesian Network 을 활용한 예측 분석datasciencekorea
 

Andere mochten auch (18)

온라인 데이터 분석을 통한 선거예측- 김찬우, 조인호
온라인 데이터 분석을 통한 선거예측- 김찬우, 조인호온라인 데이터 분석을 통한 선거예측- 김찬우, 조인호
온라인 데이터 분석을 통한 선거예측- 김찬우, 조인호
 
International Collaboration Networks in the Emerging (Big) Data Science
International Collaboration Networks in the Emerging (Big) Data ScienceInternational Collaboration Networks in the Emerging (Big) Data Science
International Collaboration Networks in the Emerging (Big) Data Science
 
농업 빅데이터를 활용한 병해충 발생 예측 모형
농업 빅데이터를 활용한 병해충 발생 예측 모형농업 빅데이터를 활용한 병해충 발생 예측 모형
농업 빅데이터를 활용한 병해충 발생 예측 모형
 
DATA CENTRIC EDUCATION & LEARNING
 DATA CENTRIC EDUCATION & LEARNING DATA CENTRIC EDUCATION & LEARNING
DATA CENTRIC EDUCATION & LEARNING
 
Data Centric Art, Science, and Humanities
Data Centric Art, Science, and HumanitiesData Centric Art, Science, and Humanities
Data Centric Art, Science, and Humanities
 
데이터사이언스학회 5월 세미나 데이터저널리즘과 트위터네트워크 분석
데이터사이언스학회 5월 세미나 데이터저널리즘과 트위터네트워크 분석데이터사이언스학회 5월 세미나 데이터저널리즘과 트위터네트워크 분석
데이터사이언스학회 5월 세미나 데이터저널리즘과 트위터네트워크 분석
 
국가의 신성장 동력으로서 공간정보의 가치와 활용 2016-0603
국가의 신성장 동력으로서 공간정보의 가치와 활용 2016-0603국가의 신성장 동력으로서 공간정보의 가치와 활용 2016-0603
국가의 신성장 동력으로서 공간정보의 가치와 활용 2016-0603
 
Structures of Twitter Crowds and Conversations Six distinct types of crowds t...
Structures of Twitter Crowds and Conversations Six distinct types of crowds t...Structures of Twitter Crowds and Conversations Six distinct types of crowds t...
Structures of Twitter Crowds and Conversations Six distinct types of crowds t...
 
2015-4 혁신기술로서의 빅데이터 국내 기술수용 초기 특성연구- 김정선
2015-4 혁신기술로서의 빅데이터 국내 기술수용 초기 특성연구- 김정선2015-4 혁신기술로서의 빅데이터 국내 기술수용 초기 특성연구- 김정선
2015-4 혁신기술로서의 빅데이터 국내 기술수용 초기 특성연구- 김정선
 
텍스톰을 이용한 SNA 분석 -전채남
텍스톰을 이용한 SNA 분석 -전채남텍스톰을 이용한 SNA 분석 -전채남
텍스톰을 이용한 SNA 분석 -전채남
 
Data-driven biomedical science: implications for human disease and public health
Data-driven biomedical science: implications for human disease and public healthData-driven biomedical science: implications for human disease and public health
Data-driven biomedical science: implications for human disease and public health
 
소셜 텍스트 빅 테이터를 통해 분석한 화장품 유통구조 시사점
소셜 텍스트 빅 테이터를 통해 분석한 화장품 유통구조 시사점소셜 텍스트 빅 테이터를 통해 분석한 화장품 유통구조 시사점
소셜 텍스트 빅 테이터를 통해 분석한 화장품 유통구조 시사점
 
R의 이해와 활용_데이터사이언스학회
R의 이해와 활용_데이터사이언스학회R의 이해와 활용_데이터사이언스학회
R의 이해와 활용_데이터사이언스학회
 
데이터시장의 트렌드와 예측 - 이영환
데이터시장의 트렌드와 예측 - 이영환 데이터시장의 트렌드와 예측 - 이영환
데이터시장의 트렌드와 예측 - 이영환
 
소셜미디어 분석방법론과 사례
소셜미디어 분석방법론과 사례소셜미디어 분석방법론과 사례
소셜미디어 분석방법론과 사례
 
데이터 시각화의 글로벌 동향 20140819 - 고영혁
데이터 시각화의 글로벌 동향   20140819 - 고영혁데이터 시각화의 글로벌 동향   20140819 - 고영혁
데이터 시각화의 글로벌 동향 20140819 - 고영혁
 
스마트 시티의 빅데이터 분석론 - 최준영
스마트 시티의 빅데이터 분석론 - 최준영스마트 시티의 빅데이터 분석론 - 최준영
스마트 시티의 빅데이터 분석론 - 최준영
 
Bayesian Network 을 활용한 예측 분석
Bayesian Network 을 활용한 예측 분석Bayesian Network 을 활용한 예측 분석
Bayesian Network 을 활용한 예측 분석
 

Ähnlich wie A Unified Music Recommender System Using Users’ Listening Habits and Semantics of Tags

Crowsourcing for Social Multimedia Task: Crowsorting Timed Comments about Music
Crowsourcing for Social Multimedia Task: Crowsorting Timed Comments about MusicCrowsourcing for Social Multimedia Task: Crowsorting Timed Comments about Music
Crowsourcing for Social Multimedia Task: Crowsorting Timed Comments about Musicmultimediaeval
 
IRJET- A Personalized Music Recommendation System
IRJET- A Personalized Music Recommendation SystemIRJET- A Personalized Music Recommendation System
IRJET- A Personalized Music Recommendation SystemIRJET Journal
 
(SoWeMine Workshop) "#nowplaying on #Spotify: Leveraging Spotify Information ...
(SoWeMine Workshop) "#nowplaying on #Spotify: Leveraging Spotify Information ...(SoWeMine Workshop) "#nowplaying on #Spotify: Leveraging Spotify Information ...
(SoWeMine Workshop) "#nowplaying on #Spotify: Leveraging Spotify Information ...icwe2015
 
Scala Data Pipelines for Music Recommendations
Scala Data Pipelines for Music RecommendationsScala Data Pipelines for Music Recommendations
Scala Data Pipelines for Music RecommendationsChris Johnson
 
音楽の非専門家が演奏・創作を通じて音楽を楽しめる世界を目指して
音楽の非専門家が演奏・創作を通じて音楽を楽しめる世界を目指して音楽の非専門家が演奏・創作を通じて音楽を楽しめる世界を目指して
音楽の非専門家が演奏・創作を通じて音楽を楽しめる世界を目指してkthrlab
 
IRJET- Implementation of Emotion based Music Recommendation System using SVM ...
IRJET- Implementation of Emotion based Music Recommendation System using SVM ...IRJET- Implementation of Emotion based Music Recommendation System using SVM ...
IRJET- Implementation of Emotion based Music Recommendation System using SVM ...IRJET Journal
 
Random Walk with Restart for Automatic Playlist Continuation and Query-specif...
Random Walk with Restart for Automatic Playlist Continuation and Query-specif...Random Walk with Restart for Automatic Playlist Continuation and Query-specif...
Random Walk with Restart for Automatic Playlist Continuation and Query-specif...Timo van Niedek
 
WWW2014: Long Time No See: The Probability of Reusing Tags as a Function of F...
WWW2014: Long Time No See: The Probability of Reusing Tags as a Function of F...WWW2014: Long Time No See: The Probability of Reusing Tags as a Function of F...
WWW2014: Long Time No See: The Probability of Reusing Tags as a Function of F...Dominik Kowald
 
Deep Learning Based Music Recommendation System
Deep Learning Based Music Recommendation SystemDeep Learning Based Music Recommendation System
Deep Learning Based Music Recommendation SystemIRJET Journal
 
[221]똑똑한 인공지능 dj 비서 clova music
[221]똑똑한 인공지능 dj 비서 clova music[221]똑똑한 인공지능 dj 비서 clova music
[221]똑똑한 인공지능 dj 비서 clova musicNAVER D2
 
Improving Semantic Search Using Query Log Analysis
Improving Semantic Search Using Query Log AnalysisImproving Semantic Search Using Query Log Analysis
Improving Semantic Search Using Query Log AnalysisStuart Wrigley
 
The MediaEval 2017 AcousticBrainz Genre Task: Content-based Music Genre Recog...
The MediaEval 2017 AcousticBrainz Genre Task: Content-based Music Genre Recog...The MediaEval 2017 AcousticBrainz Genre Task: Content-based Music Genre Recog...
The MediaEval 2017 AcousticBrainz Genre Task: Content-based Music Genre Recog...multimediaeval
 
Audio Source Separation Based on Low-Rank Structure and Statistical Independence
Audio Source Separation Based on Low-Rank Structure and Statistical IndependenceAudio Source Separation Based on Low-Rank Structure and Statistical Independence
Audio Source Separation Based on Low-Rank Structure and Statistical IndependenceDaichi Kitamura
 
Trends in Music Recommendations 2018
Trends in Music Recommendations 2018Trends in Music Recommendations 2018
Trends in Music Recommendations 2018Karthik Murugesan
 
MusicFX: An Arbiter of Group Preferences for Computer Supported Collaborative...
MusicFX: An Arbiter of Group Preferences for Computer Supported Collaborative...MusicFX: An Arbiter of Group Preferences for Computer Supported Collaborative...
MusicFX: An Arbiter of Group Preferences for Computer Supported Collaborative...Joe McCarthy
 
AI&BigData Lab 2016. Игорь Костюк: Как приручить музыкальную рекомендательную...
AI&BigData Lab 2016. Игорь Костюк: Как приручить музыкальную рекомендательную...AI&BigData Lab 2016. Игорь Костюк: Как приручить музыкальную рекомендательную...
AI&BigData Lab 2016. Игорь Костюк: Как приручить музыкальную рекомендательную...GeeksLab Odessa
 
Quettra Design Problem Solution - Deepti Chafekar
Quettra Design Problem Solution - Deepti ChafekarQuettra Design Problem Solution - Deepti Chafekar
Quettra Design Problem Solution - Deepti Chafekarquettra
 
Music Recommendation System with User-based and Item-based Collaborative Filt...
Music Recommendation System with User-based and Item-based Collaborative Filt...Music Recommendation System with User-based and Item-based Collaborative Filt...
Music Recommendation System with User-based and Item-based Collaborative Filt...ijeei-iaes
 

Ähnlich wie A Unified Music Recommender System Using Users’ Listening Habits and Semantics of Tags (20)

Crowsourcing for Social Multimedia Task: Crowsorting Timed Comments about Music
Crowsourcing for Social Multimedia Task: Crowsorting Timed Comments about MusicCrowsourcing for Social Multimedia Task: Crowsorting Timed Comments about Music
Crowsourcing for Social Multimedia Task: Crowsorting Timed Comments about Music
 
IRJET- A Personalized Music Recommendation System
IRJET- A Personalized Music Recommendation SystemIRJET- A Personalized Music Recommendation System
IRJET- A Personalized Music Recommendation System
 
(SoWeMine Workshop) "#nowplaying on #Spotify: Leveraging Spotify Information ...
(SoWeMine Workshop) "#nowplaying on #Spotify: Leveraging Spotify Information ...(SoWeMine Workshop) "#nowplaying on #Spotify: Leveraging Spotify Information ...
(SoWeMine Workshop) "#nowplaying on #Spotify: Leveraging Spotify Information ...
 
Scala Data Pipelines for Music Recommendations
Scala Data Pipelines for Music RecommendationsScala Data Pipelines for Music Recommendations
Scala Data Pipelines for Music Recommendations
 
音楽の非専門家が演奏・創作を通じて音楽を楽しめる世界を目指して
音楽の非専門家が演奏・創作を通じて音楽を楽しめる世界を目指して音楽の非専門家が演奏・創作を通じて音楽を楽しめる世界を目指して
音楽の非専門家が演奏・創作を通じて音楽を楽しめる世界を目指して
 
IRJET- Implementation of Emotion based Music Recommendation System using SVM ...
IRJET- Implementation of Emotion based Music Recommendation System using SVM ...IRJET- Implementation of Emotion based Music Recommendation System using SVM ...
IRJET- Implementation of Emotion based Music Recommendation System using SVM ...
 
Random Walk with Restart for Automatic Playlist Continuation and Query-specif...
Random Walk with Restart for Automatic Playlist Continuation and Query-specif...Random Walk with Restart for Automatic Playlist Continuation and Query-specif...
Random Walk with Restart for Automatic Playlist Continuation and Query-specif...
 
WWW2014: Long Time No See: The Probability of Reusing Tags as a Function of F...
WWW2014: Long Time No See: The Probability of Reusing Tags as a Function of F...WWW2014: Long Time No See: The Probability of Reusing Tags as a Function of F...
WWW2014: Long Time No See: The Probability of Reusing Tags as a Function of F...
 
Deep Learning Based Music Recommendation System
Deep Learning Based Music Recommendation SystemDeep Learning Based Music Recommendation System
Deep Learning Based Music Recommendation System
 
[221]똑똑한 인공지능 dj 비서 clova music
[221]똑똑한 인공지능 dj 비서 clova music[221]똑똑한 인공지능 dj 비서 clova music
[221]똑똑한 인공지능 dj 비서 clova music
 
Improving Semantic Search Using Query Log Analysis
Improving Semantic Search Using Query Log AnalysisImproving Semantic Search Using Query Log Analysis
Improving Semantic Search Using Query Log Analysis
 
The MediaEval 2017 AcousticBrainz Genre Task: Content-based Music Genre Recog...
The MediaEval 2017 AcousticBrainz Genre Task: Content-based Music Genre Recog...The MediaEval 2017 AcousticBrainz Genre Task: Content-based Music Genre Recog...
The MediaEval 2017 AcousticBrainz Genre Task: Content-based Music Genre Recog...
 
Audio Source Separation Based on Low-Rank Structure and Statistical Independence
Audio Source Separation Based on Low-Rank Structure and Statistical IndependenceAudio Source Separation Based on Low-Rank Structure and Statistical Independence
Audio Source Separation Based on Low-Rank Structure and Statistical Independence
 
Trends in Music Recommendations 2018
Trends in Music Recommendations 2018Trends in Music Recommendations 2018
Trends in Music Recommendations 2018
 
MusicFX: An Arbiter of Group Preferences for Computer Supported Collaborative...
MusicFX: An Arbiter of Group Preferences for Computer Supported Collaborative...MusicFX: An Arbiter of Group Preferences for Computer Supported Collaborative...
MusicFX: An Arbiter of Group Preferences for Computer Supported Collaborative...
 
Kaggle kenneth
Kaggle kennethKaggle kenneth
Kaggle kenneth
 
AI&BigData Lab 2016. Игорь Костюк: Как приручить музыкальную рекомендательную...
AI&BigData Lab 2016. Игорь Костюк: Как приручить музыкальную рекомендательную...AI&BigData Lab 2016. Игорь Костюк: Как приручить музыкальную рекомендательную...
AI&BigData Lab 2016. Игорь Костюк: Как приручить музыкальную рекомендательную...
 
Quettra Design Problem Solution - Deepti Chafekar
Quettra Design Problem Solution - Deepti ChafekarQuettra Design Problem Solution - Deepti Chafekar
Quettra Design Problem Solution - Deepti Chafekar
 
KD_MB_MW_poster
KD_MB_MW_posterKD_MB_MW_poster
KD_MB_MW_poster
 
Music Recommendation System with User-based and Item-based Collaborative Filt...
Music Recommendation System with User-based and Item-based Collaborative Filt...Music Recommendation System with User-based and Item-based Collaborative Filt...
Music Recommendation System with User-based and Item-based Collaborative Filt...
 

Kürzlich hochgeladen

Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...HostedbyConfluent
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure servicePooja Nehwal
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAndikSusilo4
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 

Kürzlich hochgeladen (20)

Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & Application
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 

A Unified Music Recommender System Using Users’ Listening Habits and Semantics of Tags

  • 1. A Unified Music Recommender System Using Users’ Listening Habits and Semantics of Tags Hyon Hee Kim Department of Statistics and Information Science, Dongduk Women’s University
  • 2. Outline • Motivation & Objectives • Overview of the System • Generation of User Profiles • A Unified Music Recommendation • Performance Evaluation • Related Work • Conclusions and Future Work
  • 3. Motivation (1/3) • In a Social Music Site – Music recommendation is essential. – Music recommendation is different from other product recommendation • Explicit information : Rating system • Implicit information : the number of plays • Listening habits-based User Profiling – Cold Start Problem • A new users with little information • A new items with only a few ratings – Data Sparsity Problem • Data is very small compared to needed music items
  • 4. Classic rock british pop rock • Collaborative Tagging – A tool for users to represent their preferences about web resources – Users add keywords which are freely chosen by themselves to web resources – Using tag data for user profiling in personalized recommender systems • Tag-based User Profiling – More Easily added tags without listening to music – Semantically meaningful tags Motivation (2/3)
  • 5. Motivation (3/3) • In the case of last.fm • Factual Tags – 85% of tags – genre, region, instrumentation • Emotional Tags – 10% of tags – opinion, sentiment, mood • Personal Tags – 5% of tags – to organize, to browse, etc.
  • 6. Objectives • A Novel Approach to Music Recommendation – Combining listening habits and semantics of tags • Using a Tag Ontology and an Emotion Ontology – UniTag: Resolving semantic ambiguity of tags – UniEmotion: Assigning weighted values to the emotional tags → Semantically Enhanced Music Recommendation
  • 7. Outline • Motivation & Objectives • Overview of the System • Generation of User Profiles • A Unified Music Recommendation • Performance Evaluation • Related Work • Conclusions and Future Work
  • 9. Outline • Motivation & Objectives • Overview of the System • Tag-based User Profiling – Preprocessing of tags – Algorithms for generating user profiles – Preliminary experimental results • A Unified Music Recommendation • Performance Evaluation • Related Work • Conclusions and Future Work
  • 10. Preprocessing of Tags (1/3) • A tag does not have any pre-defined term or hierarchies of a term • Problems of tag data – Synonymy • Different words represents the same meaning • E.g., hiphop, hip-hop, hip hop/ R & B, Rhythm and Blues, Blues – Polysemy • A single word contains multiple meanings • E.g., French => French rock, French pop, French artist – Spelling variants • misspelling • Foreign language
  • 11. Preprocessing of Tags (2/3) • Tag Ontology – Tags, users, items • UniTag Ontology – uniTag:Users • uniTag:userID, uniTag:hasAdded, uniTag:hasAddedTo – uniTag:Items • uniTag:itemID – uniTag:Tags • uniTag:tagID, uniTag:tagName, uniTag:RTag, uniTag:subTag, • uniTag:Rtags {rock, hiphop, electronic, metal, jazz, rap, funk, folk, blues, reggae} • uniTag:classifiedAs, uniTag:isKindOf, uniTag:istheSameAs, uniTag:tagVariation
  • 12. Preprocessing of Tags (3/3) • Rules for reasoning prefix – French rock, progressive rock, post rock=> rock (Tag (?t) ^ tagPrefix (?t, ?p) ^ Prefix(?p) ^ subTag(?t, ?s) ^ Rtags (?s) -> classifiedAs (?t, ?s) • Rules for reasoning expert knowledge – Soul => rhythm and blues, rhythm and blues => blues then Soul => blues (Tag (?t) ^ isKindof (?t, ?A) ^ isKindof (?A, ?B) -> isKindof (?t, ?B) • Rules for reasoning synonym – Hip-hop, hiphop => hip hop (Tag(?t) ^tagVariation (?t, ?R) ^ istheSameAs (?t, ?s) -> tagVariation (?s, ?R)
  • 13. Algorithm for Generating User Profiles (1/2) Algorithm 1. Generation of A Tag-based Profile Input: set of Representative tags Tr, set of a user’s tag Tu Output: set of frequencey for each representative tag of the user FTr var RTags[] = {rock, hiphop, electronic, metal, jazz, rap, funk, folk, blues, reggae} var tagFrequency[] = { }, tempFrequency [] = { } var RTag = null while ∃next tag t in Tu do RTag = FindRTag (t) If Rtag == RTags [i] then { tempFrequency[i] = tempFrequency[i] + 1 tagFrequency [i] = tempFrequency [i] } else tagFrequency [i] = tempFrequency [i] endwhile rock hiphop electronic metal jazz rap funk folk blues reggae user1 6 2 2 3 2 4 3 1 1 1 user2 5 0 0 0 0 0 0 0 1 0 user3 2 2 1 1 1 1 2 0 0 1 user4 10 1 0 1 2 0 2 3 3 1 user5 1 4 0 0 0 4 1 0 0 0 Table 1. An example of tag-based profiles
  • 14. Algorithm for generating User Profiles (2/2) Algorithm 2. Generation of A Track-based Profile Input: set of tracks of a usr TRu, set of Representative tags Tr Output: set of number of a user’s tracks for each representative musical genre Tn var RTags[] = {rock, hiphop, electronic, metal, jazz, rap, funk, folk, blues, reggae} var numTrack[ ] = { }, tempnumTrack [ ] = { } var RTrack = null while ∃next tag t in Tu do RTrack = FindGenre (t) If Rtrack == RTags [i] then { tempnumTrack [i] = tempnumTrack[i] + 1 numTrack[i] = tempnumTrack [i] } else numTrack [i] = tempnumTrack [i] endwhile rock hiphop electronic metal jazz rap funk folk blues reggae User1 65 176 5 4 0 168 0 3 0 0 User2 411 8 11 109 3 5 8 1 0 0 User3 157 7 11 10 6 2 1 39 4 2 User4 257 20 9 18 2 5 0 9 0 0 User5 110 277 15 8 6 85 10 3 2 7 Table 2. An example of track-based profiles
  • 15. Preliminary Experimental Results (1/3) • 1,000 user data set from Last.fm – Users, tags, music items • Standardization – To remove extensive preference • K-Means clustering algorithm – Canopy Clustering – 6 centroid points and 6 clusters
  • 16. Preliminary Experimental Results (2/3) X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Cluster1 0.241 1.472 0.626 0.130 1.267 1.621 2.168 0.274 1.078 0.381 Cluster2 2.171 0.032 0.517 3.052 0.011 -0.030 0.328 1.533 1.245 0.162 Cluster3 -0.206 -0.273 -0.517 -0.178 -0.180 -0.294 -0.233 -0.171 -0.204 -0.136 Cluster4 -0.341 0.660 -0.459 -0.284 -0.208 1.178 -0.179 -0.321 -0.166 0.273 Cluster5 -0.074 -0.155 1.320 -0.230 -0.115 -0.261 -0.209 -0.070 -0.172 -0.071 Cluster6 2.815 7.640 5.168 -0.136 9.254 6.135 7.000 4.286 4.421 5.254 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Cluster1 -0.411 0.495 0.406 -0.338 1.565 0.131 1.632 -0.135 0.147 0.812 Cluster2 0.200 -0.444 0.007 -0.341 0.907 -0.468 -0.288 2.617 1.097 0.020 Cluster3 -0.897 1.651 -0.539 -0.442 -0.213 1.836 0.059 -0.507 -0.415 0.034 Cluster4 1.925 -0.590 -0.404 0.852 -0.264 -0.491 0.655 -0.002 2.850 -0.108 Cluster5 0.914 -0.557 -0.216 0.794 -0.296 -0.511 -0.297 0.014 -0.157 -0.147 Cluster6 -0.472 -0.327 0.380 -0.373 -0.184 -0.371 -0.241 -0.205 -0.300 -0.093 Table 3. Values of Centers of Tag-based Profiles Table 4. Values of Centers of Track-based Profiles • Clustering Validity – Inter-cluster distances – Distances between all pairs of centroids using cosine distance measure
  • 17. Preliminary Experimental Results (3/3) – T-test • Mean of inter-cluster distances of tag-based profiles • Mean of inter-cluster distances of track-based profiles N Mean Std Dev t p-value Tag-based profiles 15 0.8325 0.6834 2.55 0.0165 Track-based profiles 15 0.3785 0.0885 Table 5. T-test result for the means of inter-cluster distances
  • 18. Outline • Motivation & Objectives • Overview of the System • Generation of User Profiles • A Unified Music Recommendation – UniEmotion Ontology – Generation of User Profiles – Music Recommendation Algorithm • Performance Evaluation • Related Work • Conclusions and Future Work
  • 20. UniEmotion Ontology (2/5) P: 0.625, O: 0.25, N: 0.125 P: 0.375, O: 0.625, N: 0 P: 1.0, O: 0, N: 0 • Definition of the intensity of emotional tags • SentiWordNet, http://sentiwordnet.isti.cnr.it/
  • 21. UniEmotion Ontology (3/5) • Intensity of emotional tags – Strong • Positive value >= 0.75 or Negative value>= 0.75 – Middle • 0.25 <= Positive value <= 0.75 or • 0.25 <= Negative value <= 0.75 – Weak • Positive value < 0.25 and Negative value < 0.25
  • 22. UniEmotion Ontology (4/5) • Assigning the weights to the tags – Factual tags: 1 – Positive tags • Strong: 2.5 • Middle: 2 • Weak: 1.5 – Negative tags • Strong: -2.5 • Middle: -2 • Weak: -1.5 • Final score of an item => sum of the weights
  • 23. UniEmotion Ontology (5/5) • Two classes – UniEmotion:Positive • Emotional tags belonging to the positive emotional categories • trust, surprise, anticipation, and happiness – UniEmotion:Negative • Emotional tags belonging to the negative emotional categories • disgust, anger, fear, and sadness • Two properties – UniEmotion:Intensity • Specifying the intensity of tags – UniEmotion:Weight • Specifying the weight of tags
  • 24. Generation of User Profiles (1/2) 1. Listening habits-based User Profiles – U1 = {u1, u2, …, um}, I1 = {i1, i2, …, in}, – <u, I, n> • N: number of plays 2. Tag score-based User Profiles – U2 = {u1, u2, …, um}, I2 = {i1, i2, …, in}, – <u, I, s> • S: scores of tags assigned by UniEmotion ontology 3. Hybrid User Profiles – U3 = {u1, u2, …, um}, I3 = I1 ∩ I2, – <u, I, m> • M = α * n +(1- α) * s; α = 0.5
  • 25. Generation of User Profiles (2/2) 1. Listening habits-based User profiles 2. Tag score-based User profiles 3. Hybrid User profiles
  • 26. Music Recommendation Algorithm (1/2) • Finding Similar Users – Pearson Correlation Similarity • Calculating scores of items – Considering the similar users’ rates • Recommending top n items
  • 27. Music Recommendation Algorithm (2/2) Input: a set of user profiles UP Output: a set of recommended items RI 1. For all yi ∈ U Compute a similarity s between X and yi. 2. Sort by similarity 3. Select top n neighbors 4. 5. For all Compute a similarity t between x and For all preference +=t * pref 6. Rank by preference 7. Select top n items
  • 28. Outline • Motivation & Objectives • Overview of the System • Generation of User Profiles • A Unified Music Recommendation • Performance Evaluation • Related Work • Conclusions and Future Work
  • 29. Performance Evaluation • Implementation Environment: Apache Web Server – User database : MySQL 5.0 – Listening habits collector, tag score generator: PHP – Recommendation Engine: Apache Mahout – UniTag and UniEmotion Ontology: JDK6.0 • Experimental Data – 1, 000 user information from last.fm [http://mir.dcs.gla.ac.uk/] – Containing 18,700 artist and 12,600 tags – 70% training data, 30% test data
  • 30. Performance Evaluation • Evaluation Model – Recommended items • Items which users are interested in (True Positive, TP) • Items which users are not (False Positive, FP) – Items which are not recommended • Items which users are interested in (False Negative, FN) • Items which users are not interested in (True Negative, TN) – Precision P = TP/ TP+ FP • # of correct recommendation/# of all recommended items – Recall R = TP / TP+FN • # of correct recommendation/# of preferred items – F-measure F = 2* P* R / P+R • Harmonic average between precision and recall
  • 31. Experimental Results (1/3) • Precisions [Number of similar users] [Number of recommended items] A: Listening habits-based approach B: Tag-based approach C: Hybrid approach
  • 32. Experimental Results (2/3) • Recalls [Number of similar users] [Number of recommended items] A: Listening habits-based approach B: Tag-based approach C: Hybrid approach
  • 33. Experimental Results (3/3) • F-measure [Number of similar users] [Number of recommended items] A: Listening habits-based approach B: Tag-based approach C: Hybrid approach
  • 34. Statistical Validation • One-way ANOVA about three groups – Method1: listening habits-based approach – Method2: tag-based approach – Method3: hybrid approach • Tukey Multiple Comparison Test – Asymmetric distributions • Log transformation – Different characters in case two groups have significant difference
  • 35. Method 1 2 3 F Mean of log(prec) -3.962B -4.036B -2.879A 34.27*** Mean Precision(SD) 0.020 (0.006) 0.020 (0.009) 0.068 (0.040) N 24 24 24 Method 1 2 3 F Mean of log(recall) -3.285B -4.099c -2.635A 26.80*** Mean Recall (SD) 0.044 (0.023) 0.019 (0.010) 0.093 (0.056) N 24 24 24 <Table1. test for precision> ***: p<0.001 <Table2. test for recall> ***:p<0.001 Method 1 2 3 F Mean of log(F-measure) -3.748B -4.117c -2.894A 41.31*** Mean F-measure (SD) 0.024 (0.006) 0.018 (0.008) 0.06 (0.034) N 24 24 24 <Table2. test for F-measure> ***: p<0.001
  • 36. Related Work • MusicBox – A personalized music recommender system based on social tags – 3-order tensors model – The method improves the recommendation quality • Foafing the music – Collecting music information in a semantic web environment – User information, music information, concert information – Recommendation of similar music items • OntoEmotions – An ontology of emotional categories covering the basic emotions – Armeteo art portal – New relations can be inferred by reasoning on the ontology of emotions
  • 37. Conclusions • Solution to Cold Start Problem – It takes time to collect users’ listening habits. – Adding tags is easily done – Tags look like word-of-mouth • Performance Enhancement – Precision, Recall, F-measure – Hybrid approach > listening habits-based approach, tag-based approach
  • 38. Future Work • Elaborating UniEmotion Ontology – Emerging Internet Slangs • Item Selection – Product Network Analysis Considering Tags – Analyzing short description