SlideShare ist ein Scribd-Unternehmen logo
1 von 130
Downloaden Sie, um offline zu lesen
Framework for the analysis and design
               of encryption strategies
                  based on discrete-time
                   chaotic dynamical systems




                   ˜
David Arroyo Guardeno
From chaos to cryptography

Why?       How?                Design Rules



                    Critical
 1           2                      3
                    contexts
Perfect secrecy

           Good mixing
           properties. . .



           Hopf: dough
            rolling and
             folding. . .
Initial condition



Sensitivity                            Diffusion



               Control
              parameter



 Mixing                   Ergodicity   Confusion
ENCRYPTION



    T=R                               T=Z



   Chaos in                Chaos in           Chaos in
continuous time         continuous time     discrete time
ENCRYPTION



    T=R                               T=Z



   Chaos in                Chaos in           Chaos in
continuous time         continuous time     discrete time

Synchronization
ENCRYPTION



     T=R                               T=Z



    Chaos in                Chaos in           Chaos in
 continuous time         continuous time     discrete time

Synchronization


Security problems
ENCRYPTION



     T=R                                  T=Z



    Chaos in                Chaos in              Chaos in
 continuous time         continuous time        discrete time

Synchronization            Differential
                           Equations

Security problems
ENCRYPTION



     T=R                                  T=Z



    Chaos in                Chaos in              Chaos in
 continuous time         continuous time        discrete time

Synchronization            Differential
                           Equations

Security problems         Dimension > 2
ENCRYPTION



     T=R                                   T=Z



    Chaos in                Chaos in               Chaos in
 continuous time         continuous time         discrete time

Synchronization             Differential
                            Equations

Security problems         Dimension > 2

                        Efficiency problems
ENCRYPTION



     T=R                                   T=Z



    Chaos in                Chaos in               Chaos in
 continuous time         continuous time         discrete time

Synchronization             Differential
                            Equations

Security problems         Dimension > 2

                        Efficiency problems
How to design

      secure digital

chaos-based cryptosystems
Avoid critical contexts


Conventional cryptography                 Chaos theory

            Standards                       Loss of chaoticity




          Commitments                     Reconstruction of the

                                           underlying dynamics

       Conventional attacks
Avoid critical contexts


Conventional cryptography                 Chaos theory

            Standards                       Loss of chaoticity




          Commitments                     Reconstruction of the

                                           underlying dynamics

       Conventional attacks
Loss of chaoticity


Why?   How?                   Design Rules



                   Critical
 1      2                          3
                  contexts
For xk+1 = f (λ , xk ) = fλ (xk )

  it can not be assumed

       chaos for all λ
C. Chee and D.Xu,
“Chaotic encryption using discrete-
 time synchronous chaos,” Physics
   Letters A, 2006, 348, 284-292
2
          uk+1        1 − δ · uk + vk
xk+1 =            =
          vk+1        β · vk

         δ = ψ (pk ) · µ1 (vk )
         β = µ2 (vk )
2


    1.8
                               Unbounded
δ   1.6


    1.4

              Periodic
    1.2


     −0.4   −0.2    0        0.2   0.4
                         β
1.6


                     1.4


                     1.2


                      1
Asymptotic values




                     0.8


                     0.6


                     0.4


                     0.2


                      0


                    −0.2
                           0   0.5   1             1.5            2   2.5          3
                                         Plaintext block values                14
                                                                            x 10
David Arroyo et al.,
 “Cryptanalysis of a discrete-time syn-
 chronous chaotic encryption system,”
Physics Letter A, 2008, 372, 1034-1039
Reconstruction of dynamics


Why?   How?                 Design Rules



                 Critical
 1      2                        3
                 contexts
Estimation of λ and/or x0 after applying
         conventional attacks

 1   Access to chaotic orbits
 2   We can measure the entropy of the
     underlying chaotic map
 3   Access to samples of chaotic orbits
 4   Access to coarse-grained versions of
     chaotic orbits
xi+1
                        xi+1 = f (xi )
                 Orbit : {x0, x1, . . .}
                f (a) = f (b), f (xc ) ≤ b
            xc = Single turning point
                 f continuous in [a, b]

                   xi
   a   xc   b
Logistic map: xi+1 = λ xi (1 − xi )
xi+1



                             λ




                                     xi
       0          xc             1
xi /λ              0 < xi < λ
Skew tent map: xi+1 =
                            (1 − xi )/(1 − λ ) λ ≥ xi < 1
       xi+1
                        λ




                                               xi
            0                              1
Access to chaotic orbits

Ciphertext is a function of a chaotic orbit
Access to chaotic orbits

Ciphertext is a function of a chaotic orbit

     Only the chaotic orbit is secret
Access to chaotic orbits

Ciphertext is a function of a chaotic orbit

     Only the chaotic orbit is secret

         Kerckhoff’s principle:
       we know the function and
        xn+1 = f (λ , xn ), xn ∈ Rm
Access to chaotic orbits

  Ciphertext is a function of a chaotic orbit

       Only the chaotic orbit is secret

           Kerckhoff’s principle:
         we know the function and
          xn+1 = f (λ , xn ), xn ∈ Rm

Estimation of λ from m + 1 units of ciphertext
B. Ling et al.,
“Chaotic filter bank for computer
 cryptography,” Chaos, Solitons
and Fractals, 2007, 34, 817-824
Plaintext: {pn }

tn = K ∑ pj h2n−j
         ∀j

tn = K   ∑ pj h2n−j
         ∀j


vn = tn + tn + sn
vn = tn − vn − sn
Plaintext: {pn }

tn = K ∑ pj h2n−j
         ∀j

tn = K   ∑ pj h2n−j
         ∀j


vn = tn + tn + sn
                      Logistic map
vn = tn − vn − sn
Plaintext: {pn }

             tn = K ∑ pj h2n−j
                      ∀j

             tn = K   ∑ pj h2n−j
                      ∀j


              vn = tn + tn + sn
                                                  Logistic map
             vn = tn − vn − sn

Ciphertext: {vn } , {vn }, Key: λ , λ , s0 , s0
Known-plaintext attack: {pn }, {vn }, {vn }


             sn = vn − tn − tn
             sn = tn − vn − vn


                       sn+1
             λ=
                   sn (1 − sn )
                       sn+1
             λ =
                   sn (1 − sn )
David Arroyo et al., “Cryptanalysis
 of a computer cryptography scheme
 based on a filter bank,” Chaos, Soli-
tons and Fractals, 2009, 41, 410-413
Entropy of the underlying chaotic map



Why?     How?                    Design Rules



                      Critical
 1         2                          3
                     contexts
Entropy


       Orbit ⇒ Probability distribution

   Discretization of        Discretization in the
  the phase space            frequency domain

 Relative number of          Relative energy of
values in subintervals        resolution levels
n-gram conditional entropy
  Split the phase space into J disjoint intervals


Convert chaotic orbits into sequences of symbols


   Group the symbols into words of length n

       (n)
    pri      : probability of i-th word, 0 ≤ i ≤ J n

                           n    (n)         (n)
               Hn = − ∑J pri
                       i=1            log pri

                hn = Hn+1 − Hn , h0 = H1
Conditional entropy of the logistic map

           0.7
                        n=4
           0.6          n=6
                        n=8
                        n=10
           0.5          n=12

           0.4
      hn




           0.3

           0.2

           0.1

            0
            3.5   3.6      3.7       3.8   3.9   4
                                 λ
Conditional entropy of the skew tent map

           0.7

           0.6

           0.5

           0.4
      hn




           0.3
                                 n=4
           0.2                   n=6
                                 n=8
                                 n=10
           0.1                   n=12

            0
                 0   0.2   0.4       0.6   0.8   1
                                 λ
Multiresolution Entropy
        0.4
                                                                      λ=3.5
MRET1                                                                 λ=3.8123
        0.2                                                           λ variable



         0
              1000   2000    3000     4000    5000     6000    7000   8000     9000

        0.4
                                                                      λ=3.5
                                                                      λ=3.8123
MRET2




        0.2                                                           λ variable



         0
              1000   2000    3000     4000    5000     6000    7000   8000     9000

        0.4
                                                                      λ=3.5
                                                                      λ=3.8123
MRET3




        0.2                                                           λ variable



         0
              1000    2000     3000      4000        5000     6000    7000     8000
                                       Temporal variable
High level of entropy

  without leaking

  the values of λ
Samples of chaotic orbits


Why?   How?                     Design Rules



                     Critical
 1      2                               3
                    contexts
Shape of histograms
    of chaotic orbits
    depending on λ


Sampling on chaotic orbits


     Estimation of λ
A.N. Pisarchik et al. “Encryp-
  tion and decryption of images
with chaotic map lattices,” Chaos,
    2006, 16, Art. No. 033118
λ2
 Logistic map, xmin =    4 (1 − 4 ),
                                λ
                                       xmax = λ , plaintext {pi }J
                                              4                  i=1


                       r = 1, yi0 = {pi }



                              yJ −1 if i = 1
                                r
                     x0 =
                              yir      i.o.c



      Iterate n times the logistic map from x0 to get xn


yir = xn + yir −1 and subtract xmax − xmin until yir ∈ [xmin , xmax ]
yJ −1 if i = 1
                                r
                     x0 =
                              yir      i.o.c



      Iterate n times the logistic map from x0 to get xn


yir = xn + yir −1 and subtract xmax − xmin until yir ∈ [xmin , xmax ]


                             r = r +1


                            r <R
80


70


60


50


40


30


20


10


 0
 0.1        0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9         1
 2
λ (1−λ/4)                                                   λ/4
Ciphertext-only attack

  xmax = max yiR
  ˆ


      ˆ       ˆ
  λ ≈ λ = 4 · xmax
David Arroyo et al., “On the security
of a new image encryption scheme
  based on chaotic map lattices,”
Chaos, 2008, 18, Art. No. 033112
Coarse-grained versions of chaotic orbits



Why?      How?                     Design Rules



                        Critical
 1           2                          3
                       contexts
Assign a partition to the phase space



1    Stream cipher
2    Searching based chaotic ciphers
Stream cipher
xi+1




             xi+1



                              xi
   a   xiL   xc     xiR   b
Stream cipher
xi+1




                       xi
   a    x0 xc      b
Stream cipher
xi+1
            L




                       xi
   a    x0 xc      b
Stream cipher
xi+1
            L R
                        xi+1 = xi




                           xi
   a     x0 xc x1   b
Stream cipher
xi+1
            L R R
                         xi+1 = xi




                            xi
   a     x0 xcx2x1   b
Stream cipher
xi+1
   01 1      ... Binary sequence
                          xi+1 = xi




                             xi
  a       x0 xcx2x1   b
A.P. Kurian and S. Puthusserypady,
     “Self-synchronizing chaotic
    stream ciphers,” Signal Pro-
   cessing, 2008, 88, 2442-2452
Binit


Logistic map
                       Bks
                ≥ xc               Shuf f ler   Ciphertext

Skew tent map



                       Plaintext
Binit


Logistic map
                       Bks       Bks                B sh = π(B init ||B ks) =
                ≥ xc                   Shuf f ler               ˆ
                                                          B sh (λ, x0 )
Skew tent map



                             0
Chosen-plaintext attack

                                               2N
          ˆ
         sh
       B (λ , x0) ⇒ Pr1 =            prj
                                        (1)
                                               j=1

                                                    2N
                                         (i,k)
     B ks (λ i , x k ) ⇒ Pr(i,k) =    prj
                                                    j=1

              Wootters’ distance
                                2N
                          −1                  (1)         (i,k)
DW (Pr1, Pr(i,k)) = cos         ∑       prj         · prj
                                j=1
1.6

                         1.4

    Wootters’ distance   1.2

                             1

                         0.8

                         0.6

                         0.4

                         0.2

                             0
                         1
x
 0
                         0.5

                             0
                                 0   0.2       0.4   0.6   0.8   1
                                           λ
1.5
Wootters’ distance
                     1.4
                     1.3
                     1.2
                     1.1
                      1



                     0.8

                           0.6
                      x
                       0     0.4

                                 0.2
                                                              3.95
                                                        3.9
                                             3.85
                                       3.8          λ
David Arroyo et al.,
“Cryptanalysis of a family of self-
  synchronizing chaotic stream
  ciphers”, Submitted to Signal
 Processing on 17 March, 2009
Coarse-grained versions of chaotic orbits


Why?      How?                     Design Rules



                        Critical
 1           2                          3
                       contexts
Searching based chaotic ciphers




                                            Plaintext alphabet
                                   a1
Phase space



                  Partition        a2
                                   ak
                                  a|A|
Searching based chaotic ciphers




                                            Plaintext alphabet
                       fλ M
Phase space


              M            (x
                  =c         0)
                     iph
                         er
                            tex     ak
                                t
f (0)(x)




               0        1




                                x
           a       xc       b
f (x)       00   01        11   10




                                     xc




                                          x
        a             xc             b
f (2)(x) 0 0 0         011         110         101
                 001         010         111         100



                                                       xc




                                                            x
       a                       xc                      b
X. Wang et al.,
 “A new chaotic cryptography based
on ergodicity,” International Journal of
Modern Physics B, 2008, 22, 901-908
Logistic map: x0 and λ secret key

     pi is a word with w bits

     Ciphertext: number of
   iterations to find pi in the
  binary sequence generated
      from the logistic map
Symbolic dynamics of unimodal maps



     Chosen-ciphertext attack
Gray Ordering Number
GM (λ , x) = g0 g1 · · · gM−1 , gi ∈ {0, 1}
            (i)
gi = 0 ⇔ fλ (x) < xc
            (i)
gi = 1 ⇔ fλ (x) ≥ xc
         g0                                      b0
         g1                                      b1
         g2                                      b2


      gM−1                                       bM−1
GON(GM (λ , x)) = 2−1 · b1 + 2−2 · b2 + . . . + 2−(n−1) · bn−1
GON for the logistic map

               1


              0.8             λ=3.4
GON(Pn (x))




              0.6
          λ
     f




              0.4


              0.2


               0
                    0   0.2   0.4         0.6   0.8   1
                                      x
GON for the logistic map

               1


              0.8             λ=3.6
GON(Pn (x))




              0.6
          λ
     f




              0.4


              0.2


               0
                    0   0.2    0.4        0.6   0.8   1
                                      x
GON for the logistic map

               1


              0.8
                              λ=3.8
GON(Pn (x))




              0.6
          λ
     f




              0.4


              0.2


               0
                    0   0.2     0.4       0.6   0.8   1
                                      x
GON for the logistic map

               1


              0.8
                              λ=4
GON(Pn (x))




              0.6
          λ
     f




              0.4


              0.2


               0
                    0   0.2    0.4       0.6   0.8   1
                                     x
GON for the logistic map and x0 = fλ (xc )

                            1


                          0.95


                           0.9
       GON(Pf (fλ(xc)))




                          0.85
                    λ
       n




                           0.8


                          0.75


                           0.7


                          0.65
                                 3   3.2   3.4       3.6   3.8   4
                                                 λ
GON for the logistic map and x0 = fλ (xc )
Binary sequence of length N


         Sliding window of length M and compute GON


Estimation of λ through a binary search from the maximum GON

                           ˆ ˆ
                     GONM (λ , λ ) = GONmax
                               4


Estimation of x0 using the estimation of λ and the binary sequence
Chosen-ciphertext attack

Ask for the decryption of w · i

 0 returns the first w bits,
 w the following w bits, . . .

      GM (x0, λ ) ⇒ λ , x0
Parameter estimation error

                                          −4
c estimation error (Logarithmic scale)   10


                                          −6
                                         10


                                          −8
                                         10


                                          −10
                                         10


                                          −12
                                         10
                                                0   2   4       6   8      10
                                                            M              5
                                                                        x 10
Error in the estimation of the initial
              condition
                                               0
                                              10
    x0 estimation error (Logarithmic scale)




                                               −5
                                              10


                                               −10
                                              10


                                               −15
                                              10


                                               −20
                                              10
                                                    10   20   30       40   50   60
                                                                   N
David Arroyo et al.,
  “Cryptanalysis of a new chaotic
cryptosystem based on ergodicity,”
  International Journal of Modern
   Physics B, 2009, 23, 651-659
Searching based chaotic ciphers: unimodal maps


Why?      How?                   Design Rules



                      Critical
 1          2                         3
                      contexts
Previous attack only works if

      GONM (λ , fλ (xc ))

        depends on

  on the control parameter
Is the cryptosystem secure

    if the logistic map

      is replaced by

   the skew tent map?
David Arroyo et al., “Estimation
  of the control parameter from
 symbolic sequences: Unimodal
 maps with variable critical point,”
Chaos, 2009, 19, Art. No. 023125
λ can be estimated
 from the PDF of
   order patterns
xi+i = f (xi )



         [x0, x1, x2, . . . , xL−1]


     π(x0) = [π0, π1, . . . , πL−1]
     πi permutation |πi → i


f π0 (x0) < f π1 (x0) < · · · < f πL−1 (x0)
2xi ,       0 < xi < 0.5
f : [0, 1] → [0, 1], xi+1 = f (xi ) =
                                        2(1 − xi ), 0.5 ≥ xi < 1
         xi+1




                                                  xi
                0                             1
2xi ,       0 < xi < 0.5
f : [0, 1] → [0, 1], xi+1 = f (xi ) =
                                            2(1 − xi ), 0.5 ≥ xi < 1
         xi+1




                                                      xi
                0                                 1
                                [0.31225,
2xi ,       0 < xi < 0.5
f : [0, 1] → [0, 1], xi+1 = f (xi ) =
                                            2(1 − xi ), 0.5 ≥ xi < 1
         xi+1




                                                      xi
                0                                 1
                                [0.31225,
2xi ,       0 < xi < 0.5
f : [0, 1] → [0, 1], xi+1 = f (xi ) =
                                          2(1 − xi ), 0.5 ≥ xi < 1
         xi+1




                                                    xi
                0                               1
                             [0.31225, 0.6245
2xi ,       0 < xi < 0.5
f : [0, 1] → [0, 1], xi+1 = f (xi ) =
                                          2(1 − xi ), 0.5 ≥ xi < 1
         xi+1




                                                    xi
                0                               1
                             [0.31225, 0.6245
2xi ,       0 < xi < 0.5
f : [0, 1] → [0, 1], xi+1 = f (xi ) =
                                           2(1 − xi ), 0.5 ≥ xi < 1
         xi+1




                                                         xi
                0                                    1
                          [0.31225, 0.6245, 0.751,
2xi ,       0 < xi < 0.5
f : [0, 1] → [0, 1], xi+1 = f (xi ) =
                                           2(1 − xi ), 0.5 ≥ xi < 1
         xi+1




                                                         xi
                0                                    1
                          [0.31225, 0.6245, 0.751,
2xi ,       0 < xi < 0.5
f : [0, 1] → [0, 1], xi+1 = f (xi ) =
                                            2(1 − xi ), 0.5 ≥ xi < 1
         xi+1




                                                         xi
                0                                    1
                       [0.31225, 0.6245, 0.751, 0.498]
2xi ,       0 < xi < 0.5
f : [0, 1] → [0, 1], xi+1 = f (xi ) =
                                               2(1 − xi ), 0.5 ≥ xi < 1
         xi+1




                                                             xi
                0                                        1
            [0.31225, 0.6245, 0.751, 0.498] ⇒ π(0.31225) = [0, 3, 1, 2]
The intersections between

      f 0(x), f 1(x), . . . , f L−1(x)

      determine intervals

     with initial conditions

leading to the same order pattern
1
                                            2
                                            f (x)
          3
0.9       f (x)


0.8

0.7
                                                    f1(x)
                              f0(x)
0.6

0.5

0.4

0.3

0.2

0.1

 0
      0           0.2   0.4           0.6             0.8   1
Order patterns

can be used to assign a partition

    to the definition domain
fλ : I → I, I ⊂ R, λ ∈ J ⊂ R



Pπ = {x ∈ I : x generates the order pattern π}



        Pπ depends on λ through fλ
xi /λ ,             0 < xi < λ
Skew tent map: xi+1 =
                            (1 − xi )/(1 − λ ), λ ≥ xi < 1
       xi+1
                        λ




                                              xi
           0                              1
[0,1,2,3]        [0,3,1,2] [2,0,3,1]                                 [1,2,3,0]
                  [0,1,3,2]        [0,2,1,3] [2,0,1,3]                               [1,2,0,3]
                       [0,3,1,2] [2,3,0,1]                          [3,1,0,2]
                         [3,0,1,2]                                        [1,3,2,0]     [1,2,3,0]
             1
                      ? ?? ? ? ? ?
                       ?    ?                                       ?            ? ? ?
                                                                                    ?
                                                                f(2)(x)
                                                                λ
            0.9

            0.8

            0.7

            0.6                                 f(0)(x)               f(1)(x)
                                                 λ                    λ
fλ (k)(x)




            0.5

            0.4

            0.3

            0.2
                                                            f(3)(x)
                                                             λ
            0.1

             0
                  0         0.2           0.4             0.6              0.8           1
                                                     λ
[2,0,3,1]
                      [0,1,2,3]               [0,1,3,2]    [0,2,1,3]        [2,0,1,3]     [1,2,3,0]
                                                 [0,3,1,2]     [2,0,3,1]     [3,1,0,2]
                                                   [3,0,1,2]      [2,3,0,1]     [1,3,2,0]
                                                     [0,3,1,2]                     [1,2,3,0]
           1
                          ?                     ?? ? ?
                                                 ?  ? ?                    ???
                                                                           ? ?              ?
                                                                                    [1,2,0,3]


          0.9

          0.8

          0.7                       f(2)(x)
                                     λ
                f(3)(x)
                 λ
          0.6
                                      f(1)(x)
 (x)




                                       λ
          0.5
(k)
      λ
 f




          0.4

          0.3

          0.2
                                  f(0)(x)
                                   λ
          0.1

           0
                0           0.2                 0.4            0.6            0.8             1
                                                        λ
Order pattern [0, 1, . . . , L − 1]

     determined by the

    leftmost intersection
                 L−2    L−1
of the iterates fλ and fλ
fλ ergodic with invariant measure µ



   Ofλ (x) = {f n (x) : n ∈ N ∪ {0}}


       Ofλ (x) visits Pπ with
     relative frequency µ(Pπ )
Orbit of length M



  Sliding window of width L



 M − L + 1 order L-patterns


  Compute the relative fre-
quency of each order pattern
For some fλ (x)

  1-to-1 relation between

   the relative frequency

   of some order pattern

and the control parameter λ
Skew tent map


 n           x/λ n ,                     if 0 ≤ x ≤ λ n
fλ (x) =
             (λ n−1 − x)/λ n−1 (1 − λ ), if λ n ≤ x ≤ λ n−1

P[0,1,...,L−1] = (0, φL (λ )), with

                                   λ L−2
                         φL (λ ) =
                                   2−λ
2
                                    L = 4 ⇒ φ4 = 2−λ
                                                  λ


                           1

                          0.9

                          0.8

                          0.7
Order pattern frequency




                          0.6

                          0.5

                          0.4

                          0.3

                          0.2

                          0.1

                           0
                                0     0.2   0.4       0.6   0.8   1
                                                  λ
Skew tent map


              Unimodal map


         x1 < x2 ⇒ G(x1) ≤ G(x2)


Order patterns from “coarse-grained” orbits
Error in the estimation of λ
                                        −2
                                       10
Mean error value (Logarithmic scale)




                                        −3
                                       10




                                        −4
                                       10
                                            0.1   0.2   0.3   0.4   0.5       0.6   0.7   0.8   0.9   1
                                                                          λ
Finite precision arithmetics



Digital degradation of dynamics



  Non-perfect recovery of λ
Why?   How?              Design Rules



              Critical
 1      2                     3
              contexts
Digital chaos-based cryptosystem


  Chaotic map                               Encryption architecture

       Loss of chaoticity
                                     Stream cipher           Block cipher
Bijections in entropy measures
                                       Linear complexity       Differential attack


Leaking of the underlying order
                                       Correlation attacks      Linear attacks



Defective probability distribution
                                             ...                    ...
Design rules I

1   Assure the chaotic behavior of the
    underlying dynamical systems
2   Guarantee avalanche effect
3   High level of entropy without leaking of
    the values of control parameters
4   Definition of the ciphertext avoiding the
    reconstruction of the underlying chaotic
    dynamics
Design rules II

5   Chaotic maps with flat histograms and
    width of the phase space independent of
    the control parameters
6   Selection of chaotic maps with high
    sensitivity to control parameter mismatch
7   The number of iterations of chaotic maps
    can not be part of the key
Control parameter a=3.8204607418                            Control parameter a=3.8294707872
                  150                                                         150
                                    j=1
                                    j=2

Time in seconds




                                                            Time in seconds
                  100               j=3                                       100



                  50                                                          50



                   0                                                           0
                        0             50              100                           0             50              100
                                      n×j                                                         n×j

                        Control parameter a=3.8743936381                            Control parameter a=3.9771765651
                  150                                                         150
Time in seconds




                                                            Time in seconds
                  100                                                         100



                  50                                                          50



                   0                                                           0
                        0             50              100                           0             50              100
                                      n×j                                                         n×j
David Arroyo et al.,
“On the security of a new image
 encryption scheme based on
 chaotic map lattices,” Chaos,
  2008, 18, Art. No. 033112
Chaos-based
                              5
              cryptography
    SCI

               Unimodal
                              7
                maps
              International   8


CONFERENCES


                National      8
Future work
Problems detected in unimodal maps


         Multimodal maps


          Discrete chaos


      Other sources of chaos
Chaotic map




Encryption                      Practical
architecture                 implementation
Design of
chaos-based cryptosystems

   needs of cryptography
              +
analysis of chaotic dynamics
Framework for the analysis and design
               of encryption strategies
                  based on discrete-time
                   chaotic dynamical systems




david.arroyo@iec.csic.es
http://hdl.handle.net/10261/15668

Weitere ähnliche Inhalte

Was ist angesagt?

Quantum random walks with memory
Quantum random walks with memoryQuantum random walks with memory
Quantum random walks with memory
sitric
 
Likelihood survey-nber-0713101
Likelihood survey-nber-0713101Likelihood survey-nber-0713101
Likelihood survey-nber-0713101
NBER
 
Quantization
QuantizationQuantization
Quantization
wtyru1989
 
Online Character Recognition
Online Character RecognitionOnline Character Recognition
Online Character Recognition
Kamakhya Gupta
 
An Introduction to Hidden Markov Model
An Introduction to Hidden Markov ModelAn Introduction to Hidden Markov Model
An Introduction to Hidden Markov Model
Shih-Hsiang Lin
 
Discrete Fourier Transform
Discrete Fourier TransformDiscrete Fourier Transform
Discrete Fourier Transform
Shahryar Ali
 
Digital Signal Processing Tutorial:Chapt 3 frequency analysis
Digital Signal Processing Tutorial:Chapt 3 frequency analysisDigital Signal Processing Tutorial:Chapt 3 frequency analysis
Digital Signal Processing Tutorial:Chapt 3 frequency analysis
Chandrashekhar Padole
 

Was ist angesagt? (20)

WAVELET-PACKET-BASED ADAPTIVE ALGORITHM FOR SPARSE IMPULSE RESPONSE IDENTIFI...
WAVELET-PACKET-BASED ADAPTIVE ALGORITHM FOR  SPARSE IMPULSE RESPONSE IDENTIFI...WAVELET-PACKET-BASED ADAPTIVE ALGORITHM FOR  SPARSE IMPULSE RESPONSE IDENTIFI...
WAVELET-PACKET-BASED ADAPTIVE ALGORITHM FOR SPARSE IMPULSE RESPONSE IDENTIFI...
 
The Art of Multiprocessor Programmin Chapter 05 with Japanese comment.
The Art of Multiprocessor Programmin Chapter 05 with Japanese comment.The Art of Multiprocessor Programmin Chapter 05 with Japanese comment.
The Art of Multiprocessor Programmin Chapter 05 with Japanese comment.
 
Quantum random walks with memory
Quantum random walks with memoryQuantum random walks with memory
Quantum random walks with memory
 
Likelihood survey-nber-0713101
Likelihood survey-nber-0713101Likelihood survey-nber-0713101
Likelihood survey-nber-0713101
 
Detecting crypto
Detecting cryptoDetecting crypto
Detecting crypto
 
Stability of adaptive random-walk Metropolis algorithms
Stability of adaptive random-walk Metropolis algorithmsStability of adaptive random-walk Metropolis algorithms
Stability of adaptive random-walk Metropolis algorithms
 
CRC JAVA CODE
CRC JAVA CODECRC JAVA CODE
CRC JAVA CODE
 
Graph representation of DFA’s Da
Graph representation of DFA’s DaGraph representation of DFA’s Da
Graph representation of DFA’s Da
 
Quantization
QuantizationQuantization
Quantization
 
SVM (Support Vector Machine & Kernel)
SVM (Support Vector Machine & Kernel)SVM (Support Vector Machine & Kernel)
SVM (Support Vector Machine & Kernel)
 
Online Character Recognition
Online Character RecognitionOnline Character Recognition
Online Character Recognition
 
M. Haack - Nernst Branes in Gauged Supergravity
M. Haack - Nernst Branes in Gauged SupergravityM. Haack - Nernst Branes in Gauged Supergravity
M. Haack - Nernst Branes in Gauged Supergravity
 
Sampling and Markov Chain Monte Carlo Techniques
Sampling and Markov Chain Monte Carlo TechniquesSampling and Markov Chain Monte Carlo Techniques
Sampling and Markov Chain Monte Carlo Techniques
 
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier AnalysisDSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
 
An Introduction to Hidden Markov Model
An Introduction to Hidden Markov ModelAn Introduction to Hidden Markov Model
An Introduction to Hidden Markov Model
 
Discrete Fourier Transform
Discrete Fourier TransformDiscrete Fourier Transform
Discrete Fourier Transform
 
Hmm viterbi
Hmm viterbiHmm viterbi
Hmm viterbi
 
A new class of restricted quantum membrane systems
A new class of restricted quantum membrane systemsA new class of restricted quantum membrane systems
A new class of restricted quantum membrane systems
 
Arvindsujeeth scaladays12
Arvindsujeeth scaladays12Arvindsujeeth scaladays12
Arvindsujeeth scaladays12
 
Digital Signal Processing Tutorial:Chapt 3 frequency analysis
Digital Signal Processing Tutorial:Chapt 3 frequency analysisDigital Signal Processing Tutorial:Chapt 3 frequency analysis
Digital Signal Processing Tutorial:Chapt 3 frequency analysis
 

Andere mochten auch

Teaching requirements analysis REET 2014 at RE2014
Teaching requirements analysis REET 2014 at RE2014Teaching requirements analysis REET 2014 at RE2014
Teaching requirements analysis REET 2014 at RE2014
Luisa Mich
 

Andere mochten auch (20)

Process Design on Prabandhan Framework
Process Design on Prabandhan FrameworkProcess Design on Prabandhan Framework
Process Design on Prabandhan Framework
 
DRE REPORT- 2014 (1)
DRE REPORT- 2014 (1)DRE REPORT- 2014 (1)
DRE REPORT- 2014 (1)
 
Overview of entity framework by software outsourcing company india
Overview of entity framework by software outsourcing company indiaOverview of entity framework by software outsourcing company india
Overview of entity framework by software outsourcing company india
 
Framework Design Guidelines For Brussels Users Group
Framework Design Guidelines For Brussels Users GroupFramework Design Guidelines For Brussels Users Group
Framework Design Guidelines For Brussels Users Group
 
Domain Driven Design Framework
Domain Driven Design FrameworkDomain Driven Design Framework
Domain Driven Design Framework
 
Nimble framework
Nimble frameworkNimble framework
Nimble framework
 
E learning analysis and design framework
E learning analysis and design frameworkE learning analysis and design framework
E learning analysis and design framework
 
OSVR Software Framework - Core - April 2015
OSVR Software Framework - Core - April 2015OSVR Software Framework - Core - April 2015
OSVR Software Framework - Core - April 2015
 
Software Engineering - 02. Framework
Software Engineering - 02. FrameworkSoftware Engineering - 02. Framework
Software Engineering - 02. Framework
 
Design Frameworks for Analysis and Synthesis of Complex Systems
Design Frameworks for Analysis and Synthesis of Complex SystemsDesign Frameworks for Analysis and Synthesis of Complex Systems
Design Frameworks for Analysis and Synthesis of Complex Systems
 
Software Frameworks for Music Information Retrieval
Software Frameworks for Music Information RetrievalSoftware Frameworks for Music Information Retrieval
Software Frameworks for Music Information Retrieval
 
Teaching requirements analysis REET 2014 at RE2014
Teaching requirements analysis REET 2014 at RE2014Teaching requirements analysis REET 2014 at RE2014
Teaching requirements analysis REET 2014 at RE2014
 
How UI Framework improves design process
How UI Framework improves design processHow UI Framework improves design process
How UI Framework improves design process
 
ADUF - Adaptable Design Up Front
ADUF -  Adaptable Design Up FrontADUF -  Adaptable Design Up Front
ADUF - Adaptable Design Up Front
 
A modern approach to game analysis and design: the AGE framework
A modern approach to game analysis and design: the AGE frameworkA modern approach to game analysis and design: the AGE framework
A modern approach to game analysis and design: the AGE framework
 
Using Environment as a Framework for Urban Design
Using Environment as a Framework for Urban DesignUsing Environment as a Framework for Urban Design
Using Environment as a Framework for Urban Design
 
How UI Framework improves design process - 2015 (Dribbble meetup)
How UI Framework improves design process - 2015  (Dribbble meetup)How UI Framework improves design process - 2015  (Dribbble meetup)
How UI Framework improves design process - 2015 (Dribbble meetup)
 
A Comparative study of Rational Unified process( RUP ), Agile & Microsoft Fra...
A Comparative study of Rational Unified process( RUP ), Agile & Microsoft Fra...A Comparative study of Rational Unified process( RUP ), Agile & Microsoft Fra...
A Comparative study of Rational Unified process( RUP ), Agile & Microsoft Fra...
 
Frameworks Are The Future of Design
Frameworks  Are The Future of DesignFrameworks  Are The Future of Design
Frameworks Are The Future of Design
 
Design engineering
Design engineeringDesign engineering
Design engineering
 

Ähnlich wie Framework for the analysis and design of encryption strategies based on discrete-time chaotic dynamical systems

Sns mid term-test2-solution
Sns mid term-test2-solutionSns mid term-test2-solution
Sns mid term-test2-solution
cheekeong1231
 
Vanilla rao blackwellisation
Vanilla rao blackwellisationVanilla rao blackwellisation
Vanilla rao blackwellisation
Deb Roy
 

Ähnlich wie Framework for the analysis and design of encryption strategies based on discrete-time chaotic dynamical systems (20)

Rdnd2008
Rdnd2008Rdnd2008
Rdnd2008
 
Adc
AdcAdc
Adc
 
Taylor problem
Taylor problemTaylor problem
Taylor problem
 
Dsp U Lec04 Discrete Time Signals & Systems
Dsp U   Lec04 Discrete Time Signals & SystemsDsp U   Lec04 Discrete Time Signals & Systems
Dsp U Lec04 Discrete Time Signals & Systems
 
03 lect5randomproc
03 lect5randomproc03 lect5randomproc
03 lect5randomproc
 
Chapter 03 cyclic codes
Chapter 03   cyclic codesChapter 03   cyclic codes
Chapter 03 cyclic codes
 
Sns mid term-test2-solution
Sns mid term-test2-solutionSns mid term-test2-solution
Sns mid term-test2-solution
 
Demo
DemoDemo
Demo
 
Demo
DemoDemo
Demo
 
Demo
DemoDemo
Demo
 
從 VAE 走向深度學習新理論
從 VAE 走向深度學習新理論從 VAE 走向深度學習新理論
從 VAE 走向深度學習新理論
 
kactl.pdf
kactl.pdfkactl.pdf
kactl.pdf
 
cyclic_code.pdf
cyclic_code.pdfcyclic_code.pdf
cyclic_code.pdf
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
 
Robust Repositioning in Large-scale Networks
Robust Repositioning in Large-scale NetworksRobust Repositioning in Large-scale Networks
Robust Repositioning in Large-scale Networks
 
Topological Inference via Meshing
Topological Inference via MeshingTopological Inference via Meshing
Topological Inference via Meshing
 
Identidades
IdentidadesIdentidades
Identidades
 
Trondheim, LGM2012
Trondheim, LGM2012Trondheim, LGM2012
Trondheim, LGM2012
 
Vanilla rao blackwellisation
Vanilla rao blackwellisationVanilla rao blackwellisation
Vanilla rao blackwellisation
 
Dsp U Lec06 The Z Transform And Its Application
Dsp U   Lec06 The Z Transform And Its ApplicationDsp U   Lec06 The Z Transform And Its Application
Dsp U Lec06 The Z Transform And Its Application
 

Mehr von darg0001

Cuerpos finitos y aplicaciones
Cuerpos finitos y aplicacionesCuerpos finitos y aplicaciones
Cuerpos finitos y aplicaciones
darg0001
 
Fundamentos del criptoanálisis diferencial
Fundamentos del criptoanálisis diferencialFundamentos del criptoanálisis diferencial
Fundamentos del criptoanálisis diferencial
darg0001
 
David arroyo2009 en
David arroyo2009 enDavid arroyo2009 en
David arroyo2009 en
darg0001
 
Symbolic dynamics of unimodal maps
Symbolic dynamics of unimodal mapsSymbolic dynamics of unimodal maps
Symbolic dynamics of unimodal maps
darg0001
 
Canal de comunicación y caos
Canal de comunicación y caosCanal de comunicación y caos
Canal de comunicación y caos
darg0001
 
Caos y Wavelets
Caos y WaveletsCaos y Wavelets
Caos y Wavelets
darg0001
 
Redes Caos
Redes CaosRedes Caos
Redes Caos
darg0001
 

Mehr von darg0001 (8)

hybrid_threats.pdf
hybrid_threats.pdfhybrid_threats.pdf
hybrid_threats.pdf
 
Cuerpos finitos y aplicaciones
Cuerpos finitos y aplicacionesCuerpos finitos y aplicaciones
Cuerpos finitos y aplicaciones
 
Fundamentos del criptoanálisis diferencial
Fundamentos del criptoanálisis diferencialFundamentos del criptoanálisis diferencial
Fundamentos del criptoanálisis diferencial
 
David arroyo2009 en
David arroyo2009 enDavid arroyo2009 en
David arroyo2009 en
 
Symbolic dynamics of unimodal maps
Symbolic dynamics of unimodal mapsSymbolic dynamics of unimodal maps
Symbolic dynamics of unimodal maps
 
Canal de comunicación y caos
Canal de comunicación y caosCanal de comunicación y caos
Canal de comunicación y caos
 
Caos y Wavelets
Caos y WaveletsCaos y Wavelets
Caos y Wavelets
 
Redes Caos
Redes CaosRedes Caos
Redes Caos
 

Kürzlich hochgeladen

Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
Joaquim Jorge
 

Kürzlich hochgeladen (20)

Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Developing An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilDeveloping An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of Brazil
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdf
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 

Framework for the analysis and design of encryption strategies based on discrete-time chaotic dynamical systems

  • 1. Framework for the analysis and design of encryption strategies based on discrete-time chaotic dynamical systems ˜ David Arroyo Guardeno
  • 2. From chaos to cryptography Why? How? Design Rules Critical 1 2 3 contexts
  • 3. Perfect secrecy Good mixing properties. . . Hopf: dough rolling and folding. . .
  • 4. Initial condition Sensitivity Diffusion Control parameter Mixing Ergodicity Confusion
  • 5. ENCRYPTION T=R T=Z Chaos in Chaos in Chaos in continuous time continuous time discrete time
  • 6. ENCRYPTION T=R T=Z Chaos in Chaos in Chaos in continuous time continuous time discrete time Synchronization
  • 7. ENCRYPTION T=R T=Z Chaos in Chaos in Chaos in continuous time continuous time discrete time Synchronization Security problems
  • 8. ENCRYPTION T=R T=Z Chaos in Chaos in Chaos in continuous time continuous time discrete time Synchronization Differential Equations Security problems
  • 9. ENCRYPTION T=R T=Z Chaos in Chaos in Chaos in continuous time continuous time discrete time Synchronization Differential Equations Security problems Dimension > 2
  • 10. ENCRYPTION T=R T=Z Chaos in Chaos in Chaos in continuous time continuous time discrete time Synchronization Differential Equations Security problems Dimension > 2 Efficiency problems
  • 11. ENCRYPTION T=R T=Z Chaos in Chaos in Chaos in continuous time continuous time discrete time Synchronization Differential Equations Security problems Dimension > 2 Efficiency problems
  • 12. How to design secure digital chaos-based cryptosystems
  • 13. Avoid critical contexts Conventional cryptography Chaos theory Standards Loss of chaoticity Commitments Reconstruction of the underlying dynamics Conventional attacks
  • 14. Avoid critical contexts Conventional cryptography Chaos theory Standards Loss of chaoticity Commitments Reconstruction of the underlying dynamics Conventional attacks
  • 15. Loss of chaoticity Why? How? Design Rules Critical 1 2 3 contexts
  • 16. For xk+1 = f (λ , xk ) = fλ (xk ) it can not be assumed chaos for all λ
  • 17. C. Chee and D.Xu, “Chaotic encryption using discrete- time synchronous chaos,” Physics Letters A, 2006, 348, 284-292
  • 18. 2 uk+1 1 − δ · uk + vk xk+1 = = vk+1 β · vk δ = ψ (pk ) · µ1 (vk ) β = µ2 (vk )
  • 19. 2 1.8 Unbounded δ 1.6 1.4 Periodic 1.2 −0.4 −0.2 0 0.2 0.4 β
  • 20. 1.6 1.4 1.2 1 Asymptotic values 0.8 0.6 0.4 0.2 0 −0.2 0 0.5 1 1.5 2 2.5 3 Plaintext block values 14 x 10
  • 21. David Arroyo et al., “Cryptanalysis of a discrete-time syn- chronous chaotic encryption system,” Physics Letter A, 2008, 372, 1034-1039
  • 22. Reconstruction of dynamics Why? How? Design Rules Critical 1 2 3 contexts
  • 23. Estimation of λ and/or x0 after applying conventional attacks 1 Access to chaotic orbits 2 We can measure the entropy of the underlying chaotic map 3 Access to samples of chaotic orbits 4 Access to coarse-grained versions of chaotic orbits
  • 24. xi+1 xi+1 = f (xi ) Orbit : {x0, x1, . . .} f (a) = f (b), f (xc ) ≤ b xc = Single turning point f continuous in [a, b] xi a xc b
  • 25. Logistic map: xi+1 = λ xi (1 − xi ) xi+1 λ xi 0 xc 1
  • 26. xi /λ 0 < xi < λ Skew tent map: xi+1 = (1 − xi )/(1 − λ ) λ ≥ xi < 1 xi+1 λ xi 0 1
  • 27. Access to chaotic orbits Ciphertext is a function of a chaotic orbit
  • 28. Access to chaotic orbits Ciphertext is a function of a chaotic orbit Only the chaotic orbit is secret
  • 29. Access to chaotic orbits Ciphertext is a function of a chaotic orbit Only the chaotic orbit is secret Kerckhoff’s principle: we know the function and xn+1 = f (λ , xn ), xn ∈ Rm
  • 30. Access to chaotic orbits Ciphertext is a function of a chaotic orbit Only the chaotic orbit is secret Kerckhoff’s principle: we know the function and xn+1 = f (λ , xn ), xn ∈ Rm Estimation of λ from m + 1 units of ciphertext
  • 31. B. Ling et al., “Chaotic filter bank for computer cryptography,” Chaos, Solitons and Fractals, 2007, 34, 817-824
  • 32. Plaintext: {pn } tn = K ∑ pj h2n−j ∀j tn = K ∑ pj h2n−j ∀j vn = tn + tn + sn vn = tn − vn − sn
  • 33. Plaintext: {pn } tn = K ∑ pj h2n−j ∀j tn = K ∑ pj h2n−j ∀j vn = tn + tn + sn Logistic map vn = tn − vn − sn
  • 34. Plaintext: {pn } tn = K ∑ pj h2n−j ∀j tn = K ∑ pj h2n−j ∀j vn = tn + tn + sn Logistic map vn = tn − vn − sn Ciphertext: {vn } , {vn }, Key: λ , λ , s0 , s0
  • 35. Known-plaintext attack: {pn }, {vn }, {vn } sn = vn − tn − tn sn = tn − vn − vn sn+1 λ= sn (1 − sn ) sn+1 λ = sn (1 − sn )
  • 36. David Arroyo et al., “Cryptanalysis of a computer cryptography scheme based on a filter bank,” Chaos, Soli- tons and Fractals, 2009, 41, 410-413
  • 37. Entropy of the underlying chaotic map Why? How? Design Rules Critical 1 2 3 contexts
  • 38. Entropy Orbit ⇒ Probability distribution Discretization of Discretization in the the phase space frequency domain Relative number of Relative energy of values in subintervals resolution levels
  • 39. n-gram conditional entropy Split the phase space into J disjoint intervals Convert chaotic orbits into sequences of symbols Group the symbols into words of length n (n) pri : probability of i-th word, 0 ≤ i ≤ J n n (n) (n) Hn = − ∑J pri i=1 log pri hn = Hn+1 − Hn , h0 = H1
  • 40. Conditional entropy of the logistic map 0.7 n=4 0.6 n=6 n=8 n=10 0.5 n=12 0.4 hn 0.3 0.2 0.1 0 3.5 3.6 3.7 3.8 3.9 4 λ
  • 41. Conditional entropy of the skew tent map 0.7 0.6 0.5 0.4 hn 0.3 n=4 0.2 n=6 n=8 n=10 0.1 n=12 0 0 0.2 0.4 0.6 0.8 1 λ
  • 42. Multiresolution Entropy 0.4 λ=3.5 MRET1 λ=3.8123 0.2 λ variable 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0.4 λ=3.5 λ=3.8123 MRET2 0.2 λ variable 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0.4 λ=3.5 λ=3.8123 MRET3 0.2 λ variable 0 1000 2000 3000 4000 5000 6000 7000 8000 Temporal variable
  • 43. High level of entropy without leaking the values of λ
  • 44. Samples of chaotic orbits Why? How? Design Rules Critical 1 2 3 contexts
  • 45. Shape of histograms of chaotic orbits depending on λ Sampling on chaotic orbits Estimation of λ
  • 46. A.N. Pisarchik et al. “Encryp- tion and decryption of images with chaotic map lattices,” Chaos, 2006, 16, Art. No. 033118
  • 47. λ2 Logistic map, xmin = 4 (1 − 4 ), λ xmax = λ , plaintext {pi }J 4 i=1 r = 1, yi0 = {pi } yJ −1 if i = 1 r x0 = yir i.o.c Iterate n times the logistic map from x0 to get xn yir = xn + yir −1 and subtract xmax − xmin until yir ∈ [xmin , xmax ]
  • 48. yJ −1 if i = 1 r x0 = yir i.o.c Iterate n times the logistic map from x0 to get xn yir = xn + yir −1 and subtract xmax − xmin until yir ∈ [xmin , xmax ] r = r +1 r <R
  • 49. 80 70 60 50 40 30 20 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 λ (1−λ/4) λ/4
  • 50. Ciphertext-only attack xmax = max yiR ˆ ˆ ˆ λ ≈ λ = 4 · xmax
  • 51. David Arroyo et al., “On the security of a new image encryption scheme based on chaotic map lattices,” Chaos, 2008, 18, Art. No. 033112
  • 52. Coarse-grained versions of chaotic orbits Why? How? Design Rules Critical 1 2 3 contexts
  • 53. Assign a partition to the phase space 1 Stream cipher 2 Searching based chaotic ciphers
  • 54. Stream cipher xi+1 xi+1 xi a xiL xc xiR b
  • 55. Stream cipher xi+1 xi a x0 xc b
  • 56. Stream cipher xi+1 L xi a x0 xc b
  • 57. Stream cipher xi+1 L R xi+1 = xi xi a x0 xc x1 b
  • 58. Stream cipher xi+1 L R R xi+1 = xi xi a x0 xcx2x1 b
  • 59. Stream cipher xi+1 01 1 ... Binary sequence xi+1 = xi xi a x0 xcx2x1 b
  • 60. A.P. Kurian and S. Puthusserypady, “Self-synchronizing chaotic stream ciphers,” Signal Pro- cessing, 2008, 88, 2442-2452
  • 61. Binit Logistic map Bks ≥ xc Shuf f ler Ciphertext Skew tent map Plaintext
  • 62. Binit Logistic map Bks Bks B sh = π(B init ||B ks) = ≥ xc Shuf f ler ˆ B sh (λ, x0 ) Skew tent map 0
  • 63. Chosen-plaintext attack 2N ˆ sh B (λ , x0) ⇒ Pr1 = prj (1) j=1 2N (i,k) B ks (λ i , x k ) ⇒ Pr(i,k) = prj j=1 Wootters’ distance 2N −1 (1) (i,k) DW (Pr1, Pr(i,k)) = cos ∑ prj · prj j=1
  • 64. 1.6 1.4 Wootters’ distance 1.2 1 0.8 0.6 0.4 0.2 0 1 x 0 0.5 0 0 0.2 0.4 0.6 0.8 1 λ
  • 65. 1.5 Wootters’ distance 1.4 1.3 1.2 1.1 1 0.8 0.6 x 0 0.4 0.2 3.95 3.9 3.85 3.8 λ
  • 66. David Arroyo et al., “Cryptanalysis of a family of self- synchronizing chaotic stream ciphers”, Submitted to Signal Processing on 17 March, 2009
  • 67. Coarse-grained versions of chaotic orbits Why? How? Design Rules Critical 1 2 3 contexts
  • 68. Searching based chaotic ciphers Plaintext alphabet a1 Phase space Partition a2 ak a|A|
  • 69. Searching based chaotic ciphers Plaintext alphabet fλ M Phase space M (x =c 0) iph er tex ak t
  • 70. f (0)(x) 0 1 x a xc b
  • 71. f (x) 00 01 11 10 xc x a xc b
  • 72. f (2)(x) 0 0 0 011 110 101 001 010 111 100 xc x a xc b
  • 73. X. Wang et al., “A new chaotic cryptography based on ergodicity,” International Journal of Modern Physics B, 2008, 22, 901-908
  • 74. Logistic map: x0 and λ secret key pi is a word with w bits Ciphertext: number of iterations to find pi in the binary sequence generated from the logistic map
  • 75. Symbolic dynamics of unimodal maps Chosen-ciphertext attack
  • 76. Gray Ordering Number GM (λ , x) = g0 g1 · · · gM−1 , gi ∈ {0, 1} (i) gi = 0 ⇔ fλ (x) < xc (i) gi = 1 ⇔ fλ (x) ≥ xc g0 b0 g1 b1 g2 b2 gM−1 bM−1 GON(GM (λ , x)) = 2−1 · b1 + 2−2 · b2 + . . . + 2−(n−1) · bn−1
  • 77. GON for the logistic map 1 0.8 λ=3.4 GON(Pn (x)) 0.6 λ f 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 x
  • 78. GON for the logistic map 1 0.8 λ=3.6 GON(Pn (x)) 0.6 λ f 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 x
  • 79. GON for the logistic map 1 0.8 λ=3.8 GON(Pn (x)) 0.6 λ f 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 x
  • 80. GON for the logistic map 1 0.8 λ=4 GON(Pn (x)) 0.6 λ f 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 x
  • 81. GON for the logistic map and x0 = fλ (xc ) 1 0.95 0.9 GON(Pf (fλ(xc))) 0.85 λ n 0.8 0.75 0.7 0.65 3 3.2 3.4 3.6 3.8 4 λ
  • 82. GON for the logistic map and x0 = fλ (xc )
  • 83. Binary sequence of length N Sliding window of length M and compute GON Estimation of λ through a binary search from the maximum GON ˆ ˆ GONM (λ , λ ) = GONmax 4 Estimation of x0 using the estimation of λ and the binary sequence
  • 84. Chosen-ciphertext attack Ask for the decryption of w · i 0 returns the first w bits, w the following w bits, . . . GM (x0, λ ) ⇒ λ , x0
  • 85. Parameter estimation error −4 c estimation error (Logarithmic scale) 10 −6 10 −8 10 −10 10 −12 10 0 2 4 6 8 10 M 5 x 10
  • 86. Error in the estimation of the initial condition 0 10 x0 estimation error (Logarithmic scale) −5 10 −10 10 −15 10 −20 10 10 20 30 40 50 60 N
  • 87. David Arroyo et al., “Cryptanalysis of a new chaotic cryptosystem based on ergodicity,” International Journal of Modern Physics B, 2009, 23, 651-659
  • 88. Searching based chaotic ciphers: unimodal maps Why? How? Design Rules Critical 1 2 3 contexts
  • 89. Previous attack only works if GONM (λ , fλ (xc )) depends on on the control parameter
  • 90. Is the cryptosystem secure if the logistic map is replaced by the skew tent map?
  • 91. David Arroyo et al., “Estimation of the control parameter from symbolic sequences: Unimodal maps with variable critical point,” Chaos, 2009, 19, Art. No. 023125
  • 92. λ can be estimated from the PDF of order patterns
  • 93. xi+i = f (xi ) [x0, x1, x2, . . . , xL−1] π(x0) = [π0, π1, . . . , πL−1] πi permutation |πi → i f π0 (x0) < f π1 (x0) < · · · < f πL−1 (x0)
  • 94. 2xi , 0 < xi < 0.5 f : [0, 1] → [0, 1], xi+1 = f (xi ) = 2(1 − xi ), 0.5 ≥ xi < 1 xi+1 xi 0 1
  • 95. 2xi , 0 < xi < 0.5 f : [0, 1] → [0, 1], xi+1 = f (xi ) = 2(1 − xi ), 0.5 ≥ xi < 1 xi+1 xi 0 1 [0.31225,
  • 96. 2xi , 0 < xi < 0.5 f : [0, 1] → [0, 1], xi+1 = f (xi ) = 2(1 − xi ), 0.5 ≥ xi < 1 xi+1 xi 0 1 [0.31225,
  • 97. 2xi , 0 < xi < 0.5 f : [0, 1] → [0, 1], xi+1 = f (xi ) = 2(1 − xi ), 0.5 ≥ xi < 1 xi+1 xi 0 1 [0.31225, 0.6245
  • 98. 2xi , 0 < xi < 0.5 f : [0, 1] → [0, 1], xi+1 = f (xi ) = 2(1 − xi ), 0.5 ≥ xi < 1 xi+1 xi 0 1 [0.31225, 0.6245
  • 99. 2xi , 0 < xi < 0.5 f : [0, 1] → [0, 1], xi+1 = f (xi ) = 2(1 − xi ), 0.5 ≥ xi < 1 xi+1 xi 0 1 [0.31225, 0.6245, 0.751,
  • 100. 2xi , 0 < xi < 0.5 f : [0, 1] → [0, 1], xi+1 = f (xi ) = 2(1 − xi ), 0.5 ≥ xi < 1 xi+1 xi 0 1 [0.31225, 0.6245, 0.751,
  • 101. 2xi , 0 < xi < 0.5 f : [0, 1] → [0, 1], xi+1 = f (xi ) = 2(1 − xi ), 0.5 ≥ xi < 1 xi+1 xi 0 1 [0.31225, 0.6245, 0.751, 0.498]
  • 102. 2xi , 0 < xi < 0.5 f : [0, 1] → [0, 1], xi+1 = f (xi ) = 2(1 − xi ), 0.5 ≥ xi < 1 xi+1 xi 0 1 [0.31225, 0.6245, 0.751, 0.498] ⇒ π(0.31225) = [0, 3, 1, 2]
  • 103. The intersections between f 0(x), f 1(x), . . . , f L−1(x) determine intervals with initial conditions leading to the same order pattern
  • 104. 1 2 f (x) 3 0.9 f (x) 0.8 0.7 f1(x) f0(x) 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1
  • 105. Order patterns can be used to assign a partition to the definition domain
  • 106. fλ : I → I, I ⊂ R, λ ∈ J ⊂ R Pπ = {x ∈ I : x generates the order pattern π} Pπ depends on λ through fλ
  • 107. xi /λ , 0 < xi < λ Skew tent map: xi+1 = (1 − xi )/(1 − λ ), λ ≥ xi < 1 xi+1 λ xi 0 1
  • 108. [0,1,2,3] [0,3,1,2] [2,0,3,1] [1,2,3,0] [0,1,3,2] [0,2,1,3] [2,0,1,3] [1,2,0,3] [0,3,1,2] [2,3,0,1] [3,1,0,2] [3,0,1,2] [1,3,2,0] [1,2,3,0] 1 ? ?? ? ? ? ? ? ? ? ? ? ? ? f(2)(x) λ 0.9 0.8 0.7 0.6 f(0)(x) f(1)(x) λ λ fλ (k)(x) 0.5 0.4 0.3 0.2 f(3)(x) λ 0.1 0 0 0.2 0.4 0.6 0.8 1 λ
  • 109. [2,0,3,1] [0,1,2,3] [0,1,3,2] [0,2,1,3] [2,0,1,3] [1,2,3,0] [0,3,1,2] [2,0,3,1] [3,1,0,2] [3,0,1,2] [2,3,0,1] [1,3,2,0] [0,3,1,2] [1,2,3,0] 1 ? ?? ? ? ? ? ? ??? ? ? ? [1,2,0,3] 0.9 0.8 0.7 f(2)(x) λ f(3)(x) λ 0.6 f(1)(x) (x) λ 0.5 (k) λ f 0.4 0.3 0.2 f(0)(x) λ 0.1 0 0 0.2 0.4 0.6 0.8 1 λ
  • 110. Order pattern [0, 1, . . . , L − 1] determined by the leftmost intersection L−2 L−1 of the iterates fλ and fλ
  • 111. fλ ergodic with invariant measure µ Ofλ (x) = {f n (x) : n ∈ N ∪ {0}} Ofλ (x) visits Pπ with relative frequency µ(Pπ )
  • 112. Orbit of length M Sliding window of width L M − L + 1 order L-patterns Compute the relative fre- quency of each order pattern
  • 113. For some fλ (x) 1-to-1 relation between the relative frequency of some order pattern and the control parameter λ
  • 114. Skew tent map n x/λ n , if 0 ≤ x ≤ λ n fλ (x) = (λ n−1 − x)/λ n−1 (1 − λ ), if λ n ≤ x ≤ λ n−1 P[0,1,...,L−1] = (0, φL (λ )), with λ L−2 φL (λ ) = 2−λ
  • 115. 2 L = 4 ⇒ φ4 = 2−λ λ 1 0.9 0.8 0.7 Order pattern frequency 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 λ
  • 116. Skew tent map Unimodal map x1 < x2 ⇒ G(x1) ≤ G(x2) Order patterns from “coarse-grained” orbits
  • 117. Error in the estimation of λ −2 10 Mean error value (Logarithmic scale) −3 10 −4 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 λ
  • 118. Finite precision arithmetics Digital degradation of dynamics Non-perfect recovery of λ
  • 119. Why? How? Design Rules Critical 1 2 3 contexts
  • 120. Digital chaos-based cryptosystem Chaotic map Encryption architecture Loss of chaoticity Stream cipher Block cipher Bijections in entropy measures Linear complexity Differential attack Leaking of the underlying order Correlation attacks Linear attacks Defective probability distribution ... ...
  • 121. Design rules I 1 Assure the chaotic behavior of the underlying dynamical systems 2 Guarantee avalanche effect 3 High level of entropy without leaking of the values of control parameters 4 Definition of the ciphertext avoiding the reconstruction of the underlying chaotic dynamics
  • 122. Design rules II 5 Chaotic maps with flat histograms and width of the phase space independent of the control parameters 6 Selection of chaotic maps with high sensitivity to control parameter mismatch 7 The number of iterations of chaotic maps can not be part of the key
  • 123. Control parameter a=3.8204607418 Control parameter a=3.8294707872 150 150 j=1 j=2 Time in seconds Time in seconds 100 j=3 100 50 50 0 0 0 50 100 0 50 100 n×j n×j Control parameter a=3.8743936381 Control parameter a=3.9771765651 150 150 Time in seconds Time in seconds 100 100 50 50 0 0 0 50 100 0 50 100 n×j n×j
  • 124. David Arroyo et al., “On the security of a new image encryption scheme based on chaotic map lattices,” Chaos, 2008, 18, Art. No. 033112
  • 125. Chaos-based 5 cryptography SCI Unimodal 7 maps International 8 CONFERENCES National 8
  • 127. Problems detected in unimodal maps Multimodal maps Discrete chaos Other sources of chaos
  • 128. Chaotic map Encryption Practical architecture implementation
  • 129. Design of chaos-based cryptosystems needs of cryptography + analysis of chaotic dynamics
  • 130. Framework for the analysis and design of encryption strategies based on discrete-time chaotic dynamical systems david.arroyo@iec.csic.es http://hdl.handle.net/10261/15668