Blatt/ Reihenfolge Themen 1 - Polynomdivision Polynomdivision - 1 HM1-Übung // Tricks / Inhaltsverzeichnis 1, II, III - Be...
Übungsblatt 1 - Polynomdivision Ansatz: Angabe: Def:  p(x)  ist nur definiert, falls  a, b, c, d  paarweise verschieden. E...
Übungsblatt 1, II - Betrag Angabe: Lösung: Eine Betragsfunktion, die drei Fälle zu unterscheiden verlangt:  x  ≤   -1 ; x ...
Übungsblatt 1, II - Vollständige Induktion Ansatz: Angabe: Lösung: Zeigen Sie, dass für zwei beliebig gewählte verschieden...
Übungsblatt III - Vollständige Induktion Ansatz 1: Angabe: Graph: Summenformel: Binomialkoeffizienten von  k =0 bis  n  er...
Übungsblatt V - Vektorräume Ansatz: Angabe: Gegeben seien die Polynome  p 0  (x)  := 1,  p 1  (x)  := 1−x,  p 2  (x)  := (...
Nächste SlideShare
Wird geladen in …5
×

HM1 Übung

1.385 Aufrufe

Veröffentlicht am

Veröffentlicht in: Business, Technologie
0 Kommentare
0 Gefällt mir
Statistik
Notizen
  • Als Erste(r) kommentieren

  • Gehören Sie zu den Ersten, denen das gefällt!

Keine Downloads
Aufrufe
Aufrufe insgesamt
1.385
Auf SlideShare
0
Aus Einbettungen
0
Anzahl an Einbettungen
17
Aktionen
Geteilt
0
Downloads
1
Kommentare
0
Gefällt mir
0
Einbettungen 0
Keine Einbettungen

Keine Notizen für die Folie

HM1 Übung

  1. 1. Blatt/ Reihenfolge Themen 1 - Polynomdivision Polynomdivision - 1 HM1-Übung // Tricks / Inhaltsverzeichnis 1, II, III - Betrag Betrag - I, II, III I, II - Vollständige Induktion Vollständige Induktion - I, II III - Vollständige Induktion Vollständige Induktion - III V - Vektorräume Vektorräume - V
  2. 2. Übungsblatt 1 - Polynomdivision Ansatz: Angabe: Def: p(x) ist nur definiert, falls a, b, c, d paarweise verschieden. Ein kubisches Polynom (3. Ordnung, Höchstgrad n=3) ist eindeutig definiert durch den Wert an n+1 Stellen. Durch nacheinander Einsetzen von a, b, c, d erhalten wir jeweils den Wert 1 Lösung: Ansatz: Angabe: Lösung: Diese Gleichung ähnelt der geometrischen Reihe. Um sie auf diese Form zu bringen (1-q...), muss entsprechend ausgeklammert werden. In Spezialfällen muss vorher noch substituiert werden. Ansatz: Angabe: Lösung: Die dritte binomische Formel gilt für alle Gleichungen mit geradem Exponenten. Schließlich lässt sich (x+a) kürzen. p(x)= 1 *Graph Angabe: Lösung:
  3. 3. Übungsblatt 1, II - Betrag Angabe: Lösung: Eine Betragsfunktion, die drei Fälle zu unterscheiden verlangt: x ≤ -1 ; x ≥ 0,4; -1 < x 0,4 Im Fall x ≤ -1: x = -5/6 Achtung! Diese Lösung ist ungültig, da sie durch die Vorbedingung (Fallunterscheidung) rausfällt Angabe: Lösung: Eine Betragsfunktion | | x | -4 | ≥ 1 mit vier Fällen ohne Probleme lösbar. Wenn man ausnutzt, dass die Funktion symmetrisch zu x =4 ist, ergeben sich zwei Fälle durch Vorzeichenvertauschung Angabe: Lösung: Betragsungleichung(en) Die Dreiecksungleichung (Formelsammlung...) hilft! Gegebenenfalls substituieren
  4. 4. Übungsblatt 1, II - Vollständige Induktion Ansatz: Angabe: Lösung: Zeigen Sie, dass für zwei beliebig gewählte verschiedene ganze Zahlen a , b und eine beliebige natürliche Zahl n die Zahl durch a - b teilbar ist. Induktionsanfang: (a-b) | Induktionsschritt: n -> n +1 -> (a-b) | -> Induktionsannahme Ansatz: Angabe: Lösung: Zeigen Sie, dass 3 | z*z*z + 2z; z€ Z Beweis durch vollständige Induktion erst für z € N0 -> funktioniert dann substituieren (y=-z), und statt Beweis für Z- fortzuführen für y € N0, was das gleiche ist wie z€ N0 “ Wenn a ein Vielfaches von 3 ist, dann auch -a.” Ansatz: Angabe: Lösung: Summenformel Induktionsschritt mit Summenformel beginnen, nicht mit der (aufgelösten) Formel. Regeln : n über dem Summenzeichen und im Argument durch n+ 1 ersetzen oberstes Element herausziehen bewirkt Erniedrigung der oberen Grenze (zurück) auf n in herausgezogene Elemente aktuelles k (hier n+ 1) einsetzen - n stehen lassen/ beibehalten nach Einsetzen der Formel (Induktionsvoraussetzung) und Hauptnennerbildung erhält man die Formel für n+ 1
  5. 5. Übungsblatt III - Vollständige Induktion Ansatz 1: Angabe: Graph: Summenformel: Binomialkoeffizienten von k =0 bis n ergibt 2 hoch n . Vergleiche mit Skript zur Vorlesung: Binomische Formel Analogie: Summe über Binomialkoeffizienten entspricht der Herleitung im Skript für a =1 und b =1 Umformung der Summe (achte auf die Laufgrenzen): Umformung der Formel: Zuerst wird die Induktionsvoraussetzung eingesetzt, danach die Laufgrenzen angepasst, dann die Summen nach der Rekursionsregel zusammengefasst. als Relation dargestellt sind die Summenwerte für n =1 ... n =9 und die Exponentialfunktion 2 hoch n Ansatz 2: Ansatz 3:
  6. 6. Übungsblatt V - Vektorräume Ansatz: Angabe: Gegeben seien die Polynome p 0 (x) := 1, p 1 (x) := 1−x, p 2 (x) := (1− x ) 2 sowie p 3 := (1− x ) 3. Zeigen Sie, dass sich jedes Polynom p(x) mit Grad ≤ 3 darstellen lässt in der Form p(x) = α p0 (x) + β p1 (x) + γ p2 (x) + δ p3 (x) für gewisse Zahlen α, β , γ , δ ∈ R. Sind die Zahlen α, β , γ , δ eindeutig bestimmt? Ausmultiplizieren und Koeffizentenvergleich anstellen Die Koeffizienten a 1 ,..., a 4 in einer Matrix darstellen und auf Zeilenstufenform bringen. Da lässt sich dann die Eindeutigkeit der Koeffizienten und damit der Darstellung des Polynoms ablesen: Eindeutigkeit heißt, es sind keine freien Variablen vorhanden. Ein zusätzlicher Gedanke zur Aufgabe T5.2c): Ist A ∪ B ein Untervektorraum von R 2 ? Im Allgemeinen nicht, auch hier nicht :-) R 2 ist aber lineare Hülle von A ∪ B, da die Basen von A und B linear unabhängig sind. Lösung: Angabe: Lösung:

×