SlideShare ist ein Scribd-Unternehmen logo
1 von 47
Le système solaire
Qu’est-ce qu’une planète ?
Terme difficile à définir… redéfini en 2006 par l'Union
astronomique internationale :
- En orbite autour d’une étoile ;
- Sans toutefois être une étoile ;
- Suffisamment massive pour que l’effet de sa propre
gravité lui confère une enveloppe sphérique ;
- Dominant son environnement et ayant « dégagé le
voisinage autour de son orbite »
Quelquesbasessurlesplanètes
Des planètes en dehors du système
solaire ?
> 1000!!!
Quelquesbasessurlesplanètes
Quelquesbasessurlesplanètes
Quelquesbasessurlesplanètes
Quelquesbasessurlesplanètes
Comment connaître la
masse d’une planète ?
Facile si la planète a un satellite : on utilise la
3ème loi de Kepler
a ae
foyer
e = excentricité
G = 6.67x10-11 m3/s2/kg
Masse de
la Planète
Distance
Planète-
Satellite
Période de
révolution du
satellite
Quelquesbasessurlesplanètes
Europe tourne autour de
Jupiter :
• Période T de 3.55j
• Distance a = 670900km
Exemple de Jupiter
Quelquesbasessurlesplanètes
1,00E+22
1,00E+23
1,00E+24
1,00E+25
1,00E+26
1,00E+27
1,00E+28
1,00E+29
1,00E+30
1,00E+31
SoleilJupiterSaturneU
ranusN
eptune
Terre
Vénus
M
ars
anym
ède
TitanM
ercureC
allisto
Io
LuneEuropeTritonPluton
La masse des
planètes
www.neufplanetes.org
Masseenkg
Masse de la Terre : 5.96 1024 kg
Masse de Jupiter : 1.9 1027 kg
Masse du Soleil : 1.9 1030 kg
Quelquesbasessurlesplanètes
Quand on connaît la masse, on
connaît la densité !
Densité des silicates
Densité H2O
Quelquesbasessurlesplanètes
Lesoleiletlesplanètes
Catégorie : petite étoile jaune de type G2.
Masse : 2. 1030 Kg.
Volume : 1 392 000 km de diamètre (109 x D Terre).
Composition : Gaz = H (70%), He (28%).
Réacteur thermonucléaire : au cœur de l’étoile, fusion H en He.
Structure interne :
Lesoleiletlesplanètes
La chromosphère du Soleil avec en haut à
droite des protubérances, SOHO.Taches solaires.
SOHO, NGM Juillet 2004.
Protubérances
Protubérances
Télescope solaire suédois.
Le cœur sombre d’une tache
solaire (diamètre de la Terre).
Lesoleiletlesplanètes
Silicates
O, Si, Al, Mg, Na, Ca, K
Fer, nickel et soufre.
Roches et métaux.
Lesoleiletlesplanètes
80-90 mol% de H
10-20 mol% de He
et d’un peu de méthane
d < 2
Composition chimique
très proche de celle du
Soleil.
Gaz.
Lesoleiletlesplanètes
Me
T
J
S U
N
Champmagnétique/Terre
Mars et Venus n’ont pas de champ
magnétique !
Avec les sondes envoyées, on peut
mesurer le champ magnétique
Lesoleiletlesplanètes
Les plaines emplies de laves sont représentées en orange pâle dans le bassin Caloris (1 million de km2)
Les flèches blanches indiquent des plaines jeunes dont la composition semble proche de celles de Caloris.
Les flèches noires indiquent les « points rouges » qui seraient formés par des explosions volcaniques.
En bleu foncé, des zones occupées par de vieilles roches contenant peut-être de l’ilménite riche en fer.
Nasa/JHUAP/Arizona State University.
Image fausses couleurs.
Lancée le 3-08-2004, la sonde Messenger est passée le 14
Janvier 2008 à 200 km de Mercure.
Lesoleiletlesplanètes
Noyau métallique :
Fer principalement
40 % de son volume
2/3 de sa M totale
 d élevée = 5,4.
Lesoleiletlesplanètes
Atmosphère de Vénus.
Schéma de Vénus sans son atmosphère, d'après
la sonde Magellan.
Atmosphère :
dense (95 bars),
épaisse de 50 à 70 km,
96 % de CO2 ;
 effet de serre (460 °C).
Lesoleiletlesplanètes
Lesoleiletlesplanètes
La surface de Vénus photographiée
par la sonde Magellan.
Cartographie sonde Magellan :
- des milliers de volcans;
- des dômes (coulées de lave) ;
- des cratères d’impact.
On considère que Vénus est volcaniquement active de nos jours…
…bien qu'aucune éruption n'ait été vue par la mission Magellan !
Lesoleiletlesplanètes
Relief (eau = agent d’érosion).Hydrosphère liquide et solide.
Atmosphère (vapeur d’eau).
Biosphère (H20)
Google Earth
World Wind Earth
Lesoleiletlesplanètes
Météore Cratère , (Arizona),
D = 1 km., 49000 ans.
Le Wolfe Creek (Australie),
D = 875 m, 300 000 ans.
Cratère du Manicouagan, Québec ;
Age = 210 Ma, D = 70 km,
 météorite D = 3,5 km.
D impact = 20 x D météorite.
Cratère du Chixculub,
Mexique ;
Age = 65 Ma,
D = 200 km,
 météorite D = 10 km.
Cratère du Popigai, Sibérie ;
Age = 40 Ma, D = 100 km,
 météorite D = 5 km.
Le plus gros fragment de météorite
(Hoba = sidérite de 60 T) connu à ce
jour a été trouvé en 1920 en Namibie.
Lesoleiletlesplanètes
Mars Pathfinder,
USA, 1996.
Mars Global Surveyor,
USA, 1996.
Plus d’activité géologique.
World Wind Mars
Google Mars
Phobos.
28 x 22 x 18 km.
Deimos.
Mars au plus près de la Terre = 55 M de km.
Lesoleiletlesplanètes
Lesoleiletlesplanètes
Mais y a t-il eu de l’eau liquide à la surface de Mars
?
De par sa position dans le
Système Solaire, Mars aurait dû
accumuler autant d'eau que la
Terre au cours de sa formation.
Mais son atmosphère = 0,03%
de vapeur d'eau.
Les calottes polaires.
L'eau liquide n'existe plus à la
surface de Mars.
© Hubble, NASA.
Lesoleiletlesplanètes
Etagement bien visible qui résulterait d'un dépôt de
sédiments dans un ancien lac maintenant asséché.
Viking I.
Lesoleiletlesplanètes
Atmosphère = 95 % CO2.
Pression : 0,01 bar ; faible gravitation et
pas de champ magnétique pour se
protéger du vent solaire.
Un cyclone de 300 km
de diamètre
Lesoleiletlesplanètes
Multi-impact de Shoemaker-Levy 9,
Image UV, NASA, juillet 1994.
Io
Impacts S-L.
Lesoleiletlesplanètes
4 gros satellites et 36 petits satellites
La glace domine (noyau rocheux ?).
Activité géologique décroissante de façon centrifuge.
Couche de glace fissurée.
Io. Europe.
Callisto.Ganymède.
Lesoleiletlesplanètes
Haemus Mons est une montagne
localisée près du pole sud d'Io, 100 sur
200 km à la base.
Io, La caldeira du volcan Tupan
d'après des photos de la sonde
Galilèo en aout 2001.
Io, Volcan Pelé, Galileo.
Io, éruption
Masubi,
Galileo.
Io et ses volcans de soufre.
Lesoleiletlesplanètes
Nasa.
Lesoleiletlesplanètes
Lesoleiletlesplanètes
Triton et ses volcans/geysers d'azote.
L’évolution orbitale de
Triton fait qu'il se
rapproche de Neptune.
Dans 100 Ma, il sera si
proche de Neptune qu'il
se disloquera, et Neptune
héritera d'un superbe
anneau supplémentaire !
Lesoleiletlesplanètes
Comète de Halley photographiée le 13
Mai 1910, source NASA.
Noyau de Halley, sonde
Giotto, Mars 1986, ESA.
Venus
Halley, 1886, Giotto,
ESA.
Halley…
tous les 76 ans.
- De la ceinture de
Kuiper, à peine au-
delà de l'orbite de
Neptune.
- Du nuage d'Oort.
Corps de forme irrégulière.
1 km < D noyau < 10 km.
Noyau = glace et de poussière.
En se rapprochant du Soleil, la glace de leur noyau s'évapore
 nuage de poussière tout autour = chevelure
(peut atteindre plusieurs dizaines de milliers de km de D.
Lesoleiletlesplanètes
Lesoleiletlesplanètes
Comment expliquer la zonation chimique du Système Solaire
et les différents états de la matière (roche, gaz et glace) ?
Comment expliquer la petite
taille des planètes telluriques
et leur atmosphère ?
Lesoleiletlesplanètes
3.Uneplanète,unehistoire
Observations dans la nébuleuse de l’Aigle:
Grains de < 5mm à proximité du centre
Intensitélumineuse
Distance au centre de la nébuleuse
3.Uneplanète,unehistoire
La séquence de condensation générale… à partir de la nébuleuse
solaire
(gaz enrichi en éléments lourds).
1600 K
1300 K
800 K
1000 K
500 K
175K
150 à
120 K
et hydrates solides NH3 H20, CH4
H20.
H et He ne condensent pas
(les 20 K ne sont pas atteints).
JP Bourseau, UCBL1
Des expériences de condensation de mélanges gazeux et surtout des
calculs thermodynamiques montrent :
Champ du Fer :
1600 à 1300 K
Champ des Silicates
1200 à 400 K
Champ des
glaces :
175 à 120 K
3.Uneplanète,unehistoire
• Les poussières s’attirent de manière électrostatique
• Lorsqu’elles deviennent plus grosse : attraction
gravitaire
• Problème : petits corps (< 1km) détruits facilement
par les collisions
Comment passer d’une poussière à un corps d’1km ~
comment passer d’acides aminés à la cellule
3.Uneplanète,unehistoire
Accrétion
Des poussières aux planètes
Des poussières
aux embryons de planètes…
3.Uneplanète,unehistoire
Planètes gazeuses :
1- Noyau de glaces
2- Capture des gaz
Croissance rapide !
Planètes rocheuses :
Impacts
Croissance lente
3.Uneplanète,unehistoire
A partir d’1km de diamètre…
Accrétion
Des poussières aux planètes
• Les gros corps croissent
plus vite que les petits
(gravité + section efficace)
3.Uneplanète,unehistoire
Accrétion
Des poussières aux planètesCroissance des embryons
(<1000km)
moonkam.ucsd.edu
Les impacts géants
3.Uneplanète,unehistoire
Énergie libérée
(M’Mars’=7x10^23kg)
Augmentation de T (Cp
=1000 J/kg/K)?
• Formation de la Lune
- impact d’un corps de la taille de Mars
 Fusion ?
3.Uneplanète,unehistoire
Les impacts géants
Accrétion
Des poussières aux planètes
E cinétique = 1/2 M v^2
E cinétique = MT*Cp*DT
E cinétique = 3,5x10^31 J
DT ~ 6000K
R
GM
ev 2
 = 11 km/s
G = 6.67x10-11 m3/s2/kg
Ce qu’il faut retenir
•Ce qu’est une planète
•Les types de planètes
•Comment connaître la masse et la
composition de la planète
•Les causes des différences entre les
planètes
•Histoire de l’accrétion

Weitere ähnliche Inhalte

Was ist angesagt?

Cours3 : Le système solaire
Cours3 : Le système solaireCours3 : Le système solaire
Cours3 : Le système solaireNicolas Coltice
 
Cours 5 : Histoire de la Terre
Cours 5 : Histoire de la TerreCours 5 : Histoire de la Terre
Cours 5 : Histoire de la TerreNicolas Coltice
 
Cours 5 : Histoire de la Terre
Cours 5 : Histoire de la TerreCours 5 : Histoire de la Terre
Cours 5 : Histoire de la TerreNicolas Coltice
 
Chapitre 8 - cours L1 Université Lyon 1
Chapitre 8 - cours L1 Université Lyon 1Chapitre 8 - cours L1 Université Lyon 1
Chapitre 8 - cours L1 Université Lyon 1Nicolas Coltice
 
Cours 4 : Composition et Structure interne de la Terre
Cours 4 : Composition et Structure interne de la TerreCours 4 : Composition et Structure interne de la Terre
Cours 4 : Composition et Structure interne de la TerreNicolas Coltice
 
Cours sur la Structure interne de la Terre - L1
Cours sur la Structure interne de la Terre - L1Cours sur la Structure interne de la Terre - L1
Cours sur la Structure interne de la Terre - L1Nicolas Coltice
 
Cours 9 : Les roches sédimentaires et le climat
Cours 9 : Les roches sédimentaires et le climatCours 9 : Les roches sédimentaires et le climat
Cours 9 : Les roches sédimentaires et le climatNicolas Coltice
 
Chapitre 9 : Origine de la vie - Cours Géosciences Université Lyon 1
Chapitre 9 : Origine de la vie - Cours Géosciences Université Lyon 1Chapitre 9 : Origine de la vie - Cours Géosciences Université Lyon 1
Chapitre 9 : Origine de la vie - Cours Géosciences Université Lyon 1Nicolas Coltice
 
Les chaînes de montagnes
Les chaînes de montagnesLes chaînes de montagnes
Les chaînes de montagnesNicolas Coltice
 
Préparation à l'Examen Géosciences (Licence première année - Université Lyon 1)
Préparation à l'Examen Géosciences (Licence première année - Université Lyon 1)Préparation à l'Examen Géosciences (Licence première année - Université Lyon 1)
Préparation à l'Examen Géosciences (Licence première année - Université Lyon 1)Nicolas Coltice
 
Geologie
GeologieGeologie
Geologietaferm
 
Cours 4 : Structure et composition de la Terre
Cours 4 : Structure et composition de la TerreCours 4 : Structure et composition de la Terre
Cours 4 : Structure et composition de la TerreNicolas Coltice
 
Cours 9 : Interactions géologie - climat
Cours 9 : Interactions géologie - climatCours 9 : Interactions géologie - climat
Cours 9 : Interactions géologie - climatNicolas Coltice
 
impacts météoritiques
impacts météoritiquesimpacts météoritiques
impacts météoritiquesSIFFRAY DANIEL
 
Les Conséquences d'un impact météoritique
Les Conséquences d'un impact météoritiqueLes Conséquences d'un impact météoritique
Les Conséquences d'un impact météoritiqueSIFFRAY DANIEL
 
Cours 7 : Des rifts aux chaînes de montagnes
Cours 7 : Des rifts aux chaînes de montagnesCours 7 : Des rifts aux chaînes de montagnes
Cours 7 : Des rifts aux chaînes de montagnesNicolas Coltice
 
Cours de préparation à l'aggrégation SVT - Tectonique des plaques
Cours de préparation à l'aggrégation SVT - Tectonique des plaquesCours de préparation à l'aggrégation SVT - Tectonique des plaques
Cours de préparation à l'aggrégation SVT - Tectonique des plaquesNicolas Coltice
 
Chapitre 5 : tectonique des plaques
Chapitre 5 : tectonique des plaquesChapitre 5 : tectonique des plaques
Chapitre 5 : tectonique des plaquesNicolas Coltice
 

Was ist angesagt? (19)

Cours3 : Le système solaire
Cours3 : Le système solaireCours3 : Le système solaire
Cours3 : Le système solaire
 
Cours 5 : Histoire de la Terre
Cours 5 : Histoire de la TerreCours 5 : Histoire de la Terre
Cours 5 : Histoire de la Terre
 
Cours 5 : Histoire de la Terre
Cours 5 : Histoire de la TerreCours 5 : Histoire de la Terre
Cours 5 : Histoire de la Terre
 
Chapitre 8 - cours L1 Université Lyon 1
Chapitre 8 - cours L1 Université Lyon 1Chapitre 8 - cours L1 Université Lyon 1
Chapitre 8 - cours L1 Université Lyon 1
 
Cours 4 : Composition et Structure interne de la Terre
Cours 4 : Composition et Structure interne de la TerreCours 4 : Composition et Structure interne de la Terre
Cours 4 : Composition et Structure interne de la Terre
 
Cours sur la Structure interne de la Terre - L1
Cours sur la Structure interne de la Terre - L1Cours sur la Structure interne de la Terre - L1
Cours sur la Structure interne de la Terre - L1
 
Cours 9 : Les roches sédimentaires et le climat
Cours 9 : Les roches sédimentaires et le climatCours 9 : Les roches sédimentaires et le climat
Cours 9 : Les roches sédimentaires et le climat
 
Chapitre 9 : Origine de la vie - Cours Géosciences Université Lyon 1
Chapitre 9 : Origine de la vie - Cours Géosciences Université Lyon 1Chapitre 9 : Origine de la vie - Cours Géosciences Université Lyon 1
Chapitre 9 : Origine de la vie - Cours Géosciences Université Lyon 1
 
Les chaînes de montagnes
Les chaînes de montagnesLes chaînes de montagnes
Les chaînes de montagnes
 
Préparation à l'Examen Géosciences (Licence première année - Université Lyon 1)
Préparation à l'Examen Géosciences (Licence première année - Université Lyon 1)Préparation à l'Examen Géosciences (Licence première année - Université Lyon 1)
Préparation à l'Examen Géosciences (Licence première année - Université Lyon 1)
 
Science
ScienceScience
Science
 
Geologie
GeologieGeologie
Geologie
 
Cours 4 : Structure et composition de la Terre
Cours 4 : Structure et composition de la TerreCours 4 : Structure et composition de la Terre
Cours 4 : Structure et composition de la Terre
 
Cours 9 : Interactions géologie - climat
Cours 9 : Interactions géologie - climatCours 9 : Interactions géologie - climat
Cours 9 : Interactions géologie - climat
 
impacts météoritiques
impacts météoritiquesimpacts météoritiques
impacts météoritiques
 
Les Conséquences d'un impact météoritique
Les Conséquences d'un impact météoritiqueLes Conséquences d'un impact météoritique
Les Conséquences d'un impact météoritique
 
Cours 7 : Des rifts aux chaînes de montagnes
Cours 7 : Des rifts aux chaînes de montagnesCours 7 : Des rifts aux chaînes de montagnes
Cours 7 : Des rifts aux chaînes de montagnes
 
Cours de préparation à l'aggrégation SVT - Tectonique des plaques
Cours de préparation à l'aggrégation SVT - Tectonique des plaquesCours de préparation à l'aggrégation SVT - Tectonique des plaques
Cours de préparation à l'aggrégation SVT - Tectonique des plaques
 
Chapitre 5 : tectonique des plaques
Chapitre 5 : tectonique des plaquesChapitre 5 : tectonique des plaques
Chapitre 5 : tectonique des plaques
 

Andere mochten auch (20)

Everest
EverestEverest
Everest
 
Hikikomoris
HikikomorisHikikomoris
Hikikomoris
 
ciBasico_Tema5FuentesHistoria_sp_2015_2
ciBasico_Tema5FuentesHistoria_sp_2015_2ciBasico_Tema5FuentesHistoria_sp_2015_2
ciBasico_Tema5FuentesHistoria_sp_2015_2
 
La mente de jesús
La mente de jesúsLa mente de jesús
La mente de jesús
 
Farmacodinamia sedantes hipnóticos
Farmacodinamia sedantes hipnóticosFarmacodinamia sedantes hipnóticos
Farmacodinamia sedantes hipnóticos
 
Istemas conceptuales
Istemas conceptualesIstemas conceptuales
Istemas conceptuales
 
2014_1_ciAvanzTeseo
2014_1_ciAvanzTeseo2014_1_ciAvanzTeseo
2014_1_ciAvanzTeseo
 
Carrières
CarrièresCarrières
Carrières
 
Sexualidad responsable
Sexualidad responsableSexualidad responsable
Sexualidad responsable
 
Lista de fuentes bibliograficas
Lista de fuentes bibliograficasLista de fuentes bibliograficas
Lista de fuentes bibliograficas
 
Grocery list
Grocery listGrocery list
Grocery list
 
Ff75 c 150617-talentslatents7.cnam.pptx.livre
Ff75 c 150617-talentslatents7.cnam.pptx.livreFf75 c 150617-talentslatents7.cnam.pptx.livre
Ff75 c 150617-talentslatents7.cnam.pptx.livre
 
6. JSB11 - Comment initier et réussir le déploiement d'un RSE dans un grand g...
6. JSB11 - Comment initier et réussir le déploiement d'un RSE dans un grand g...6. JSB11 - Comment initier et réussir le déploiement d'un RSE dans un grand g...
6. JSB11 - Comment initier et réussir le déploiement d'un RSE dans un grand g...
 
Proyecto plp
Proyecto plpProyecto plp
Proyecto plp
 
Synthes eco
Synthes ecoSynthes eco
Synthes eco
 
Demontmort.fr
Demontmort.frDemontmort.fr
Demontmort.fr
 
2014_1_ciAvanzRecursEspGeografíaYMedAmbiente
2014_1_ciAvanzRecursEspGeografíaYMedAmbiente2014_1_ciAvanzRecursEspGeografíaYMedAmbiente
2014_1_ciAvanzRecursEspGeografíaYMedAmbiente
 
Proyecto integrador
Proyecto integradorProyecto integrador
Proyecto integrador
 
Présentation balade diaporama
Présentation balade diaporamaPrésentation balade diaporama
Présentation balade diaporama
 
Escultura y arquitectura del sbuena
Escultura y arquitectura del sbuenaEscultura y arquitectura del sbuena
Escultura y arquitectura del sbuena
 

Ähnlich wie Cours 3 : Le système solaire

La vie dans l'univers version lamotte 2003
La vie dans l'univers version lamotte 2003La vie dans l'univers version lamotte 2003
La vie dans l'univers version lamotte 2003Luc Aubut
 
Les visiteuses du système solaire : komêtês 
Les visiteuses du système solaire : komêtês Les visiteuses du système solaire : komêtês 
Les visiteuses du système solaire : komêtês Yasmina Bouderba
 
Univers. hubble. magnifique
Univers. hubble. magnifiqueUnivers. hubble. magnifique
Univers. hubble. magnifiqueDominique Pongi
 
Lettre d'un reveur
Lettre d'un reveurLettre d'un reveur
Lettre d'un reveurArnaud Geny
 
L'Univers vu par Hubble
L'Univers vu par HubbleL'Univers vu par Hubble
L'Univers vu par HubbleGilles Boulard
 
Présentation Lalande : La course aux chocs, les météorites
Présentation Lalande : La course aux chocs, les météoritesPrésentation Lalande : La course aux chocs, les météorites
Présentation Lalande : La course aux chocs, les météoriteschainreactionfr
 
La vie secrète des étoiles
La vie secrète des étoilesLa vie secrète des étoiles
La vie secrète des étoilesSbastienCarassou
 
Leçon d'astronomie avec le télescope Hubble
Leçon d'astronomie avec le télescope HubbleLeçon d'astronomie avec le télescope Hubble
Leçon d'astronomie avec le télescope HubbleGriffin Lawrence
 
système solaire .pptx présentation PowerPoint
système solaire .pptx présentation PowerPointsystème solaire .pptx présentation PowerPoint
système solaire .pptx présentation PowerPointxyrfes
 
Un Peu D Astronomie
Un Peu D AstronomieUn Peu D Astronomie
Un Peu D Astronomievalereid
 
Un Peu D Astronomie
Un Peu D AstronomieUn Peu D Astronomie
Un Peu D Astronomievalereid
 
Planète Terre
Planète TerrePlanète Terre
Planète Terrerafa5979
 

Ähnlich wie Cours 3 : Le système solaire (20)

La vie dans l'univers version lamotte 2003
La vie dans l'univers version lamotte 2003La vie dans l'univers version lamotte 2003
La vie dans l'univers version lamotte 2003
 
CMC Chapitre 1 Nous dans l'univers
CMC Chapitre 1 Nous dans l'universCMC Chapitre 1 Nous dans l'univers
CMC Chapitre 1 Nous dans l'univers
 
Les visiteuses du système solaire : komêtês 
Les visiteuses du système solaire : komêtês Les visiteuses du système solaire : komêtês 
Les visiteuses du système solaire : komêtês 
 
Univers. hubble. magnifique
Univers. hubble. magnifiqueUnivers. hubble. magnifique
Univers. hubble. magnifique
 
Hubble (3)
Hubble (3)Hubble (3)
Hubble (3)
 
Lettre d'un reveur
Lettre d'un reveurLettre d'un reveur
Lettre d'un reveur
 
Ap hubble
Ap hubbleAp hubble
Ap hubble
 
Hubble
HubbleHubble
Hubble
 
Hubble
HubbleHubble
Hubble
 
Hubble
HubbleHubble
Hubble
 
L'Univers vu par Hubble
L'Univers vu par HubbleL'Univers vu par Hubble
L'Univers vu par Hubble
 
Présentation Lalande : La course aux chocs, les météorites
Présentation Lalande : La course aux chocs, les météoritesPrésentation Lalande : La course aux chocs, les météorites
Présentation Lalande : La course aux chocs, les météorites
 
La vie secrète des étoiles
La vie secrète des étoilesLa vie secrète des étoiles
La vie secrète des étoiles
 
Leçon d'astronomie avec le télescope Hubble
Leçon d'astronomie avec le télescope HubbleLeçon d'astronomie avec le télescope Hubble
Leçon d'astronomie avec le télescope Hubble
 
Diapo astro
Diapo astroDiapo astro
Diapo astro
 
système solaire .pptx présentation PowerPoint
système solaire .pptx présentation PowerPointsystème solaire .pptx présentation PowerPoint
système solaire .pptx présentation PowerPoint
 
Un Peu D Astronomie
Un Peu D AstronomieUn Peu D Astronomie
Un Peu D Astronomie
 
Un Peu D Astronomie
Un Peu D AstronomieUn Peu D Astronomie
Un Peu D Astronomie
 
Planète Terre
Planète TerrePlanète Terre
Planète Terre
 
Un peu d astronomie
Un peu d astronomieUn peu d astronomie
Un peu d astronomie
 

Mehr von Nicolas Coltice

Cours 6 : Tectonique des plaques
Cours 6 : Tectonique des plaquesCours 6 : Tectonique des plaques
Cours 6 : Tectonique des plaquesNicolas Coltice
 
Cours 2 - classe inversée / Des éléments aux roches.
Cours 2 - classe inversée / Des éléments aux roches.Cours 2 - classe inversée / Des éléments aux roches.
Cours 2 - classe inversée / Des éléments aux roches.Nicolas Coltice
 
Cours 6 : Tectonique des plaques / présence
Cours 6 : Tectonique des plaques / présenceCours 6 : Tectonique des plaques / présence
Cours 6 : Tectonique des plaques / présenceNicolas Coltice
 
Cours d'introduction (fonctionnement de l'UE et quizz)
Cours d'introduction (fonctionnement de l'UE et quizz)Cours d'introduction (fonctionnement de l'UE et quizz)
Cours d'introduction (fonctionnement de l'UE et quizz)Nicolas Coltice
 
Préparation à l'examen
Préparation à l'examenPréparation à l'examen
Préparation à l'examenNicolas Coltice
 
Cours8 : Dynamique de l'atmosphère et de l'océan
Cours8 : Dynamique de l'atmosphère et de l'océanCours8 : Dynamique de l'atmosphère et de l'océan
Cours8 : Dynamique de l'atmosphère et de l'océanNicolas Coltice
 
Cours 6 : Tectonique des plaques
Cours 6 : Tectonique des plaquesCours 6 : Tectonique des plaques
Cours 6 : Tectonique des plaquesNicolas Coltice
 
Cours 4 - La structure de la Terre
Cours 4 - La structure de la TerreCours 4 - La structure de la Terre
Cours 4 - La structure de la TerreNicolas Coltice
 
Cours 3 - Le système solaire
Cours 3 - Le système solaireCours 3 - Le système solaire
Cours 3 - Le système solaireNicolas Coltice
 
Cours d'introduction - Géosciences 1
Cours d'introduction - Géosciences 1Cours d'introduction - Géosciences 1
Cours d'introduction - Géosciences 1Nicolas Coltice
 
Cours 1 - Origine de la matière (Géosciences 1)
Cours 1 - Origine de la matière (Géosciences 1)Cours 1 - Origine de la matière (Géosciences 1)
Cours 1 - Origine de la matière (Géosciences 1)Nicolas Coltice
 
Diaporama pour le cours 2 inversé
Diaporama pour le cours 2 inverséDiaporama pour le cours 2 inversé
Diaporama pour le cours 2 inverséNicolas Coltice
 
Préparation à l'examen
Préparation à l'examenPréparation à l'examen
Préparation à l'examenNicolas Coltice
 
Cours 8 : Le Climat partie 1
Cours 8 : Le Climat partie 1Cours 8 : Le Climat partie 1
Cours 8 : Le Climat partie 1Nicolas Coltice
 
Cours 7 : Des rifts aux chaînes de montagnes
Cours 7 : Des rifts aux chaînes de montagnesCours 7 : Des rifts aux chaînes de montagnes
Cours 7 : Des rifts aux chaînes de montagnesNicolas Coltice
 
Diaporama cours inversé
Diaporama cours inverséDiaporama cours inversé
Diaporama cours inverséNicolas Coltice
 
Cours 5 : Une courte histoire de la Terre
Cours 5 : Une courte histoire de la TerreCours 5 : Une courte histoire de la Terre
Cours 5 : Une courte histoire de la TerreNicolas Coltice
 

Mehr von Nicolas Coltice (18)

Cours 6 : Tectonique des plaques
Cours 6 : Tectonique des plaquesCours 6 : Tectonique des plaques
Cours 6 : Tectonique des plaques
 
Cours 2 - classe inversée / Des éléments aux roches.
Cours 2 - classe inversée / Des éléments aux roches.Cours 2 - classe inversée / Des éléments aux roches.
Cours 2 - classe inversée / Des éléments aux roches.
 
Cours d'introduction
Cours d'introductionCours d'introduction
Cours d'introduction
 
Cours 6 : Tectonique des plaques / présence
Cours 6 : Tectonique des plaques / présenceCours 6 : Tectonique des plaques / présence
Cours 6 : Tectonique des plaques / présence
 
Cours d'introduction (fonctionnement de l'UE et quizz)
Cours d'introduction (fonctionnement de l'UE et quizz)Cours d'introduction (fonctionnement de l'UE et quizz)
Cours d'introduction (fonctionnement de l'UE et quizz)
 
Préparation à l'examen
Préparation à l'examenPréparation à l'examen
Préparation à l'examen
 
Cours8 : Dynamique de l'atmosphère et de l'océan
Cours8 : Dynamique de l'atmosphère et de l'océanCours8 : Dynamique de l'atmosphère et de l'océan
Cours8 : Dynamique de l'atmosphère et de l'océan
 
Cours 6 : Tectonique des plaques
Cours 6 : Tectonique des plaquesCours 6 : Tectonique des plaques
Cours 6 : Tectonique des plaques
 
Cours 4 - La structure de la Terre
Cours 4 - La structure de la TerreCours 4 - La structure de la Terre
Cours 4 - La structure de la Terre
 
Cours 3 - Le système solaire
Cours 3 - Le système solaireCours 3 - Le système solaire
Cours 3 - Le système solaire
 
Cours d'introduction - Géosciences 1
Cours d'introduction - Géosciences 1Cours d'introduction - Géosciences 1
Cours d'introduction - Géosciences 1
 
Cours 1 - Origine de la matière (Géosciences 1)
Cours 1 - Origine de la matière (Géosciences 1)Cours 1 - Origine de la matière (Géosciences 1)
Cours 1 - Origine de la matière (Géosciences 1)
 
Diaporama pour le cours 2 inversé
Diaporama pour le cours 2 inverséDiaporama pour le cours 2 inversé
Diaporama pour le cours 2 inversé
 
Préparation à l'examen
Préparation à l'examenPréparation à l'examen
Préparation à l'examen
 
Cours 8 : Le Climat partie 1
Cours 8 : Le Climat partie 1Cours 8 : Le Climat partie 1
Cours 8 : Le Climat partie 1
 
Cours 7 : Des rifts aux chaînes de montagnes
Cours 7 : Des rifts aux chaînes de montagnesCours 7 : Des rifts aux chaînes de montagnes
Cours 7 : Des rifts aux chaînes de montagnes
 
Diaporama cours inversé
Diaporama cours inverséDiaporama cours inversé
Diaporama cours inversé
 
Cours 5 : Une courte histoire de la Terre
Cours 5 : Une courte histoire de la TerreCours 5 : Une courte histoire de la Terre
Cours 5 : Une courte histoire de la Terre
 

Kürzlich hochgeladen

gestion des conflits dans les entreprises
gestion des  conflits dans les entreprisesgestion des  conflits dans les entreprises
gestion des conflits dans les entreprisesMajdaKtiri2
 
Sidonie au Japon . pptx Un film français
Sidonie    au   Japon  .  pptx  Un film françaisSidonie    au   Japon  .  pptx  Un film français
Sidonie au Japon . pptx Un film françaisTxaruka
 
SUPPORT DE SUR COURS_GOUVERNANCE_SI_M2.pptx
SUPPORT DE SUR COURS_GOUVERNANCE_SI_M2.pptxSUPPORT DE SUR COURS_GOUVERNANCE_SI_M2.pptx
SUPPORT DE SUR COURS_GOUVERNANCE_SI_M2.pptxssuserbd075f
 
Cours ofppt du Trade-Marketing-Présentation.pdf
Cours ofppt du Trade-Marketing-Présentation.pdfCours ofppt du Trade-Marketing-Présentation.pdf
Cours ofppt du Trade-Marketing-Présentation.pdfachrafbrahimi1
 
Bolero. pptx . Film de A nnne Fontaine
Bolero. pptx . Film   de  A nnne FontaineBolero. pptx . Film   de  A nnne Fontaine
Bolero. pptx . Film de A nnne FontaineTxaruka
 
COURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdf
COURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdfCOURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdf
COURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdfabatanebureau
 
La nouvelle femme . pptx Film français
La   nouvelle   femme  . pptx  Film françaisLa   nouvelle   femme  . pptx  Film français
La nouvelle femme . pptx Film françaisTxaruka
 
Computer Parts in French - Les parties de l'ordinateur.pptx
Computer Parts in French - Les parties de l'ordinateur.pptxComputer Parts in French - Les parties de l'ordinateur.pptx
Computer Parts in French - Les parties de l'ordinateur.pptxRayane619450
 
Boléro. pptx Film français réalisé par une femme.
Boléro.  pptx   Film   français   réalisé  par une  femme.Boléro.  pptx   Film   français   réalisé  par une  femme.
Boléro. pptx Film français réalisé par une femme.Txaruka
 

Kürzlich hochgeladen (10)

gestion des conflits dans les entreprises
gestion des  conflits dans les entreprisesgestion des  conflits dans les entreprises
gestion des conflits dans les entreprises
 
Sidonie au Japon . pptx Un film français
Sidonie    au   Japon  .  pptx  Un film françaisSidonie    au   Japon  .  pptx  Un film français
Sidonie au Japon . pptx Un film français
 
Evaluación Alumnos de Ecole Victor Hugo
Evaluación Alumnos de Ecole  Victor HugoEvaluación Alumnos de Ecole  Victor Hugo
Evaluación Alumnos de Ecole Victor Hugo
 
SUPPORT DE SUR COURS_GOUVERNANCE_SI_M2.pptx
SUPPORT DE SUR COURS_GOUVERNANCE_SI_M2.pptxSUPPORT DE SUR COURS_GOUVERNANCE_SI_M2.pptx
SUPPORT DE SUR COURS_GOUVERNANCE_SI_M2.pptx
 
Cours ofppt du Trade-Marketing-Présentation.pdf
Cours ofppt du Trade-Marketing-Présentation.pdfCours ofppt du Trade-Marketing-Présentation.pdf
Cours ofppt du Trade-Marketing-Présentation.pdf
 
Bolero. pptx . Film de A nnne Fontaine
Bolero. pptx . Film   de  A nnne FontaineBolero. pptx . Film   de  A nnne Fontaine
Bolero. pptx . Film de A nnne Fontaine
 
COURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdf
COURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdfCOURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdf
COURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdf
 
La nouvelle femme . pptx Film français
La   nouvelle   femme  . pptx  Film françaisLa   nouvelle   femme  . pptx  Film français
La nouvelle femme . pptx Film français
 
Computer Parts in French - Les parties de l'ordinateur.pptx
Computer Parts in French - Les parties de l'ordinateur.pptxComputer Parts in French - Les parties de l'ordinateur.pptx
Computer Parts in French - Les parties de l'ordinateur.pptx
 
Boléro. pptx Film français réalisé par une femme.
Boléro.  pptx   Film   français   réalisé  par une  femme.Boléro.  pptx   Film   français   réalisé  par une  femme.
Boléro. pptx Film français réalisé par une femme.
 

Cours 3 : Le système solaire

  • 2. Qu’est-ce qu’une planète ? Terme difficile à définir… redéfini en 2006 par l'Union astronomique internationale : - En orbite autour d’une étoile ; - Sans toutefois être une étoile ; - Suffisamment massive pour que l’effet de sa propre gravité lui confère une enveloppe sphérique ; - Dominant son environnement et ayant « dégagé le voisinage autour de son orbite » Quelquesbasessurlesplanètes
  • 3. Des planètes en dehors du système solaire ? > 1000!!! Quelquesbasessurlesplanètes
  • 7. Comment connaître la masse d’une planète ? Facile si la planète a un satellite : on utilise la 3ème loi de Kepler a ae foyer e = excentricité G = 6.67x10-11 m3/s2/kg Masse de la Planète Distance Planète- Satellite Période de révolution du satellite Quelquesbasessurlesplanètes
  • 8. Europe tourne autour de Jupiter : • Période T de 3.55j • Distance a = 670900km Exemple de Jupiter Quelquesbasessurlesplanètes
  • 10. Quand on connaît la masse, on connaît la densité ! Densité des silicates Densité H2O Quelquesbasessurlesplanètes
  • 12. Catégorie : petite étoile jaune de type G2. Masse : 2. 1030 Kg. Volume : 1 392 000 km de diamètre (109 x D Terre). Composition : Gaz = H (70%), He (28%). Réacteur thermonucléaire : au cœur de l’étoile, fusion H en He. Structure interne : Lesoleiletlesplanètes
  • 13. La chromosphère du Soleil avec en haut à droite des protubérances, SOHO.Taches solaires. SOHO, NGM Juillet 2004. Protubérances Protubérances Télescope solaire suédois. Le cœur sombre d’une tache solaire (diamètre de la Terre). Lesoleiletlesplanètes
  • 14. Silicates O, Si, Al, Mg, Na, Ca, K Fer, nickel et soufre. Roches et métaux. Lesoleiletlesplanètes
  • 15. 80-90 mol% de H 10-20 mol% de He et d’un peu de méthane d < 2 Composition chimique très proche de celle du Soleil. Gaz. Lesoleiletlesplanètes
  • 16. Me T J S U N Champmagnétique/Terre Mars et Venus n’ont pas de champ magnétique ! Avec les sondes envoyées, on peut mesurer le champ magnétique Lesoleiletlesplanètes
  • 17. Les plaines emplies de laves sont représentées en orange pâle dans le bassin Caloris (1 million de km2) Les flèches blanches indiquent des plaines jeunes dont la composition semble proche de celles de Caloris. Les flèches noires indiquent les « points rouges » qui seraient formés par des explosions volcaniques. En bleu foncé, des zones occupées par de vieilles roches contenant peut-être de l’ilménite riche en fer. Nasa/JHUAP/Arizona State University. Image fausses couleurs. Lancée le 3-08-2004, la sonde Messenger est passée le 14 Janvier 2008 à 200 km de Mercure. Lesoleiletlesplanètes
  • 18. Noyau métallique : Fer principalement 40 % de son volume 2/3 de sa M totale  d élevée = 5,4. Lesoleiletlesplanètes
  • 19. Atmosphère de Vénus. Schéma de Vénus sans son atmosphère, d'après la sonde Magellan. Atmosphère : dense (95 bars), épaisse de 50 à 70 km, 96 % de CO2 ;  effet de serre (460 °C). Lesoleiletlesplanètes
  • 21. La surface de Vénus photographiée par la sonde Magellan. Cartographie sonde Magellan : - des milliers de volcans; - des dômes (coulées de lave) ; - des cratères d’impact. On considère que Vénus est volcaniquement active de nos jours… …bien qu'aucune éruption n'ait été vue par la mission Magellan ! Lesoleiletlesplanètes
  • 22. Relief (eau = agent d’érosion).Hydrosphère liquide et solide. Atmosphère (vapeur d’eau). Biosphère (H20) Google Earth World Wind Earth Lesoleiletlesplanètes
  • 23. Météore Cratère , (Arizona), D = 1 km., 49000 ans. Le Wolfe Creek (Australie), D = 875 m, 300 000 ans. Cratère du Manicouagan, Québec ; Age = 210 Ma, D = 70 km,  météorite D = 3,5 km. D impact = 20 x D météorite. Cratère du Chixculub, Mexique ; Age = 65 Ma, D = 200 km,  météorite D = 10 km. Cratère du Popigai, Sibérie ; Age = 40 Ma, D = 100 km,  météorite D = 5 km. Le plus gros fragment de météorite (Hoba = sidérite de 60 T) connu à ce jour a été trouvé en 1920 en Namibie. Lesoleiletlesplanètes
  • 24. Mars Pathfinder, USA, 1996. Mars Global Surveyor, USA, 1996. Plus d’activité géologique. World Wind Mars Google Mars Phobos. 28 x 22 x 18 km. Deimos. Mars au plus près de la Terre = 55 M de km. Lesoleiletlesplanètes
  • 26. Mais y a t-il eu de l’eau liquide à la surface de Mars ? De par sa position dans le Système Solaire, Mars aurait dû accumuler autant d'eau que la Terre au cours de sa formation. Mais son atmosphère = 0,03% de vapeur d'eau. Les calottes polaires. L'eau liquide n'existe plus à la surface de Mars. © Hubble, NASA. Lesoleiletlesplanètes
  • 27. Etagement bien visible qui résulterait d'un dépôt de sédiments dans un ancien lac maintenant asséché. Viking I. Lesoleiletlesplanètes
  • 28. Atmosphère = 95 % CO2. Pression : 0,01 bar ; faible gravitation et pas de champ magnétique pour se protéger du vent solaire. Un cyclone de 300 km de diamètre Lesoleiletlesplanètes
  • 29. Multi-impact de Shoemaker-Levy 9, Image UV, NASA, juillet 1994. Io Impacts S-L. Lesoleiletlesplanètes
  • 30. 4 gros satellites et 36 petits satellites La glace domine (noyau rocheux ?). Activité géologique décroissante de façon centrifuge. Couche de glace fissurée. Io. Europe. Callisto.Ganymède. Lesoleiletlesplanètes
  • 31. Haemus Mons est une montagne localisée près du pole sud d'Io, 100 sur 200 km à la base. Io, La caldeira du volcan Tupan d'après des photos de la sonde Galilèo en aout 2001. Io, Volcan Pelé, Galileo. Io, éruption Masubi, Galileo. Io et ses volcans de soufre. Lesoleiletlesplanètes
  • 34. Triton et ses volcans/geysers d'azote. L’évolution orbitale de Triton fait qu'il se rapproche de Neptune. Dans 100 Ma, il sera si proche de Neptune qu'il se disloquera, et Neptune héritera d'un superbe anneau supplémentaire ! Lesoleiletlesplanètes
  • 35. Comète de Halley photographiée le 13 Mai 1910, source NASA. Noyau de Halley, sonde Giotto, Mars 1986, ESA. Venus Halley, 1886, Giotto, ESA. Halley… tous les 76 ans. - De la ceinture de Kuiper, à peine au- delà de l'orbite de Neptune. - Du nuage d'Oort. Corps de forme irrégulière. 1 km < D noyau < 10 km. Noyau = glace et de poussière. En se rapprochant du Soleil, la glace de leur noyau s'évapore  nuage de poussière tout autour = chevelure (peut atteindre plusieurs dizaines de milliers de km de D. Lesoleiletlesplanètes
  • 37. Comment expliquer la zonation chimique du Système Solaire et les différents états de la matière (roche, gaz et glace) ? Comment expliquer la petite taille des planètes telluriques et leur atmosphère ? Lesoleiletlesplanètes
  • 39. Observations dans la nébuleuse de l’Aigle: Grains de < 5mm à proximité du centre Intensitélumineuse Distance au centre de la nébuleuse 3.Uneplanète,unehistoire
  • 40. La séquence de condensation générale… à partir de la nébuleuse solaire (gaz enrichi en éléments lourds). 1600 K 1300 K 800 K 1000 K 500 K 175K 150 à 120 K et hydrates solides NH3 H20, CH4 H20. H et He ne condensent pas (les 20 K ne sont pas atteints). JP Bourseau, UCBL1 Des expériences de condensation de mélanges gazeux et surtout des calculs thermodynamiques montrent : Champ du Fer : 1600 à 1300 K Champ des Silicates 1200 à 400 K Champ des glaces : 175 à 120 K 3.Uneplanète,unehistoire
  • 41. • Les poussières s’attirent de manière électrostatique • Lorsqu’elles deviennent plus grosse : attraction gravitaire • Problème : petits corps (< 1km) détruits facilement par les collisions Comment passer d’une poussière à un corps d’1km ~ comment passer d’acides aminés à la cellule 3.Uneplanète,unehistoire Accrétion Des poussières aux planètes Des poussières aux embryons de planètes…
  • 43. Planètes gazeuses : 1- Noyau de glaces 2- Capture des gaz Croissance rapide ! Planètes rocheuses : Impacts Croissance lente 3.Uneplanète,unehistoire A partir d’1km de diamètre… Accrétion Des poussières aux planètes
  • 44. • Les gros corps croissent plus vite que les petits (gravité + section efficace) 3.Uneplanète,unehistoire Accrétion Des poussières aux planètesCroissance des embryons (<1000km)
  • 46. Énergie libérée (M’Mars’=7x10^23kg) Augmentation de T (Cp =1000 J/kg/K)? • Formation de la Lune - impact d’un corps de la taille de Mars  Fusion ? 3.Uneplanète,unehistoire Les impacts géants Accrétion Des poussières aux planètes E cinétique = 1/2 M v^2 E cinétique = MT*Cp*DT E cinétique = 3,5x10^31 J DT ~ 6000K R GM ev 2  = 11 km/s G = 6.67x10-11 m3/s2/kg
  • 47. Ce qu’il faut retenir •Ce qu’est une planète •Les types de planètes •Comment connaître la masse et la composition de la planète •Les causes des différences entre les planètes •Histoire de l’accrétion