SlideShare ist ein Scribd-Unternehmen logo
1 von 25
Downloaden Sie, um offline zu lesen
Arthur CHARPENTIER - Archimax copulas (and other copula families)

Archimax Copulas
Arthur Charpentier
charpentier.arthur@uqam.ca
http ://freakonometrics.hypotheses.org/

based on joint work with
A.-L. Fougères, C. Genest and J. Nešlehová

March 2014, CIMAT, Guanajuato, Mexico.
1
Arthur CHARPENTIER - Archimax copulas (and other copula families)

Agenda

◦
•
◦
◦
◦
•
◦
◦

Copulas
Standard copula families
Elliptical distributions (and copulas)
Archimedean copulas
Extreme value distributions (and copulas)
Archimax copulas
Archimax copulas in dimension 2
Archimax copulas in dimension d ≥ 3

2
Arthur CHARPENTIER - Archimax copulas (and other copula families)

Copulas, in dimension d = 2
Definition 1
A copula in dimension 2 is a c.d.f on [0, 1]2 , with margins U([0, 1]).

Thus, let C(u, v) = P(U ≤ u, V ≤ v),
where 0 ≤ u, v ≤ 1, then
• C(0, x) = C(x, 0) = 0 ∀x ∈ [0, 1],
• C(1, x) = C(x, 1) = x ∀x ∈ [0, 1],
• and some increasingness property

3
Arthur CHARPENTIER - Archimax copulas (and other copula families)

Copulas, in dimension d = 2
Definition 2
A copula in dimension 2 is a c.d.f on [0, 1]2 , with margins U([0, 1]).
Thus, let C(u, v) = P(U ≤ u, V ≤ v),
where 0 ≤ u, v ≤ 1, then
• C(0, x) = C(x, 0) = 0 ∀x ∈ [0, 1],
• C(1, x) = C(x, 1) = x ∀x ∈ [0, 1],
• If 0 ≤ u1 ≤ u2 ≤ 1, 0 ≤ v1 ≤ v2 ≤ 1

q

q
q
q

q

C(u2 , v2 )+C(u1 , v1 ) ≥ C(u1 , v2 )+C(u2 , v1 )
2

q

q

q

(concept of 2-increasing function in R )
v

u

see C(u, v) =

c(x, y) dxdy with the density notation.
0

0
≥0

4
Arthur CHARPENTIER - Archimax copulas (and other copula families)

Copulas, in dimension d ≥ 2
The concept of d-increasing function simply means that
P(a1 ≤ U1 ≤ b1 , ..., ad ≤ Ud ≤ bd ) = P(U ∈ [a, b]) ≥ 0
where U = (U1 , ..., Ud ) ∼ C for all a ≤ b (where ai ≤ bi).

Definition 3
Function h : Rd → R is d-increasing if for all rectangle [a, b] ⊂ Rd , Vh ([a, b]) ≥ 0,
where
b
(1)
Vh ([a, b]) = ∆b h (t) = ∆bd ∆ad−1 ...∆b2 ∆b1 h (t)
a
ad
a2 a1
d−1
and for all t, with
∆bii h (t) = h (t1 , ..., ti−1 , bi , ti+1 , ..., tn ) − h (t1 , ..., ti−1 , ai , ti+1 , ..., tn ) .
a

(2)

5
Arthur CHARPENTIER - Archimax copulas (and other copula families)

Copulas, in dimension d ≥ 2
Definition 4
A copula in dimension d is a c.d.f on [0, 1]d , with margins U([0, 1]).

Theorem 1 1. If C is a copula, and F1 , ..., Fd are univariate c.d.f., then
F (x1 , ..., xn ) = C(F1 (x1 ), ..., Fd (xd )) ∀(x1 , ..., xd ) ∈ Rd

(3)

is a multivariate c.d.f. with F ∈ F(F1 , ..., Fd ).
2. Conversely, if F ∈ F(F1 , ..., Fd ), there exists a copula C satisfying (3). This copula
is usually not unique, but it is if F1 , ..., Fd are absolutely continuous, and then,
−1
−1
C(u1 , ..., ud ) = F (F1 (u1 ), ..., Fd (ud )), ∀(u1 , , ..., ud ) ∈ [0, 1]d

(4)

−1
−1
where quantile functions F1 , ..., Fn are generalized inverse (left cont.) of Fi ’s.

If X ∼ F , then U = (F1 (X1 ), · · · , Fd (Xd )) ∼ C.
6
Arthur CHARPENTIER - Archimax copulas (and other copula families)

Survival (or dual) copulas
Theorem 2 1. If C is a copula, and F 1 , ..., F d are univariate s.d.f., then
F (x1 , ..., xn ) = C (F 1 (x1 ), ..., F d (xd )) ∀(x1 , ..., xd ) ∈ Rd

(5)

is a multivariate s.d.f. with F ∈ F(F1 , ..., Fd ).
2. Conversely, if F ∈ F(F1 , ..., Fd ), there exists a copula C satisfying (5). This
copula is usually not unique, but it is if F1 , ..., Fd are absolutely continuous, and
then,
−1

−1

C (u1 , ..., ud ) = F (F 1 (u1 ), ..., F d (ud )), ∀(u1 , , ..., ud ) ∈ [0, 1]d

(6)

−1
−1
where quantile functions F1 , ..., Fn are generalized inverse (left cont.) of Fi ’s.

If X ∼ F , then U = (F1 (X1 ), · · · , Fd (Xd )) ∼ C and 1 − U ∼ C .

7
Arthur CHARPENTIER - Archimax copulas (and other copula families)

Benchmark copulas
Definition 5
The independent copula C ⊥ is defined as
d

C ⊥ (u1 , ..., un ) = u1 × · · · × ud =

ui .
i=1

Definition 6
The comonotonic copula C + (the Fréchet-Hoeffding upper bound of the set of copulas)
is the copula defined as C + (u1 , ..., ud ) = min{u1 , ..., ud }.

8
Arthur CHARPENTIER - Archimax copulas (and other copula families)

Spherical distributions
q

q

2

q

q
q
q

Definition 7

q

q

q

q

q
q

q

q
q

q
q

1

q

q

q

0

Random vector X as a spherical distribution if

q

q

q
q

q q

q

q
q

q q

−1

q
q

q
q

q

q

q

q
q q
q qq qq q
q
q
q q
q
qq
q
q
q

q
q
qq
qq
q
q
qq
q
q
q
q
q
qq
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q q
q
q
q q
q q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q q
qq
q
qqq
q
q
qq
q q
qq
qq
q
q qq q q
q
q
q
q
q
q q
qq
qq q
q qq
q
qqq qqq qq q qq
qq
q q
qq q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

q
q

q

q
q

q
q

q
q q

q

q

q

q
q

q
q

q

q
q qq
q

q

q
q

q
q
q

q
q

q
q
q

q

−2

X =R·U

q

q

q

−1

0

1

2

q

2

q

q

0.02

q
q

q

0.04

q

q

q

q

q
q
q

1

q

0

q

q

q

q

q

q q

q
qq

q

q
q
q

q q
qq
q
q q

q

−1

q
q

q

q

q q

q

qq

q

q qq

q
q

q

q

0.12
q

q

q

q

q

q
q
q

qq
q

qq
q
q

q

q

q q
q

q

q

q

q
q

q

q
q
q

q

q

0.06

q

q

q

q q
q

q qq
q

q

q

q
q
q q

q

q
q

q

q

q

q

q
q
q

q

q

q
q

q

q

q

q

q
q q

q

q
q

q

q

q
q

q
q

q

q
q

q

0.14
q

q q

q

q

q
q

q
q
q
q

q

q

q
q

q
q

q

qq

q

q

q

q

q

q

q
q q
q
q

q

q

q

q
q

q

q

q
q

0.08 q

q
q

q
q q

q
q

q

q

q
q

q

q

q
q

q
q

q

q

−2

E.g. X ∼ N (0, I).

q

q
q

−2

where R is a positive random variable and U is uniformly distributed on the unit sphere of Rd , with R ⊥ U .
⊥

q

q

q

q

q
q

q

−2

−1

0

1

2

Those distribution can be non-symmetric, see Hartman & Wintner (AJM, 1940)
or Cambanis, Huang & Simons (JMVA, 1979))
9
Arthur CHARPENTIER - Archimax copulas (and other copula families)

Elliptical distributions
2

Definition 8

q

q

q
q

q

q
q
q

q

1

Random vector X as a elliptical distribution if

q

qq
qq
q

q

q

q

q
q
q
q q
q qq q qqq
q
q qq
q
q
q
q

q
q
qq
q q

qq

q

q

q

0

q

q

q

q

q

q
q

q

q
q
q

−1

q
q

q
q

q

q

q
q

q
q
q
qq
qqq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q qq
q
q
q q
q
q
q
q
q
q
q
q
q
q

q
q
q
q
q
q
q
q
q
qq
q
q
qq
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qq
q
q
q
q
q q
q
q
q
q
qq
q
q
q q
q
q
q
q q
q q
q
q
q
q
q
q
q
q
q q
q
q
qq
q
q
q
q
q
q
q
q
q
q q
q
q
q q
qq
q
q
q
q
q
q
q
q
q
q
qq
q q
q
qq
q
q
q
qq q q
q
q q
q qq
qq
qq
q
qq q
q
qq
q
q q
qq
qq
q
q
q q
q
q
q q qq q
q
q
q q
q
q q
qq
q
q q
q q q q q q q qq qq
q q
q q qq
q
qq q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

q
q

q

q

q
q
q

q
q
q

q
q

q

q

q
q

q

q

q
q

q

q

−2

q

−1

0

1

2

2

−2

where R is a positive random variable and U is uniformly dis⊥
tributed on the unit sphere of Rd , with R ⊥ U , and where A
satisfies AA = Σ.

q
q
qq
qq

q

q

q

q
q
q q

q

X =µ+R·A·U

q

q
q

q

q

q

q

qq

q

q

q
q

0.02
q

q

0.04
q

q

1
0

q
q

q

q

q

q

q
q q

q

q

q
q

q
q

q

q

q

q

q

q

qq
q
q qq

q

q
q
q

q q
q
q

q

q qq
q

q
q

q

q

q

q
q
q
q

q
q

q

q q q
q
q

q

q
q
q

q
q

q

q q

q
q

q

q
q

q

q
q

q
q

0.08q

q

q

qqq
q

qq
q

q

q
q
q qq
q

q

q
q
q

q q
qq

q
q

0.14

q q

q

q
q

q

q

q

q

q

q
q

q
q
q

q

q

q

q

q

q

q

q
q

q
q
q

q q

q
q

q

qq
q
q

q
q

q

q

q

0.12
q

q
q

q

q

q
q

q
q

q
q

q
q
q
q

q

q

q

q
q
q q

−1

0.06

q

q
q

q

q

q
q

q

qq

q

q
q

q
q

q
q

q

q

q
q

q
q

−2

E.g. X ∼ N (µ, Σ).

q

−2

−1

0

1

2

Elliptical distribution are popular in finance, see e.g. Jondeau, Poon & Rockinger
(FMPM, 2008)
10
Arthur CHARPENTIER - Archimax copulas (and other copula families)

Archimedean copula
Definition 9
If d ≥ 2, an Archimedean generator is a function φ : [0, 1] → [0, ∞) such that φ−1 is
d-completely monotone (i.e. ψ is d-completely monotone if ψ is continuous and
∀k = 0, 1, ..., d, (−1)k dk ψ(t)/dtk ≥ 0).

Definition 10
Copula C is an Archimedean copula is, for some generator φ,
C(u1 , ..., ud ) = φ−1 [φ(u1 ) + ... + φ(ud )], ∀u1 , ..., ud ∈ [0, 1].

Exemple1
φ(t) = − log(t) yields the independent copula C ⊥ .
φ(t) = [− log(t)]θ yields Gumbel copula Cθ (note that ψ(t) = φ−1 (t) = exp[−t1/θ ]).

11
Arthur CHARPENTIER - Archimax copulas (and other copula families)

Archimedean copula, exchangeability and frailties

F (x) = P(X > x) = ψ −

60
40
0

n

20

Consider residual life times X = (X1 , · · · , Xd ) conditionally independent given some latent factor Θ, and such that
P(Xi > xi |Θ = θ) = B i (xi )θ . Then

80

100

Conditional independence, continuous risk factor

0

log F i (xi )
i=1

40

60

80

100

!2

!1

0

1

2

3

Conditional independence, continuous risk factor

!3

where ψ is the Laplace transform of Θ, ψ(t) = E(e−tΘ ).
Thus, the survival copula of X is Archimedean, with generator φ = ψ −1 .
See Oakes (JASA, 1989).

20

!3

!2

!1

0

1

2

3

12
Arthur CHARPENTIER - Archimax copulas (and other copula families)

2.5

Stochastic representation of Archimedean copulas

∞

φ

−1

(t) =
x

x
1−
t

2.0

q

q

q

q

1.5

q

q
q

q

q

q

q

q

q
q

q

1.0

q

0.5

q
q

q
q

q

q
q q q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

q
q

q

q

q

q

q

q
q

q

q

q
q

q

q

q
q
q
q
q
q
q

q

q
q
q

q
q

q
q
q
q
q
q
q
q
q
q
q

q

q
q

q
q q

q
q

q
q

q

q
q
q
q

q
q
q q q
q
q
q

0.5

q

q

q
q
q
q
q
q
q
q
q

q

0.0

q
q

q

q
q
q

q
q

q

q
q
q
q
q
q
q
qq q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

q

q

q
q

0.0

Consider some striclty positive random variable R
independent of U , uniform on the simplex of Rd .
The survival copula of X = R · U is Archimedean,
and its generator is the inverse of Williamson dtransform,

q
q

1.0

q
q

1.5

2.0

2.5

d−1

dFR (t).
q

L

Note that R = φ(U1 ) + · · · + φ(Ud ).

q
q
q
q
q

q

q

q
q
q

q

q

q
q

q

q

q

q

q

q

q

q

q
q
q

q
q

q
q

q

q q
q

q
q
q
q

See Nešlehová & McNeil (AS, 2009).

13
Arthur CHARPENTIER - Archimax copulas (and other copula families)

Archimedean copula and distortion
Definition 11
Function h : [0, 1] → [0, 1] defined as h(t) = exp[−φ(t)] is called a distortion function.
Genest & Rivest (SPL, 2001), Morillas (M, 2005) considered distorted copulas
(also called multivariate probability integral transformation)

Definition 12
Let h be some distortion function, and C a copula, then
Ch (u1 , ..., ud ) = h−1 (C(h(u1 ), · · · , h(ud )))
is a copula.

Exemple2
⊥
If C = C ⊥ , then Ch is the Archimedean copula with generator φ(t) = − log h(t).

14
Arthur CHARPENTIER - Archimax copulas (and other copula families)

Nested Archimedean copula, and hierarchical structures
Consider C(u1 , · · · , ud ) defined as
φ−1 [φ1 [φ−1 (φ2 [· · · φ−1 [φd−1 (u1 ) + φd−1 (u2 )] + · · · + φ2 (ud−1 ))] + φ1 (ud )]
1
2
d−1
where φi ’s are generators. Then C is a copula if φi ◦ φ−1 is the inverse of a
i−1
Laplace transform, and is called fully nested Archimedean copula. Note that
partial nested copulas can also be considered,
φ1
φ2

φ4

φ3

φ1

φ4
U1

φ2
U2

U3

U4

U5

U1

φ3
U2

U3

U4

U5

15
Arthur CHARPENTIER - Archimax copulas (and other copula families)

(Univariate) extreme value distributions
Central limit theorem, Xi ∼ F i.i.d.

X n − bn L
→ S as n → ∞ where S is a
an

non-degenerate random variable.
Xn:n − bn L
Fisher-Tippett theorem, Xi ∼ F i.i.d.,
→ M as n → ∞ where M is a
an
non-degenerate random variable.
Then
P

Xn:n − bn
≤x
an

= F n (an x + bn ) → G(x) as n → ∞, ∀x ∈ R

i.e. F belongs to the max domain of attraction of G, G being an extreme value
distribution : the limiting distribution of the normalized maxima.
−1/ξ

− log G(x) = (1 + ξx)+

16
Arthur CHARPENTIER - Archimax copulas (and other copula families)

(Multivariate) extreme value distributions
Assume that X i ∼ F i.i.d.,
F n (an x + bn ) → G(x) as n → ∞, ∀x ∈ Rd
i.e. F belongs to the max domain of attraction of G, G being an (multivariate)
extreme value distribution : the limiting distribution of the normalized
componentwise maxima,
X n:n = (max{X1,i }, · · · , max{Xd,i })

− log G(x) = µ([0, ∞)[0, x]), ∀x ∈ Rd
+
where µ is the exponent measure. It is more common to use the stable tail
dependence function defined as
(x) = µ([0, ∞)[0, x−1 ]), ∀x ∈ Rd
+
17
Arthur CHARPENTIER - Archimax copulas (and other copula families)

i.e.
− log G(x) = (− log G1 (x1 ), · · · , log Gd (xd )), ∀x ∈ Rd
Note that there exists a finite measure H on the simplex of Rd such that
(x1 , · · · , xd ) =

max{ω1 x1 , · · · , ωd xd }dH(ω1 , · · · , ωd )
Sd

for all (x1 , · · · , xd ) ∈ Rd , and
+

Sd

ωi dH(ω1 , · · · , ωd ) = 1 for all i = 1, · · · , n.

Definition 13
Copula C : [0, 1]d → [0, 1] is an multivariate extreme value copula if and only if there
exists a stable tail dependence function such that
C (u1 , · · · , ud ) = exp[− (− log u1 , · · · , − log ud )]
Assume that U i ∼ Γ i.i.d.,
n

1
n

n

1
n

1
n

Γ (u ) = Γ (u1 , · · · , ud ) → C (u) as n → ∞, ∀x ∈ Rd
i.e. Γ belongs to the max domain of attraction of C , C being an (multivariate)
extreme value copula, Γ ∈ MDA(C ).
18
Arthur CHARPENTIER - Archimax copulas (and other copula families)

The stable tail dependence function (·)
xd
x1
,··· ,1 −
n
n

→ − log Γ(e−x1 , · · · , e−x1 )

0.6

= (x)
0.4

Exemple3

0.0

0.2

Gumbel copula, θ ∈ [1, +∞],
θ (x1 , · · ·

, xd ) =

xθ
1

+ ··· +

q
q
q
q q
q
qq q
q
q
q q q qqq q qqq
qqq
q
q
qq q
q
q q qq qq q q q
q q qq q q
q
q
q
q
q
q qq q q q q q q q q
q q q qqq q q q q qq qq qq q q
qq
q
q q q
q
q
qqq qq qq q qqqq
q q q
q
q q qqq q
qq q q q q
q
q q q
q q q qq
q
q
q
q q q qq q q q q q qq q qqq
qq q q
qq
qq
q
q
qq
q q q
q
q qq q
q
qqq
q q q
q q qq
q q
q qq q
q
qq
q
q
q
q
q
q
q qqq
q
q
q
q qq
q
qq q
q q
q
q
q
q
q
qq
q qq
q
q q qq qq qq
q
qq
q
q
q q q qq qq q q q
q
q
q
q
q
q
qq q q q
q
qq
q
q
q
q
q
q q q
q
q q
qq
q
q q q q q qq q q q q q q q
q
q
q qq q q
q
q q
qq
q q q q
qq
qq q q
q qq q
q
qq
q
q
q
qq q
q
q qq q
qq
q q q qq q q q q
q
q qq q
q
qq q
q
q
q
q qq qqq
q
q
qq
q
q q q qq
q
q
q q q qq q q q
q
q
q
q
q
qq
qq
q
qq q
qq
q q
q
q q q q qq qq q
q q
qq q q q q q
q
q
q
q
q q qq q
q qq
q
q q
q q
q
q q
qq qq
q
q
q qq
q q
q
q
q
q q
q
q
q
qq q
q q q q
q
q q
q
q q
q qq
qq q q
q q
q q
q
qq q
qq
q
q
q
q
q
q
q
q
q q q
q qq
q
q
q qq
q q qqq
q qq
q
q q q
q q qqq
q
q
q
q q q
qq q
q qq q q q q q q q q q
q
q qq q qq qq
q q
q
q
q
q
q
qq q q q q q
q
q q qq qq q
q
qq
qq q
q q q
q
q
qq
q
qq
q q
q qqq q q q
q
q
q
q
q
q qq q q q
qq
q
q
qq
q
qq
qq q q q q
q
q
q q
q
q qq
q
q
qq q
q qq
q
q
q q
q
qq
q q qq q
q
q q
q qq q q q
q qq q q q
q q
q
q q
q
q q
q
qq
q
q
q qq q qq q
q
qq
qq
q
q
q q q qq q
q
q q q
q
q
q
q
qq
q
q
q
q q
q
qq
q q
q qq q
q
q
q qq
qq q q q
qq q
q
q
q
q
qq
q q q
q
qq
q q
q qq
q
q q qq q q q q
q qq
q
q
q q q q q q q qq
q q q qq q
q
q qq q q q q
q
q q q
q q
q
q q q
q
q
q
qq
qq q
q
qq
qq q q
q q
qqq
q q
qq q
qq q q
q
q qq q
q q
q
q q qq
q q
q
qq q
q
q
q q
q
q
q
qq q q
qq q q
q
q
qq
q
q
qq
q q
q q
q
qq q
qq q q
q
q
q
q q q qq q q qq q
q
qq q
qq
q
q
q qq
q
q
q
q
q q
qq
q
q
q q
q q
q
q q q q qq qq q q
q qq q
qq
q
q
qq q q
q
q
q
q
q q
q
q
qq
q
q
q q
q q qq
q q q
q q q q qq
q q q qq q
q
q
q
qq
q
q qq
q
q
q
q
q
q
q
qq
q
q q qq
q
q
qq
q
qq q
q
q
q
q
q q q q q q
q
q q
q q q q
q q
q
qq
q q
q
q
q
q
q
q q q q qq q
q
qq
q
qq
q qq qq
qq q
q
q q
q q q q qq
q
qq q q
q q
q q q
q q
q
q
q q
q
q
q
q
q
qq q
q
q
q
q q
q
q
q
q
q q
q q q qq q
qq q
q
q qq
qq
q
q
q q
q q
q q q
q
q
q
q
qq
q q q qq q
q
qq q
qq
q
q
q
q
q
q qq
q
q qq q q
q
qq q q q
q
q qq q
q qq q q
q
q q q q q q
q q
q
q q
qq q
q
q
q q qq
qq q
q
q
q qq
q
q q q
q qq
q
qq q qq
q q q q
q q
q
q
q
qq qq q qqqq
qq
q q q
q
q qq q q
q
q
q
q q q
q qq
q q q q q
qq
q qq q
q
q
q
q
q q q
q
q
q
q qqq
q
q
q q q q qq q q
qq
q
qq
q
q
q
q q q
q
q
q qq
q q q
q
qq
q qqq q q q q
q
q
q
q q qqq q
q
q q
q q
qq q q q q
q
q
q q
q
qq
qq q q q
q q q q
qqq
q q q
q q
q
q
q qq
q
qq q q
q
qq
q q
q
q
q q
q
q q qq q
qq
q
q
q
q
q q
qqqqq qq
qq q
q q
q q
q
q q
q
qq q q
q
q qq
q q qq q qq
qq q
q
q
q
q
q
q qq q
q q q
q
q q
q
q
q q
q qq q q
q q qq
q
q qqq
q q
q
q
q
q
q q q
q
q
q
qq
q
q q q
q q
qq
qq q q
q
q
q qqq q q
qq
q
q q q
q
q
q
q q q q qq q
q
q
qq q
q
q
q
qqq
qq
qq q
q
q q q qq q
qq q
q q q
q q q
q
q
q
qq
q
qq
q
q q
qqq
q
qq
q
q
q
q
qq q q q q q q q
q
q q q
q
q
q
q q
q
q
q
q
qq q q q q
q
q qq q
q
qq
q
q
qq qq q
q
q q qq qq qq qq q qqq q q q
qq
q q q q q q
q
q q q q
q
q q qq qq
q
q
q
q
qq
q
q
q
q q q
q
q
q qq q q
q q qq qq
q
q q q q q
qq q
qq
q
q
q q q q
q q qq
q q q q
qq q q
q q q q q qq
q
q
qqq q q
q
q
q
q
qq q
qq q
q
qqq
q
q
q q q q qq q q q q
q q qq
q
q
q
q
q
q
qq q
q
q
qq q
q
q
q
q qq q q
q
q
q
qq q q q q q q qq q q q
q
q
qq
qq
q
qq
q q
q
q
q q qq qq
q
q
q
q
q
q
q
q
q qq q
q q qq q qq
q
q
q
q
q
q
q
q qq
qq q
q
qqq q
q
q
q q
q
q
q q q q q qq q q
q q
q qq
q
q qq
q q
qq qqq q qqq
q
q
q q
q q
q
q
q qq q q q q
qq q qq qq q q
q qq
q
qq q q
q
q
q
q q q q
q
qq
q
q
q qq qqq
q
q
qqqq q qqq q
q
qqq

1/θ
xθ
d

0.0

= x

θ

∀x ∈

q

q

q

0.8

n 1−C 1−

1.0

Observe that
q
q q

0.2

q

0.4

0.6

0.8

Rd
+

Function (·) statisfies
max{x1 , · · · , xd }

≤ (x) ≤

x1 + · · · + xd

(asympt.) comonotonicity

(asympt.) independence

∞ (x)

1 (x)

19

1.0
Arthur CHARPENTIER - Archimax copulas (and other copula families)

The stable tail dependence function (·)
Function (·) is homogeneous, (t · x) = t · (x) ∀t ∈ R+ .
−→ consider the restriction of (·) on the unit simplex ∆d−1 ,
(x) = x

1

·

x1
xd
,··· ,
x
x

= x

1

· A(ω1 , · · · , ωd−1 )

(ω)

where A(·) is Pickands dependence function. Observe that
max{ω1 , · · · , ωd−1 , ωd } ≤ A(ω1 , · · · , ωd−1 ) ≤ 1, ∀ω ∈ ∆d−1

20
Arthur CHARPENTIER - Archimax copulas (and other copula families)

What do we have in dimension 2 ?
C is an Archimedean copula if C = Cφ
Cφ (u, v) = φ−1 [φ(u) + φ(v)]
C is an extreme value copula if C = CA = C


 CA (u, v) = exp log[uv]A

log[v]
log[uv]

 C (u, v) = exp[− (− log u, − log v)]

where A : [0, 1] → [1/2, 1] is Pickands dependence function, convex, with
max{ω, 1 − ω} ≤ A(ω) ≤ 1, ∀ω ∈ [0, 1].

Exemple4
A(ω) = 1 yields the independent copula, C ⊥ .
21
Arthur CHARPENTIER - Archimax copulas (and other copula families)

What do we have in dimension 2 ?
Exemple5
φ(t) = [− log(t)]θ yields Gumbel copula Cθ .
A(ω) = ω θ + (1 − ω)θ

1/θ

yields Gumbel copula Cθ .

Definition 14
C is an Archimax copula (from Capéerà, Fougères & Genest (JMVA, 2000)) if
C = Cφ,A
φ(u)
Cφ,A (u, v) = φ−1 [φ(u) + φ(v)]A
φ(u) + φ(v)
Note that there is a frailty type construction, see C. (K, 2006) : given Θ, X has
(survival) copula CA , Θ has Laplace transform φ−1 .
Note that Cφ,A is the distorted version of copula CA .

22
Arthur CHARPENTIER - Archimax copulas (and other copula families)

What do we have in dimension d ≥ 3 ?
Definition 15
C is an Archimax copula (from C., Fougères, Genest & Nešlehová (JMVA, 2014)) if
C = Cφ,
Cφ, (u1 , · · · , ud ) = φ−1 [ (φ(u1 ) + · · · + φ(ud ))]
This function is a copula function.

23
Arthur CHARPENTIER - Archimax copulas (and other copula families)

Stochastic representation of Archimax copulas
Theorem 3
Cφ, is the survival copula of X = T /Θ where Θ has Laplace transform φ−1 ,
independent of random vector T satisfying
P(T > t) = exp[− (t)] = C (e−t ).
(see also Li (JMVA, 2009) and Marshall & Olkin (JASA, 1988)).

24
Arthur CHARPENTIER - Archimax copulas (and other copula families)

Limiting behavior of Archimax copulas
One can wonder what would be the max-domain of attraction of that copula ?
Cφ, ∈ MDA(C )
If ψ = φ−1 is such that ψ(1 − s) is regularly varying at 0 with index θ ∈ [1, +∞],
then Cφ, belongs to the max domain of attraction of
C (u1 , · · · , ud ) = exp −

1
θ

| log(u1 )|θ , · · · , | log(ud )|θ

(see also C. & Segers (JMVA, 2009) and Larsson & Nešlehová (AAP, 2011) in the
case of Archimedean copulas).

25

Weitere ähnliche Inhalte

Was ist angesagt?

Slides université Laval, Actuariat, Avril 2011
Slides université Laval, Actuariat, Avril 2011Slides université Laval, Actuariat, Avril 2011
Slides université Laval, Actuariat, Avril 2011
Arthur Charpentier
 
Slides sales-forecasting-session2-web
Slides sales-forecasting-session2-webSlides sales-forecasting-session2-web
Slides sales-forecasting-session2-web
Arthur Charpentier
 

Was ist angesagt? (20)

Slides amsterdam-2013
Slides amsterdam-2013Slides amsterdam-2013
Slides amsterdam-2013
 
Multivariate Distributions, an overview
Multivariate Distributions, an overviewMultivariate Distributions, an overview
Multivariate Distributions, an overview
 
Slides astin
Slides astinSlides astin
Slides astin
 
Slides ensae 8
Slides ensae 8Slides ensae 8
Slides ensae 8
 
Slides smart-2015
Slides smart-2015Slides smart-2015
Slides smart-2015
 
Slides compiegne
Slides compiegneSlides compiegne
Slides compiegne
 
Fougeres Besancon Archimax
Fougeres Besancon ArchimaxFougeres Besancon Archimax
Fougeres Besancon Archimax
 
Slides ensae 9
Slides ensae 9Slides ensae 9
Slides ensae 9
 
Slides barcelona Machine Learning
Slides barcelona Machine LearningSlides barcelona Machine Learning
Slides barcelona Machine Learning
 
Berlin
BerlinBerlin
Berlin
 
Testing for Extreme Volatility Transmission
Testing for Extreme Volatility Transmission Testing for Extreme Volatility Transmission
Testing for Extreme Volatility Transmission
 
Slides univ-van-amsterdam
Slides univ-van-amsterdamSlides univ-van-amsterdam
Slides univ-van-amsterdam
 
Slides risk-rennes
Slides risk-rennesSlides risk-rennes
Slides risk-rennes
 
Slides université Laval, Actuariat, Avril 2011
Slides université Laval, Actuariat, Avril 2011Slides université Laval, Actuariat, Avril 2011
Slides université Laval, Actuariat, Avril 2011
 
Slides sales-forecasting-session2-web
Slides sales-forecasting-session2-webSlides sales-forecasting-session2-web
Slides sales-forecasting-session2-web
 
Slides econ-lm
Slides econ-lmSlides econ-lm
Slides econ-lm
 
Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017
 
So a webinar-2013-2
So a webinar-2013-2So a webinar-2013-2
So a webinar-2013-2
 
Slides ACTINFO 2016
Slides ACTINFO 2016Slides ACTINFO 2016
Slides ACTINFO 2016
 
Inequality, slides #2
Inequality, slides #2Inequality, slides #2
Inequality, slides #2
 

Andere mochten auch

Julien slides - séminaire quantact
Julien slides - séminaire quantactJulien slides - séminaire quantact
Julien slides - séminaire quantact
Arthur Charpentier
 
Soutenance julie viard_partie_1
Soutenance julie viard_partie_1Soutenance julie viard_partie_1
Soutenance julie viard_partie_1
Arthur Charpentier
 

Andere mochten auch (18)

Slides lausanne-2013-v2
Slides lausanne-2013-v2Slides lausanne-2013-v2
Slides lausanne-2013-v2
 
Slides act6420-e2014-ts-1
Slides act6420-e2014-ts-1Slides act6420-e2014-ts-1
Slides act6420-e2014-ts-1
 
Slides arbres-ubuntu
Slides arbres-ubuntuSlides arbres-ubuntu
Slides arbres-ubuntu
 
Julien slides - séminaire quantact
Julien slides - séminaire quantactJulien slides - séminaire quantact
Julien slides - séminaire quantact
 
Slides inequality 2017
Slides inequality 2017Slides inequality 2017
Slides inequality 2017
 
Slides 2040-4
Slides 2040-4Slides 2040-4
Slides 2040-4
 
Slides 2040-6
Slides 2040-6Slides 2040-6
Slides 2040-6
 
Econometrics 2017-graduate-3
Econometrics 2017-graduate-3Econometrics 2017-graduate-3
Econometrics 2017-graduate-3
 
Soutenance julie viard_partie_1
Soutenance julie viard_partie_1Soutenance julie viard_partie_1
Soutenance julie viard_partie_1
 
Slides econometrics-2017-graduate-2
Slides econometrics-2017-graduate-2Slides econometrics-2017-graduate-2
Slides econometrics-2017-graduate-2
 
Slides ensae-2016-4
Slides ensae-2016-4Slides ensae-2016-4
Slides ensae-2016-4
 
Econometrics, PhD Course, #1 Nonlinearities
Econometrics, PhD Course, #1 NonlinearitiesEconometrics, PhD Course, #1 Nonlinearities
Econometrics, PhD Course, #1 Nonlinearities
 
Slides ensae-2016-7
Slides ensae-2016-7Slides ensae-2016-7
Slides ensae-2016-7
 
Slides ensae-2016-6
Slides ensae-2016-6Slides ensae-2016-6
Slides ensae-2016-6
 
Slides ensae-2016-9
Slides ensae-2016-9Slides ensae-2016-9
Slides ensae-2016-9
 
Slides ensae-2016-5
Slides ensae-2016-5Slides ensae-2016-5
Slides ensae-2016-5
 
Slides ensae-2016-11
Slides ensae-2016-11Slides ensae-2016-11
Slides ensae-2016-11
 
Slides ensae-2016-10
Slides ensae-2016-10Slides ensae-2016-10
Slides ensae-2016-10
 

Ähnlich wie Slides guanauato

Ähnlich wie Slides guanauato (20)

slides tails copulas
slides tails copulasslides tails copulas
slides tails copulas
 
Slides ima
Slides imaSlides ima
Slides ima
 
Slides mc gill-v3
Slides mc gill-v3Slides mc gill-v3
Slides mc gill-v3
 
Slides mc gill-v4
Slides mc gill-v4Slides mc gill-v4
Slides mc gill-v4
 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
 
Slides ihp
Slides ihpSlides ihp
Slides ihp
 
slides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial scienceslides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial science
 
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
 
Slides essec
Slides essecSlides essec
Slides essec
 
Distributionworkshop 2.pptx
Distributionworkshop 2.pptxDistributionworkshop 2.pptx
Distributionworkshop 2.pptx
 
Slides mevt
Slides mevtSlides mevt
Slides mevt
 
Slides rmetrics-1
Slides rmetrics-1Slides rmetrics-1
Slides rmetrics-1
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
1982 A Stochastic Logistic Diffusion Equation
1982 A Stochastic Logistic Diffusion Equation1982 A Stochastic Logistic Diffusion Equation
1982 A Stochastic Logistic Diffusion Equation
 
E42012426
E42012426E42012426
E42012426
 
Slides lln-risques
Slides lln-risquesSlides lln-risques
Slides lln-risques
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
 
Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4
 
Slides edf-2
Slides edf-2Slides edf-2
Slides edf-2
 

Mehr von Arthur Charpentier

Mehr von Arthur Charpentier (20)

Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
ACT6100 introduction
ACT6100 introductionACT6100 introduction
ACT6100 introduction
 
Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)
 
Control epidemics
Control epidemics Control epidemics
Control epidemics
 
STT5100 Automne 2020, introduction
STT5100 Automne 2020, introductionSTT5100 Automne 2020, introduction
STT5100 Automne 2020, introduction
 
Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
Machine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & InsuranceMachine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & Insurance
 
Reinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and FinanceReinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and Finance
 
Optimal Control and COVID-19
Optimal Control and COVID-19Optimal Control and COVID-19
Optimal Control and COVID-19
 
Slides OICA 2020
Slides OICA 2020Slides OICA 2020
Slides OICA 2020
 
Lausanne 2019 #3
Lausanne 2019 #3Lausanne 2019 #3
Lausanne 2019 #3
 
Lausanne 2019 #4
Lausanne 2019 #4Lausanne 2019 #4
Lausanne 2019 #4
 
Lausanne 2019 #2
Lausanne 2019 #2Lausanne 2019 #2
Lausanne 2019 #2
 
Lausanne 2019 #1
Lausanne 2019 #1Lausanne 2019 #1
Lausanne 2019 #1
 
Side 2019 #10
Side 2019 #10Side 2019 #10
Side 2019 #10
 
Side 2019 #11
Side 2019 #11Side 2019 #11
Side 2019 #11
 
Side 2019 #12
Side 2019 #12Side 2019 #12
Side 2019 #12
 
Side 2019 #9
Side 2019 #9Side 2019 #9
Side 2019 #9
 
Side 2019 #8
Side 2019 #8Side 2019 #8
Side 2019 #8
 
Side 2019 #7
Side 2019 #7Side 2019 #7
Side 2019 #7
 

Slides guanauato

  • 1. Arthur CHARPENTIER - Archimax copulas (and other copula families) Archimax Copulas Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.hypotheses.org/ based on joint work with A.-L. Fougères, C. Genest and J. Nešlehová March 2014, CIMAT, Guanajuato, Mexico. 1
  • 2. Arthur CHARPENTIER - Archimax copulas (and other copula families) Agenda ◦ • ◦ ◦ ◦ • ◦ ◦ Copulas Standard copula families Elliptical distributions (and copulas) Archimedean copulas Extreme value distributions (and copulas) Archimax copulas Archimax copulas in dimension 2 Archimax copulas in dimension d ≥ 3 2
  • 3. Arthur CHARPENTIER - Archimax copulas (and other copula families) Copulas, in dimension d = 2 Definition 1 A copula in dimension 2 is a c.d.f on [0, 1]2 , with margins U([0, 1]). Thus, let C(u, v) = P(U ≤ u, V ≤ v), where 0 ≤ u, v ≤ 1, then • C(0, x) = C(x, 0) = 0 ∀x ∈ [0, 1], • C(1, x) = C(x, 1) = x ∀x ∈ [0, 1], • and some increasingness property 3
  • 4. Arthur CHARPENTIER - Archimax copulas (and other copula families) Copulas, in dimension d = 2 Definition 2 A copula in dimension 2 is a c.d.f on [0, 1]2 , with margins U([0, 1]). Thus, let C(u, v) = P(U ≤ u, V ≤ v), where 0 ≤ u, v ≤ 1, then • C(0, x) = C(x, 0) = 0 ∀x ∈ [0, 1], • C(1, x) = C(x, 1) = x ∀x ∈ [0, 1], • If 0 ≤ u1 ≤ u2 ≤ 1, 0 ≤ v1 ≤ v2 ≤ 1 q q q q q C(u2 , v2 )+C(u1 , v1 ) ≥ C(u1 , v2 )+C(u2 , v1 ) 2 q q q (concept of 2-increasing function in R ) v u see C(u, v) = c(x, y) dxdy with the density notation. 0 0 ≥0 4
  • 5. Arthur CHARPENTIER - Archimax copulas (and other copula families) Copulas, in dimension d ≥ 2 The concept of d-increasing function simply means that P(a1 ≤ U1 ≤ b1 , ..., ad ≤ Ud ≤ bd ) = P(U ∈ [a, b]) ≥ 0 where U = (U1 , ..., Ud ) ∼ C for all a ≤ b (where ai ≤ bi). Definition 3 Function h : Rd → R is d-increasing if for all rectangle [a, b] ⊂ Rd , Vh ([a, b]) ≥ 0, where b (1) Vh ([a, b]) = ∆b h (t) = ∆bd ∆ad−1 ...∆b2 ∆b1 h (t) a ad a2 a1 d−1 and for all t, with ∆bii h (t) = h (t1 , ..., ti−1 , bi , ti+1 , ..., tn ) − h (t1 , ..., ti−1 , ai , ti+1 , ..., tn ) . a (2) 5
  • 6. Arthur CHARPENTIER - Archimax copulas (and other copula families) Copulas, in dimension d ≥ 2 Definition 4 A copula in dimension d is a c.d.f on [0, 1]d , with margins U([0, 1]). Theorem 1 1. If C is a copula, and F1 , ..., Fd are univariate c.d.f., then F (x1 , ..., xn ) = C(F1 (x1 ), ..., Fd (xd )) ∀(x1 , ..., xd ) ∈ Rd (3) is a multivariate c.d.f. with F ∈ F(F1 , ..., Fd ). 2. Conversely, if F ∈ F(F1 , ..., Fd ), there exists a copula C satisfying (3). This copula is usually not unique, but it is if F1 , ..., Fd are absolutely continuous, and then, −1 −1 C(u1 , ..., ud ) = F (F1 (u1 ), ..., Fd (ud )), ∀(u1 , , ..., ud ) ∈ [0, 1]d (4) −1 −1 where quantile functions F1 , ..., Fn are generalized inverse (left cont.) of Fi ’s. If X ∼ F , then U = (F1 (X1 ), · · · , Fd (Xd )) ∼ C. 6
  • 7. Arthur CHARPENTIER - Archimax copulas (and other copula families) Survival (or dual) copulas Theorem 2 1. If C is a copula, and F 1 , ..., F d are univariate s.d.f., then F (x1 , ..., xn ) = C (F 1 (x1 ), ..., F d (xd )) ∀(x1 , ..., xd ) ∈ Rd (5) is a multivariate s.d.f. with F ∈ F(F1 , ..., Fd ). 2. Conversely, if F ∈ F(F1 , ..., Fd ), there exists a copula C satisfying (5). This copula is usually not unique, but it is if F1 , ..., Fd are absolutely continuous, and then, −1 −1 C (u1 , ..., ud ) = F (F 1 (u1 ), ..., F d (ud )), ∀(u1 , , ..., ud ) ∈ [0, 1]d (6) −1 −1 where quantile functions F1 , ..., Fn are generalized inverse (left cont.) of Fi ’s. If X ∼ F , then U = (F1 (X1 ), · · · , Fd (Xd )) ∼ C and 1 − U ∼ C . 7
  • 8. Arthur CHARPENTIER - Archimax copulas (and other copula families) Benchmark copulas Definition 5 The independent copula C ⊥ is defined as d C ⊥ (u1 , ..., un ) = u1 × · · · × ud = ui . i=1 Definition 6 The comonotonic copula C + (the Fréchet-Hoeffding upper bound of the set of copulas) is the copula defined as C + (u1 , ..., ud ) = min{u1 , ..., ud }. 8
  • 9. Arthur CHARPENTIER - Archimax copulas (and other copula families) Spherical distributions q q 2 q q q q Definition 7 q q q q q q q q q q q 1 q q q 0 Random vector X as a spherical distribution if q q q q q q q q q q q −1 q q q q q q q q q q q qq qq q q q q q q qq q q q q q qq qq q q qq q q q q q qq qq q q q q q q q q q q qq q q q q q q q q q qq q q q qq q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q qqq q q qq q q qq qq q q qq q q q q q q q q q qq qq q q qq q qqq qqq qq q qq qq q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q −2 X =R·U q q q −1 0 1 2 q 2 q q 0.02 q q q 0.04 q q q q q q q 1 q 0 q q q q q q q q qq q q q q q q qq q q q q −1 q q q q q q q qq q q qq q q q q 0.12 q q q q q q q q qq q qq q q q q q q q q q q q q q q q q q q 0.06 q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.14 q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q 0.08 q q q q q q q q q q q q q q q q q q q q −2 E.g. X ∼ N (0, I). q q q −2 where R is a positive random variable and U is uniformly distributed on the unit sphere of Rd , with R ⊥ U . ⊥ q q q q q q q −2 −1 0 1 2 Those distribution can be non-symmetric, see Hartman & Wintner (AJM, 1940) or Cambanis, Huang & Simons (JMVA, 1979)) 9
  • 10. Arthur CHARPENTIER - Archimax copulas (and other copula families) Elliptical distributions 2 Definition 8 q q q q q q q q q 1 Random vector X as a elliptical distribution if q qq qq q q q q q q q q q q qq q qqq q q qq q q q q q q qq q q qq q q q 0 q q q q q q q q q q q −1 q q q q q q q q q q q qq qqq q q q q q q q q q q q q q q qq q qq q q q q q q q q q q q q q q q q q q q q q q q qq q q qq qq q q q q q q q q q q q q q q qq qq q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q qq q q q qq q q q q q q qq qq qq q qq q q qq q q q qq qq q q q q q q q q qq q q q q q q q q qq q q q q q q q q q q qq qq q q q q qq q qq q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q −2 q −1 0 1 2 2 −2 where R is a positive random variable and U is uniformly dis⊥ tributed on the unit sphere of Rd , with R ⊥ U , and where A satisfies AA = Σ. q q qq qq q q q q q q q q X =µ+R·A·U q q q q q q q qq q q q q 0.02 q q 0.04 q q 1 0 q q q q q q q q q q q q q q q q q q q q q qq q q qq q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.08q q q qqq q qq q q q q q qq q q q q q q q qq q q 0.14 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q 0.12 q q q q q q q q q q q q q q q q q q q q q q −1 0.06 q q q q q q q q qq q q q q q q q q q q q q q −2 E.g. X ∼ N (µ, Σ). q −2 −1 0 1 2 Elliptical distribution are popular in finance, see e.g. Jondeau, Poon & Rockinger (FMPM, 2008) 10
  • 11. Arthur CHARPENTIER - Archimax copulas (and other copula families) Archimedean copula Definition 9 If d ≥ 2, an Archimedean generator is a function φ : [0, 1] → [0, ∞) such that φ−1 is d-completely monotone (i.e. ψ is d-completely monotone if ψ is continuous and ∀k = 0, 1, ..., d, (−1)k dk ψ(t)/dtk ≥ 0). Definition 10 Copula C is an Archimedean copula is, for some generator φ, C(u1 , ..., ud ) = φ−1 [φ(u1 ) + ... + φ(ud )], ∀u1 , ..., ud ∈ [0, 1]. Exemple1 φ(t) = − log(t) yields the independent copula C ⊥ . φ(t) = [− log(t)]θ yields Gumbel copula Cθ (note that ψ(t) = φ−1 (t) = exp[−t1/θ ]). 11
  • 12. Arthur CHARPENTIER - Archimax copulas (and other copula families) Archimedean copula, exchangeability and frailties F (x) = P(X > x) = ψ − 60 40 0 n 20 Consider residual life times X = (X1 , · · · , Xd ) conditionally independent given some latent factor Θ, and such that P(Xi > xi |Θ = θ) = B i (xi )θ . Then 80 100 Conditional independence, continuous risk factor 0 log F i (xi ) i=1 40 60 80 100 !2 !1 0 1 2 3 Conditional independence, continuous risk factor !3 where ψ is the Laplace transform of Θ, ψ(t) = E(e−tΘ ). Thus, the survival copula of X is Archimedean, with generator φ = ψ −1 . See Oakes (JASA, 1989). 20 !3 !2 !1 0 1 2 3 12
  • 13. Arthur CHARPENTIER - Archimax copulas (and other copula families) 2.5 Stochastic representation of Archimedean copulas ∞ φ −1 (t) = x x 1− t 2.0 q q q q 1.5 q q q q q q q q q q q 1.0 q 0.5 q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.5 q q q q q q q q q q q q 0.0 q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q 0.0 Consider some striclty positive random variable R independent of U , uniform on the simplex of Rd . The survival copula of X = R · U is Archimedean, and its generator is the inverse of Williamson dtransform, q q 1.0 q q 1.5 2.0 2.5 d−1 dFR (t). q L Note that R = φ(U1 ) + · · · + φ(Ud ). q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q See Nešlehová & McNeil (AS, 2009). 13
  • 14. Arthur CHARPENTIER - Archimax copulas (and other copula families) Archimedean copula and distortion Definition 11 Function h : [0, 1] → [0, 1] defined as h(t) = exp[−φ(t)] is called a distortion function. Genest & Rivest (SPL, 2001), Morillas (M, 2005) considered distorted copulas (also called multivariate probability integral transformation) Definition 12 Let h be some distortion function, and C a copula, then Ch (u1 , ..., ud ) = h−1 (C(h(u1 ), · · · , h(ud ))) is a copula. Exemple2 ⊥ If C = C ⊥ , then Ch is the Archimedean copula with generator φ(t) = − log h(t). 14
  • 15. Arthur CHARPENTIER - Archimax copulas (and other copula families) Nested Archimedean copula, and hierarchical structures Consider C(u1 , · · · , ud ) defined as φ−1 [φ1 [φ−1 (φ2 [· · · φ−1 [φd−1 (u1 ) + φd−1 (u2 )] + · · · + φ2 (ud−1 ))] + φ1 (ud )] 1 2 d−1 where φi ’s are generators. Then C is a copula if φi ◦ φ−1 is the inverse of a i−1 Laplace transform, and is called fully nested Archimedean copula. Note that partial nested copulas can also be considered, φ1 φ2 φ4 φ3 φ1 φ4 U1 φ2 U2 U3 U4 U5 U1 φ3 U2 U3 U4 U5 15
  • 16. Arthur CHARPENTIER - Archimax copulas (and other copula families) (Univariate) extreme value distributions Central limit theorem, Xi ∼ F i.i.d. X n − bn L → S as n → ∞ where S is a an non-degenerate random variable. Xn:n − bn L Fisher-Tippett theorem, Xi ∼ F i.i.d., → M as n → ∞ where M is a an non-degenerate random variable. Then P Xn:n − bn ≤x an = F n (an x + bn ) → G(x) as n → ∞, ∀x ∈ R i.e. F belongs to the max domain of attraction of G, G being an extreme value distribution : the limiting distribution of the normalized maxima. −1/ξ − log G(x) = (1 + ξx)+ 16
  • 17. Arthur CHARPENTIER - Archimax copulas (and other copula families) (Multivariate) extreme value distributions Assume that X i ∼ F i.i.d., F n (an x + bn ) → G(x) as n → ∞, ∀x ∈ Rd i.e. F belongs to the max domain of attraction of G, G being an (multivariate) extreme value distribution : the limiting distribution of the normalized componentwise maxima, X n:n = (max{X1,i }, · · · , max{Xd,i }) − log G(x) = µ([0, ∞)[0, x]), ∀x ∈ Rd + where µ is the exponent measure. It is more common to use the stable tail dependence function defined as (x) = µ([0, ∞)[0, x−1 ]), ∀x ∈ Rd + 17
  • 18. Arthur CHARPENTIER - Archimax copulas (and other copula families) i.e. − log G(x) = (− log G1 (x1 ), · · · , log Gd (xd )), ∀x ∈ Rd Note that there exists a finite measure H on the simplex of Rd such that (x1 , · · · , xd ) = max{ω1 x1 , · · · , ωd xd }dH(ω1 , · · · , ωd ) Sd for all (x1 , · · · , xd ) ∈ Rd , and + Sd ωi dH(ω1 , · · · , ωd ) = 1 for all i = 1, · · · , n. Definition 13 Copula C : [0, 1]d → [0, 1] is an multivariate extreme value copula if and only if there exists a stable tail dependence function such that C (u1 , · · · , ud ) = exp[− (− log u1 , · · · , − log ud )] Assume that U i ∼ Γ i.i.d., n 1 n n 1 n 1 n Γ (u ) = Γ (u1 , · · · , ud ) → C (u) as n → ∞, ∀x ∈ Rd i.e. Γ belongs to the max domain of attraction of C , C being an (multivariate) extreme value copula, Γ ∈ MDA(C ). 18
  • 19. Arthur CHARPENTIER - Archimax copulas (and other copula families) The stable tail dependence function (·) xd x1 ,··· ,1 − n n → − log Γ(e−x1 , · · · , e−x1 ) 0.6 = (x) 0.4 Exemple3 0.0 0.2 Gumbel copula, θ ∈ [1, +∞], θ (x1 , · · · , xd ) = xθ 1 + ··· + q q q q q q qq q q q q q q qqq q qqq qqq q q qq q q q q qq qq q q q q q qq q q q q q q q q qq q q q q q q q q q q q qqq q q q q qq qq qq q q qq q q q q q q qqq qq qq q qqqq q q q q q q qqq q qq q q q q q q q q q q q qq q q q q q q qq q q q q q qq q qqq qq q q qq qq q q qq q q q q q qq q q qqq q q q q q qq q q q qq q q qq q q q q q q q qqq q q q q qq q qq q q q q q q q q qq q qq q q q qq qq qq q qq q q q q q qq qq q q q q q q q q q qq q q q q qq q q q q q q q q q q q qq q q q q q q qq q q q q q q q q q q qq q q q q q qq q q q q qq qq q q q qq q q qq q q q qq q q q qq q qq q q q qq q q q q q q qq q q qq q q q q q qq qqq q q qq q q q q qq q q q q q qq q q q q q q q q qq qq q qq q qq q q q q q q q qq qq q q q qq q q q q q q q q q q q qq q q qq q q q q q q q q qq qq q q q qq q q q q q q q q q q qq q q q q q q q q q q q q qq qq q q q q q q q qq q qq q q q q q q q q q q q q qq q q q qq q q qqq q qq q q q q q q qqq q q q q q q qq q q qq q q q q q q q q q q q qq q qq qq q q q q q q q qq q q q q q q q q qq qq q q qq qq q q q q q q qq q qq q q q qqq q q q q q q q q q qq q q q qq q q qq q qq qq q q q q q q q q q q qq q q qq q q qq q q q q q qq q q qq q q q q q qq q q q q qq q q q q q q q q q q q q qq q q q qq q qq q q qq qq q q q q q qq q q q q q q q q q qq q q q q q q qq q q q qq q q q q qq qq q q q qq q q q q q qq q q q q qq q q q qq q q q qq q q q q q qq q q q q q q q q q qq q q q qq q q q qq q q q q q q q q q q q q q q q q q qq qq q q qq qq q q q q qqq q q qq q qq q q q q qq q q q q q q qq q q q qq q q q q q q q q qq q q qq q q q q qq q q qq q q q q q qq q qq q q q q q q q q qq q q qq q q qq q qq q q q qq q q q q q q qq q q q q q q q q q q q qq qq q q q qq q qq q q qq q q q q q q q q q q qq q q q q q q qq q q q q q q q qq q q q qq q q q q qq q q qq q q q q q q q qq q q q qq q q qq q qq q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q qq q q qq q qq q qq qq qq q q q q q q q q qq q qq q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q qq q qq q q q qq qq q q q q q q q q q q q q q qq q q q qq q q qq q qq q q q q q q qq q q qq q q q qq q q q q q qq q q qq q q q q q q q q q q q q q q qq q q q q q qq qq q q q q qq q q q q q qq q qq q qq q q q q q q q q q qq qq q qqqq qq q q q q q qq q q q q q q q q q qq q q q q q qq q qq q q q q q q q q q q q q qqq q q q q q q qq q q qq q qq q q q q q q q q q qq q q q q qq q qqq q q q q q q q q q qqq q q q q q q qq q q q q q q q q q qq qq q q q q q q q qqq q q q q q q q q qq q qq q q q qq q q q q q q q q q qq q qq q q q q q q qqqqq qq qq q q q q q q q q q qq q q q q qq q q qq q qq qq q q q q q q q qq q q q q q q q q q q q q qq q q q q qq q q qqq q q q q q q q q q q q q qq q q q q q q qq qq q q q q q qqq q q qq q q q q q q q q q q q qq q q q qq q q q q qqq qq qq q q q q q qq q qq q q q q q q q q q q qq q qq q q q qqq q qq q q q q qq q q q q q q q q q q q q q q q q q q q q qq q q q q q q qq q q qq q q qq qq q q q q qq qq qq qq q qqq q q q qq q q q q q q q q q q q q q q qq qq q q q q qq q q q q q q q q q qq q q q q qq qq q q q q q q qq q qq q q q q q q q q qq q q q q qq q q q q q q q qq q q qqq q q q q q q qq q qq q q qqq q q q q q q qq q q q q q q qq q q q q q q qq q q q qq q q q q q qq q q q q q qq q q q q q q qq q q q q q qq qq q qq q q q q q q qq qq q q q q q q q q q qq q q q qq q qq q q q q q q q q qq qq q q qqq q q q q q q q q q q q q qq q q q q q qq q q qq q q qq qqq q qqq q q q q q q q q q qq q q q q qq q qq qq q q q qq q qq q q q q q q q q q q qq q q q qq qqq q q qqqq q qqq q q qqq 1/θ xθ d 0.0 = x θ ∀x ∈ q q q 0.8 n 1−C 1− 1.0 Observe that q q q 0.2 q 0.4 0.6 0.8 Rd + Function (·) statisfies max{x1 , · · · , xd } ≤ (x) ≤ x1 + · · · + xd (asympt.) comonotonicity (asympt.) independence ∞ (x) 1 (x) 19 1.0
  • 20. Arthur CHARPENTIER - Archimax copulas (and other copula families) The stable tail dependence function (·) Function (·) is homogeneous, (t · x) = t · (x) ∀t ∈ R+ . −→ consider the restriction of (·) on the unit simplex ∆d−1 , (x) = x 1 · x1 xd ,··· , x x = x 1 · A(ω1 , · · · , ωd−1 ) (ω) where A(·) is Pickands dependence function. Observe that max{ω1 , · · · , ωd−1 , ωd } ≤ A(ω1 , · · · , ωd−1 ) ≤ 1, ∀ω ∈ ∆d−1 20
  • 21. Arthur CHARPENTIER - Archimax copulas (and other copula families) What do we have in dimension 2 ? C is an Archimedean copula if C = Cφ Cφ (u, v) = φ−1 [φ(u) + φ(v)] C is an extreme value copula if C = CA = C    CA (u, v) = exp log[uv]A log[v] log[uv]   C (u, v) = exp[− (− log u, − log v)] where A : [0, 1] → [1/2, 1] is Pickands dependence function, convex, with max{ω, 1 − ω} ≤ A(ω) ≤ 1, ∀ω ∈ [0, 1]. Exemple4 A(ω) = 1 yields the independent copula, C ⊥ . 21
  • 22. Arthur CHARPENTIER - Archimax copulas (and other copula families) What do we have in dimension 2 ? Exemple5 φ(t) = [− log(t)]θ yields Gumbel copula Cθ . A(ω) = ω θ + (1 − ω)θ 1/θ yields Gumbel copula Cθ . Definition 14 C is an Archimax copula (from Capéerà, Fougères & Genest (JMVA, 2000)) if C = Cφ,A φ(u) Cφ,A (u, v) = φ−1 [φ(u) + φ(v)]A φ(u) + φ(v) Note that there is a frailty type construction, see C. (K, 2006) : given Θ, X has (survival) copula CA , Θ has Laplace transform φ−1 . Note that Cφ,A is the distorted version of copula CA . 22
  • 23. Arthur CHARPENTIER - Archimax copulas (and other copula families) What do we have in dimension d ≥ 3 ? Definition 15 C is an Archimax copula (from C., Fougères, Genest & Nešlehová (JMVA, 2014)) if C = Cφ, Cφ, (u1 , · · · , ud ) = φ−1 [ (φ(u1 ) + · · · + φ(ud ))] This function is a copula function. 23
  • 24. Arthur CHARPENTIER - Archimax copulas (and other copula families) Stochastic representation of Archimax copulas Theorem 3 Cφ, is the survival copula of X = T /Θ where Θ has Laplace transform φ−1 , independent of random vector T satisfying P(T > t) = exp[− (t)] = C (e−t ). (see also Li (JMVA, 2009) and Marshall & Olkin (JASA, 1988)). 24
  • 25. Arthur CHARPENTIER - Archimax copulas (and other copula families) Limiting behavior of Archimax copulas One can wonder what would be the max-domain of attraction of that copula ? Cφ, ∈ MDA(C ) If ψ = φ−1 is such that ψ(1 − s) is regularly varying at 0 with index θ ∈ [1, +∞], then Cφ, belongs to the max domain of attraction of C (u1 , · · · , ud ) = exp − 1 θ | log(u1 )|θ , · · · , | log(ud )|θ (see also C. & Segers (JMVA, 2009) and Larsson & Nešlehová (AAP, 2011) in the case of Archimedean copulas). 25