SlideShare ist ein Scribd-Unternehmen logo
1 von 40
Introduction  to  Machine Learning  Isabelle Guyon isabelle @ clopinet .com
What is Machine Learning? ,[object Object],[object Object],TRAINING DATA ? Answer Trained machine Query
What for? ,[object Object],[object Object],[object Object],[object Object]
Some Learning Machines ,[object Object],[object Object],[object Object],[object Object]
Applications inputs training examples 10 10 2 10 3 10 4 10 5 Bioinformatics Ecology  OCR HWR Market Analysis Text Categorization Machine Vision System diagnosis 10 10 2 10 3 10 4 10 5
Banking / Telecom / Retail ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Biomedical / Biometrics ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],6
Computer / Internet ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],7
Challenges inputs training examples 10 10 2 10 3 10 4 10 5 Arcene, Dorothea, Hiva Sylva  Gisette Gina Ada Dexter, Nova Madelon 10 10 2 10 3 10 4 10 5 NIPS 2003 & WCCI 2006
Ten Classification Tasks 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 50 100 150 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 50 100 150 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 50 100 150 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 50 100 150 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 50 100 150 ADA GINA HIVA NOVA SYLVA 0 5 10 15 20 25 30 35 40 45 50 0 20 40 ARCENE 0 5 10 15 20 25 30 35 40 45 50 0 20 40 DEXTER 0 5 10 15 20 25 30 35 40 45 50 0 20 40 DOROTHEA 0 5 10 15 20 25 30 35 40 45 50 0 20 40 GISETTE 0 5 10 15 20 25 30 35 40 45 50 0 20 40 MADELON Test BER (%)
Challenge Winning Methods BER/<BER>
Conventions X={x ij } n m x i y  ={y j }  w
Learning problem Colon cancer, Alon et al 1999 Unsupervised learning Is there structure in data? Supervised learning Predict an outcome  y . Data matrix:  X m  lines = patterns  (data points, examples): samples, patients, documents, images, … n  columns = features:  (attributes, input variables): genes, proteins, words, pixels, …
Linear Models ,[object Object],[object Object],[object Object],[object Object]
Artificial Neurons f( x ) =  w     x  + b Axon Synapses Activation of other neurons Dendrites Cell potential Activation function McCulloch and Pitts, 1943   x 1 x 2 x n 1  f( x ) w 1 w 2 w n b
Linear Decision Boundary x 1 x 2 x 3 hyperplane x 1 x 2
Perceptron Rosenblatt, 1957 f( x ) f( x ) =  w      ( x)  + b  1 ( x ) 1 x 1 x 2 x n  2 ( x )  N ( x )  w 1 w 2 w N b
NL Decision Boundary x 1 x 2 x 1 x 2 x 3
Kernel Method Potential functions, Aizerman et al 1964 f( x ) =   i    i   k ( x i , x ) + b k( x 1 ,x ) 1 x 1 x 2 x n   1  2  m b k( x 2 ,x ) k( x m ,x ) k(. ,. ) is a similarity measure or “kernel”.
Hebb’s Rule ,[object Object],Axon Link to “Naïve Bayes”  y x j w j Synapse Activation of another neuron Dendrite
Kernel “Trick”  (for Hebb’s rule) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Kernel “Trick” (general) ,[object Object],[object Object],[object Object],[object Object],Dual forms
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],What is a Kernel?
Multi-Layer Perceptron Back-propagation, Rumelhart et al, 1986  x j   “hidden units” internal “latent” variables
Chessboard Problem
Tree Classifiers ,[object Object],At each step, choose the feature that “reduces entropy” most. Work towards “node purity”. All the data f 1 f 2 Choose f 2 Choose f 1
Iris Data  (Fisher, 1936) Linear discriminant Tree classifier Gaussian mixture Kernel method (SVM) setosa virginica versicolor Figure from Norbert Jankowski and Krzysztof Grabczewski
Fit / Robustness Tradeoff x 1 x 2 15 x 1 x 2
Performance evaluation x 1 x 2 f( x ) = 0 f( x ) > 0 f( x ) < 0 f( x ) = 0 f( x ) > 0 f( x ) < 0 x 1 x 2
Performance evaluation x 1 x 2 f( x ) = -1 f( x ) > -1 f( x ) < -1 f( x ) = -1 f( x ) > -1 f( x ) < -1 x 1 x 2
Performance evaluation x 1 x 2 f( x ) = 1 f( x ) > 1 f( x ) < 1 f( x ) = 1 f( x ) > 1 f( x ) < 1 x 1 x 2
ROC Curve 100% 100% For a given threshold on f(x),  you get a point on the ROC curve. Actual ROC 0 Positive class success rate (hit rate, sensitivity) 1 - negative class success rate (false alarm rate, 1-specificity) Random ROC Ideal ROC curve
ROC Curve Ideal ROC curve (AUC=1) 100% 100% 0    AUC    1 Actual ROC Random ROC (AUC=0.5) 0 For a given threshold on f(x),  you get a point on the ROC curve. Positive class success rate (hit rate, sensitivity) 1 - negative class success rate (false alarm rate, 1-specificity)
Lift Curve O M Fraction of customers selected Hit rate = Frac.  good  customers select . Random lift Ideal Lift 100% 100% Customers ranked according to f(x); selection of the top ranking customers. Gini=2   AUC-1 0    Gini    1 Actual Lift 0
Performance Assessment False alarm rate =   type I errate = 1-specificity   Hit rate = 1-type II errate = sensitivity = recall = test power ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Predictions: F(x) Class -1 Class +1 Truth: y Class -1 tn fp Class +1 fn tp Cost matrix Predictions: F(x) Class -1 Class +1 Truth: y Class -1 tn fp Class +1 fn tp neg=tn+fp Total pos=fn+tp sel =fp+tp rej=tn+fn Total m=tn+fp +fn+tp False alarm = fp/neg Class +1 / Total Hit rate = tp/pos Frac. selected = sel/m Cost matrix Class+1 /Total Precision   = tp/sel Predictions: F(x) Class -1 Class +1 Truth: y Class -1 tn fp Class +1 fn tp neg=tn+fp Total pos=fn+tp sel =fp+tp rej=tn+fn Total m=tn+fp +fn+tp False alarm = fp/neg Class +1 / Total Hit rate = tp/pos Frac. selected = sel/m Cost matrix Predictions: F(x) Class -1 Class +1 Truth: y Class -1 tn fp Class +1 fn tp neg=tn+fp Total pos=fn+tp sel =fp+tp rej=tn+fn Total m=tn+fp +fn+tp Cost matrix
What is a Risk Functional? ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
How to train? ,[object Object],[object Object],(… to be continued in the next lecture) Parameter space ( w ) R[f( x , w )] w *
How to Train? ,[object Object],[object Object],[object Object],[object Object],[object Object]
Summary ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Want to Learn More? ,[object Object],[object Object],[object Object],[object Object]

Weitere ähnliche Inhalte

Was ist angesagt?

An Introduction to Simulation in the Social Sciences
An Introduction to Simulation in the Social SciencesAn Introduction to Simulation in the Social Sciences
An Introduction to Simulation in the Social Sciencesfsmart01
 
maXbox starter67 machine learning V
maXbox starter67 machine learning VmaXbox starter67 machine learning V
maXbox starter67 machine learning VMax Kleiner
 
isabelle_webinar_jan..
isabelle_webinar_jan..isabelle_webinar_jan..
isabelle_webinar_jan..butest
 
Logistic regression in Machine Learning
Logistic regression in Machine LearningLogistic regression in Machine Learning
Logistic regression in Machine LearningKuppusamy P
 
Cross-validation aggregation for forecasting
Cross-validation aggregation for forecastingCross-validation aggregation for forecasting
Cross-validation aggregation for forecastingDevon Barrow
 
Automatic Forecasting at Scale
Automatic Forecasting at ScaleAutomatic Forecasting at Scale
Automatic Forecasting at ScaleSean Taylor
 
Les outils de modélisation des Big Data
Les outils de modélisation des Big DataLes outils de modélisation des Big Data
Les outils de modélisation des Big DataKezhan SHI
 
Introduction to conventional machine learning techniques
Introduction to conventional machine learning techniquesIntroduction to conventional machine learning techniques
Introduction to conventional machine learning techniquesXavier Rafael Palou
 
Classification using L1-Penalized Logistic Regression
Classification using L1-Penalized Logistic RegressionClassification using L1-Penalized Logistic Regression
Classification using L1-Penalized Logistic RegressionSetia Pramana
 
Surface features with nonparametric machine learning
Surface features with nonparametric machine learningSurface features with nonparametric machine learning
Surface features with nonparametric machine learningSylvain Ferrandiz
 
Learning On The Border:Active Learning in Imbalanced classification Data
Learning On The Border:Active Learning in Imbalanced classification DataLearning On The Border:Active Learning in Imbalanced classification Data
Learning On The Border:Active Learning in Imbalanced classification Data萍華 楊
 
Machine learning by Dr. Vivek Vijay and Dr. Sandeep Yadav
Machine learning by Dr. Vivek Vijay and Dr. Sandeep YadavMachine learning by Dr. Vivek Vijay and Dr. Sandeep Yadav
Machine learning by Dr. Vivek Vijay and Dr. Sandeep YadavAgile Testing Alliance
 
Feature selection concepts and methods
Feature selection concepts and methodsFeature selection concepts and methods
Feature selection concepts and methodsReza Ramezani
 
Multi objective optimization and Benchmark functions result
Multi objective optimization and Benchmark functions resultMulti objective optimization and Benchmark functions result
Multi objective optimization and Benchmark functions resultPiyush Agarwal
 
model simulating
model simulatingmodel simulating
model simulatingFEG
 
Lecture 2
Lecture 2Lecture 2
Lecture 2butest
 
Monte Carlo methods
Monte Carlo methodsMonte Carlo methods
Monte Carlo methodsPaul Gardner
 
Clinical data based optimal STI strategies for HIV: a reinforcement learning ...
Clinical data based optimal STI strategies for HIV: a reinforcement learning ...Clinical data based optimal STI strategies for HIV: a reinforcement learning ...
Clinical data based optimal STI strategies for HIV: a reinforcement learning ...Université de Liège (ULg)
 
Applied Business Statistics ,ken black , ch 4
Applied Business Statistics ,ken black , ch 4Applied Business Statistics ,ken black , ch 4
Applied Business Statistics ,ken black , ch 4AbdelmonsifFadl
 

Was ist angesagt? (20)

An Introduction to Simulation in the Social Sciences
An Introduction to Simulation in the Social SciencesAn Introduction to Simulation in the Social Sciences
An Introduction to Simulation in the Social Sciences
 
maXbox starter67 machine learning V
maXbox starter67 machine learning VmaXbox starter67 machine learning V
maXbox starter67 machine learning V
 
isabelle_webinar_jan..
isabelle_webinar_jan..isabelle_webinar_jan..
isabelle_webinar_jan..
 
Logistic regression in Machine Learning
Logistic regression in Machine LearningLogistic regression in Machine Learning
Logistic regression in Machine Learning
 
Cross-validation aggregation for forecasting
Cross-validation aggregation for forecastingCross-validation aggregation for forecasting
Cross-validation aggregation for forecasting
 
Automatic Forecasting at Scale
Automatic Forecasting at ScaleAutomatic Forecasting at Scale
Automatic Forecasting at Scale
 
Les outils de modélisation des Big Data
Les outils de modélisation des Big DataLes outils de modélisation des Big Data
Les outils de modélisation des Big Data
 
Introduction to conventional machine learning techniques
Introduction to conventional machine learning techniquesIntroduction to conventional machine learning techniques
Introduction to conventional machine learning techniques
 
Classification using L1-Penalized Logistic Regression
Classification using L1-Penalized Logistic RegressionClassification using L1-Penalized Logistic Regression
Classification using L1-Penalized Logistic Regression
 
Surface features with nonparametric machine learning
Surface features with nonparametric machine learningSurface features with nonparametric machine learning
Surface features with nonparametric machine learning
 
Learning On The Border:Active Learning in Imbalanced classification Data
Learning On The Border:Active Learning in Imbalanced classification DataLearning On The Border:Active Learning in Imbalanced classification Data
Learning On The Border:Active Learning in Imbalanced classification Data
 
Machine learning by Dr. Vivek Vijay and Dr. Sandeep Yadav
Machine learning by Dr. Vivek Vijay and Dr. Sandeep YadavMachine learning by Dr. Vivek Vijay and Dr. Sandeep Yadav
Machine learning by Dr. Vivek Vijay and Dr. Sandeep Yadav
 
Feature selection concepts and methods
Feature selection concepts and methodsFeature selection concepts and methods
Feature selection concepts and methods
 
Machine learning
Machine learningMachine learning
Machine learning
 
Multi objective optimization and Benchmark functions result
Multi objective optimization and Benchmark functions resultMulti objective optimization and Benchmark functions result
Multi objective optimization and Benchmark functions result
 
model simulating
model simulatingmodel simulating
model simulating
 
Lecture 2
Lecture 2Lecture 2
Lecture 2
 
Monte Carlo methods
Monte Carlo methodsMonte Carlo methods
Monte Carlo methods
 
Clinical data based optimal STI strategies for HIV: a reinforcement learning ...
Clinical data based optimal STI strategies for HIV: a reinforcement learning ...Clinical data based optimal STI strategies for HIV: a reinforcement learning ...
Clinical data based optimal STI strategies for HIV: a reinforcement learning ...
 
Applied Business Statistics ,ken black , ch 4
Applied Business Statistics ,ken black , ch 4Applied Business Statistics ,ken black , ch 4
Applied Business Statistics ,ken black , ch 4
 

Andere mochten auch

High Power Lasers and New Applications
High Power Lasers and New ApplicationsHigh Power Lasers and New Applications
High Power Lasers and New ApplicationsIJERD Editor
 
Report
ReportReport
Reportbutest
 
The possibilities of Internet of Things
The possibilities of Internet of ThingsThe possibilities of Internet of Things
The possibilities of Internet of ThingsKPN IoT
 
What's Available in Assistive Technology for Students with ...
What's Available in Assistive Technology for Students with ...What's Available in Assistive Technology for Students with ...
What's Available in Assistive Technology for Students with ...butest
 
內政部:「公共污水處理廠放流水回收再利用推動情形」
內政部:「公共污水處理廠放流水回收再利用推動情形」內政部:「公共污水處理廠放流水回收再利用推動情形」
內政部:「公共污水處理廠放流水回收再利用推動情形」R.O.C.Executive Yuan
 
Fotball og Teamarbeid/Teamledelse
Fotball og Teamarbeid/TeamledelseFotball og Teamarbeid/Teamledelse
Fotball og Teamarbeid/TeamledelsePatrick Tahiri
 
SISTEM KOMUNIKASI DATA (SISKOMDAT)
SISTEM KOMUNIKASI DATA (SISKOMDAT)SISTEM KOMUNIKASI DATA (SISKOMDAT)
SISTEM KOMUNIKASI DATA (SISKOMDAT)Maya Ayunanda
 
MLlectureMethod.ppt
MLlectureMethod.pptMLlectureMethod.ppt
MLlectureMethod.pptbutest
 
PMDC Step-1 Formative assessment Day-4
PMDC Step-1 Formative assessment Day-4PMDC Step-1 Formative assessment Day-4
PMDC Step-1 Formative assessment Day-4DrSaeed Shafi
 
đai Hỗ Trợ Cột Sống
đai Hỗ Trợ Cột Sốngđai Hỗ Trợ Cột Sống
đai Hỗ Trợ Cột Sốnglakisha458
 
Thoai Hoa Sun Khop
Thoai Hoa Sun KhopThoai Hoa Sun Khop
Thoai Hoa Sun Khopshirley768
 
Comprehensive Final Exam Accounting 3300 Fall 2009 Prof. Richard ...
Comprehensive Final Exam Accounting 3300 Fall 2009 Prof. Richard ...Comprehensive Final Exam Accounting 3300 Fall 2009 Prof. Richard ...
Comprehensive Final Exam Accounting 3300 Fall 2009 Prof. Richard ...butest
 
FOCUS.doc
FOCUS.docFOCUS.doc
FOCUS.docbutest
 
Max Lapshin Erlyvideo V1
Max Lapshin Erlyvideo V1Max Lapshin Erlyvideo V1
Max Lapshin Erlyvideo V1guest092df8
 
Resolution Template
Resolution TemplateResolution Template
Resolution Templatebutest
 
แบบสำรวจตัวเอง
แบบสำรวจตัวเอง แบบสำรวจตัวเอง
แบบสำรวจตัวเอง Piangtawan Tianloek
 
actesITS2004.doc
actesITS2004.docactesITS2004.doc
actesITS2004.docbutest
 
dorCV.doc
dorCV.docdorCV.doc
dorCV.docbutest
 

Andere mochten auch (20)

High Power Lasers and New Applications
High Power Lasers and New ApplicationsHigh Power Lasers and New Applications
High Power Lasers and New Applications
 
Report
ReportReport
Report
 
The possibilities of Internet of Things
The possibilities of Internet of ThingsThe possibilities of Internet of Things
The possibilities of Internet of Things
 
What's Available in Assistive Technology for Students with ...
What's Available in Assistive Technology for Students with ...What's Available in Assistive Technology for Students with ...
What's Available in Assistive Technology for Students with ...
 
內政部:「公共污水處理廠放流水回收再利用推動情形」
內政部:「公共污水處理廠放流水回收再利用推動情形」內政部:「公共污水處理廠放流水回收再利用推動情形」
內政部:「公共污水處理廠放流水回收再利用推動情形」
 
Fotball og Teamarbeid/Teamledelse
Fotball og Teamarbeid/TeamledelseFotball og Teamarbeid/Teamledelse
Fotball og Teamarbeid/Teamledelse
 
SISTEM KOMUNIKASI DATA (SISKOMDAT)
SISTEM KOMUNIKASI DATA (SISKOMDAT)SISTEM KOMUNIKASI DATA (SISKOMDAT)
SISTEM KOMUNIKASI DATA (SISKOMDAT)
 
MLlectureMethod.ppt
MLlectureMethod.pptMLlectureMethod.ppt
MLlectureMethod.ppt
 
PMDC Step-1 Formative assessment Day-4
PMDC Step-1 Formative assessment Day-4PMDC Step-1 Formative assessment Day-4
PMDC Step-1 Formative assessment Day-4
 
đai Hỗ Trợ Cột Sống
đai Hỗ Trợ Cột Sốngđai Hỗ Trợ Cột Sống
đai Hỗ Trợ Cột Sống
 
Thoai Hoa Sun Khop
Thoai Hoa Sun KhopThoai Hoa Sun Khop
Thoai Hoa Sun Khop
 
Comprehensive Final Exam Accounting 3300 Fall 2009 Prof. Richard ...
Comprehensive Final Exam Accounting 3300 Fall 2009 Prof. Richard ...Comprehensive Final Exam Accounting 3300 Fall 2009 Prof. Richard ...
Comprehensive Final Exam Accounting 3300 Fall 2009 Prof. Richard ...
 
FOCUS.doc
FOCUS.docFOCUS.doc
FOCUS.doc
 
Neuroscience Review
Neuroscience ReviewNeuroscience Review
Neuroscience Review
 
Max Lapshin Erlyvideo V1
Max Lapshin Erlyvideo V1Max Lapshin Erlyvideo V1
Max Lapshin Erlyvideo V1
 
Resolution Template
Resolution TemplateResolution Template
Resolution Template
 
แบบสำรวจตัวเอง
แบบสำรวจตัวเอง แบบสำรวจตัวเอง
แบบสำรวจตัวเอง
 
actesITS2004.doc
actesITS2004.docactesITS2004.doc
actesITS2004.doc
 
dorCV.doc
dorCV.docdorCV.doc
dorCV.doc
 
Vocab list 4th year revision
Vocab list 4th year revisionVocab list 4th year revision
Vocab list 4th year revision
 

Ähnlich wie Introduction

Introduction
IntroductionIntroduction
Introductionbutest
 
Jörg Stelzer
Jörg StelzerJörg Stelzer
Jörg Stelzerbutest
 
MLHEP 2015: Introductory Lecture #1
MLHEP 2015: Introductory Lecture #1MLHEP 2015: Introductory Lecture #1
MLHEP 2015: Introductory Lecture #1arogozhnikov
 
机器学习Adaboost
机器学习Adaboost机器学习Adaboost
机器学习AdaboostShocky1
 
Machine Learning and Statistical Analysis
Machine Learning and Statistical AnalysisMachine Learning and Statistical Analysis
Machine Learning and Statistical Analysisbutest
 
Machine Learning and Statistical Analysis
Machine Learning and Statistical AnalysisMachine Learning and Statistical Analysis
Machine Learning and Statistical Analysisbutest
 
Machine Learning and Statistical Analysis
Machine Learning and Statistical AnalysisMachine Learning and Statistical Analysis
Machine Learning and Statistical Analysisbutest
 
Machine Learning and Statistical Analysis
Machine Learning and Statistical AnalysisMachine Learning and Statistical Analysis
Machine Learning and Statistical Analysisbutest
 
Machine Learning and Statistical Analysis
Machine Learning and Statistical AnalysisMachine Learning and Statistical Analysis
Machine Learning and Statistical Analysisbutest
 
Machine Learning and Statistical Analysis
Machine Learning and Statistical AnalysisMachine Learning and Statistical Analysis
Machine Learning and Statistical Analysisbutest
 
Machine Learning and Statistical Analysis
Machine Learning and Statistical AnalysisMachine Learning and Statistical Analysis
Machine Learning and Statistical Analysisbutest
 
Hands-On Algorithms for Predictive Modeling
Hands-On Algorithms for Predictive ModelingHands-On Algorithms for Predictive Modeling
Hands-On Algorithms for Predictive ModelingArthur Charpentier
 
Lecture7 cross validation
Lecture7 cross validationLecture7 cross validation
Lecture7 cross validationStéphane Canu
 
05 history of cv a machine learning (theory) perspective on computer vision
05  history of cv a machine learning (theory) perspective on computer vision05  history of cv a machine learning (theory) perspective on computer vision
05 history of cv a machine learning (theory) perspective on computer visionzukun
 
Feedback Particle Filter and its Applications to Neuroscience
Feedback Particle Filter and its Applications to NeuroscienceFeedback Particle Filter and its Applications to Neuroscience
Feedback Particle Filter and its Applications to Neurosciencemehtapgresearch
 

Ähnlich wie Introduction (20)

Introduction
IntroductionIntroduction
Introduction
 
Jörg Stelzer
Jörg StelzerJörg Stelzer
Jörg Stelzer
 
MLHEP 2015: Introductory Lecture #1
MLHEP 2015: Introductory Lecture #1MLHEP 2015: Introductory Lecture #1
MLHEP 2015: Introductory Lecture #1
 
机器学习Adaboost
机器学习Adaboost机器学习Adaboost
机器学习Adaboost
 
Ml presentation
Ml presentationMl presentation
Ml presentation
 
Automatic bayesian cubature
Automatic bayesian cubatureAutomatic bayesian cubature
Automatic bayesian cubature
 
Machine Learning and Statistical Analysis
Machine Learning and Statistical AnalysisMachine Learning and Statistical Analysis
Machine Learning and Statistical Analysis
 
Machine Learning and Statistical Analysis
Machine Learning and Statistical AnalysisMachine Learning and Statistical Analysis
Machine Learning and Statistical Analysis
 
Machine Learning and Statistical Analysis
Machine Learning and Statistical AnalysisMachine Learning and Statistical Analysis
Machine Learning and Statistical Analysis
 
Machine Learning and Statistical Analysis
Machine Learning and Statistical AnalysisMachine Learning and Statistical Analysis
Machine Learning and Statistical Analysis
 
Machine Learning and Statistical Analysis
Machine Learning and Statistical AnalysisMachine Learning and Statistical Analysis
Machine Learning and Statistical Analysis
 
Machine Learning and Statistical Analysis
Machine Learning and Statistical AnalysisMachine Learning and Statistical Analysis
Machine Learning and Statistical Analysis
 
Machine Learning and Statistical Analysis
Machine Learning and Statistical AnalysisMachine Learning and Statistical Analysis
Machine Learning and Statistical Analysis
 
ML MODULE 2.pdf
ML MODULE 2.pdfML MODULE 2.pdf
ML MODULE 2.pdf
 
ML unit-1.pptx
ML unit-1.pptxML unit-1.pptx
ML unit-1.pptx
 
Svm dbeth
Svm dbethSvm dbeth
Svm dbeth
 
Hands-On Algorithms for Predictive Modeling
Hands-On Algorithms for Predictive ModelingHands-On Algorithms for Predictive Modeling
Hands-On Algorithms for Predictive Modeling
 
Lecture7 cross validation
Lecture7 cross validationLecture7 cross validation
Lecture7 cross validation
 
05 history of cv a machine learning (theory) perspective on computer vision
05  history of cv a machine learning (theory) perspective on computer vision05  history of cv a machine learning (theory) perspective on computer vision
05 history of cv a machine learning (theory) perspective on computer vision
 
Feedback Particle Filter and its Applications to Neuroscience
Feedback Particle Filter and its Applications to NeuroscienceFeedback Particle Filter and its Applications to Neuroscience
Feedback Particle Filter and its Applications to Neuroscience
 

Mehr von butest

EL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBEEL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBEbutest
 
1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同butest
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALbutest
 
Timeline: The Life of Michael Jackson
Timeline: The Life of Michael JacksonTimeline: The Life of Michael Jackson
Timeline: The Life of Michael Jacksonbutest
 
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...butest
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALbutest
 
Com 380, Summer II
Com 380, Summer IICom 380, Summer II
Com 380, Summer IIbutest
 
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet JazzThe MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazzbutest
 
MICHAEL JACKSON.doc
MICHAEL JACKSON.docMICHAEL JACKSON.doc
MICHAEL JACKSON.docbutest
 
Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1butest
 
Facebook
Facebook Facebook
Facebook butest
 
Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...butest
 
Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...butest
 
NEWS ANNOUNCEMENT
NEWS ANNOUNCEMENTNEWS ANNOUNCEMENT
NEWS ANNOUNCEMENTbutest
 
C-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.docC-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.docbutest
 
MAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.docMAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.docbutest
 
Mac OS X Guide.doc
Mac OS X Guide.docMac OS X Guide.doc
Mac OS X Guide.docbutest
 
WEB DESIGN!
WEB DESIGN!WEB DESIGN!
WEB DESIGN!butest
 

Mehr von butest (20)

EL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBEEL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBE
 
1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIAL
 
Timeline: The Life of Michael Jackson
Timeline: The Life of Michael JacksonTimeline: The Life of Michael Jackson
Timeline: The Life of Michael Jackson
 
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIAL
 
Com 380, Summer II
Com 380, Summer IICom 380, Summer II
Com 380, Summer II
 
PPT
PPTPPT
PPT
 
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet JazzThe MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
 
MICHAEL JACKSON.doc
MICHAEL JACKSON.docMICHAEL JACKSON.doc
MICHAEL JACKSON.doc
 
Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1
 
Facebook
Facebook Facebook
Facebook
 
Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...
 
Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...
 
NEWS ANNOUNCEMENT
NEWS ANNOUNCEMENTNEWS ANNOUNCEMENT
NEWS ANNOUNCEMENT
 
C-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.docC-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.doc
 
MAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.docMAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.doc
 
Mac OS X Guide.doc
Mac OS X Guide.docMac OS X Guide.doc
Mac OS X Guide.doc
 
hier
hierhier
hier
 
WEB DESIGN!
WEB DESIGN!WEB DESIGN!
WEB DESIGN!
 

Introduction

  • 1. Introduction to Machine Learning Isabelle Guyon isabelle @ clopinet .com
  • 2.
  • 3.
  • 4.
  • 5. Applications inputs training examples 10 10 2 10 3 10 4 10 5 Bioinformatics Ecology OCR HWR Market Analysis Text Categorization Machine Vision System diagnosis 10 10 2 10 3 10 4 10 5
  • 6.
  • 7.
  • 8.
  • 9. Challenges inputs training examples 10 10 2 10 3 10 4 10 5 Arcene, Dorothea, Hiva Sylva Gisette Gina Ada Dexter, Nova Madelon 10 10 2 10 3 10 4 10 5 NIPS 2003 & WCCI 2006
  • 10. Ten Classification Tasks 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 50 100 150 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 50 100 150 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 50 100 150 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 50 100 150 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 50 100 150 ADA GINA HIVA NOVA SYLVA 0 5 10 15 20 25 30 35 40 45 50 0 20 40 ARCENE 0 5 10 15 20 25 30 35 40 45 50 0 20 40 DEXTER 0 5 10 15 20 25 30 35 40 45 50 0 20 40 DOROTHEA 0 5 10 15 20 25 30 35 40 45 50 0 20 40 GISETTE 0 5 10 15 20 25 30 35 40 45 50 0 20 40 MADELON Test BER (%)
  • 12. Conventions X={x ij } n m x i y ={y j }  w
  • 13. Learning problem Colon cancer, Alon et al 1999 Unsupervised learning Is there structure in data? Supervised learning Predict an outcome y . Data matrix: X m lines = patterns (data points, examples): samples, patients, documents, images, … n columns = features: (attributes, input variables): genes, proteins, words, pixels, …
  • 14.
  • 15. Artificial Neurons f( x ) = w  x + b Axon Synapses Activation of other neurons Dendrites Cell potential Activation function McCulloch and Pitts, 1943 x 1 x 2 x n 1  f( x ) w 1 w 2 w n b
  • 16. Linear Decision Boundary x 1 x 2 x 3 hyperplane x 1 x 2
  • 17. Perceptron Rosenblatt, 1957 f( x ) f( x ) = w   ( x) + b  1 ( x ) 1 x 1 x 2 x n  2 ( x )  N ( x )  w 1 w 2 w N b
  • 18. NL Decision Boundary x 1 x 2 x 1 x 2 x 3
  • 19. Kernel Method Potential functions, Aizerman et al 1964 f( x ) =  i  i k ( x i , x ) + b k( x 1 ,x ) 1 x 1 x 2 x n   1  2  m b k( x 2 ,x ) k( x m ,x ) k(. ,. ) is a similarity measure or “kernel”.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24. Multi-Layer Perceptron Back-propagation, Rumelhart et al, 1986  x j   “hidden units” internal “latent” variables
  • 26.
  • 27. Iris Data (Fisher, 1936) Linear discriminant Tree classifier Gaussian mixture Kernel method (SVM) setosa virginica versicolor Figure from Norbert Jankowski and Krzysztof Grabczewski
  • 28. Fit / Robustness Tradeoff x 1 x 2 15 x 1 x 2
  • 29. Performance evaluation x 1 x 2 f( x ) = 0 f( x ) > 0 f( x ) < 0 f( x ) = 0 f( x ) > 0 f( x ) < 0 x 1 x 2
  • 30. Performance evaluation x 1 x 2 f( x ) = -1 f( x ) > -1 f( x ) < -1 f( x ) = -1 f( x ) > -1 f( x ) < -1 x 1 x 2
  • 31. Performance evaluation x 1 x 2 f( x ) = 1 f( x ) > 1 f( x ) < 1 f( x ) = 1 f( x ) > 1 f( x ) < 1 x 1 x 2
  • 32. ROC Curve 100% 100% For a given threshold on f(x), you get a point on the ROC curve. Actual ROC 0 Positive class success rate (hit rate, sensitivity) 1 - negative class success rate (false alarm rate, 1-specificity) Random ROC Ideal ROC curve
  • 33. ROC Curve Ideal ROC curve (AUC=1) 100% 100% 0  AUC  1 Actual ROC Random ROC (AUC=0.5) 0 For a given threshold on f(x), you get a point on the ROC curve. Positive class success rate (hit rate, sensitivity) 1 - negative class success rate (false alarm rate, 1-specificity)
  • 34. Lift Curve O M Fraction of customers selected Hit rate = Frac. good customers select . Random lift Ideal Lift 100% 100% Customers ranked according to f(x); selection of the top ranking customers. Gini=2 AUC-1 0  Gini  1 Actual Lift 0
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.

Hinweis der Redaktion

  1. Pb : the background image shows in webex. I’ve reduced the image : hope it helps Not mention KXEN
  2. Include here recommandation systems
  3. Best performance for each type of method, normalized by the average of these perf
  4. Which one is best : linear or non-linear The decision comes when we see new data Very often the simplest model is better This principle is implemented in Learning Theory
  5. Which one is best : linear or non-linear The decision comes when we see new data Very often the simplest model is better This principle is implemented in Learning Theory
  6. Which one is best : linear or non-linear The decision comes when we see new data Very often the simplest model is better This principle is implemented in Learning Theory
  7. Which one is best : linear or non-linear The decision comes when we see new data Very often the simplest model is better This principle is implemented in Learning Theory
  8. Explain that this is a global estimator
  9. Explain that this is a global estimator
  10. Explain that this is a global estimator Proof of Gini = 2 AUC –1 L = lift Hitrate = tp/pos Farate = fp/neg Selected = sel/tot = (tp+fp)/tot = pos/tot.tp/pos + neg/tot.fp/neg = pos/tot Hitrate + neg/tot Farate AUC = sum Hitrate d(Farate) L = sum Hitrate d(Selected) = sum Hitrate d(pos/tot Hitrate + neg/tot Farate) = pos/tot sum Hitrate d Hitrate + neg/tot sum Hitrate d Farate = ½ pos/tot + neg/tot AUC 2L-1 = -(1-pos/tot) + 2(1-pos/tot) AUC = (1-pos/tot) (2AUC-1) Gini = (L-1/2)/(1-pos/tot)/2 = (2L-1)/(1-pos/tot) = 2AUC-1