SlideShare ist ein Scribd-Unternehmen logo
1 von 5
Downloaden Sie, um offline zu lesen
Abstract Algebra Cheat Sheet

16 December 2002

By Brendan Kidwell, based on Dr. Ward Heilman’s notes for his Abstract Algebra class.

Notes: Where applicable, page numbers are listed in parentheses at the end of a note.

Def: A group is a nonempty set G together with a binary operation 2 on G3G satisfying the
following four properties:
1.   G is closed under the operation 2 .
2.   The operation 2 is associative.
3.   G contains an identity element, e, for the operation 2 .
4.   Each element in G has an inverse in G under the operation 2 .
Proposition 1: A group has exactly one identity element.
Proposition 2: Each element of a group has exactly one inverse element.
Proposition 3: ‘a2b’ 1,b 12a                    1
                                                        } a, bV‘G, 2’ .
                                             




Proposition 4: ‘a 1 ’ 1,a } aV‘G, 2’ .
                             




Proposition 5: ‘én , 0 n ’ is a group } nVè .
Proposition 6: In a group table, every element occurs exactly once in each row and exactly once in each
column.
Def: The order of a group ‘G, 2’ is the number of elements in the set G. (Written as bGb .) (36)
Def: A dihedral group of order 2n is the set of symmetric transformations of a regular n -gon .
(Written as D n .) (36)
Def: An abelian (or commutative) group has the property that a2b,b2a } a, bV‘G, 2’ . (37)
Def: ‘H, 2’ is a subgroup of ‘G, 2’ iff H VG and ‘H, 2’ is a group under the same operation. (37)
To show that ‘H, 2’ is a subgroup, show that H VG and then show closure and existence of inverses.
Lagrange’s Theorem: Let ‘H, 2’ be a subgroup of a finite group, ‘G, 2’ . bHb divides bGb .
Def: “ a ”,a 0 , a1 , a 1 , a 2 , a 2 , a3 , a 3 e is the cyclic subgroup generated by a.
                                                     




Def: The order of an element, a, is the order of “ a” .
Def: A cyclic group is a group that can be generated entirely by repeatedly combining a single element
with itself. In other words, if for a cyclic group G,“ a” , then a is the generator of G.
Def: Prime Order Proposition. For every prime p, there is exactly one group of order p.
Proposition 8: Cancellation Laws. Let a, b, cV‘G, 2’ .
1. ‘a2b,a2c’ l‘b,c’
2. ‘b2a,c2a’ l‘b,c’
3. If G is abelian, ‘a2b,c2a’ l‘b,c’
Proposition 9: The only solution to a2a,a is a,e .
Proposition 10: Let a, b V G . If a2b/b2a , then e, a, b, a2b, b2a are all distinct elements. (50)
Proposition 11: Any non-abelian group has at least six elements. (51)
Def: The center of a group is Z ‘G’,all g VG such that ‘ g2a,a2g } aVG ’ .
Proposition 12: ‘Z ‘G’, 2’ is a subgroup of G. (52)
Def: Two integers, a and b, are relatively prime iff gcd ‘a, b’,1 . (54)
Def. } nVè , the set of units of n, U ‘n’ , is the set of all natural numbers relatively prime to n. (54)
Proposition 13: } nVè , ‘U ‘n’,4n ’ is a group. (54)
Def: For any set S and subsets A, B VS , the symmetric difference of A and B (written as A´ B ) is the
set of all elements that are in A or B, but are not in both A and B. In other words,
 A ´ B ,‘ A1 B ’=‘ B 1 A ’ . (55)
Def: The power set of S (written as P‘S ’ ) is the set of all subsets of S, including Ž and the original
set S. (55)
Proposition 14: For any nonempty set S, ‘ P‘S ’, ´ ’ is a group. (55)
Def: Let ‘G, 2’ and ‘K, ( ’ be two groups. Let f be a function from G to K. f is a homomorphism (or
operation preserving function) from ‘G, 2’ to ‘K, ( ’ iff } a, bVG f ‘a2b’, f ‘a’( f ‘b’ . (59)
Proposition 15: Let f: G l K be a homomorphism. Let e be the identity of ‘G, 2’ and e ’ be the
identity of ‘K, ( ’ . (60)
1. f ‘e’,e ’
2. f ‘ g 1 ’,‘ f ‘ g ’’ 1 } g V G
                     ¡


        ¡




3. f ‘g n ’,‘ f ‘g’’n } nV é
Def: Given nonempty sets S and T, with x, y V S , and a function f: S lT (63)
1. f is a one-to-one (1-1) function iff ‘ x/ y ’ l ‘ f ‘x’/ f ‘ y’’ .
2. f is onto T iff } z VT YxV S such that f ‘x’, z .
Proposition 16: Let f: S lT be an onto function. (65)
1. f ‘ f 1 ‘V ’ ’,V }V PT
            ¢




2. W P f ‘ f 1 ‘W ’’ } W PS
                ¢




Proposition 17: Let f be a homomorphism from ‘G, 2’ to ‘K, ( ’ . (68)
1. If ‘H, 2’ is a subgroup of ‘G, 2’ , then ‘ f ‘H ’, ( ’ is a subgroup of ‘K, ( ’ .
2. If ‘L, ( ’ is a subgroup of ‘K, ( ’ , then ‘ f 1 ‘L’, 2 ’ is a subgroup of ‘G, 2’ .
                                                   ¢




Def: (Using the previous example,) the image of H under f is f ‘H ’ . The inverse image of L under f is
 f 1 ‘L’ . (68)
  ¢




Proposition 18: Let f be a homomorphism from ‘G, 2’ to ‘K, ( ’ . f is one-to-one iff ker ‘ f ’,e  .
(72)
Def: Two groups, ‘G, 2’ and ‘K, ( ’ , are isomorphic iff there exists a one-to-one homomorphism f
from ‘G, 2’ onto ‘K, ( ’ —that is, f ‘G’,K . In this case, f is called an isomorphism or isomorphic
mapping. (73)
Proposition 19: Every finite cyclic group of order n is isomorphic to ‘é n, 0 n ’ and every infinite cyclic
group is isomorphic to ‘é , 0 ’ . (75)
Proposition 20: Every subgroup of a cyclic group is cyclic. (76)
Theorem: If G is a finite group, p is a prime, and p k is the largest power of p which divides bGb , then
G has a subgroup of order pk .
Def: A permutation is a one-to-one and onto function from a set to itself. (77)
Note: See pages 78 and 81 for examples of how to notate permutations.
Def: The set of permutations on 1, 2, 3,e, n is written as S n . (79)
Theorem 21: The set of all permutations together with composition, ‘S n, ( ’ , is a nonabelian group
} nB3 . (79)
Theorem 22: The set of all permutations on a set S (its symmetries), together with composition,
‘Sym S, ( ’ , is a group. (80)
Theorem 23 (Cayley’s Theorem): Every group is isomorphic to a group of permutations. (82)
Proposition 24: Every permutation can be written as a product of disjoint cycles in permutation
notation. (86)
Def: The length of a cycle in a permutation is the number of distinct objects in it. A cycle of length 2 is a
transposition. (86)
Proposition 25: Every cycle can be written as a product of transpositions (not necessarily distinct). (87)
Def: A permutation is even (or odd) if it can be written as a product of an even (or odd) number of
transpositions. (88)
Def: The subset of S n which consists of all the even permutations of S n is called the alternating
group on n and is written as An . (90)
Def: Matrix multiplication, which is not commutative, is the standard way to combine matrices. To
multiply a 2×2 matrix: (102)

• –• – •
  a b e f
  c d g h
                ,
                    a e0b g a f 0b h
                    c e0d g c f 0d h     –
Notes: A 2×2 matrix can be found to represent any linear transformation. The special matrix
M,
     •cos ¾ 1sin ¾
       sin ¾ cos ¾   –
when mulpilied on the left with a YHFWRU LQ ë 2 ZLOO URWDWH LW FRXQWHUFORFNZLVH by the amount ¾ :
M X initial , X rotated . (100)
Def: The inverse under multiplication of a 2×2 matrix is computed as follows: (103)



             •                    –
                 d       1b
          1

• –
  a b         a d1b c a d1b c
         £




            ,
  c d           1c        a
              a d1b c a d1b c
Def: The determinant of a 2×2 matrix is computed as follows: (104)

det
   ‘• –’
       a b
       c d
              ,a d1b c

Def: A matrix is invertible iff its determinant is nonzero. (104)
Theorem 29: The set of all invertible 2×2 made from elements of ë , together with matrix
multiplication, forms a group, called the general linear group, which is written as GL‘2, ë’ . (105)
Def: The special linear group is the group of 2×2 matrices with determinants of 1, written as SL‘2, ë’ .
(106)
Def: To get the transpose of a matrix, swap each element a i, j with the one on the opposite side of the
main diagonal, a j, i . The transpose of a matrix M is written M t . (106)
Def: A matrix M is orthogonal iff M t M ,I . (106)
Theorem 30: The set of orthogonal 2×2 matrices with determinant 1 together with matrix multiplication
form a the special orthogonal group, which is written as SO ‘ 2, ë ’ . The set of orthogonal matrices
together with matrix multiplication is also a group, the orthogonal group, which is written as O ‘ 2, ë ’ .
 SO ‘ 2, ë ’ is a subgroup of O ‘ 2, ë ’ . (107)
Proposition 31: For two matrices A and B, (107)
1.   ‘ A B’t ,B t A t
2.   ‘ At ’ 1,‘ A 1 ’t
         ¤      ¤




3.   det ‘ A B’,det A4det B
4.   det ‘ A t ’,det A
5.   det ‘ At A’,det At4det A,det A4det A,‘det A’2

Fact 32: SO ‘2,ë’,
                      •   cos ¾ 1sin ¾
                           sin ¾ cos ¾  –   }angle ¾
                                                     
Def: Given a set G and an operation 2 : (113)
G is a groupoid iff G is closed under 2 .
G is a semigroup iff G is a groupoid and 2 is associative.
G is a semigroup with identity iff G is a semigroup and has an identity under 2 .
G is a group iff G is a semigroup and each element has an inverse under 2 .
Def: A ring, written ‘R, 2 , ( ’ , consists of a nonempty set R and two opertaions such that (114)
v     ‘R, 2’ is an abelian group,
v     ‘R, ( ’ is a semigroup, and
v    the semigroup operation, ( , distributes over the group operation, 2 .
Proposition 33: Let ‘R, 0 ,4’ be a ring. (115)
1. 04a, a40,0 } a V R
2. ‘1a’4b,a4‘1b’,1‘a4b’ } a, bV R
3. ‘1a’4‘1b’,a4b } a, bV R
Def: A ring with identity is a ring that contains an indentity under the second operation (the
multiplicative operation). (117)
Def: A commutative ring is a ring where the second operation is commutative. (117)
Def: A subring is a nonempty subset S of a ring ‘R, 0 ,4’ such that ‘S, 0 ,4’ is a ring (under the same
operations as R.) (119)
Proposition 34: To prove that ‘S, 0 , ( ’ is a subring of ‘R, 0 ,4’ we need to prove that (119)
1.   S P R (set containment)
2.   } a, bV S ‘a0b’V S (closure under additive operation)
3.   } a, bV S ‘a4b’V S (closer under multiplicative operation)
4.   } aV S ‘1a’V S (additive inverses exist in S)
Def: A ring ‘R, 0 ,4’ has zero divisors iff Y a, b V R such that a/0, b/0, and a4b,0 . (120)
Def: In a ring ‘R, 0 ,4’ with identity, an element r is invertible iff Y r 1 V R such that r4r 1, r 14r ,1
                                                                             ¥               ¥    ¥




(the multiplicative identity). (121)
Proposition 35: Let R be the set of all invertible elements of R. If ‘R, 0 ,4’ is a ring with identity
                          ¦




then ‘R ,4’ is a group, known as the group of invertible elements. (121)
         §




Proposition 36: Let ‘R, 0 ,4’ be a ring with identity such that R/0 . The elements 0 and 1 are
distinct. (122)
Proposition 37: A ring ‘R, 0 ,4’ has no zero divisors iff the cancellation law for multiplication holds.
(123)
Corollary 38: Let ‘R, 0 ,4’ be a ring with identity which has no zero divisors. The only solutions to
x 2, x in the ring are x,0 and x,1 . (123)
Def: An integral domain is a commutative ring with identity which has no zero divisors. (124)
Def: A field ‘F, 0 ,4’ is a set F together with two operations such that (125)
v   ‘F, 0 ’ is an abelian group,
v   ‘F10,4’ is an abelian group, and
v   4 distributes over 0 .
In other words, a field is a commutative ring with identity in which every nonzero element has an
inverse.


Back to intro and comments page:   http://www.glump.net/archive/000024.php
Back to home page:                 http://www.glump.net/

Weitere ähnliche Inhalte

Was ist angesagt?

Group abstract algebra
Group  abstract algebraGroup  abstract algebra
Group abstract algebraNaliniSPatil
 
Group homomorphism
Group homomorphismGroup homomorphism
Group homomorphismNaliniSPatil
 
Presentation-Alex-20150421
Presentation-Alex-20150421Presentation-Alex-20150421
Presentation-Alex-20150421alexfang2014
 
Abstract Algebra Cheat Sheet
Abstract Algebra Cheat SheetAbstract Algebra Cheat Sheet
Abstract Algebra Cheat SheetMoe Han
 
Prerequisite for metric space
Prerequisite for metric spacePrerequisite for metric space
Prerequisite for metric spaceROHAN GAIKWAD
 
kunci jawaban grup
kunci jawaban grupkunci jawaban grup
kunci jawaban grupchikarahayu
 
CMSC 56 | Lecture 12: Recursive Definition & Algorithms, and Program Correctness
CMSC 56 | Lecture 12: Recursive Definition & Algorithms, and Program CorrectnessCMSC 56 | Lecture 12: Recursive Definition & Algorithms, and Program Correctness
CMSC 56 | Lecture 12: Recursive Definition & Algorithms, and Program Correctnessallyn joy calcaben
 
Matroid Basics
Matroid BasicsMatroid Basics
Matroid BasicsASPAK2014
 
A STUDY ON L-FUZZY NORMAL SUBl -GROUP
A STUDY ON L-FUZZY NORMAL SUBl -GROUPA STUDY ON L-FUZZY NORMAL SUBl -GROUP
A STUDY ON L-FUZZY NORMAL SUBl -GROUPijejournal
 

Was ist angesagt? (16)

Abstract Algebra
Abstract AlgebraAbstract Algebra
Abstract Algebra
 
Group abstract algebra
Group  abstract algebraGroup  abstract algebra
Group abstract algebra
 
Group homomorphism
Group homomorphismGroup homomorphism
Group homomorphism
 
Presentation-Alex-20150421
Presentation-Alex-20150421Presentation-Alex-20150421
Presentation-Alex-20150421
 
Isomorphism
IsomorphismIsomorphism
Isomorphism
 
Abstract Algebra Cheat Sheet
Abstract Algebra Cheat SheetAbstract Algebra Cheat Sheet
Abstract Algebra Cheat Sheet
 
Prerequisite for metric space
Prerequisite for metric spacePrerequisite for metric space
Prerequisite for metric space
 
kunci jawaban grup
kunci jawaban grupkunci jawaban grup
kunci jawaban grup
 
Sets, functions and groups
Sets, functions and groupsSets, functions and groups
Sets, functions and groups
 
Symmetrics groups
Symmetrics groupsSymmetrics groups
Symmetrics groups
 
Passman
PassmanPassman
Passman
 
ABSTRACT ALGEBRA
ABSTRACT ALGEBRAABSTRACT ALGEBRA
ABSTRACT ALGEBRA
 
CMSC 56 | Lecture 12: Recursive Definition & Algorithms, and Program Correctness
CMSC 56 | Lecture 12: Recursive Definition & Algorithms, and Program CorrectnessCMSC 56 | Lecture 12: Recursive Definition & Algorithms, and Program Correctness
CMSC 56 | Lecture 12: Recursive Definition & Algorithms, and Program Correctness
 
Matroid Basics
Matroid BasicsMatroid Basics
Matroid Basics
 
A STUDY ON L-FUZZY NORMAL SUBl -GROUP
A STUDY ON L-FUZZY NORMAL SUBl -GROUPA STUDY ON L-FUZZY NORMAL SUBl -GROUP
A STUDY ON L-FUZZY NORMAL SUBl -GROUP
 
Grup
GrupGrup
Grup
 

Andere mochten auch (17)

Abstract algebra
Abstract algebraAbstract algebra
Abstract algebra
 
Abstract algebra & its applications
Abstract algebra & its applicationsAbstract algebra & its applications
Abstract algebra & its applications
 
04
0404
04
 
Homomorphisms
HomomorphismsHomomorphisms
Homomorphisms
 
Álgebra Lineal-Armando Rojo
Álgebra Lineal-Armando RojoÁlgebra Lineal-Armando Rojo
Álgebra Lineal-Armando Rojo
 
Abstract algebra & its applications (1)
Abstract algebra & its applications (1)Abstract algebra & its applications (1)
Abstract algebra & its applications (1)
 
Ring
RingRing
Ring
 
Chisquare
ChisquareChisquare
Chisquare
 
Chi square test final presentation
Chi square test final presentationChi square test final presentation
Chi square test final presentation
 
Chi square
Chi squareChi square
Chi square
 
Use of statistics in real life
Use of statistics in real lifeUse of statistics in real life
Use of statistics in real life
 
Chi squared test
Chi squared testChi squared test
Chi squared test
 
Chi square analysis
Chi square analysisChi square analysis
Chi square analysis
 
Chi square test
Chi square testChi square test
Chi square test
 
Chi square
Chi squareChi square
Chi square
 
Chi – square test
Chi – square testChi – square test
Chi – square test
 
Chi square test
Chi square testChi square test
Chi square test
 

Ähnlich wie Abstract algebra

Brian Covello: Research in Mathematical Group Representation Theory and Symmetry
Brian Covello: Research in Mathematical Group Representation Theory and SymmetryBrian Covello: Research in Mathematical Group Representation Theory and Symmetry
Brian Covello: Research in Mathematical Group Representation Theory and SymmetryBrian Covello
 
Introduction to harmonic analysis on groups, links with spatial correlation.
Introduction to harmonic analysis on groups, links with spatial correlation.Introduction to harmonic analysis on groups, links with spatial correlation.
Introduction to harmonic analysis on groups, links with spatial correlation.Valentin De Bortoli
 
Bounds on double domination in squares of graphs
Bounds on double domination in squares of graphsBounds on double domination in squares of graphs
Bounds on double domination in squares of graphseSAT Publishing House
 
Wild knots in higher dimensions as limit sets of kleinian groups
Wild knots in higher dimensions as limit sets of kleinian groupsWild knots in higher dimensions as limit sets of kleinian groups
Wild knots in higher dimensions as limit sets of kleinian groupsPaulo Coelho
 
W020120618522391943182.pdf
W020120618522391943182.pdfW020120618522391943182.pdf
W020120618522391943182.pdfParnianSalehi1
 
Best Approximation in Real Linear 2-Normed Spaces
Best Approximation in Real Linear 2-Normed SpacesBest Approximation in Real Linear 2-Normed Spaces
Best Approximation in Real Linear 2-Normed SpacesIOSR Journals
 
A Complete Solution Of Markov S Problem On Connected Group Topologies
A Complete Solution Of Markov S Problem On Connected Group TopologiesA Complete Solution Of Markov S Problem On Connected Group Topologies
A Complete Solution Of Markov S Problem On Connected Group TopologiesLisa Muthukumar
 
3_33382 - GJPAM ok 899-908-1
3_33382 - GJPAM ok 899-908-13_33382 - GJPAM ok 899-908-1
3_33382 - GJPAM ok 899-908-1Mustafa El-sanfaz
 
Gallians solution
Gallians solutionGallians solution
Gallians solutionyunus373180
 
Introduction to Elliptic Curve Cryptography
Introduction to Elliptic Curve CryptographyIntroduction to Elliptic Curve Cryptography
Introduction to Elliptic Curve CryptographyDavid Evans
 
Suborbits and suborbital graphs of the symmetric group acting on ordered r ...
Suborbits and suborbital graphs of the symmetric group   acting on ordered r ...Suborbits and suborbital graphs of the symmetric group   acting on ordered r ...
Suborbits and suborbital graphs of the symmetric group acting on ordered r ...Alexander Decker
 
Some Results on the Group of Lower Unitriangular Matrices L(3,Zp)
Some Results on the Group of Lower Unitriangular Matrices L(3,Zp)Some Results on the Group of Lower Unitriangular Matrices L(3,Zp)
Some Results on the Group of Lower Unitriangular Matrices L(3,Zp)IJERA Editor
 

Ähnlich wie Abstract algebra (20)

Crystallographic groups
Crystallographic groupsCrystallographic groups
Crystallographic groups
 
Brian Covello: Research in Mathematical Group Representation Theory and Symmetry
Brian Covello: Research in Mathematical Group Representation Theory and SymmetryBrian Covello: Research in Mathematical Group Representation Theory and Symmetry
Brian Covello: Research in Mathematical Group Representation Theory and Symmetry
 
WASJ JOURNAL
WASJ JOURNALWASJ JOURNAL
WASJ JOURNAL
 
Introduction to harmonic analysis on groups, links with spatial correlation.
Introduction to harmonic analysis on groups, links with spatial correlation.Introduction to harmonic analysis on groups, links with spatial correlation.
Introduction to harmonic analysis on groups, links with spatial correlation.
 
Bounds on double domination in squares of graphs
Bounds on double domination in squares of graphsBounds on double domination in squares of graphs
Bounds on double domination in squares of graphs
 
Wild knots in higher dimensions as limit sets of kleinian groups
Wild knots in higher dimensions as limit sets of kleinian groupsWild knots in higher dimensions as limit sets of kleinian groups
Wild knots in higher dimensions as limit sets of kleinian groups
 
higman
higmanhigman
higman
 
W020120618522391943182.pdf
W020120618522391943182.pdfW020120618522391943182.pdf
W020120618522391943182.pdf
 
UTM JOURNAL
UTM JOURNALUTM JOURNAL
UTM JOURNAL
 
Best Approximation in Real Linear 2-Normed Spaces
Best Approximation in Real Linear 2-Normed SpacesBest Approximation in Real Linear 2-Normed Spaces
Best Approximation in Real Linear 2-Normed Spaces
 
5.pptx
5.pptx5.pptx
5.pptx
 
April2012ART_01(1)
April2012ART_01(1)April2012ART_01(1)
April2012ART_01(1)
 
A Complete Solution Of Markov S Problem On Connected Group Topologies
A Complete Solution Of Markov S Problem On Connected Group TopologiesA Complete Solution Of Markov S Problem On Connected Group Topologies
A Complete Solution Of Markov S Problem On Connected Group Topologies
 
3_33382 - GJPAM ok 899-908-1
3_33382 - GJPAM ok 899-908-13_33382 - GJPAM ok 899-908-1
3_33382 - GJPAM ok 899-908-1
 
Gallians solution
Gallians solutionGallians solution
Gallians solution
 
solution
solutionsolution
solution
 
Introduction to Elliptic Curve Cryptography
Introduction to Elliptic Curve CryptographyIntroduction to Elliptic Curve Cryptography
Introduction to Elliptic Curve Cryptography
 
Digital text
Digital  textDigital  text
Digital text
 
Suborbits and suborbital graphs of the symmetric group acting on ordered r ...
Suborbits and suborbital graphs of the symmetric group   acting on ordered r ...Suborbits and suborbital graphs of the symmetric group   acting on ordered r ...
Suborbits and suborbital graphs of the symmetric group acting on ordered r ...
 
Some Results on the Group of Lower Unitriangular Matrices L(3,Zp)
Some Results on the Group of Lower Unitriangular Matrices L(3,Zp)Some Results on the Group of Lower Unitriangular Matrices L(3,Zp)
Some Results on the Group of Lower Unitriangular Matrices L(3,Zp)
 

Kürzlich hochgeladen

Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxAmanpreet Kaur
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseAnaAcapella
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxcallscotland1987
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701bronxfugly43
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfSherif Taha
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Association for Project Management
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 

Kürzlich hochgeladen (20)

Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 

Abstract algebra

  • 1. Abstract Algebra Cheat Sheet 16 December 2002 By Brendan Kidwell, based on Dr. Ward Heilman’s notes for his Abstract Algebra class. Notes: Where applicable, page numbers are listed in parentheses at the end of a note. Def: A group is a nonempty set G together with a binary operation 2 on G3G satisfying the following four properties: 1. G is closed under the operation 2 . 2. The operation 2 is associative. 3. G contains an identity element, e, for the operation 2 . 4. Each element in G has an inverse in G under the operation 2 . Proposition 1: A group has exactly one identity element. Proposition 2: Each element of a group has exactly one inverse element. Proposition 3: ‘a2b’ 1,b 12a 1 } a, bV‘G, 2’ .       Proposition 4: ‘a 1 ’ 1,a } aV‘G, 2’ .     Proposition 5: ‘én , 0 n ’ is a group } nVè . Proposition 6: In a group table, every element occurs exactly once in each row and exactly once in each column. Def: The order of a group ‘G, 2’ is the number of elements in the set G. (Written as bGb .) (36) Def: A dihedral group of order 2n is the set of symmetric transformations of a regular n -gon . (Written as D n .) (36) Def: An abelian (or commutative) group has the property that a2b,b2a } a, bV‘G, 2’ . (37) Def: ‘H, 2’ is a subgroup of ‘G, 2’ iff H VG and ‘H, 2’ is a group under the same operation. (37) To show that ‘H, 2’ is a subgroup, show that H VG and then show closure and existence of inverses. Lagrange’s Theorem: Let ‘H, 2’ be a subgroup of a finite group, ‘G, 2’ . bHb divides bGb . Def: “ a ”,a 0 , a1 , a 1 , a 2 , a 2 , a3 , a 3 e is the cyclic subgroup generated by a.       Def: The order of an element, a, is the order of “ a” . Def: A cyclic group is a group that can be generated entirely by repeatedly combining a single element with itself. In other words, if for a cyclic group G,“ a” , then a is the generator of G. Def: Prime Order Proposition. For every prime p, there is exactly one group of order p. Proposition 8: Cancellation Laws. Let a, b, cV‘G, 2’ . 1. ‘a2b,a2c’ l‘b,c’ 2. ‘b2a,c2a’ l‘b,c’ 3. If G is abelian, ‘a2b,c2a’ l‘b,c’ Proposition 9: The only solution to a2a,a is a,e . Proposition 10: Let a, b V G . If a2b/b2a , then e, a, b, a2b, b2a are all distinct elements. (50)
  • 2. Proposition 11: Any non-abelian group has at least six elements. (51) Def: The center of a group is Z ‘G’,all g VG such that ‘ g2a,a2g } aVG ’ . Proposition 12: ‘Z ‘G’, 2’ is a subgroup of G. (52) Def: Two integers, a and b, are relatively prime iff gcd ‘a, b’,1 . (54) Def. } nVè , the set of units of n, U ‘n’ , is the set of all natural numbers relatively prime to n. (54) Proposition 13: } nVè , ‘U ‘n’,4n ’ is a group. (54) Def: For any set S and subsets A, B VS , the symmetric difference of A and B (written as A´ B ) is the set of all elements that are in A or B, but are not in both A and B. In other words, A ´ B ,‘ A1 B ’=‘ B 1 A ’ . (55) Def: The power set of S (written as P‘S ’ ) is the set of all subsets of S, including Ž and the original set S. (55) Proposition 14: For any nonempty set S, ‘ P‘S ’, ´ ’ is a group. (55) Def: Let ‘G, 2’ and ‘K, ( ’ be two groups. Let f be a function from G to K. f is a homomorphism (or operation preserving function) from ‘G, 2’ to ‘K, ( ’ iff } a, bVG f ‘a2b’, f ‘a’( f ‘b’ . (59) Proposition 15: Let f: G l K be a homomorphism. Let e be the identity of ‘G, 2’ and e ’ be the identity of ‘K, ( ’ . (60) 1. f ‘e’,e ’ 2. f ‘ g 1 ’,‘ f ‘ g ’’ 1 } g V G ¡ ¡ 3. f ‘g n ’,‘ f ‘g’’n } nV é Def: Given nonempty sets S and T, with x, y V S , and a function f: S lT (63) 1. f is a one-to-one (1-1) function iff ‘ x/ y ’ l ‘ f ‘x’/ f ‘ y’’ . 2. f is onto T iff } z VT YxV S such that f ‘x’, z . Proposition 16: Let f: S lT be an onto function. (65) 1. f ‘ f 1 ‘V ’ ’,V }V PT ¢ 2. W P f ‘ f 1 ‘W ’’ } W PS ¢ Proposition 17: Let f be a homomorphism from ‘G, 2’ to ‘K, ( ’ . (68) 1. If ‘H, 2’ is a subgroup of ‘G, 2’ , then ‘ f ‘H ’, ( ’ is a subgroup of ‘K, ( ’ . 2. If ‘L, ( ’ is a subgroup of ‘K, ( ’ , then ‘ f 1 ‘L’, 2 ’ is a subgroup of ‘G, 2’ . ¢ Def: (Using the previous example,) the image of H under f is f ‘H ’ . The inverse image of L under f is f 1 ‘L’ . (68) ¢ Proposition 18: Let f be a homomorphism from ‘G, 2’ to ‘K, ( ’ . f is one-to-one iff ker ‘ f ’,e  . (72) Def: Two groups, ‘G, 2’ and ‘K, ( ’ , are isomorphic iff there exists a one-to-one homomorphism f from ‘G, 2’ onto ‘K, ( ’ —that is, f ‘G’,K . In this case, f is called an isomorphism or isomorphic mapping. (73) Proposition 19: Every finite cyclic group of order n is isomorphic to ‘é n, 0 n ’ and every infinite cyclic group is isomorphic to ‘é , 0 ’ . (75) Proposition 20: Every subgroup of a cyclic group is cyclic. (76)
  • 3. Theorem: If G is a finite group, p is a prime, and p k is the largest power of p which divides bGb , then G has a subgroup of order pk . Def: A permutation is a one-to-one and onto function from a set to itself. (77) Note: See pages 78 and 81 for examples of how to notate permutations. Def: The set of permutations on 1, 2, 3,e, n is written as S n . (79) Theorem 21: The set of all permutations together with composition, ‘S n, ( ’ , is a nonabelian group } nB3 . (79) Theorem 22: The set of all permutations on a set S (its symmetries), together with composition, ‘Sym S, ( ’ , is a group. (80) Theorem 23 (Cayley’s Theorem): Every group is isomorphic to a group of permutations. (82) Proposition 24: Every permutation can be written as a product of disjoint cycles in permutation notation. (86) Def: The length of a cycle in a permutation is the number of distinct objects in it. A cycle of length 2 is a transposition. (86) Proposition 25: Every cycle can be written as a product of transpositions (not necessarily distinct). (87) Def: A permutation is even (or odd) if it can be written as a product of an even (or odd) number of transpositions. (88) Def: The subset of S n which consists of all the even permutations of S n is called the alternating group on n and is written as An . (90) Def: Matrix multiplication, which is not commutative, is the standard way to combine matrices. To multiply a 2×2 matrix: (102) • –• – • a b e f c d g h , a e0b g a f 0b h c e0d g c f 0d h – Notes: A 2×2 matrix can be found to represent any linear transformation. The special matrix M, •cos ¾ 1sin ¾ sin ¾ cos ¾ – when mulpilied on the left with a YHFWRU LQ ë 2 ZLOO URWDWH LW FRXQWHUFORFNZLVH by the amount ¾ : M X initial , X rotated . (100) Def: The inverse under multiplication of a 2×2 matrix is computed as follows: (103) • – d 1b 1 • – a b a d1b c a d1b c £ , c d 1c a a d1b c a d1b c Def: The determinant of a 2×2 matrix is computed as follows: (104) det ‘• –’ a b c d ,a d1b c Def: A matrix is invertible iff its determinant is nonzero. (104) Theorem 29: The set of all invertible 2×2 made from elements of ë , together with matrix multiplication, forms a group, called the general linear group, which is written as GL‘2, ë’ . (105)
  • 4. Def: The special linear group is the group of 2×2 matrices with determinants of 1, written as SL‘2, ë’ . (106) Def: To get the transpose of a matrix, swap each element a i, j with the one on the opposite side of the main diagonal, a j, i . The transpose of a matrix M is written M t . (106) Def: A matrix M is orthogonal iff M t M ,I . (106) Theorem 30: The set of orthogonal 2×2 matrices with determinant 1 together with matrix multiplication form a the special orthogonal group, which is written as SO ‘ 2, ë ’ . The set of orthogonal matrices together with matrix multiplication is also a group, the orthogonal group, which is written as O ‘ 2, ë ’ . SO ‘ 2, ë ’ is a subgroup of O ‘ 2, ë ’ . (107) Proposition 31: For two matrices A and B, (107) 1. ‘ A B’t ,B t A t 2. ‘ At ’ 1,‘ A 1 ’t ¤ ¤ 3. det ‘ A B’,det A4det B 4. det ‘ A t ’,det A 5. det ‘ At A’,det At4det A,det A4det A,‘det A’2 Fact 32: SO ‘2,ë’, • cos ¾ 1sin ¾ sin ¾ cos ¾ – }angle ¾  Def: Given a set G and an operation 2 : (113) G is a groupoid iff G is closed under 2 . G is a semigroup iff G is a groupoid and 2 is associative. G is a semigroup with identity iff G is a semigroup and has an identity under 2 . G is a group iff G is a semigroup and each element has an inverse under 2 . Def: A ring, written ‘R, 2 , ( ’ , consists of a nonempty set R and two opertaions such that (114) v ‘R, 2’ is an abelian group, v ‘R, ( ’ is a semigroup, and v the semigroup operation, ( , distributes over the group operation, 2 . Proposition 33: Let ‘R, 0 ,4’ be a ring. (115) 1. 04a, a40,0 } a V R 2. ‘1a’4b,a4‘1b’,1‘a4b’ } a, bV R 3. ‘1a’4‘1b’,a4b } a, bV R Def: A ring with identity is a ring that contains an indentity under the second operation (the multiplicative operation). (117) Def: A commutative ring is a ring where the second operation is commutative. (117) Def: A subring is a nonempty subset S of a ring ‘R, 0 ,4’ such that ‘S, 0 ,4’ is a ring (under the same operations as R.) (119) Proposition 34: To prove that ‘S, 0 , ( ’ is a subring of ‘R, 0 ,4’ we need to prove that (119) 1. S P R (set containment) 2. } a, bV S ‘a0b’V S (closure under additive operation) 3. } a, bV S ‘a4b’V S (closer under multiplicative operation) 4. } aV S ‘1a’V S (additive inverses exist in S)
  • 5. Def: A ring ‘R, 0 ,4’ has zero divisors iff Y a, b V R such that a/0, b/0, and a4b,0 . (120) Def: In a ring ‘R, 0 ,4’ with identity, an element r is invertible iff Y r 1 V R such that r4r 1, r 14r ,1 ¥ ¥ ¥ (the multiplicative identity). (121) Proposition 35: Let R be the set of all invertible elements of R. If ‘R, 0 ,4’ is a ring with identity ¦ then ‘R ,4’ is a group, known as the group of invertible elements. (121) § Proposition 36: Let ‘R, 0 ,4’ be a ring with identity such that R/0 . The elements 0 and 1 are distinct. (122) Proposition 37: A ring ‘R, 0 ,4’ has no zero divisors iff the cancellation law for multiplication holds. (123) Corollary 38: Let ‘R, 0 ,4’ be a ring with identity which has no zero divisors. The only solutions to x 2, x in the ring are x,0 and x,1 . (123) Def: An integral domain is a commutative ring with identity which has no zero divisors. (124) Def: A field ‘F, 0 ,4’ is a set F together with two operations such that (125) v ‘F, 0 ’ is an abelian group, v ‘F10,4’ is an abelian group, and v 4 distributes over 0 . In other words, a field is a commutative ring with identity in which every nonzero element has an inverse. Back to intro and comments page: http://www.glump.net/archive/000024.php Back to home page: http://www.glump.net/