SlideShare ist ein Scribd-Unternehmen logo
1 von 128
PATRÍCIA RAQUEL SILVA, DSC LUCIANA BARRETO ADAD, MSC ASPECTOS TÉCNICOS DE  CONTROLE DA QUALIDADE  APLICADOS À CADEIA PRODUTIVA DO BIODIESEL
PROGRAMA NACIONAL DE PRODUÇÃO E USO DO BIODIESEL ,[object Object],[object Object],[object Object],[object Object],[object Object]
MOTOR DE IGNIÇÃO POR COMPRESSÃO ,[object Object],[object Object],[object Object]
CICLO OTTO X CICLO DIESEL ,[object Object],[object Object],[object Object],[object Object],[object Object]
CARACTERÍSTICAS DE UM COMBUSTÍVEL ADEQUADO PARA MOTORES DIESEL ,[object Object],[object Object],[object Object],[object Object]
CARACTERÍSTICAS DE UM COMBUSTÍVEL ADEQUADO PARA MOTORES DIESEL ,[object Object],[object Object],[object Object],[object Object]
Parâmetros  da Qualidade
PARÂMETROS DA QUALIDADE ,[object Object],[object Object],[object Object]
ESPECIFICAÇÃO DO BIODIESEL - ANP Resolução ANP n°7 de 19/03/08 DOU 20/03/08 Resolução ANP n° 42 de  24/11/04 DOU 09/12/04 Retificada DOU 19/04/05 Portaria ANP n° 255, de 15/09/03 DOU 16/09/03 CARACTERÍSTICA UNIDADE LIMITE LIMITE LIMITE Aspecto - LII LII LII Massa específica a 20º C kg/m 3 850-900 Anotar Anotar Viscosidade Cinemática a 40ºC mm 2 /s 3,0-6,0 Anotar Anotar Teor de Água, máx.  mg/kg 500 N.A. N.A. Contaminação Total, máx. mg/kg 24 Anotar N.A. Ponto de fulgor, mín. ºC 100,0 100,0 100,0 Teor de éster, mín % massa 96,5 Anotar N.A. Resíduo de carbono % massa 0,050 0,10 0,05 Cinzas sulfatadas, máx. % massa 0,020 0,020 0,020 Enxofre total, máx. mg/kg 50 Anotar 0,001 Sódio + Potássio, máx. mg/kg 5 10 10 Cálcio + Magnésio, máx. mg/kg 5 Anotar N.A. Fósforo, máx. mg/kg 10 Anotar 10 Corrosividade ao Cu, 3h a 50 ºC, máx. - 1 1 1
ESPECIFICAÇÃO DO BIODIESEL - ANP Resolução ANP n°7 de 19/03/08 DOU 20/03/08 Resolução ANP n° 42 de  24/11/04 DOU 09/12/04 Retificada DOU 19/04/05 Portaria ANP n° 255, de 15/09/03 DOU 16/09/03 CARACTERÍSTICA UNIDADE LIMITE LIMITE LIMITE Número de Cetano - Anotar Anotar 45 Ponto de entupimento de filtro a frio, máx. ºC 19 Conforme Portaria vigente Diesel. Conforme Portaria vigente Diesel. Índice de acidez, máx. mg KOH/g 0,50 0,80 0,80 Glicerol livre, máx. % massa 0,02 0,02 0,02 Glicerol total, máx. % massa 0,25 0,38 0,38 Mono, di, triacilglicerol  % massa Anotar Anotar Mono-: 1,00 Di-: 0,25 triacilglicerídeos:0,25 Metanol ou Etanol, máx. % massa 0,20 0,5 0,5 Índice de Iodo  g/100g Anotar Anotar Anotar Estabilidade à oxidação a 110ºC, mín. h 6 6 6 Água e sedimentos, máx. % volume N.A. 0,050 0,050 Destilação: 95% vol. Recup., Max. °C N.A. 360 360
Aparência
ASPECTO (VISUAL) ,[object Object],[object Object],[object Object],Limite:  LII  – Límpido e Isento de Impurezas Método de ensaio: Visual Equipamento: Proveta de vidro
Volatilidade
MASSA ESPECÍFICA A 20°C ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Limite:  850 – 900  kg/m 3 Método de ensaio: ABNT NBR 7148, NBR 14065, ASTM D 1298, D 4052  Equipamento: Densímetro de vidro ou digital
MASSA ESPECÍFICA A 20°C  ENSAIO
MASSA ESPECÍFICA A 20°C CONSEQUÊNCIAS PARA O MOTOR: ,[object Object],[object Object],[object Object],[object Object]
MASSA ESPECÍFICA A 20°C CONSEQUÊNCIAS PARA O MOTOR: ,[object Object],[object Object],[object Object]
MASSA ESPECÍFICA A 20°C MEDIDAS DE CORREÇÃO: ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
PONTO DE FULGOR ,[object Object],[object Object],[object Object],[object Object],Limite:  100  °C, mínimo Método de ensaio:  ABNT NBR 14598, ASTM D93, EN ISO 3679 Equipamento –Ponto de fulgor Pensky-Martens
PONTO DE FULGOR ENSAIO
PONTO DE FULGOR CONSEQUÊNCIAS PARA O MOTOR: ,[object Object],[object Object],[object Object],[object Object]
PONTO DE FULGOR MEDIDAS DE CORREÇÃO: ,[object Object],[object Object],[object Object]
Fluidez
VISCOSIDADE CINEMÁTICA A 40°C ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Limite:  3,0 - 6,0  mm 2 /s Método de ensaio: ABNT NBR 10441, ASTM D445, EN ISO 3104 Equipamento: Viscosímetro
VISCOSIDADE CINEMÁTICA A 40°C ENSAIO ,[object Object]
VISCOSIDADE CINEMÁTICA A 40°C  CONSEQUÊNCIAS PARA O MOTOR: COMBUSTÍVEL DE  VISCOSIDADE ALTA  SE ATOMIZA COM MENOS EFICIÊNCIA E O MOTOR TERÁ MAIS  DIFICULDADE NA PARTIDA .  A  REDUÇÃO EXCESSIVA DA VISCOSIDADE  RESULTA EM PERDAS INTERNAS DA BOMBA INJETORA.  HTTP://WWW.REVISTAELO.COM.BR/DOWNLOADS/DIESEL.PDF
VISCOSIDADE CINEMÁTICA A 40°C MEDIDAS DE CORREÇÃO: ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
PONTO DE ENTUPIMENTO DE FILTRO A FRIO ,[object Object],[object Object],[object Object],Limite:  19  °C, máximo Método de ensaio: NBR 14747, ASTM D 6371, EN ISO 116 Equipamento: Medida de PEFF
PONTO DE ENTUPIMENTO DE FILTRO A FRIO
PONTO DE ENTUPIMENTO DE FILTRO A FRIO  ENSAIO
PONTO DE ENTUPIMENTO DE FILTRO A FRIO  CONSEQUÊNCIAS PARA O MOTOR: ,[object Object],[object Object],[object Object]
PONTO DE ENTUPIMENTO DE FILTRO A FRIO MEDIDAS DE CORREÇÃO: ,[object Object],[object Object],[object Object],[object Object]
Combustão
NÚMERO DE CETANO ,[object Object],[object Object],[object Object],Limite:  Anotar Método de ensaio –ASTM D613, EN ISO 5165 Equipamento –Motor diesel Cetano
NÚMERO DE CETANO ,[object Object]
NÚMERO DE CETANO ENSAIO O NÚMERO DE CETANO É OBTIDO ATRAVÉS DE UM  ENSAIO PADRONIZADO  DO COMBUSTÍVEL EM UM MOTOR MONO-CILÍNDRICO, ONDE  COMPARA-SE  O SEU  ATRASO DE IGNIÇÃO  EM RELAÇÃO A UM  COMBUSTÍVEL PADRÃO  COM NÚMERO DE CETANO CONHECIDO.
NÚMERO DE CETANO ENSAIO ,[object Object],[object Object],[object Object],[object Object]
NÚMERO DE CETANO CONSEQUÊNCIAS PARA O MOTOR: ,[object Object],[object Object]
NÚMERO DE CETANO CONSEQUÊNCIAS PARA O MOTOR: ,[object Object],[object Object]
NÚMERO DE CETANO INFLUÊNCIA DO BIODIESEL NO DIESEL http://www.biodiesel.org/pdf_files/Changes_In_Diesel_Fuel.pdf
NÚMERO DE CETANO MEDIDAS DE CORREÇÃO: ,[object Object],[object Object]
RESÍDUO DE CARBONO ,[object Object],[object Object],[object Object],Limite:  0,050 % massa máx. Método de ensaio: ASTM D 4530 Equipamento –Micro método de resíduo de carbono
RESÍDUO DE CARBONO ENSAIO
RESÍDUO DE CARBONO CONSEQUÊNCIAS PARA O MOTOR: ,[object Object],[object Object],[object Object],[object Object]
RESÍDUO DE CARBONO MEDIDAS DE CORREÇÃO: ,[object Object],[object Object],[object Object]
CINZAS SULFATADAS ,[object Object],[object Object],[object Object],Limite:  0,020%  massa máx. Método de ensaio: ABNT NBR 6294, ASTM 874, ISO 3987 Equipamento: Forno mufla
CINZAS SULFATADAS ENSAIO
CINZAS SULFATADAS CONSEQUÊNCIAS PARA O MOTOR: ,[object Object],[object Object],[object Object]
CINZAS SULFATADAS MEDIDAS DE CORREÇÃO: ,[object Object],[object Object]
Contaminantes
TEOR DE ÁGUA ,[object Object],[object Object],[object Object],[object Object],Limite:  500  mg/kg, máx. Método de ensaio: ASTM D 6304, EN ISO 12937 Equipamento: Karl Fischer Coulométrico
TEOR DE ÁGUA ENSAIO
TEOR DE ÁGUA ENSAIO ROH  + SO 2   + RN  (RNH).SO 3 R (RNH).SO 3 R + 2RN  + I 2   + H 2 O  (RNH).SO 4 R  + 2 (RNH)I FAIXA DE APLICAÇÃO  0,001% - 1% 10 mg -200 mg DE ÁGUA PURA REAÇAO PUBLICADA EM 1935  USANDO IMIDAZOL COMO A BASE NITROGENADA
TEOR DE ÁGUA CONSEQUÊNCIAS PARA O MOTOR: ,[object Object],[object Object],[object Object]
TEOR DE ÁGUA MEDIDAS DE CORREÇÃO: ,[object Object],[object Object],[object Object]
CONTAMINAÇÃO TOTAL ,[object Object],[object Object],Limite:  24  mg/kg, máx.  Método de ensaio: EN ISO 12662 Equipamento: Filtro de membrana
CONTAMINAÇÃO TOTAL ENSAIO
CONTAMINAÇÃO TOTAL CONSEQUÊNCIAS PARA O MOTOR: ,[object Object],[object Object]
CONTAMINAÇÃO TOTAL MEDIDAS DE CORREÇÃO: ,[object Object],[object Object],[object Object]
Composição
TEOR DE ÉSTER ,[object Object],[object Object],[object Object],Limite:  96,5  % massa, mín. Método de ensaio: ABNT NBR 15342, EN ISO 14103 Equipamento: Cromatografia a gás
TEOR DE ÉSTER  ENSAIO Padrão:  10mg de heptadecanoato de metila/ml de heptano 250 mg de amostra 5 mL Padrão
TEOR DE ÉSTER  ENSAIO
TEOR DE ÉSTER MEDIDAS DE CORREÇÃO: ,[object Object],[object Object],[object Object]
ENXOFRE TOTAL ,[object Object],[object Object],[object Object],Limite:  50  mg/kg máx. Método de ensaio: D5453, EN ISO 20846, ISO 20884 Equipamento: Raio X ou Ultravioleta
ENXOFRE TOTAL ENSAIO
ENXOFRE TOTAL CONSEQUÊNCIAS PARA O MOTOR: ,[object Object],[object Object],[object Object],[object Object]
ÍNDICE DE IODO ,[object Object],[object Object],[object Object],[object Object],Limite:  Anotar Método de ensaio –EN 14111 Equipamento – Titulação Manual
ÍNDICE DE IODO ENSAIO
Corrosão
CORROSIVIDADE AO COBRE, 3H A 50°C ,[object Object],[object Object],Limite:  Classe I Método de ensaio –ABNT NBR 14359, ASTM D130, EN ISO 2160 Equipamento –Equipamento de corrosividade ao Cu
CORROSIVIDADE AO COBRE, 3H A 50°C ENSAIO ,[object Object]
CORROSIVIDADE AO COBRE, 3H A 50°C  CONSEQUÊNCIAS PARA O MOTOR: ,[object Object],[object Object]
CORROSIVIDADE AO COBRE, 3H A 50°C MEDIDAS DE CORREÇÃO: ,[object Object],[object Object],[object Object],[object Object]
Qualidade do processo
SÓDIO (Na) + POTÁSSIO (K) ,[object Object],[object Object],Limite:  5mg/kg  máx.  Método de ensaio –  ABNT NBR 15553, EN 14108/14109  Equipamento –Espectrômetro ICP e Absorção Atômica
CÁLCIO (Ca) + MAGNÉSIO (Mg) ,[object Object],[object Object],[object Object],Limite:  5mg/kg  máx.  Método de ensaio –  ABNT NBR 15553,  EN 14538 Equipamento –Espectrômetro ICP e Absorção Atômica
FÓSFORO (P) ,[object Object],[object Object],Limite:  10mg/kg  máx.  Método de ensaio – ABNT NBR 15553, EN 14107 Equipamento –Espectrômetro ICP e Absorção Atômica
NA, K, C a , M g , P ENSAIO ESPECTROMETRIA POR PLASMA ESPECTROMETRIA DE ABSORÇÃO ATÔMICA
NA, K, C a , M g , P CONSEQUÊNCIAS PARA O MOTOR: ,[object Object],[object Object],[object Object]
NA, K, C a , M g , P MEDIDAS DE CORREÇÃO: ,[object Object],[object Object],[object Object]
ÍNDICE DE ACIDEZ ,[object Object],[object Object],Limite:  0,5 mgKOH/g  máx Método de ensaio –ABNT 14448, ASTM D664, EN 14104 Equipamento –Dosímetro para Volumetria
ÍNDICE DE ACIDEZ ENSAIO
ÍNDICE DE ACIDEZ CONSEQUEÊNCIAS PARA O MOTOR: ,[object Object],[object Object],[object Object]
ÍNDICE DE ACIDEZ MEDIDAS DE CORREÇÃO: ,[object Object],[object Object],[object Object]
MONO, DI E TRIACILGLICERÍDEOS ,[object Object],[object Object],Limite:  Anotar Método de ensaio: ABNT NBR 15342, ASTM D 6584, EN 14105 Equipamento: Cromatografia a gás
MONO, DI E TRIACILGLICERÍDEOS CONSEQUÊNCIAS PARA O MOTOR: ,[object Object],[object Object]
MONO, DI E TRIACILGLICERÍDEOS MEDIDAS DE CORREÇÃO: ,[object Object],[object Object]
GLICERINA LIVRE ,[object Object],[object Object],Limite:  0,02 %massa  máx. Método de ensaio –ASTM D6584/EN14105 e 14106  Equipamento –Cromatografia a gás
GLICERINA TOTAL ,[object Object],[object Object],[object Object],Limite:  0,25 %massa  máx. Método de ensaio –ASTM D6584/EN14105 Equipamento –Cromatografia a gás
GLICERINA LIVRE E TOTAL CONSEQUÊNCIAS PARA O MOTOR: ,[object Object]
GLICERINA LIVRE E TOTAL MEDIDAS DE CORREÇÃO: ,[object Object],[object Object],[object Object]
GLICERINA LIVRE E TOTAL, MONO, DI E TRIACILGLICERÍDEOS ENSAIO ,[object Object],[object Object],[object Object]
GLICERINA LIVRE E TOTAL, MONO, DI E TRIACILGLICERÍDEOS ENSAIO ,[object Object],[object Object],[object Object],[object Object],[object Object]
GLICERINA LIVRE E TOTAL, MONO, DI E TRIACILGLICERÍDEOS ENSAIO H 2 C – O – CO - R 1   |  HC – O – CO – R 2   | H 2 C – O – CO - R 3 tri - glicerol H 2 C – O – CO - R 1   |  HC – O – CO – R 2   | H 2 C -  OH di -glicerol H 2 C – O – CO - R 1   |  HC – -  OH   | H 2 C -  OH mono glicerol H 2 C  -OH   |  HC- -  OH   | H 2 C -  OH Glicerina livre Os grupos –OH devem ser derivatizados MSTFA -  (N-metil-N-trimetil-sililtrifluoracetamida
GLICERINA LIVRE E TOTAL, MONO, DI E TRIACILGLICERÍDEOS ENSAIO
GLICERINA LIVRE E TOTAL, MONO, DI E TRIACILGLICERÍDEOS ENSAIO Padrão: y 1  mg Glicerol y 1  mg Monoglicerol y 1  mg Diglicerol y 1  mg Triglicerol 0.1mg Butanotriol 0.8mg Tricaprina 100μ l de MSTFA 8ml Heptano Biodiesel: 100mg Biodiesel 0.1mg Butanotriol 0.8mg Tricaprina 100μ l de  MSTFA 8ml Heptano
GLICERINA LIVRE E TOTAL, MONO, DI E TRIACILGLICERÍDEOS ENSAIO CROMATOGRAMA DE AMOSTRA PADRÃO
GLICERINA LIVRE E TOTAL, MONO, DI E TRIACILGLICERÍDEOS ENSAIO CROMATOGRAMA DO BIODIESEL
ETANOL OU METANOL ,[object Object],[object Object],[object Object],Limite:  0,20% massa  máx. Método de ensaio – ABNT NBR 15343, EN14110 Equipamento –Cromatografia de gases
ETANOL OU METANOL ENSAIO ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
ETANOL OU METANOL ENSAIO ,[object Object],[object Object],[object Object],[object Object]
ETANOL OU METANOL ENSAIO
ETANOL OU METANOL ENSAIO
ETANOL OU METANOL ENSAIO
ETANOL OU METANOL CONSEQUÊNCIAS PARA O MOTOR: ,[object Object],[object Object],[object Object]
ETANOL OU METANOL MEDIDAS DE CORREÇÃO: ,[object Object],[object Object]
ESTABILIDADE À OXIDAÇÃO A 110°C ,[object Object],[object Object],[object Object],Limite:  6h  mín Método de ensaio: EN 14112 Equipamento: Rancimat 743
ESTABILIDADE À OXIDAÇÃO A 110°C ENSAIO
ESTABILIDADE À OXIDAÇÃO A 110°C ENSAIO
Especificação do Biodiesel
FATORES QUE PODEM INFLUENCIAR O RESULTADO  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
FATORES QUE PODEM INFLUENCIAR O RESULTADO  ,[object Object],[object Object],[object Object],[object Object],[object Object]
ASPECTOS ECONÔMICOS ,[object Object],[object Object],[object Object],Equipamento Custo Cetano US$ 350,000.00 Índice de acidez R$ 35.000,00 Estabilidade à oxidação R$ 105.000,00 Ponto de entupimento R$ 20.000,00 Viscosidade R$ 22.000,00 Ponto de fulgor R$ 20.000,00 Cromatógrafo a gás R$ 170.000,00 ICP R$ 220.000,00 Absorção atômica R$ 150.000,00 Teor de enxofre R$ 180.000,00
ASPECTOS ECONÔMICOS Fonte: Ouro Verde Indústria e Comércio de Biodiesel Ltda.
CONTROLE DA QUALIDADE CONCLUSÃO  ,[object Object],[object Object],[object Object]
CONTROLE DA QUALIDADE CONCLUSÃO  ,[object Object],[object Object],[object Object],[object Object]
INSTITUTO DE TECNOLOGIA DO PARANÁ – TECPAR DIVISÃO DE BIOCOMBUSTÍVEIS – DBIO Contato:  [email_address]  /  [email_address] Tel.: (41) 3316-3032  Homepage :  www.tecpar.br/cerbio
 
Uso de Óleos e Gorduras como Combustível
USO DE ÓLEOS E GORDURAS COMO COMBUSTÍVEL ,[object Object],[object Object],[object Object],S. Nonhebel;  Renew. Sust. Energ. Rev. 9 (2005) 191.
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],USO DE ÓLEOS E GORDURAS COMO COMBUSTÍVEL Dermibas, A . Biodiesel : a realistic fuel alternative for diesel engines. 2008
USO DE ÓLEOS E GORDURAS COMO COMBUSTÍVEL Amaral, D. F. Biodiesel no Brasil: conjuntura atual e perspectivas. In:  9° Encontro de Negócios de Energia – FIESP. 2008
USO DE ÓLEOS E GORDURAS COMO COMBUSTÍVEL ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],USO DE ÓLEOS E GORDURAS COMO COMBUSTÍVEL   SUAREZ, Paulo A. Z.; MENEGHETTI, Simoni M. Plentz; MENEGHETTI, Mario R.  and  WOLF, Carlos R..  Transformação de triacilglicerídeos em combustíveis, materiais poliméricos e insumos químicos :  algumas aplicações da catálise na oleoquímica .  Quím. Nova  [online]. 2007, vol.30, n.3, pp. 667-676.
USO DE ÓLEOS E GORDURAS COMO COMBUSTÍVEL http://www.feagri.unicamp.br/energia/agre2002/pdf/0055.pdf Característica/Óleo Diesel Amendoim  Soja  Algodão  Girassol  Babaçu  Dendê Mamona Densidade relativa, g/cm 3 0,828 0,919 0,92 0,919 0,923 0,921 0,915 0,959 Visc. Cinemática, mm 2 /s 1,6-6,0  38 36 40 37 32 39 297 Início destilação, °C  165 173 152 - 211 - - - Resíduo de carbono, %massa  0,3(max)  0,42 0,45 0,42 0,42 0,22 - 0,18 Número de cetano  45(min)  33 36 40 39 38 42 - Poder calorífico Inferior, Kcal/L 8.400 7.900 7.850 8.050 7.950 7.800 8.330 8.000 Água por destilação, % massa <0,05  <0,05 <0,08 <0,05 <0,05 <0,05  - 0,2 Enxofre, % massa  1,3 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1
USO DE ÓLEOS E GORDURAS COMO COMBUSTÍVEL ,[object Object],[object Object],[object Object],[object Object],Dermibas, A . Biodiesel : a realistic fuel alternative for diesel engines. 2008

Weitere ähnliche Inhalte

Ähnlich wie Aspectos técnicos de controle da qualidade do biodiesel

STF - Audiência Pública do Amianto - 31/08/2012 - Supremo Tribunal Federal
STF - Audiência Pública do Amianto - 31/08/2012 - Supremo Tribunal FederalSTF - Audiência Pública do Amianto - 31/08/2012 - Supremo Tribunal Federal
STF - Audiência Pública do Amianto - 31/08/2012 - Supremo Tribunal FederalInstituto Brasileiro do Crisotila
 
Gas es instalacao-prediais
Gas es instalacao-prediaisGas es instalacao-prediais
Gas es instalacao-prediaisDiego Santos
 
Gas es instalacao-prediais
Gas es instalacao-prediaisGas es instalacao-prediais
Gas es instalacao-prediaisGabi Coelho
 
Manual de serviço cb600 f hornet inf gerais
Manual de serviço cb600 f hornet inf geraisManual de serviço cb600 f hornet inf gerais
Manual de serviço cb600 f hornet inf geraisThiago Huari
 
A comparison between egr and lean burn strategies employed in a natural gas s...
A comparison between egr and lean burn strategies employed in a natural gas s...A comparison between egr and lean burn strategies employed in a natural gas s...
A comparison between egr and lean burn strategies employed in a natural gas s...Marcelo Pastor
 
Jornada de exatas 2013
Jornada de exatas 2013Jornada de exatas 2013
Jornada de exatas 2013Fabio Tofoli
 
Palestra técnica Emerson compressores refrigeração
Palestra técnica Emerson compressores refrigeraçãoPalestra técnica Emerson compressores refrigeração
Palestra técnica Emerson compressores refrigeraçãoACRefrigeraoClimatiz
 
GUIA-DE-METODOS-ATUALIZADA.pdf
GUIA-DE-METODOS-ATUALIZADA.pdfGUIA-DE-METODOS-ATUALIZADA.pdf
GUIA-DE-METODOS-ATUALIZADA.pdfeduardosilva480139
 
Purificação de Biogás - Janus & Pergher
Purificação de Biogás - Janus & PergherPurificação de Biogás - Janus & Pergher
Purificação de Biogás - Janus & PergherGeraldo J&P
 
Grupo Geradores Cummins ESB
Grupo Geradores Cummins ESBGrupo Geradores Cummins ESB
Grupo Geradores Cummins ESBSulgás
 
10060627 200041 1_nw3520t090099_10060627_motor-a-combustão_monitorar_08052017...
10060627 200041 1_nw3520t090099_10060627_motor-a-combustão_monitorar_08052017...10060627 200041 1_nw3520t090099_10060627_motor-a-combustão_monitorar_08052017...
10060627 200041 1_nw3520t090099_10060627_motor-a-combustão_monitorar_08052017...Natanael Carvalho
 
Desafios de conduzir uma partida de planta de ácido sulfúrico sem exceder os ...
Desafios de conduzir uma partida de planta de ácido sulfúrico sem exceder os ...Desafios de conduzir uma partida de planta de ácido sulfúrico sem exceder os ...
Desafios de conduzir uma partida de planta de ácido sulfúrico sem exceder os ...COBRAS
 
Nbr 7148-2011-petroleo-e-produtos-do-petroleo
Nbr 7148-2011-petroleo-e-produtos-do-petroleoNbr 7148-2011-petroleo-e-produtos-do-petroleo
Nbr 7148-2011-petroleo-e-produtos-do-petroleoRosangela Henauth
 

Ähnlich wie Aspectos técnicos de controle da qualidade do biodiesel (20)

Cpp 2008
Cpp 2008Cpp 2008
Cpp 2008
 
Forno de cal
Forno de calForno de cal
Forno de cal
 
STF - Audiência Pública do Amianto - 31/08/2012 - Supremo Tribunal Federal
STF - Audiência Pública do Amianto - 31/08/2012 - Supremo Tribunal FederalSTF - Audiência Pública do Amianto - 31/08/2012 - Supremo Tribunal Federal
STF - Audiência Pública do Amianto - 31/08/2012 - Supremo Tribunal Federal
 
Gas es instalacao-prediais
Gas es instalacao-prediaisGas es instalacao-prediais
Gas es instalacao-prediais
 
Gas es instalacao-prediais
Gas es instalacao-prediaisGas es instalacao-prediais
Gas es instalacao-prediais
 
Manual de serviço cb600 f hornet inf gerais
Manual de serviço cb600 f hornet inf geraisManual de serviço cb600 f hornet inf gerais
Manual de serviço cb600 f hornet inf gerais
 
A comparison between egr and lean burn strategies employed in a natural gas s...
A comparison between egr and lean burn strategies employed in a natural gas s...A comparison between egr and lean burn strategies employed in a natural gas s...
A comparison between egr and lean burn strategies employed in a natural gas s...
 
Jornada de exatas 2013
Jornada de exatas 2013Jornada de exatas 2013
Jornada de exatas 2013
 
Palestra germano
Palestra germanoPalestra germano
Palestra germano
 
Gás Natural – Cenários de Oferta e Demanda
Gás Natural – Cenários de Oferta e DemandaGás Natural – Cenários de Oferta e Demanda
Gás Natural – Cenários de Oferta e Demanda
 
Catalogo do-produto-trane-chiller-cgad
Catalogo do-produto-trane-chiller-cgadCatalogo do-produto-trane-chiller-cgad
Catalogo do-produto-trane-chiller-cgad
 
Palestra técnica Emerson compressores refrigeração
Palestra técnica Emerson compressores refrigeraçãoPalestra técnica Emerson compressores refrigeração
Palestra técnica Emerson compressores refrigeração
 
GUIA-DE-METODOS-ATUALIZADA.pdf
GUIA-DE-METODOS-ATUALIZADA.pdfGUIA-DE-METODOS-ATUALIZADA.pdf
GUIA-DE-METODOS-ATUALIZADA.pdf
 
Purificação de Biogás - Janus & Pergher
Purificação de Biogás - Janus & PergherPurificação de Biogás - Janus & Pergher
Purificação de Biogás - Janus & Pergher
 
Maxxforce Euro v Agrale
Maxxforce Euro v Agrale Maxxforce Euro v Agrale
Maxxforce Euro v Agrale
 
Nbriec60079 6 092009 exo
Nbriec60079 6 092009 exoNbriec60079 6 092009 exo
Nbriec60079 6 092009 exo
 
Grupo Geradores Cummins ESB
Grupo Geradores Cummins ESBGrupo Geradores Cummins ESB
Grupo Geradores Cummins ESB
 
10060627 200041 1_nw3520t090099_10060627_motor-a-combustão_monitorar_08052017...
10060627 200041 1_nw3520t090099_10060627_motor-a-combustão_monitorar_08052017...10060627 200041 1_nw3520t090099_10060627_motor-a-combustão_monitorar_08052017...
10060627 200041 1_nw3520t090099_10060627_motor-a-combustão_monitorar_08052017...
 
Desafios de conduzir uma partida de planta de ácido sulfúrico sem exceder os ...
Desafios de conduzir uma partida de planta de ácido sulfúrico sem exceder os ...Desafios de conduzir uma partida de planta de ácido sulfúrico sem exceder os ...
Desafios de conduzir uma partida de planta de ácido sulfúrico sem exceder os ...
 
Nbr 7148-2011-petroleo-e-produtos-do-petroleo
Nbr 7148-2011-petroleo-e-produtos-do-petroleoNbr 7148-2011-petroleo-e-produtos-do-petroleo
Nbr 7148-2011-petroleo-e-produtos-do-petroleo
 

Aspectos técnicos de controle da qualidade do biodiesel

  • 1. PATRÍCIA RAQUEL SILVA, DSC LUCIANA BARRETO ADAD, MSC ASPECTOS TÉCNICOS DE CONTROLE DA QUALIDADE APLICADOS À CADEIA PRODUTIVA DO BIODIESEL
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8. Parâmetros da Qualidade
  • 9.
  • 10. ESPECIFICAÇÃO DO BIODIESEL - ANP Resolução ANP n°7 de 19/03/08 DOU 20/03/08 Resolução ANP n° 42 de 24/11/04 DOU 09/12/04 Retificada DOU 19/04/05 Portaria ANP n° 255, de 15/09/03 DOU 16/09/03 CARACTERÍSTICA UNIDADE LIMITE LIMITE LIMITE Aspecto - LII LII LII Massa específica a 20º C kg/m 3 850-900 Anotar Anotar Viscosidade Cinemática a 40ºC mm 2 /s 3,0-6,0 Anotar Anotar Teor de Água, máx. mg/kg 500 N.A. N.A. Contaminação Total, máx. mg/kg 24 Anotar N.A. Ponto de fulgor, mín. ºC 100,0 100,0 100,0 Teor de éster, mín % massa 96,5 Anotar N.A. Resíduo de carbono % massa 0,050 0,10 0,05 Cinzas sulfatadas, máx. % massa 0,020 0,020 0,020 Enxofre total, máx. mg/kg 50 Anotar 0,001 Sódio + Potássio, máx. mg/kg 5 10 10 Cálcio + Magnésio, máx. mg/kg 5 Anotar N.A. Fósforo, máx. mg/kg 10 Anotar 10 Corrosividade ao Cu, 3h a 50 ºC, máx. - 1 1 1
  • 11. ESPECIFICAÇÃO DO BIODIESEL - ANP Resolução ANP n°7 de 19/03/08 DOU 20/03/08 Resolução ANP n° 42 de 24/11/04 DOU 09/12/04 Retificada DOU 19/04/05 Portaria ANP n° 255, de 15/09/03 DOU 16/09/03 CARACTERÍSTICA UNIDADE LIMITE LIMITE LIMITE Número de Cetano - Anotar Anotar 45 Ponto de entupimento de filtro a frio, máx. ºC 19 Conforme Portaria vigente Diesel. Conforme Portaria vigente Diesel. Índice de acidez, máx. mg KOH/g 0,50 0,80 0,80 Glicerol livre, máx. % massa 0,02 0,02 0,02 Glicerol total, máx. % massa 0,25 0,38 0,38 Mono, di, triacilglicerol % massa Anotar Anotar Mono-: 1,00 Di-: 0,25 triacilglicerídeos:0,25 Metanol ou Etanol, máx. % massa 0,20 0,5 0,5 Índice de Iodo g/100g Anotar Anotar Anotar Estabilidade à oxidação a 110ºC, mín. h 6 6 6 Água e sedimentos, máx. % volume N.A. 0,050 0,050 Destilação: 95% vol. Recup., Max. °C N.A. 360 360
  • 13.
  • 15.
  • 16. MASSA ESPECÍFICA A 20°C ENSAIO
  • 17.
  • 18.
  • 19.
  • 20.
  • 21. PONTO DE FULGOR ENSAIO
  • 22.
  • 23.
  • 25.
  • 26.
  • 27. VISCOSIDADE CINEMÁTICA A 40°C CONSEQUÊNCIAS PARA O MOTOR: COMBUSTÍVEL DE VISCOSIDADE ALTA SE ATOMIZA COM MENOS EFICIÊNCIA E O MOTOR TERÁ MAIS DIFICULDADE NA PARTIDA . A REDUÇÃO EXCESSIVA DA VISCOSIDADE RESULTA EM PERDAS INTERNAS DA BOMBA INJETORA. HTTP://WWW.REVISTAELO.COM.BR/DOWNLOADS/DIESEL.PDF
  • 28.
  • 29.
  • 30. PONTO DE ENTUPIMENTO DE FILTRO A FRIO
  • 31. PONTO DE ENTUPIMENTO DE FILTRO A FRIO ENSAIO
  • 32.
  • 33.
  • 35.
  • 36.
  • 37. NÚMERO DE CETANO ENSAIO O NÚMERO DE CETANO É OBTIDO ATRAVÉS DE UM ENSAIO PADRONIZADO DO COMBUSTÍVEL EM UM MOTOR MONO-CILÍNDRICO, ONDE COMPARA-SE O SEU ATRASO DE IGNIÇÃO EM RELAÇÃO A UM COMBUSTÍVEL PADRÃO COM NÚMERO DE CETANO CONHECIDO.
  • 38.
  • 39.
  • 40.
  • 41. NÚMERO DE CETANO INFLUÊNCIA DO BIODIESEL NO DIESEL http://www.biodiesel.org/pdf_files/Changes_In_Diesel_Fuel.pdf
  • 42.
  • 43.
  • 45.
  • 46.
  • 47.
  • 49.
  • 50.
  • 52.
  • 53. TEOR DE ÁGUA ENSAIO
  • 54. TEOR DE ÁGUA ENSAIO ROH + SO 2 + RN (RNH).SO 3 R (RNH).SO 3 R + 2RN + I 2 + H 2 O (RNH).SO 4 R + 2 (RNH)I FAIXA DE APLICAÇÃO 0,001% - 1% 10 mg -200 mg DE ÁGUA PURA REAÇAO PUBLICADA EM 1935 USANDO IMIDAZOL COMO A BASE NITROGENADA
  • 55.
  • 56.
  • 57.
  • 59.
  • 60.
  • 62.
  • 63. TEOR DE ÉSTER ENSAIO Padrão: 10mg de heptadecanoato de metila/ml de heptano 250 mg de amostra 5 mL Padrão
  • 64. TEOR DE ÉSTER ENSAIO
  • 65.
  • 66.
  • 68.
  • 69.
  • 70. ÍNDICE DE IODO ENSAIO
  • 72.
  • 73.
  • 74.
  • 75.
  • 77.
  • 78.
  • 79.
  • 80. NA, K, C a , M g , P ENSAIO ESPECTROMETRIA POR PLASMA ESPECTROMETRIA DE ABSORÇÃO ATÔMICA
  • 81.
  • 82.
  • 83.
  • 85.
  • 86.
  • 87.
  • 88.
  • 89.
  • 90.
  • 91.
  • 92.
  • 93.
  • 94.
  • 95.
  • 96. GLICERINA LIVRE E TOTAL, MONO, DI E TRIACILGLICERÍDEOS ENSAIO H 2 C – O – CO - R 1 | HC – O – CO – R 2 | H 2 C – O – CO - R 3 tri - glicerol H 2 C – O – CO - R 1 | HC – O – CO – R 2 | H 2 C - OH di -glicerol H 2 C – O – CO - R 1 | HC – - OH | H 2 C - OH mono glicerol H 2 C -OH | HC- - OH | H 2 C - OH Glicerina livre Os grupos –OH devem ser derivatizados MSTFA - (N-metil-N-trimetil-sililtrifluoracetamida
  • 97. GLICERINA LIVRE E TOTAL, MONO, DI E TRIACILGLICERÍDEOS ENSAIO
  • 98. GLICERINA LIVRE E TOTAL, MONO, DI E TRIACILGLICERÍDEOS ENSAIO Padrão: y 1 mg Glicerol y 1 mg Monoglicerol y 1 mg Diglicerol y 1 mg Triglicerol 0.1mg Butanotriol 0.8mg Tricaprina 100μ l de MSTFA 8ml Heptano Biodiesel: 100mg Biodiesel 0.1mg Butanotriol 0.8mg Tricaprina 100μ l de MSTFA 8ml Heptano
  • 99. GLICERINA LIVRE E TOTAL, MONO, DI E TRIACILGLICERÍDEOS ENSAIO CROMATOGRAMA DE AMOSTRA PADRÃO
  • 100. GLICERINA LIVRE E TOTAL, MONO, DI E TRIACILGLICERÍDEOS ENSAIO CROMATOGRAMA DO BIODIESEL
  • 101.
  • 102.
  • 103.
  • 104. ETANOL OU METANOL ENSAIO
  • 105. ETANOL OU METANOL ENSAIO
  • 106. ETANOL OU METANOL ENSAIO
  • 107.
  • 108.
  • 109.
  • 110. ESTABILIDADE À OXIDAÇÃO A 110°C ENSAIO
  • 111. ESTABILIDADE À OXIDAÇÃO A 110°C ENSAIO
  • 113.
  • 114.
  • 115.
  • 116. ASPECTOS ECONÔMICOS Fonte: Ouro Verde Indústria e Comércio de Biodiesel Ltda.
  • 117.
  • 118.
  • 119. INSTITUTO DE TECNOLOGIA DO PARANÁ – TECPAR DIVISÃO DE BIOCOMBUSTÍVEIS – DBIO Contato: [email_address] / [email_address] Tel.: (41) 3316-3032 Homepage : www.tecpar.br/cerbio
  • 120.  
  • 121. Uso de Óleos e Gorduras como Combustível
  • 122.
  • 123.
  • 124. USO DE ÓLEOS E GORDURAS COMO COMBUSTÍVEL Amaral, D. F. Biodiesel no Brasil: conjuntura atual e perspectivas. In: 9° Encontro de Negócios de Energia – FIESP. 2008
  • 125.
  • 126.
  • 127. USO DE ÓLEOS E GORDURAS COMO COMBUSTÍVEL http://www.feagri.unicamp.br/energia/agre2002/pdf/0055.pdf Característica/Óleo Diesel Amendoim Soja Algodão Girassol Babaçu Dendê Mamona Densidade relativa, g/cm 3 0,828 0,919 0,92 0,919 0,923 0,921 0,915 0,959 Visc. Cinemática, mm 2 /s 1,6-6,0 38 36 40 37 32 39 297 Início destilação, °C 165 173 152 - 211 - - - Resíduo de carbono, %massa 0,3(max) 0,42 0,45 0,42 0,42 0,22 - 0,18 Número de cetano 45(min) 33 36 40 39 38 42 - Poder calorífico Inferior, Kcal/L 8.400 7.900 7.850 8.050 7.950 7.800 8.330 8.000 Água por destilação, % massa <0,05 <0,05 <0,08 <0,05 <0,05 <0,05 - 0,2 Enxofre, % massa 1,3 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1
  • 128.

Hinweis der Redaktion

  1. AGÊNCIA NACIONAL DO PETRÓLEO, GÁS NATURAL E BIOCOMBUSTÍVEIS -ANP É O ÓRGÃO RESPONSÁVEL DE REGULAR E FISCALIZAR AS ATIVIDADES RELATIVAS À PRODUÇÃO, CONTROLE DE QUALIDADE, DISTRIBUIÇÃO, REVENDA E COMERCIALIZAÇÃO DO BIODIESEL E DA MISTURA ÓLEO DIESEL-BIODIESEL (BX). * A Lei n° 11.097, publicada em 13 de janeiro de 2005, introduziu o biodiesel na matriz energética brasileira e ampliou a competência administrativa da ANP, que passou, desde então, a denominar-se Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. A partir da publicação da citada lei, a ANP assumiu a atribuição de regular e fiscalizar as atividades relativas à produção, controle de qualidade, distribuição, revenda e comercialização do biodiesel e da mistura óleo diesel-biodiesel (BX).
  2. O MOTOR A DIESEL OU MOTOR DE IGNIÇÃO POR COMPRESSÃO É UM MOTOR DE COMBUSTÃO INTERNA INVENTADO PELO ENGENHEIRO ALEMÃO RUDOLF DIESEL (1858-1913), EM QUE A COMBUSTÃO DO COMBUSTÍVEL SE FAZ PELO AUMENTO DA TEMPERATURA PROVOCADO PELA COMPRESSÃO DA MISTURA INFLAMÁVEL. It had been preceded by two experimental motors in 1982/93 and 1894. However, they did not work satisfactorily. No motor diesel não existe uma aspiração, mas sim uma injecção de óleo (combustível) no momento de máxima compressão, a alta taxa de oxigênio faz com que o óleo entre em combustão, produzindo a explosão sem a necessidade da ignição eléctrica.
  3. Ciclo OTTO 1ºtempo Admissão: A válvula se abre admitindo uma mistura de ar+combustível, pulverizando-o em forma gasosa. Nesse momento, o pistão está descendo. 2ºtempo Compressão: Ao subir, o pistão vem comprimindo a mistura contida na câmara de combustão, visando atingir o ponto máximo. Nesse instante, a mistura começa a aquecer, devido ao contato com as partes quentes do bloco do motor. 3ºtempo Combustão: No ponto máximo, ponto morto superior (PMS), essa mistura recebe uma descarga elétrica (centelha). O resultado desta reação termoquímica é a geração de uma ação exotérmica, quando então a mistura libera calor, forçando o pistão para baixo (PMI) ponto morto inferior, com extrema força, movimentando o conjunto pistão/biela, que transmitem este movimento ao virabrequim, gerando assim, a energia mecânica. 4ºtempo Descarga: Nesse tempo, o pistão começa novamente a subir, expulsando os gases queimados, através da válvula de escape, completando dessa forma os quatro tempos de um motor à combustão. No ciclo Diesel, os tempos funcionam de maneira semelhante ao ciclo Otto, a diferença entre eles, se dá na Admissão (1ºtempo), onde este aspira somente ar, com ausência de combustível, que só será pulverizado no final da compressão (2ºtempo), onde o contato com o ar atmosférico comprimido resulta na combustão, devido à propriedade termodinâmica apresentada pelo óleo diesel.
  4. É um teste que permite que se tenha uma rápida indicação visual da qualidade e até mesmo identificar uma contaminação do produto. O diesel deve apresentar-se límpido e isento de materiais em suspensão como poeira, ferrugem, água, etc. Estes contaminantes, quando presentes, podem reduzir a vida útil dos filtros dos veículos e equipamentos e prejudicar o funcionamento dos motores.
  5. A densidade de um combustível para motores diesel é uma propriedade fundamental, pois a bomba injetora e os injetores são construídos para dosar volumes pré-determinados de um combustível-padrão, enquanto que o fator determinante na câmara de combustão é a relação entre massas de ar e de combustível. Assim, mudanças na densidade do combustível produzem efeitos sobre a combustão. AS REGULAGENS DE COMBUSTÍVEL DO MOTOR NÃO DEVEM COMPENSAR A PERDA DE POTÊNCIA COM COMBUSTÍVEIS MAIS LEVE. * A VIDA DOS COMPONENTES DO SISTEMA DE COMBUSTÍVEL PODE DIMINUIR COM COMBUSTÍVEIS MUITO LEVES PORQUE A LUBRIFICAÇÃO SERÁ MENOS EFICIENTE (DEVIDO À BAIXA VISCOSIDADE). * EXCESSO DE METANOL OU ETANOL NO BIODIESEL PODE REDUZIR A MASSA ESPECÍFICA.
  6. UM COMBUSTÍVEL PESADO TENDE A CRIAR MAIS FORMAÇÕES DE DEPÓSITOS NA CÂMARA DE COMBUSTÃO , QUE PODEM CAUSAR DESGASTE ANORMAL DE CAMISA E ANEL. * TIPO DE MATÉRIA-PRIMA; REAÇÃO INCOMPLETA.
  7. VERIFICAR TEOR DE GLICERINA - VERIFICAR TEOR DE TRIACILGLICERÍDEOS – REAÇÃO COMPLETA; VERIFICAR TEOR DE ÉSTER – REAÇÃO COMPLETA;
  8. * É A MENOR TEMPERATURA NA QUAL O BIODIESEL, AO SER AQUECIDO PELA APLICAÇÃO DE UMA CHAMA SOB CONDIÇÕES CONTROLADAS, GERA UMA QUANTIDADE DE VAPORES QUE SE INFLAMAM. NÃO ESTÁ DIRETAMENTE RELACIONADO À PERFORMANC E DO MOTOR . PARÂMETRO IMPORTANTE PARA MANUSEIO, TRANSPORTE E ARMAZENAGEM DO COMBUSTÍVEL.
  9. Não tem como usar gasolina ou álcool em um motor a diesel. Haveria a detonação dos mesmos com o pistão ainda efetuando a compressão, ou seja, a explosão se daria antes do ponto correto e com o pistão ainda subindo na fase de compressão, o que acarretará danos ao motor. As taxas de compressão de um motor diesel, se não me falha a memória são superiores a 20 para 1. No motor a gasolina são pouco superiores a 8 para 1, pelo que recordo creio que é 8,5 para 1. No motor a álcool as taxas são um pouco mais altas que o motor a gasolina, porém são próximas a 9 ou 10 para 1. Quanto maior a taxa de compressão, melhor será a eficiência da queima do combustível. Porém os motores a álcool e gasolina não tem como utilizar maiores taxas de compressão justamente devido a detonação do combustível, eles (gasolina e álcool) explodirão quando forem alcançadas taxas de compressão maiores do que as citadas. Pelo mesmo motivo não podemos utilizar o diesel nos motores a gasolina e a álcool, nem mesmo misturado com estes. Como ele explode com taxas de compressão mais elevadas, e tende a não ter uma boa queima junto com a gasolina e o álcool, ele se acumulará entre os anéis do pistão e tenderá a explodir ali devido as pressões que são atingidas, o que danificará estes motores também.
  10. Verificar TEOR DE ÁLCOOL. A MEDIDA CORRETIVA PROPOSTA É AQUECIMENTO À VÁCUO PARA RETIRADA DO ÁLCOOL. Por isso os limites de álcool são muito baixos: &lt;0,1%
  11. Verificar relação cSt e mm2
  12. PROCESSOS DE POLIMERIZAÇÃO E/OU DEGRADAÇÃO TÉRMICA OU OXIDATIVA ELEVAM A VISCOSIDADE .
  13. COMBUSTÍVEL DE VISCOSIDADE ALTA AUMENTARÁ O DESGASTE DO TREM DE ENGRENAGENS, E CONJUNTO DE BOMBAS INJETORAS, DEVIDO À PRESSÃO DE INJEÇÃO MAIOR. O COMBUSTÍVEL SE ATOMIZA COM MENOS EFICIÊNCIA E O MOTOR TERÁ MAIS DIFICULDADE NA PARTIDA. A REDUÇÃO EXCESSIVA DA VISCOSIDADE RESULTA EM PERDAS INTERNAS DA BOMBA INJETORA, POR VAZAMENTO, REDUZINDO O VOLUME LIBERADO PARA O INJETOR E RETARDANDO A ABERTURA DA AGULHA DO INJETOR.
  14. VERIFICAR TEOR DE MONO-, DI- E TRIACILGLICERÍDEOS E TEOR DE ÉSTER A reação incompleta é verificada pelos ensaios de TEOR DE MONO-, DI- E TRIACILGLICERÍDEOS E TEOR DE ÉSTER. A medida corretiva proposta é reprocessar o lote.
  15. TEMPERATURA MAIS BAIXA NA QUAL É POSSÍVEL OPERAR SEM QUE OCORRA FORMAÇÃO DE CERAS E CRISTAIS PODEM INTERROMPER O FLUXO DO COMBUSTÍVEL POR ENTUPIMENTO DE FILTRO.
  16. Quem faz este ensaio?
  17. Cetano - C16H34 (NC = 100) E ALFAMETILNAFTALENO (NC = 0).
  18. *O NÚMERO DE CETANO PODE INFLUENCIAR A EMISSÃO DE NO X , BARULHO DO MOTOR E FUMAÇA BRANCA. *INFLUENCIADO PELO METANOL/ETANOL REMANESCENTE DO PROCESSO. SE ELES FOREM ELEVADOS PODEM REDUZIR O NÚMERO DE CETANO.
  19. *O NÚMERO DE CETANO PODE INFLUENCIAR A EMISSÃO DE NO X , BARULHO DO MOTOR E FUMAÇA BRANCA. *INFLUENCIADO PELO METANOL/ETANOL REMANESCENTE DO PROCESSO. SE ELES FOREM ELEVADOS PODEM REDUZIR O NÚMERO DE CETANO.
  20. OS RESÍDUOS SÃO PROVENIENTES DE RESÍDUOS DO CATALISADOR, INSAPONIFICÁVEIS, GLICERINA REMANECENTE E FORMAÇÃO DE SABÃO NO PROCESSO.
  21. Basicamente o equipamento aquece a amostra a ????? Graus, sob atmosfera de nitrogênio com rampas programadas de aquecimento.
  22. uma bomba centrífuga de baixa pressão e alta vazão que recalca a água do radiador para o bloco do motor.
  23. ETAPAS DE LAVAGEM; REMOÇÃO DOS CATALISADORES.
  24. AS CINZAS SÃO BASICAMENTE CONSTITUÍDAS DE SAIS INORGÂNICOS (ÓXIDOS METÁLICOS DE SÓDIO OU POTÁSSIO NO CASO DO BIODIESEL) QUE SÃO FORMADOS APÓS A COMBUSTÃO DO PRODUTO E SE APRESENTAM COMO ABRASIVOS. A PRESENÇA DE SÓDIO E POTÁSSIO NO BIODIESEL INDICA RESÍDUOS DO CATALISADOR UTILIZADO DURANTE A REAÇÃO DE TRANSESTERIFICAÇÃO E QUE NÃO FORAM REMOVIDOS NA SUA TOTALIDADE NO PROCESSO DE PURIFICAÇÃO DO BIODIESEL.
  25. AS PARTÍCULAS SÓLIDAS AQUECIDAS FUNCIONAM COMO SEMENTES DE CHAMA DURANTE A FASE DE COMPRESSÃO, FAZENDO COM QUE A MISTURA SOFRA COMBUSTÃO EM DIFERENTES LOCAIS E FORA DO TEMPO DETERMINADO, PODENDO APARECER O FENÔMENO DA DETONAÇÃO
  26. Presença de metais como Na, K, Ca, Mg provenientes do catalisador ou dos processos de lavagem.
  27. provocar obstrução no sistema de injeção, quando este for injetado na câmara de combustão
  28. REMOVER O CATALISADOR
  29. *DEPENDE DA QUANTIDADE DE INSAPONIFICÁVEIS NA MATÉRIA-PRIMA E DO PROCESSO: COMO PARÂMETROS OPERACIONAIS DA REAÇÃO COMO (TEMPO, TEMPERATURA, ÁGUA E ÁCIDOS GRAXOS LIVRES, ÁLCOOL). * NÃO AFETA DIRETAMENTE A PERFORMANCE OU DURABILIDADE DO MOTOR MAS PODE INDICAR QUE OUTROS PARÂMETROS NÃO ESTÃO BONS, COMO METANOL/ETANOL RESIDUAL E RESÍDUOS DE CATALISADORES (NA, K, S, ENTRE OUTROS)
  30. Os combustíveis pesados usualmente tem teor de enxofre alto. Os combustíveis destilados tem em geral, teor de enxofre mais baixo porque o enxofre pode ser reduzido ou eliminado durante o processo de refino. Você deve informar-se sobre o teor de enxofre do seu combustível. Enxofre acima de 0,5% pode reduzir, severamente, a vida do motor, a menos que sejam tomadas medidas apropriadas.
  31. Quando o óleo diesel contendo enxofre é queimado na câmara de combustão do motor, formam-se óxidos de enxofre que reagem com vapor de água para criar ácido sulfúrico. Do mesmo modo que o ácido sulfúrico, se esses vapores ácidos condensarem-se, atacam as superfícies metálicas das guias de válvula e camisas e podem afetar os mancais. Por exemplo, quando a temperatura das camisas está Mais baixa do que o ponto de orvalho do ácido sulfúrico e o óleo lubrificante não tem reserva alcalina suficiente para neutralizar o ácido, as camisas podem desgastar-se dez vezes mais rapidamente. Quando ocorre avaria pelo enxofre do combustível, haverá mudança muito pequena na potência do motor. Mas, o desgaste corrosivo, freqüentemente, leva ao consumo excessivo de óleo e sopro, ocasionando reforma geral prematura e dispendiosa. O enxofre no combustível pode aumentar a emissão de particulados. Combinado com água dentro do sistema de injeção pode formar ácido súlfúrico e assim causar corrosão nas partes metálicas do sistema de injeção.
  32. ELEVADO ÍNDICE DE IODO PODE APRESENTAR ESTABILIDADE À OXIDAÇÃO RUIM.
  33. O TESTE DE CORROSÃO DA TIRA DE COBRE É UM PROCEDIMENTO LARGAMENTE ACEITO PARA AVALIAR AS PROPRIEDADES CORROSIVAS DE ÓLEOS E COMBUSTÍVEIS EM RELAÇÃO AO COBRE.
  34. Os componentes do motor e o combustível diesel são feitos para serem compatíveis.
  35. O sabão tende a reagir com o cálcio e o magnésio formando um resíduo insolúvel
  36. No caso dos óleos (PROVENIENTE DE FERTILIZANTES)
  37. PROVENIENTE DAS CARACTERÍSTICAS DO ÓLEO OU GORDURA, ONDE O ÍNDICE DE ACIDEZ DO ÓLEO OU GORDURA PODE RECEBER CORREÇÃO
  38. MAIOR PRESENÇA DE MONO-, DI-, TRIACILGLICERÍDEOS AUMENTA A VISCOSIDADE DE BIODIESEL, REDUZINDO O EFEITO SPRAY NA INJEÇÃO , DIFICULTANDO A COMBUSTÃO E CARBONIZANDO OS CILINDROS. IMAGEM – FONTE: HTTP://WWW.AUTHORSTREAM.COM/PRESENTATION/HAGGRID-53763-BIODIESELFUELQUALITY-PT1-BIODIESEL-FUEL-QUALITY-PROPER-HANDLING-NATIONAL-BOARD-HISTORY-BIODIESELFUELQU-EDUCATION-PPT-POWERPOINT/
  39. GLICERINA TOTAL: REFAZER A REAÇÃO DE TRANSESTERIFICAÇÃO
  40. Piridina catalisa a derivatização
  41. Figure 2: Equilibrium between the liquid- and gas-phase during headspace sample preparation. Although component A is present at a lower concentration in the liquid phase, the concentration ratio in the gas-phase may shift, depending on the vapor pressure of the individual components. Correspondingly, the chromatograms resulting from headspace injection usually produce different signal ratios when compared with those resulting from liquid sample injection.
  42. Figure 3: Chromatogram of 0.01 % (m/m) methanol in biodiesel. 2-propanol was added as internal standard.
  43. Aquecimento a 110°C Injeção direta de 10L/h de ar.
  44. No ponto final há uma súbita formação de ácidos voláteis. O valor da estabilidade a oxidação é dado pela derivada segunda da curva do tempo de indução
  45. Apesar de energeticamente favorável, o uso direto de óleos vegetais como combustíveis para motores é problemático.
  46. O Poder Calorífico é a quantidade de energia por unidade de massa (ou de volume no caso dos gases) libertada na oxidação de um determinado combustível.
  47. Alta viscosidade (aproximadamente 11 a 17 vezes maior que a do óleo diesel); vegetable oils are too viscous for prolonged use in direct-injected diesel engines, which has led to poor fuel atomization and inefficient mixing with air, contributing to incomplete combustion. These chemical and physical properties caused vegetable oils to accumulate and remain as charred deposits when they contacted engine cylinder walls. The problem of charring and deposits of oils on the injector and cylinder wall can be overcome by better esterification of the oil to reduce the viscosity and remove glycerol. The disadvantages of vegetable oils as diesel fuel are (Pryde, 1983): • Higher viscosity • Lower volatility • The reactivity of unsaturated hydrocarbon chains Problems appear only after the engine has been operating on vegetable oils for longer periods of time, especially with direct-injection engines. The problems include (a) coking and trumpet formation on the injectors to such an extent that fuel atomization does not occur properly or is even prevented as a result of plugged orifices, (b) carbon deposits, (c) oil ring sticking, and (d) thickening and gelling of the lubricating oil as a result of contamination by the vegetable oils (Ma and Hana, 1999).
  48. a quebra das moléculas dos triacilglicerídeos leva à formação de uma mistura de hidrocarbonetos e compostos oxigenados, lineares ou cíclicos, tais como alcanos, alcenos, cetonas, ácidos carboxílicos e aldeídos, além de monóxido e dióxido de carbono e água. É interessante salientar que o tamanho e grau de insaturação dos compostos orgânicos obtidos dependem do esqueleto de carbono dos triacilglicerídeos e de reações consecutivas dos produtos formados. O mecanismo reacional foi inicialmente proposto por Chang 13 e confirmado, mais recentemente, por Gusmão 14 . Nas condições reacionais, o triacilglicerídeo é decomposto, levando à formação de ácidos carboxílicos, acroleína e cetenos, conforme descrito na Equação (i) da Figura 2. Os cetenos e a acroleína, por serem bem menos estáveis que o ácido carboxílico, são facilmente decompostos levando à formação de ésteres, ácidos carboxílicos e hidrocarbonetos 14 .
  49. Vegetable oils can be used as fuels for diesel engines, but their viscosities are much higher than that of common diesel fuel and require modifications of the engines. Vegetable oils could only replace a very small fraction of transport fuel. Transesterification seems to be the best choice as the physical characteristics of fatty acid esters (biodiesel) are very close to those of diesel fuel and the process is relatively simple.