SlideShare ist ein Scribd-Unternehmen logo
1 von 23
Deep learning:
the future of recommendations
Balázs Hidasi
Head of Data Mining and Research
Gravity meetup @ Startup Safary
April 21, 2016
Deep learning in the headlines
Deep learning in the background
• Life improving services
 Speech recognition
 Personal assistants (e.g. Siri,
Cortana)
 Computer vision, object
recognition
 Machine translation
 Chatbot technology
 Natural Language Processing
 Face recognition
 Self driving cars
• For fun
 Text generation
 Composing music
 Painting pictures
 Etc.
What is deep learning?
• A class of machine learning algorithms
 that use a cascade of multiple non-linear processing layers
 and complex model structures
 to learn different representations of the data in each layer
 where higher level features are derived from lower level
features
 to form a hierarchical representation.
Deep learning is not a new topic
• First deep network proposed in the 1970s
• More papers in the 80s and 90s
• Why now?
 Older research was not used widely in practice
 Applications were much more simplistic that today’s
Neural networks: a brief overview
Neurons, neural networks
• Neuron: rough abstraction of the human neuron
 Receives inputs (signals)
 Sum weighted inputs is big enough  signal
 Amplifiers and inhibitors
 Basic pattern recognition
• Neural network: neurons connected to one another
• Feedforward networks: neurons are organized into
layers
 Connections only between subsequent layers
𝑦
𝑥1
𝑥2
𝑥3
𝑥4
𝑓(. )
𝑖=1
𝑁
𝑤𝑖 𝑥𝑖 + 𝑏
𝑥1
𝑥2
𝑥3
ℎ1
1
ℎ2
1
ℎ3
1
ℎ1
2
ℎ2
2
Networks that big enough: go deep not wide
• Feedforward neural networks are universal
approximators
 Can imitate any function if they are big enough
 (Also needs enough in-out pairs to learn)
• What is big enough?
 Number of layers / neurons
 Theoretical „big enough” conditions massively overshoot
• Go deep, not wide
 The number of neurons required for good approximation is
polynomial in the input if the network is deep enough
 Otherwise it is exponential
Training neural networks
• Forward pass: get the current estimate of the target
o 𝑠𝑗
1
= 𝑖 𝑤𝑖,𝑗
1
𝑥𝑖 + 𝑏𝑗
1
; ℎ𝑗
1
= 𝑓 𝑠𝑗
1
o 𝑠 𝑘
2
= 𝑗 𝑤𝑗,𝑘
2
ℎ𝑗
1
+ 𝑏 𝑘
2
; ℎ 𝑘
2
= 𝑓 𝑠 𝑘
2
o …
o 𝑠𝑙
𝑂
= 𝑘 𝑤 𝑘,𝑙
𝑁+1
ℎ 𝑘
𝑁
+ 𝑏𝑙
𝑂
; 𝑦𝑙 = 𝑓 𝑠𝑙
𝑂
• Backward pass: correct weights to reduce error
 Gradient descentLayer Error Gradient
(w.r.t. weights between current and prev. layer)
Output Defined loss
(e.g. 𝐿 = 𝑖=1
𝑁 𝑜
𝑦𝑖 − 𝑦𝑖
2
)
𝜕𝐿
𝜕𝑤𝑗,𝑖
(𝑁+1)
=
𝜕𝐿
𝜕𝑦𝑖
∗
𝜕𝑦𝑖
𝜕𝑠𝑖
𝑂 ∗
𝜕𝑠𝑖
𝑂
𝜕𝑤𝑗,𝑖
𝑁+1 =
𝜕𝐿
𝜕𝑦𝑖
𝑓′
𝑠𝑖
𝑂
ℎ𝑗
𝑁
𝑁 𝑡ℎ
hidden
𝛿𝑖
𝑁
=
𝜕𝐿
𝜕𝑦𝑖
∗
𝜕𝑦𝑖
𝜕𝑠𝑖
𝑂
𝜕𝐿
𝜕𝑤 𝑘,𝑗
𝑁 =
𝑖
𝜕𝐿
𝜕𝑦𝑖
∗
𝜕𝑦𝑖
𝜕𝑠𝑖
𝑂 ∗
𝜕𝑠𝑖
𝑂
𝜕ℎ𝑗
𝑁 ∗
𝜕ℎ𝑗
𝑁
𝜕𝑠𝑗
𝑁 ∗
𝜕𝑠𝑗
𝑁
𝜕𝑤𝑗,𝑖
𝑁 =
𝑖
𝛿𝑖
𝑁
𝑤𝑖,𝑗
𝑁+1
𝑓′ 𝑠𝑗
𝑁
ℎ 𝑘
𝑁−1
(𝑁 −
𝛿𝑗
𝑁−1
=
𝑖
𝛿𝑖
𝑁
𝑤𝑖,𝑗
𝑁+1
𝑓′ 𝑠𝑗
𝑁
𝜕𝐿
𝜕𝑤𝑙,𝑘
𝑁−1 =
𝑗
𝛿𝑗
𝑁−1
𝑤𝑗,𝑘
𝑁
𝑓′ 𝑠 𝑘
𝑁−1
ℎ𝑙
𝑁−2
…
1 𝑠𝑡
hidden
𝛿 𝑘
1 𝜕𝐿
𝜕𝑤𝑖,𝑗
1 =
𝑘
𝛿 𝑘
1
𝑤 𝑘,𝑙
2
𝑓′
𝑠𝑗
1
𝑥𝑖
Challenges of training deep networks
• Saturation
• Vanishing gradients
• Overfitting
• Slowness of second order methods
• Slow convergence, stucks in local optima with first
order methods
• (Exploding gradients)
Why now?
Breakthroughs in research
• Saturation & vanishing gradients
 Layer-by-layer training (2006)
 Non-saturating activation functions, e.g. ReLU (2013)
• Overfitting
 Dropout (2014)
• Convergence problems
 Adagrad, Adadelta, Adam, RMSProp, etc.
Computational power
• Natural increase in computational power
• GP GPU technology
Intermission
Don’t give in to the HYPE
• Deep learning is impressive but
 deep learning is not true AI
o it may be a component of it when
and if AI is created
 deep learning is not how the human
brain works
 95% of machine learning tasks don’t
require deep learning
 deep learning requires a lot of
computational power
• Deep learning is a tool
 which is successful in certain,
previously very challenging domains
(speech recognition, computer
vision, NLP, etc.)
 that excels in pattern recognition
You are here
Deep learning for RecSys
From the Netflix prize...
• Netflix prize (2006-2009)
 Gave a huge push to recommender systems research
 Determined the direction of research for years
 Task:
o Some (User, Item, Rating) known triplets
o (User, Item) pairs with unknown rating
o Predict the missing ratings (1-5)
... to recommenders in practice
• Ratings  events [implicit feedback]
 Lots of services don’t allow for rating
 Majority of users don’t rate
 Monitored passively  preferences have to be infered
• Rating prediction  ranking [top N recommendations]
 All that matters is the relevancy of the top N items
 Rating prediction is biased
• User  session / situation [session-based / context-driven
recommendation]
 Users are not logged in, identification is unreliable
 Accounts used by multiple users
 Aim of the session (e.g. buy a good laptop)
 Similar behavior of different users in a situation, different behavior of the same
user in different situations
Challenges in RecSys
• Session modeling
 Most of the algorithms are personalized
 A few are item-to-item
o Recommends similar items
o Also used for session-based recommendations (industry de facto standard)
 There are no good session based solutions
• Incorporating factors that influence user clicks
 Users click based on what they see
o Title
o Product image
o Description
 and on their knowledge of the product
o Usually harder to model
o Except when the product is content (e.g. music)
Deep learning to the rescue – Session modeling
• Recurrent Neural Networks (RNN)
 Sequence modeling
 Hidden state: next state is based on the previous hidden state and the current input
 „Infinite” depth
 More sophisticated versions: GRU, LSTM
• Needs to be adapted to the recommendation task
• GRU4Rec:
 Session-parallel minibatch training for handling the large variance in session lengths
 Sampling the output for reasonable training times, without losing much accuracy
 Ranking loss for better item ranking
• Results: 15-30% improvement over item-to-item recommendations
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
RSC15 VIDEO
Recall@20
Item-kNN
GRU4Rec
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
RSC15 VIDEO
MRR@20
Item-kNN
GRU4Rec
Other uses of deep learning for recsys
• Incorporating content directly
 Music, images, video, text
 User influencing aspects of the items
 Direct content representation
• Context-state modeling from sensory data
 IoT devices
 Lot of sensory data
 Some missing and noise
 Infer context state and recommend accordingly
• Interactive recommenders using chatbots
• Personalized content generation
 Today’s news
 Images in personalized style with personalized content
• Etc...
There is work to be done
• DL + RecSys research: just started
 Last year:
o 0 long papers, 1 short paper and 1 poster that is loosely connected
 This year:
o 10+ submissions to RecSys in this topic
o DLRS 2016 workshop @ RecSys
• Open questions
 (More) Application areas
 Adaptations required for the recsys problem
 Scalability
 Best practices
 ...
Thanks for your attention!

Weitere ähnliche Inhalte

Was ist angesagt?

Deep Learning for Recommender Systems RecSys2017 Tutorial
Deep Learning for Recommender Systems RecSys2017 Tutorial Deep Learning for Recommender Systems RecSys2017 Tutorial
Deep Learning for Recommender Systems RecSys2017 Tutorial Alexandros Karatzoglou
 
Introduction to Recurrent Neural Network
Introduction to Recurrent Neural NetworkIntroduction to Recurrent Neural Network
Introduction to Recurrent Neural NetworkYan Xu
 
Recurrent Neural Networks (RNN) | RNN LSTM | Deep Learning Tutorial | Tensorf...
Recurrent Neural Networks (RNN) | RNN LSTM | Deep Learning Tutorial | Tensorf...Recurrent Neural Networks (RNN) | RNN LSTM | Deep Learning Tutorial | Tensorf...
Recurrent Neural Networks (RNN) | RNN LSTM | Deep Learning Tutorial | Tensorf...Edureka!
 
Recommender Systems (Machine Learning Summer School 2014 @ CMU)
Recommender Systems (Machine Learning Summer School 2014 @ CMU)Recommender Systems (Machine Learning Summer School 2014 @ CMU)
Recommender Systems (Machine Learning Summer School 2014 @ CMU)Xavier Amatriain
 
Deep Learning in Recommender Systems - RecSys Summer School 2017
Deep Learning in Recommender Systems - RecSys Summer School 2017Deep Learning in Recommender Systems - RecSys Summer School 2017
Deep Learning in Recommender Systems - RecSys Summer School 2017Balázs Hidasi
 
Content based recommendation systems
Content based recommendation systemsContent based recommendation systems
Content based recommendation systemsAravindharamanan S
 
Understanding Convolutional Neural Networks
Understanding Convolutional Neural NetworksUnderstanding Convolutional Neural Networks
Understanding Convolutional Neural NetworksJeremy Nixon
 
An introduction to Recommender Systems
An introduction to Recommender SystemsAn introduction to Recommender Systems
An introduction to Recommender SystemsDavid Zibriczky
 
Introduction of Deep Learning
Introduction of Deep LearningIntroduction of Deep Learning
Introduction of Deep LearningMyungjin Lee
 
Introduction to Recommendation Systems
Introduction to Recommendation SystemsIntroduction to Recommendation Systems
Introduction to Recommendation SystemsTrieu Nguyen
 
Introduction to Recurrent Neural Network
Introduction to Recurrent Neural NetworkIntroduction to Recurrent Neural Network
Introduction to Recurrent Neural NetworkKnoldus Inc.
 
Recent advances in deep recommender systems
Recent advances in deep recommender systemsRecent advances in deep recommender systems
Recent advances in deep recommender systemsNAVER Engineering
 
Overview of recommender system
Overview of recommender systemOverview of recommender system
Overview of recommender systemStanley Wang
 
Deep Learning for Recommender Systems
Deep Learning for Recommender SystemsDeep Learning for Recommender Systems
Deep Learning for Recommender Systemsinovex GmbH
 
[Final]collaborative filtering and recommender systems
[Final]collaborative filtering and recommender systems[Final]collaborative filtering and recommender systems
[Final]collaborative filtering and recommender systemsFalitokiniaina Rabearison
 
Tutorial on sequence aware recommender systems - UMAP 2018
Tutorial on sequence aware recommender systems - UMAP 2018Tutorial on sequence aware recommender systems - UMAP 2018
Tutorial on sequence aware recommender systems - UMAP 2018Paolo Cremonesi
 
Deep Learning With Python | Deep Learning And Neural Networks | Deep Learning...
Deep Learning With Python | Deep Learning And Neural Networks | Deep Learning...Deep Learning With Python | Deep Learning And Neural Networks | Deep Learning...
Deep Learning With Python | Deep Learning And Neural Networks | Deep Learning...Simplilearn
 

Was ist angesagt? (20)

Recommender system
Recommender systemRecommender system
Recommender system
 
Deep Learning for Recommender Systems RecSys2017 Tutorial
Deep Learning for Recommender Systems RecSys2017 Tutorial Deep Learning for Recommender Systems RecSys2017 Tutorial
Deep Learning for Recommender Systems RecSys2017 Tutorial
 
Introduction to Recurrent Neural Network
Introduction to Recurrent Neural NetworkIntroduction to Recurrent Neural Network
Introduction to Recurrent Neural Network
 
Recurrent Neural Networks (RNN) | RNN LSTM | Deep Learning Tutorial | Tensorf...
Recurrent Neural Networks (RNN) | RNN LSTM | Deep Learning Tutorial | Tensorf...Recurrent Neural Networks (RNN) | RNN LSTM | Deep Learning Tutorial | Tensorf...
Recurrent Neural Networks (RNN) | RNN LSTM | Deep Learning Tutorial | Tensorf...
 
Recommender Systems (Machine Learning Summer School 2014 @ CMU)
Recommender Systems (Machine Learning Summer School 2014 @ CMU)Recommender Systems (Machine Learning Summer School 2014 @ CMU)
Recommender Systems (Machine Learning Summer School 2014 @ CMU)
 
Deep Learning in Recommender Systems - RecSys Summer School 2017
Deep Learning in Recommender Systems - RecSys Summer School 2017Deep Learning in Recommender Systems - RecSys Summer School 2017
Deep Learning in Recommender Systems - RecSys Summer School 2017
 
Deep Learning Recommender Systems
Deep Learning Recommender SystemsDeep Learning Recommender Systems
Deep Learning Recommender Systems
 
Content based recommendation systems
Content based recommendation systemsContent based recommendation systems
Content based recommendation systems
 
Understanding Convolutional Neural Networks
Understanding Convolutional Neural NetworksUnderstanding Convolutional Neural Networks
Understanding Convolutional Neural Networks
 
An introduction to Recommender Systems
An introduction to Recommender SystemsAn introduction to Recommender Systems
An introduction to Recommender Systems
 
Introduction of Deep Learning
Introduction of Deep LearningIntroduction of Deep Learning
Introduction of Deep Learning
 
Recommender Systems
Recommender SystemsRecommender Systems
Recommender Systems
 
Introduction to Recommendation Systems
Introduction to Recommendation SystemsIntroduction to Recommendation Systems
Introduction to Recommendation Systems
 
Introduction to Recurrent Neural Network
Introduction to Recurrent Neural NetworkIntroduction to Recurrent Neural Network
Introduction to Recurrent Neural Network
 
Recent advances in deep recommender systems
Recent advances in deep recommender systemsRecent advances in deep recommender systems
Recent advances in deep recommender systems
 
Overview of recommender system
Overview of recommender systemOverview of recommender system
Overview of recommender system
 
Deep Learning for Recommender Systems
Deep Learning for Recommender SystemsDeep Learning for Recommender Systems
Deep Learning for Recommender Systems
 
[Final]collaborative filtering and recommender systems
[Final]collaborative filtering and recommender systems[Final]collaborative filtering and recommender systems
[Final]collaborative filtering and recommender systems
 
Tutorial on sequence aware recommender systems - UMAP 2018
Tutorial on sequence aware recommender systems - UMAP 2018Tutorial on sequence aware recommender systems - UMAP 2018
Tutorial on sequence aware recommender systems - UMAP 2018
 
Deep Learning With Python | Deep Learning And Neural Networks | Deep Learning...
Deep Learning With Python | Deep Learning And Neural Networks | Deep Learning...Deep Learning With Python | Deep Learning And Neural Networks | Deep Learning...
Deep Learning With Python | Deep Learning And Neural Networks | Deep Learning...
 

Ähnlich wie Deep learning: the future of recommendations

Deep learning to the rescue - solving long standing problems of recommender ...
Deep learning to the rescue - solving long standing problems of recommender ...Deep learning to the rescue - solving long standing problems of recommender ...
Deep learning to the rescue - solving long standing problems of recommender ...Balázs Hidasi
 
MDEC Data Matters Series: machine learning and Deep Learning, A Primer
MDEC Data Matters Series: machine learning and Deep Learning, A PrimerMDEC Data Matters Series: machine learning and Deep Learning, A Primer
MDEC Data Matters Series: machine learning and Deep Learning, A PrimerPoo Kuan Hoong
 
Introduction to deep learning
Introduction to deep learningIntroduction to deep learning
Introduction to deep learningAmr Rashed
 
Big Data Malaysia - A Primer on Deep Learning
Big Data Malaysia - A Primer on Deep LearningBig Data Malaysia - A Primer on Deep Learning
Big Data Malaysia - A Primer on Deep LearningPoo Kuan Hoong
 
An Introduction to Deep Learning
An Introduction to Deep LearningAn Introduction to Deep Learning
An Introduction to Deep LearningPoo Kuan Hoong
 
Deep learning tutorial 9/2019
Deep learning tutorial 9/2019Deep learning tutorial 9/2019
Deep learning tutorial 9/2019Amr Rashed
 
Deep Learning Tutorial
Deep Learning TutorialDeep Learning Tutorial
Deep Learning TutorialAmr Rashed
 
Deep learning introduction
Deep learning introductionDeep learning introduction
Deep learning introductionAdwait Bhave
 
DEF CON 24 - Clarence Chio - machine duping 101
DEF CON 24 - Clarence Chio - machine duping 101DEF CON 24 - Clarence Chio - machine duping 101
DEF CON 24 - Clarence Chio - machine duping 101Felipe Prado
 
Deep Learning, an interactive introduction for NLP-ers
Deep Learning, an interactive introduction for NLP-ersDeep Learning, an interactive introduction for NLP-ers
Deep Learning, an interactive introduction for NLP-ersRoelof Pieters
 
Using Deep Learning to do Real-Time Scoring in Practical Applications
Using Deep Learning to do Real-Time Scoring in Practical ApplicationsUsing Deep Learning to do Real-Time Scoring in Practical Applications
Using Deep Learning to do Real-Time Scoring in Practical ApplicationsGreg Makowski
 
Visualization of Deep Learning
Visualization of Deep LearningVisualization of Deep Learning
Visualization of Deep LearningYaminiAlapati1
 
Introduction to deep learning
Introduction to deep learningIntroduction to deep learning
Introduction to deep learningdoppenhe
 
Deep Learning: a birds eye view
Deep Learning: a birds eye viewDeep Learning: a birds eye view
Deep Learning: a birds eye viewRoelof Pieters
 
Separating Hype from Reality in Deep Learning with Sameer Farooqui
 Separating Hype from Reality in Deep Learning with Sameer Farooqui Separating Hype from Reality in Deep Learning with Sameer Farooqui
Separating Hype from Reality in Deep Learning with Sameer FarooquiDatabricks
 

Ähnlich wie Deep learning: the future of recommendations (20)

Deep learning to the rescue - solving long standing problems of recommender ...
Deep learning to the rescue - solving long standing problems of recommender ...Deep learning to the rescue - solving long standing problems of recommender ...
Deep learning to the rescue - solving long standing problems of recommender ...
 
MDEC Data Matters Series: machine learning and Deep Learning, A Primer
MDEC Data Matters Series: machine learning and Deep Learning, A PrimerMDEC Data Matters Series: machine learning and Deep Learning, A Primer
MDEC Data Matters Series: machine learning and Deep Learning, A Primer
 
Deep learning - a primer
Deep learning - a primerDeep learning - a primer
Deep learning - a primer
 
Deep learning - a primer
Deep learning - a primerDeep learning - a primer
Deep learning - a primer
 
Introduction to deep learning
Introduction to deep learningIntroduction to deep learning
Introduction to deep learning
 
Big Data Malaysia - A Primer on Deep Learning
Big Data Malaysia - A Primer on Deep LearningBig Data Malaysia - A Primer on Deep Learning
Big Data Malaysia - A Primer on Deep Learning
 
An Introduction to Deep Learning
An Introduction to Deep LearningAn Introduction to Deep Learning
An Introduction to Deep Learning
 
Deep learning tutorial 9/2019
Deep learning tutorial 9/2019Deep learning tutorial 9/2019
Deep learning tutorial 9/2019
 
Deep Learning Tutorial
Deep Learning TutorialDeep Learning Tutorial
Deep Learning Tutorial
 
Deep learning introduction
Deep learning introductionDeep learning introduction
Deep learning introduction
 
Introduction to deep learning
Introduction to deep learningIntroduction to deep learning
Introduction to deep learning
 
Deep learning
Deep learningDeep learning
Deep learning
 
DEF CON 24 - Clarence Chio - machine duping 101
DEF CON 24 - Clarence Chio - machine duping 101DEF CON 24 - Clarence Chio - machine duping 101
DEF CON 24 - Clarence Chio - machine duping 101
 
Phx dl meetup
Phx dl meetupPhx dl meetup
Phx dl meetup
 
Deep Learning, an interactive introduction for NLP-ers
Deep Learning, an interactive introduction for NLP-ersDeep Learning, an interactive introduction for NLP-ers
Deep Learning, an interactive introduction for NLP-ers
 
Using Deep Learning to do Real-Time Scoring in Practical Applications
Using Deep Learning to do Real-Time Scoring in Practical ApplicationsUsing Deep Learning to do Real-Time Scoring in Practical Applications
Using Deep Learning to do Real-Time Scoring in Practical Applications
 
Visualization of Deep Learning
Visualization of Deep LearningVisualization of Deep Learning
Visualization of Deep Learning
 
Introduction to deep learning
Introduction to deep learningIntroduction to deep learning
Introduction to deep learning
 
Deep Learning: a birds eye view
Deep Learning: a birds eye viewDeep Learning: a birds eye view
Deep Learning: a birds eye view
 
Separating Hype from Reality in Deep Learning with Sameer Farooqui
 Separating Hype from Reality in Deep Learning with Sameer Farooqui Separating Hype from Reality in Deep Learning with Sameer Farooqui
Separating Hype from Reality in Deep Learning with Sameer Farooqui
 

Mehr von Balázs Hidasi

Egyedi termék kreatívok tömeges gyártása generatív AI segítségével
Egyedi termék kreatívok tömeges gyártása generatív AI segítségévelEgyedi termék kreatívok tömeges gyártása generatív AI segítségével
Egyedi termék kreatívok tömeges gyártása generatív AI segítségévelBalázs Hidasi
 
The Effect of Third Party Implementations on Reproducibility
The Effect of Third Party Implementations on ReproducibilityThe Effect of Third Party Implementations on Reproducibility
The Effect of Third Party Implementations on ReproducibilityBalázs Hidasi
 
GRU4Rec v2 - Recurrent Neural Networks with Top-k Gains for Session-based Rec...
GRU4Rec v2 - Recurrent Neural Networks with Top-k Gains for Session-based Rec...GRU4Rec v2 - Recurrent Neural Networks with Top-k Gains for Session-based Rec...
GRU4Rec v2 - Recurrent Neural Networks with Top-k Gains for Session-based Rec...Balázs Hidasi
 
Parallel Recurrent Neural Network Architectures for Feature-rich Session-base...
Parallel Recurrent Neural Network Architectures for Feature-rich Session-base...Parallel Recurrent Neural Network Architectures for Feature-rich Session-base...
Parallel Recurrent Neural Network Architectures for Feature-rich Session-base...Balázs Hidasi
 
Context aware factorization methods for implicit feedback based recommendatio...
Context aware factorization methods for implicit feedback based recommendatio...Context aware factorization methods for implicit feedback based recommendatio...
Context aware factorization methods for implicit feedback based recommendatio...Balázs Hidasi
 
Context-aware preference modeling with factorization
Context-aware preference modeling with factorizationContext-aware preference modeling with factorization
Context-aware preference modeling with factorizationBalázs Hidasi
 
Approximate modeling of continuous context in factorization algorithms (CaRR1...
Approximate modeling of continuous context in factorization algorithms (CaRR1...Approximate modeling of continuous context in factorization algorithms (CaRR1...
Approximate modeling of continuous context in factorization algorithms (CaRR1...Balázs Hidasi
 
Utilizing additional information in factorization methods (research overview,...
Utilizing additional information in factorization methods (research overview,...Utilizing additional information in factorization methods (research overview,...
Utilizing additional information in factorization methods (research overview,...Balázs Hidasi
 
Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...
Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...
Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...Balázs Hidasi
 
Context-aware similarities within the factorization framework (CaRR 2013 pres...
Context-aware similarities within the factorization framework (CaRR 2013 pres...Context-aware similarities within the factorization framework (CaRR 2013 pres...
Context-aware similarities within the factorization framework (CaRR 2013 pres...Balázs Hidasi
 
iTALS: implicit tensor factorization for context-aware recommendations (ECML/...
iTALS: implicit tensor factorization for context-aware recommendations (ECML/...iTALS: implicit tensor factorization for context-aware recommendations (ECML/...
iTALS: implicit tensor factorization for context-aware recommendations (ECML/...Balázs Hidasi
 
Initialization of matrix factorization (CaRR 2012 presentation)
Initialization of matrix factorization (CaRR 2012 presentation)Initialization of matrix factorization (CaRR 2012 presentation)
Initialization of matrix factorization (CaRR 2012 presentation)Balázs Hidasi
 
ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)
ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)
ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)Balázs Hidasi
 
ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)
ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)
ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)Balázs Hidasi
 
ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)
ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)
ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)Balázs Hidasi
 

Mehr von Balázs Hidasi (15)

Egyedi termék kreatívok tömeges gyártása generatív AI segítségével
Egyedi termék kreatívok tömeges gyártása generatív AI segítségévelEgyedi termék kreatívok tömeges gyártása generatív AI segítségével
Egyedi termék kreatívok tömeges gyártása generatív AI segítségével
 
The Effect of Third Party Implementations on Reproducibility
The Effect of Third Party Implementations on ReproducibilityThe Effect of Third Party Implementations on Reproducibility
The Effect of Third Party Implementations on Reproducibility
 
GRU4Rec v2 - Recurrent Neural Networks with Top-k Gains for Session-based Rec...
GRU4Rec v2 - Recurrent Neural Networks with Top-k Gains for Session-based Rec...GRU4Rec v2 - Recurrent Neural Networks with Top-k Gains for Session-based Rec...
GRU4Rec v2 - Recurrent Neural Networks with Top-k Gains for Session-based Rec...
 
Parallel Recurrent Neural Network Architectures for Feature-rich Session-base...
Parallel Recurrent Neural Network Architectures for Feature-rich Session-base...Parallel Recurrent Neural Network Architectures for Feature-rich Session-base...
Parallel Recurrent Neural Network Architectures for Feature-rich Session-base...
 
Context aware factorization methods for implicit feedback based recommendatio...
Context aware factorization methods for implicit feedback based recommendatio...Context aware factorization methods for implicit feedback based recommendatio...
Context aware factorization methods for implicit feedback based recommendatio...
 
Context-aware preference modeling with factorization
Context-aware preference modeling with factorizationContext-aware preference modeling with factorization
Context-aware preference modeling with factorization
 
Approximate modeling of continuous context in factorization algorithms (CaRR1...
Approximate modeling of continuous context in factorization algorithms (CaRR1...Approximate modeling of continuous context in factorization algorithms (CaRR1...
Approximate modeling of continuous context in factorization algorithms (CaRR1...
 
Utilizing additional information in factorization methods (research overview,...
Utilizing additional information in factorization methods (research overview,...Utilizing additional information in factorization methods (research overview,...
Utilizing additional information in factorization methods (research overview,...
 
Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...
Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...
Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...
 
Context-aware similarities within the factorization framework (CaRR 2013 pres...
Context-aware similarities within the factorization framework (CaRR 2013 pres...Context-aware similarities within the factorization framework (CaRR 2013 pres...
Context-aware similarities within the factorization framework (CaRR 2013 pres...
 
iTALS: implicit tensor factorization for context-aware recommendations (ECML/...
iTALS: implicit tensor factorization for context-aware recommendations (ECML/...iTALS: implicit tensor factorization for context-aware recommendations (ECML/...
iTALS: implicit tensor factorization for context-aware recommendations (ECML/...
 
Initialization of matrix factorization (CaRR 2012 presentation)
Initialization of matrix factorization (CaRR 2012 presentation)Initialization of matrix factorization (CaRR 2012 presentation)
Initialization of matrix factorization (CaRR 2012 presentation)
 
ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)
ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)
ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)
 
ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)
ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)
ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)
 
ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)
ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)
ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)
 

Kürzlich hochgeladen

Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodJuan lago vázquez
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...apidays
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Jeffrey Haguewood
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Orbitshub
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...apidays
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfOrbitshub
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native ApplicationsWSO2
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Victor Rentea
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusZilliz
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...Zilliz
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businesspanagenda
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024The Digital Insurer
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Zilliz
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingEdi Saputra
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistandanishmna97
 

Kürzlich hochgeladen (20)

Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 

Deep learning: the future of recommendations

  • 1. Deep learning: the future of recommendations Balázs Hidasi Head of Data Mining and Research Gravity meetup @ Startup Safary April 21, 2016
  • 2. Deep learning in the headlines
  • 3. Deep learning in the background • Life improving services  Speech recognition  Personal assistants (e.g. Siri, Cortana)  Computer vision, object recognition  Machine translation  Chatbot technology  Natural Language Processing  Face recognition  Self driving cars • For fun  Text generation  Composing music  Painting pictures  Etc.
  • 4. What is deep learning? • A class of machine learning algorithms  that use a cascade of multiple non-linear processing layers  and complex model structures  to learn different representations of the data in each layer  where higher level features are derived from lower level features  to form a hierarchical representation.
  • 5. Deep learning is not a new topic • First deep network proposed in the 1970s • More papers in the 80s and 90s • Why now?  Older research was not used widely in practice  Applications were much more simplistic that today’s
  • 6. Neural networks: a brief overview
  • 7. Neurons, neural networks • Neuron: rough abstraction of the human neuron  Receives inputs (signals)  Sum weighted inputs is big enough  signal  Amplifiers and inhibitors  Basic pattern recognition • Neural network: neurons connected to one another • Feedforward networks: neurons are organized into layers  Connections only between subsequent layers 𝑦 𝑥1 𝑥2 𝑥3 𝑥4 𝑓(. ) 𝑖=1 𝑁 𝑤𝑖 𝑥𝑖 + 𝑏 𝑥1 𝑥2 𝑥3 ℎ1 1 ℎ2 1 ℎ3 1 ℎ1 2 ℎ2 2
  • 8. Networks that big enough: go deep not wide • Feedforward neural networks are universal approximators  Can imitate any function if they are big enough  (Also needs enough in-out pairs to learn) • What is big enough?  Number of layers / neurons  Theoretical „big enough” conditions massively overshoot • Go deep, not wide  The number of neurons required for good approximation is polynomial in the input if the network is deep enough  Otherwise it is exponential
  • 9. Training neural networks • Forward pass: get the current estimate of the target o 𝑠𝑗 1 = 𝑖 𝑤𝑖,𝑗 1 𝑥𝑖 + 𝑏𝑗 1 ; ℎ𝑗 1 = 𝑓 𝑠𝑗 1 o 𝑠 𝑘 2 = 𝑗 𝑤𝑗,𝑘 2 ℎ𝑗 1 + 𝑏 𝑘 2 ; ℎ 𝑘 2 = 𝑓 𝑠 𝑘 2 o … o 𝑠𝑙 𝑂 = 𝑘 𝑤 𝑘,𝑙 𝑁+1 ℎ 𝑘 𝑁 + 𝑏𝑙 𝑂 ; 𝑦𝑙 = 𝑓 𝑠𝑙 𝑂 • Backward pass: correct weights to reduce error  Gradient descentLayer Error Gradient (w.r.t. weights between current and prev. layer) Output Defined loss (e.g. 𝐿 = 𝑖=1 𝑁 𝑜 𝑦𝑖 − 𝑦𝑖 2 ) 𝜕𝐿 𝜕𝑤𝑗,𝑖 (𝑁+1) = 𝜕𝐿 𝜕𝑦𝑖 ∗ 𝜕𝑦𝑖 𝜕𝑠𝑖 𝑂 ∗ 𝜕𝑠𝑖 𝑂 𝜕𝑤𝑗,𝑖 𝑁+1 = 𝜕𝐿 𝜕𝑦𝑖 𝑓′ 𝑠𝑖 𝑂 ℎ𝑗 𝑁 𝑁 𝑡ℎ hidden 𝛿𝑖 𝑁 = 𝜕𝐿 𝜕𝑦𝑖 ∗ 𝜕𝑦𝑖 𝜕𝑠𝑖 𝑂 𝜕𝐿 𝜕𝑤 𝑘,𝑗 𝑁 = 𝑖 𝜕𝐿 𝜕𝑦𝑖 ∗ 𝜕𝑦𝑖 𝜕𝑠𝑖 𝑂 ∗ 𝜕𝑠𝑖 𝑂 𝜕ℎ𝑗 𝑁 ∗ 𝜕ℎ𝑗 𝑁 𝜕𝑠𝑗 𝑁 ∗ 𝜕𝑠𝑗 𝑁 𝜕𝑤𝑗,𝑖 𝑁 = 𝑖 𝛿𝑖 𝑁 𝑤𝑖,𝑗 𝑁+1 𝑓′ 𝑠𝑗 𝑁 ℎ 𝑘 𝑁−1 (𝑁 − 𝛿𝑗 𝑁−1 = 𝑖 𝛿𝑖 𝑁 𝑤𝑖,𝑗 𝑁+1 𝑓′ 𝑠𝑗 𝑁 𝜕𝐿 𝜕𝑤𝑙,𝑘 𝑁−1 = 𝑗 𝛿𝑗 𝑁−1 𝑤𝑗,𝑘 𝑁 𝑓′ 𝑠 𝑘 𝑁−1 ℎ𝑙 𝑁−2 … 1 𝑠𝑡 hidden 𝛿 𝑘 1 𝜕𝐿 𝜕𝑤𝑖,𝑗 1 = 𝑘 𝛿 𝑘 1 𝑤 𝑘,𝑙 2 𝑓′ 𝑠𝑗 1 𝑥𝑖
  • 10. Challenges of training deep networks • Saturation • Vanishing gradients • Overfitting • Slowness of second order methods • Slow convergence, stucks in local optima with first order methods • (Exploding gradients)
  • 12. Breakthroughs in research • Saturation & vanishing gradients  Layer-by-layer training (2006)  Non-saturating activation functions, e.g. ReLU (2013) • Overfitting  Dropout (2014) • Convergence problems  Adagrad, Adadelta, Adam, RMSProp, etc.
  • 13. Computational power • Natural increase in computational power • GP GPU technology
  • 15. Don’t give in to the HYPE • Deep learning is impressive but  deep learning is not true AI o it may be a component of it when and if AI is created  deep learning is not how the human brain works  95% of machine learning tasks don’t require deep learning  deep learning requires a lot of computational power • Deep learning is a tool  which is successful in certain, previously very challenging domains (speech recognition, computer vision, NLP, etc.)  that excels in pattern recognition You are here
  • 17. From the Netflix prize... • Netflix prize (2006-2009)  Gave a huge push to recommender systems research  Determined the direction of research for years  Task: o Some (User, Item, Rating) known triplets o (User, Item) pairs with unknown rating o Predict the missing ratings (1-5)
  • 18. ... to recommenders in practice • Ratings  events [implicit feedback]  Lots of services don’t allow for rating  Majority of users don’t rate  Monitored passively  preferences have to be infered • Rating prediction  ranking [top N recommendations]  All that matters is the relevancy of the top N items  Rating prediction is biased • User  session / situation [session-based / context-driven recommendation]  Users are not logged in, identification is unreliable  Accounts used by multiple users  Aim of the session (e.g. buy a good laptop)  Similar behavior of different users in a situation, different behavior of the same user in different situations
  • 19. Challenges in RecSys • Session modeling  Most of the algorithms are personalized  A few are item-to-item o Recommends similar items o Also used for session-based recommendations (industry de facto standard)  There are no good session based solutions • Incorporating factors that influence user clicks  Users click based on what they see o Title o Product image o Description  and on their knowledge of the product o Usually harder to model o Except when the product is content (e.g. music)
  • 20. Deep learning to the rescue – Session modeling • Recurrent Neural Networks (RNN)  Sequence modeling  Hidden state: next state is based on the previous hidden state and the current input  „Infinite” depth  More sophisticated versions: GRU, LSTM • Needs to be adapted to the recommendation task • GRU4Rec:  Session-parallel minibatch training for handling the large variance in session lengths  Sampling the output for reasonable training times, without losing much accuracy  Ranking loss for better item ranking • Results: 15-30% improvement over item-to-item recommendations 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 RSC15 VIDEO Recall@20 Item-kNN GRU4Rec 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 RSC15 VIDEO MRR@20 Item-kNN GRU4Rec
  • 21. Other uses of deep learning for recsys • Incorporating content directly  Music, images, video, text  User influencing aspects of the items  Direct content representation • Context-state modeling from sensory data  IoT devices  Lot of sensory data  Some missing and noise  Infer context state and recommend accordingly • Interactive recommenders using chatbots • Personalized content generation  Today’s news  Images in personalized style with personalized content • Etc...
  • 22. There is work to be done • DL + RecSys research: just started  Last year: o 0 long papers, 1 short paper and 1 poster that is loosely connected  This year: o 10+ submissions to RecSys in this topic o DLRS 2016 workshop @ RecSys • Open questions  (More) Application areas  Adaptations required for the recsys problem  Scalability  Best practices  ...
  • 23. Thanks for your attention!