SlideShare a Scribd company logo
1 of 17
Nanostructures Research Group
CENTER FOR SOLID STATE ELECTRONICS RESEARCH   1
ARIZONA INSTITUTE FOR NANOELECTRONICS
2007




                                              F. Schwierz and J.J. Liou, Modern microwave
Nanostructures Research Group                  transistors: theory, design, and performance, John
CENTER FOR SOLID STATE ELECTRONICS RESEARCH   Wiley & Sons, Inc., New Jersey, 2003.        2
ARIZONA INSTITUTE FOR NANOELECTRONICS
6
                                                                                        4




                                                       energ y [eV]
•  Hybrid CMC/EMC approach
     •  M. Saraniti and S.M. Goodnick, IEEE TED, 47,                                    2
      1909 (2000)
                                                                                        0
•  Bandstructure:                                                                 -2
     •  empirical pseudopotential method.                                         -4                                      EMC
     •  local, nonlocal, and spinorbit interactions.
                                                                                  -6                                      CMC
                                                                                            L   Γ        X U,K    Γ
•  Full phonon spectra:
      •  valence shell model.                                                                   wave vector




                                                          Hybrid/MC performance ratio




                                                                                                                          time per iter. [sec/5000 e ]
                                                                                                                          -
•  Scattering mechanisms:
      •  Deformation potential (optical/acoustic)
      •  Polar optical phonons.
      •  Impurity scattering (Ridley model).

•  Poisson solver:
      •  Multi-grid


       Nanostructures Research Group
       CENTER FOR SOLID STATE ELECTRONICS RESEARCH
                                                                                                    field [V/m]       3
       ARIZONA INSTITUTE FOR NANOELECTRONICS
Strained In0.75Ga0.25As




                                                   Eg = 0.57 eV




Nanostructures Research Group
CENTER FOR SOLID STATE ELECTRONICS RESEARCH                             4
ARIZONA INSTITUTE FOR NANOELECTRONICS
LSD = 0.30 µm
                                              dg = gate-to-channel separation




                                                      Vd = 0.8 V




Nanostructures Research Group
CENTER FOR SOLID STATE ELECTRONICS RESEARCH                              5
ARIZONA INSTITUTE FOR NANOELECTRONICS
z
                                                                        H
                                                                        G
                                                                        (
                                                                               1800
                                                                        y
                                                                        c
                                                                        n
                                                                        e      1600
                                                                        u
                                                                        q                                           L = 20 nm
                                                                                                                     G
                                                                        e      1400
                                                                        r
     Small signal                                                       F




                                                                    fT (GHz)
                                                                               1200
     analysis                                       i (t)
                                                                        f
                                                                        f
                                                                        o
                                                                                                                                       L = 35 nm
          G                         D                                   t
                                                                        u
                                                                               1000                                                    G



                                                            v (t)       C

                          S                                                    800                                                     L = 70 nm
                                                                                                                                       G



                                                                                            J. S. Ayubi-Moak, et al., IEEE TED,
v (t)                                                                          600
                                                                                            54(9), pp. 2327-38, Sept. 2007.
                                        i (t)
             ΔV                                                                   10
                                                                                       -1
                                                                                                                              10
                                                                                                                                   0


                                                                                                        Source-Drain Spacing (µm)

         0           T                          0       T


        Lg=50 nm                                Lg=10 nm




fT=1.3 THz                              fT=2.2 THz


Nanostructures Research Group
CENTER FOR SOLID STATE ELECTRONICS RESEARCH                                                                                                    6
ARIZONA INSTITUTE FOR NANOELECTRONICS
z                                             K.S. Yee, IEEE Trans. Antennas Propagat., 14(302) 1966
                                                             “Yee cell”
Maxwell’s equations                                                                                      •  Most direct explicit solution of
                                                                            Ey
                                                                                                          Maxwell’s equations available (i.e.
                                            Ex                                  Ex
                                                                                                          no matrix inversion required).
    
                                                                  Hz

           ∂H                                                                                   Ez

∇ × E = −µ
                                                        Ex
                                                             Ey
                                                                                                         •  A complete “full-wave” method
            ∂t                                                         Hx                                 without approximation (i.e. no
                                                  Hy                                      Hy
                                                                                                          pre-selection of output modes or
         ∂E 
                                        Ez                                            Ex
                                                                                                          solution form necessary.)
∇× H = ε     +J                               Ex
                                                        Hx
                                                                            Ey        Ex
                                                                                                     y
          ∂t                                                      Hz

                                                             Ey

                                         x
PML Absorbing Boundary Conditions
   • 

“artificial” anisotropic electric/magnetic*
    conductivities within domain boundaries allow
    for absorption/attenuation waves.
   •  Numerical “split-field” approach allowing
    perfect transmission into absorbing layer
    (regardless of frequency, polarization, or angle
    of incidence).

       Nanostructures Research Group
       CENTER FOR SOLID STATE ELECTRONICS RESEARCH                                                                                            7
                                                                                      J. P. Bérenger, IEEE Trans. Antennas Propagat., 44(110) 1996.
       ARIZONA INSTITUTE FOR NANOELECTRONICS
Task 0
         Setup
                                                                      Parallel Region

  Initial Scatter

                                      Task 1                 Task N
          BC's                                   BC's             BC's

    calc H field                              calc H field    calc H field

    calc E field                          calc E field        calc E field

                          Communication – plane exchange

                                       Output & Finish
Nanostructures Research Group
CENTER FOR SOLID STATE ELECTRONICS RESEARCH                                         8
ARIZONA INSTITUTE FOR NANOELECTRONICS
y

                                                         x
                                                             2D slice   εr = 12.0
                                                     z
  •  Photonic crystals/PBM shown great deal of
   promise for true integrated optics.
  •  Waveguides with small bends possible
   making compact integrated photonic circuits
   (IPCs) achievable.




                                                             εr = 1.0   a




3D MIT structure
       Nanostructures Research Group
       CENTER FOR SOLID STATE ELECTRONICS RESEARCH                                  9
       ARIZONA INSTITUTE FOR NANOELECTRONICS
Source plane    370 x 520 x 50 grid
                                              Bipolar pulse   ~107 grid points
                                                              Si slab (εr =12.0)
Nanostructures Research Group                                 44 cylinders (εr =6.0)
CENTER FOR SOLID STATE ELECTRONICS RESEARCH                                       10
ARIZONA INSTITUTE FOR NANOELECTRONICS
PML
                               d
                                             Air                                   Top View of Coupled Simulation Domain:
               SiN            GATE             SiN             DRAIN
SOURCE                                                                    SOURCE
         In 0.53 Ga 0.47 As               In 0.53 Ga 0.47 As
         (cap)                            (cap)
                                                                             Excitation
                                                                             Source
                                                                             Plane
            In 0.52 Al0.48 As (barrier)        δ − doping
                                                                                                   d
           (spacer)
PML                                                     InAs
                                                                  PML
                                                                          GATE                                          DRAIN
            In 0.75 Ga 0.25 As (channel)

            In 0.52 Al0.48 As (buffer)
                                                                                                  15 µm
            InP (substrate)
                                                                         SOURCE
                                   GROUND
                                   PLANE




                                                                             SiN                                            SiN




                                                                   S.I. Substrate                                    S.I. Substrate



                                                                                                   15 µm
            Nanostructures Research Group
            CENTER FOR SOLID STATE ELECTRONICS RESEARCH                                                                               11
            ARIZONA INSTITUTE FOR NANOELECTRONICS
PML


                            d             Air                                     Top View of Coupled Simulation Domain:
           SiN             GATE             SiN             DRAIN
SOURCE
      In 0.53 Ga 0.47 As               In 0.53 Ga 0.47 As           SOURCE
      (cap)                            (cap)

                                                                     Excitation
         In 0.52 Al0.48 As (barrier)
                                                                     Source
                                            δ − doping               Plane
PML
        (spacer)
                                                              PML                                 d
                                                     InAs


         In 0.75 Ga 0.25 As (channel)
                                                                    GATE                                               DRAIN
         In 0.52 Al0.48 As (buffer)

         InP (substrate)

                                                                                                 15 µm

 Nanostructures Research Group                                      SOURCE
 CENTER FOR SOLID STATE ELECTRONICS RESEARCH                                                                                   12
 ARIZONA INSTITUTE FOR NANOELECTRONICS
Steps full-wave simulation:
FDTD:
                                                    Initialization
          ∂H
∇ × E = −µ
            ∂t                                       1. Obtain quasi-static dc solution for dc bias point
                                                       (CMC/Poisson) and store E fields and J.
         ∂E 
∇× H = ε     +J                                      2. Initialize H field in FDTD solver using:
          ∂t
                                                                              
                                                                         ∇× E = 0
CMC:                                                                               
                                                                         ∇ × H dc = J dc
                  1    ⎛ N (i , j ,k ) ⎞
J (i, j , k ) =        ⎜ ∑ S n vn ⎟
                ΔxΔyΔz ⎜ n =1          ⎟             3.    Apply excitation source and begin updating
                       ⎝               ⎠                   fields:
                                                                   
                       J tot                                      ∂E 1
                                                                  ∂t ε
                                                                           [
                                                                            ac  tot  dc
                                                                      = ∇× H − J − J     (           )]
                                       FDTD                         
  CMC                                                             ∂H     1   
                                                                    = − ∇× E
                  (Etot , H tot   )                                ∂t    µ
       Nanostructures Research Group
       CENTER FOR SOLID STATE ELECTRONICS RESEARCH                                                     13
       ARIZONA INSTITUTE FOR NANOELECTRONICS
Excitation method:

 • 

Voltage on gate (or drain) in
  perturbed (Gaussian pulse, sinusoid,
  step voltage).
 •  Transverse E-fields (Ex, Ez )
  computed via 2D Poisson solver
  (SOR) and applied to source plane at
  each timestep.





                                                    z

                                                         y


                                                              x





      Nanostructures Research Group
      CENTER FOR SOLID STATE ELECTRONICS RESEARCH                  14
      ARIZONA INSTITUTE FOR NANOELECTRONICS
Nanostructures Research Group
CENTER FOR SOLID STATE ELECTRONICS RESEARCH   15
ARIZONA INSTITUTE FOR NANOELECTRONICS
•  Simulations suggest fT well above 1 THz for 10-50 nm gate pHEMTs
 with source-to-drain spacing of 300 nm.


• Analysis of average carrier velocity under the gate suggests an effective
 gate length that becomes important for small gate length devices.


•  3D domain decomposition/parallel processing required for realistic
 simulation times using coupled simulator.




  Nanostructures Research Group
  CENTER FOR SOLID STATE ELECTRONICS RESEARCH                                 16
  ARIZONA INSTITUTE FOR NANOELECTRONICS
•  3D decomposition works best for
   more general geometries and
   particularly for large problem
 domains ( >108 grid cells)




   Nanostructures Research Group
   CENTER FOR SOLID STATE ELECTRONICS RESEARCH   17
   ARIZONA INSTITUTE FOR NANOELECTRONICS

More Related Content

What's hot

Plastica flessibile
Plastica flessibilePlastica flessibile
Plastica flessibilebuffociccio
 
Characterizing Carbon Nanotubes
Characterizing Carbon NanotubesCharacterizing Carbon Nanotubes
Characterizing Carbon NanotubesHORIBA Particle
 
Session1semiconductors
Session1semiconductorsSession1semiconductors
Session1semiconductorspopet
 
S-functions Paper Presentation: Switching Amplifier Design With S-functions
S-functions Paper Presentation: Switching Amplifier Design With S-functionsS-functions Paper Presentation: Switching Amplifier Design With S-functions
S-functions Paper Presentation: Switching Amplifier Design With S-functionsNMDG NV
 
Q-Learning and Pontryagin's Minimum Principle
Q-Learning and Pontryagin's Minimum PrincipleQ-Learning and Pontryagin's Minimum Principle
Q-Learning and Pontryagin's Minimum PrincipleSean Meyn
 
WE4.L09 - ORTHOGONAL POLARIMETRIC SAR PROCESSOR BASED ON SIGNAL AND INTERFERE...
WE4.L09 - ORTHOGONAL POLARIMETRIC SAR PROCESSOR BASED ON SIGNAL AND INTERFERE...WE4.L09 - ORTHOGONAL POLARIMETRIC SAR PROCESSOR BASED ON SIGNAL AND INTERFERE...
WE4.L09 - ORTHOGONAL POLARIMETRIC SAR PROCESSOR BASED ON SIGNAL AND INTERFERE...grssieee
 
Cosine modulated filter bank transmultiplexer using kaiser window
Cosine modulated filter bank transmultiplexer using kaiser windowCosine modulated filter bank transmultiplexer using kaiser window
Cosine modulated filter bank transmultiplexer using kaiser windowIAEME Publication
 
A presentation by Younes Sina: Backscattering spectrometry
A presentation by Younes Sina: Backscattering spectrometry  A presentation by Younes Sina: Backscattering spectrometry
A presentation by Younes Sina: Backscattering spectrometry Younes Sina
 
Cs with active load
Cs with active loadCs with active load
Cs with active loadsam910
 
OFC/NFOEC: Measurement of Equivalent Zero-Dispersion Wavelength Distribution ...
OFC/NFOEC: Measurement of Equivalent Zero-Dispersion Wavelength Distribution ...OFC/NFOEC: Measurement of Equivalent Zero-Dispersion Wavelength Distribution ...
OFC/NFOEC: Measurement of Equivalent Zero-Dispersion Wavelength Distribution ...ADVA
 
Nityanand gopalika spectrum validation - nde 2003
Nityanand gopalika   spectrum validation - nde 2003Nityanand gopalika   spectrum validation - nde 2003
Nityanand gopalika spectrum validation - nde 2003Nityanand Gopalika
 
ACモーターのスパイスモデルについて
ACモーターのスパイスモデルについてACモーターのスパイスモデルについて
ACモーターのスパイスモデルについてTsuyoshi Horigome
 
3相ACモーターのスパイスモデルの概要
3相ACモーターのスパイスモデルの概要3相ACモーターのスパイスモデルの概要
3相ACモーターのスパイスモデルの概要Tsuyoshi Horigome
 
Coupling Maxwell\'s Equations to Particle-Based Simulators
Coupling Maxwell\'s Equations to Particle-Based SimulatorsCoupling Maxwell\'s Equations to Particle-Based Simulators
Coupling Maxwell\'s Equations to Particle-Based Simulatorsayubimoak
 
TB62206FGのスパイスモデル
TB62206FGのスパイスモデルTB62206FGのスパイスモデル
TB62206FGのスパイスモデルTsuyoshi Horigome
 

What's hot (20)

Plastica flessibile
Plastica flessibilePlastica flessibile
Plastica flessibile
 
Characterizing Carbon Nanotubes
Characterizing Carbon NanotubesCharacterizing Carbon Nanotubes
Characterizing Carbon Nanotubes
 
Session1semiconductors
Session1semiconductorsSession1semiconductors
Session1semiconductors
 
Chapter8
Chapter8Chapter8
Chapter8
 
S-functions Paper Presentation: Switching Amplifier Design With S-functions
S-functions Paper Presentation: Switching Amplifier Design With S-functionsS-functions Paper Presentation: Switching Amplifier Design With S-functions
S-functions Paper Presentation: Switching Amplifier Design With S-functions
 
Q-Learning and Pontryagin's Minimum Principle
Q-Learning and Pontryagin's Minimum PrincipleQ-Learning and Pontryagin's Minimum Principle
Q-Learning and Pontryagin's Minimum Principle
 
WE4.L09 - ORTHOGONAL POLARIMETRIC SAR PROCESSOR BASED ON SIGNAL AND INTERFERE...
WE4.L09 - ORTHOGONAL POLARIMETRIC SAR PROCESSOR BASED ON SIGNAL AND INTERFERE...WE4.L09 - ORTHOGONAL POLARIMETRIC SAR PROCESSOR BASED ON SIGNAL AND INTERFERE...
WE4.L09 - ORTHOGONAL POLARIMETRIC SAR PROCESSOR BASED ON SIGNAL AND INTERFERE...
 
Cosine modulated filter bank transmultiplexer using kaiser window
Cosine modulated filter bank transmultiplexer using kaiser windowCosine modulated filter bank transmultiplexer using kaiser window
Cosine modulated filter bank transmultiplexer using kaiser window
 
A presentation by Younes Sina: Backscattering spectrometry
A presentation by Younes Sina: Backscattering spectrometry  A presentation by Younes Sina: Backscattering spectrometry
A presentation by Younes Sina: Backscattering spectrometry
 
Cs with active load
Cs with active loadCs with active load
Cs with active load
 
OFC/NFOEC: Measurement of Equivalent Zero-Dispersion Wavelength Distribution ...
OFC/NFOEC: Measurement of Equivalent Zero-Dispersion Wavelength Distribution ...OFC/NFOEC: Measurement of Equivalent Zero-Dispersion Wavelength Distribution ...
OFC/NFOEC: Measurement of Equivalent Zero-Dispersion Wavelength Distribution ...
 
Nityanand gopalika spectrum validation - nde 2003
Nityanand gopalika   spectrum validation - nde 2003Nityanand gopalika   spectrum validation - nde 2003
Nityanand gopalika spectrum validation - nde 2003
 
ACモーターのスパイスモデルについて
ACモーターのスパイスモデルについてACモーターのスパイスモデルについて
ACモーターのスパイスモデルについて
 
F0543645
F0543645F0543645
F0543645
 
SPICE Model of TA7291P
SPICE Model of TA7291PSPICE Model of TA7291P
SPICE Model of TA7291P
 
3相ACモーターのスパイスモデルの概要
3相ACモーターのスパイスモデルの概要3相ACモーターのスパイスモデルの概要
3相ACモーターのスパイスモデルの概要
 
Exp5 bani
Exp5 baniExp5 bani
Exp5 bani
 
Interference
InterferenceInterference
Interference
 
Coupling Maxwell\'s Equations to Particle-Based Simulators
Coupling Maxwell\'s Equations to Particle-Based SimulatorsCoupling Maxwell\'s Equations to Particle-Based Simulators
Coupling Maxwell\'s Equations to Particle-Based Simulators
 
TB62206FGのスパイスモデル
TB62206FGのスパイスモデルTB62206FGのスパイスモデル
TB62206FGのスパイスモデル
 

Similar to Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTs

Cu stp 02_solar_resource
Cu stp 02_solar_resourceCu stp 02_solar_resource
Cu stp 02_solar_resourceManuel Silva
 
2010 APS_ Broadband Characteristics of A Dome Dipole Antenna
2010 APS_ Broadband Characteristics of A Dome Dipole Antenna2010 APS_ Broadband Characteristics of A Dome Dipole Antenna
2010 APS_ Broadband Characteristics of A Dome Dipole AntennaJing Zhao
 
Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...
Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...
Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...Sanjay Ram
 
Evidence Of Bimodal Crystallite Size Distribution In Microcrystalline Silico...
Evidence Of Bimodal Crystallite Size Distribution In  Microcrystalline Silico...Evidence Of Bimodal Crystallite Size Distribution In  Microcrystalline Silico...
Evidence Of Bimodal Crystallite Size Distribution In Microcrystalline Silico...Sanjay Ram
 
Spectroscopic ellipsometry
Spectroscopic ellipsometrySpectroscopic ellipsometry
Spectroscopic ellipsometrynirupam12
 
Synchronverters: Inverters that Mimic Synchronous Generators
Synchronverters: Inverters that Mimic Synchronous GeneratorsSynchronverters: Inverters that Mimic Synchronous Generators
Synchronverters: Inverters that Mimic Synchronous GeneratorsQing-Chang Zhong
 
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...IJERD Editor
 
A Comparison Of Vlsi Interconnect Models
A Comparison Of Vlsi Interconnect ModelsA Comparison Of Vlsi Interconnect Models
A Comparison Of Vlsi Interconnect Modelshappybhatia
 
A comparison of VLSI interconnect models
A comparison of VLSI interconnect modelsA comparison of VLSI interconnect models
A comparison of VLSI interconnect modelshappybhatia
 

Similar to Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTs (20)

Cu stp 02_solar_resource
Cu stp 02_solar_resourceCu stp 02_solar_resource
Cu stp 02_solar_resource
 
2010 APS_ Broadband Characteristics of A Dome Dipole Antenna
2010 APS_ Broadband Characteristics of A Dome Dipole Antenna2010 APS_ Broadband Characteristics of A Dome Dipole Antenna
2010 APS_ Broadband Characteristics of A Dome Dipole Antenna
 
Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...
Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...
Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...
 
Eq25879884
Eq25879884Eq25879884
Eq25879884
 
Fundamentos afm.key
Fundamentos afm.keyFundamentos afm.key
Fundamentos afm.key
 
Physics xii
Physics xiiPhysics xii
Physics xii
 
Evidence Of Bimodal Crystallite Size Distribution In Microcrystalline Silico...
Evidence Of Bimodal Crystallite Size Distribution In  Microcrystalline Silico...Evidence Of Bimodal Crystallite Size Distribution In  Microcrystalline Silico...
Evidence Of Bimodal Crystallite Size Distribution In Microcrystalline Silico...
 
Mu2522002204
Mu2522002204Mu2522002204
Mu2522002204
 
ultrasonics
ultrasonicsultrasonics
ultrasonics
 
Exp5 balane
Exp5 balaneExp5 balane
Exp5 balane
 
5
55
5
 
antennas1.pdf
antennas1.pdfantennas1.pdf
antennas1.pdf
 
Spectroscopic ellipsometry
Spectroscopic ellipsometrySpectroscopic ellipsometry
Spectroscopic ellipsometry
 
Synchronverters: Inverters that Mimic Synchronous Generators
Synchronverters: Inverters that Mimic Synchronous GeneratorsSynchronverters: Inverters that Mimic Synchronous Generators
Synchronverters: Inverters that Mimic Synchronous Generators
 
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
 
www.ijerd.com
www.ijerd.comwww.ijerd.com
www.ijerd.com
 
www.ijerd.com
www.ijerd.comwww.ijerd.com
www.ijerd.com
 
Power Divider
Power DividerPower Divider
Power Divider
 
A Comparison Of Vlsi Interconnect Models
A Comparison Of Vlsi Interconnect ModelsA Comparison Of Vlsi Interconnect Models
A Comparison Of Vlsi Interconnect Models
 
A comparison of VLSI interconnect models
A comparison of VLSI interconnect modelsA comparison of VLSI interconnect models
A comparison of VLSI interconnect models
 

Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTs

  • 1. Nanostructures Research Group CENTER FOR SOLID STATE ELECTRONICS RESEARCH 1 ARIZONA INSTITUTE FOR NANOELECTRONICS
  • 2. 2007 F. Schwierz and J.J. Liou, Modern microwave Nanostructures Research Group transistors: theory, design, and performance, John CENTER FOR SOLID STATE ELECTRONICS RESEARCH Wiley & Sons, Inc., New Jersey, 2003. 2 ARIZONA INSTITUTE FOR NANOELECTRONICS
  • 3. 6 4 energ y [eV] •  Hybrid CMC/EMC approach •  M. Saraniti and S.M. Goodnick, IEEE TED, 47, 2 1909 (2000) 0 •  Bandstructure: -2 •  empirical pseudopotential method. -4 EMC •  local, nonlocal, and spinorbit interactions. -6 CMC L Γ X U,K Γ •  Full phonon spectra: •  valence shell model. wave vector Hybrid/MC performance ratio time per iter. [sec/5000 e ] - •  Scattering mechanisms: •  Deformation potential (optical/acoustic) •  Polar optical phonons. •  Impurity scattering (Ridley model). •  Poisson solver: •  Multi-grid Nanostructures Research Group CENTER FOR SOLID STATE ELECTRONICS RESEARCH field [V/m] 3 ARIZONA INSTITUTE FOR NANOELECTRONICS
  • 4. Strained In0.75Ga0.25As Eg = 0.57 eV Nanostructures Research Group CENTER FOR SOLID STATE ELECTRONICS RESEARCH 4 ARIZONA INSTITUTE FOR NANOELECTRONICS
  • 5. LSD = 0.30 µm dg = gate-to-channel separation Vd = 0.8 V Nanostructures Research Group CENTER FOR SOLID STATE ELECTRONICS RESEARCH 5 ARIZONA INSTITUTE FOR NANOELECTRONICS
  • 6. z H G ( 1800 y c n e 1600 u q L = 20 nm G e 1400 r Small signal F fT (GHz) 1200 analysis i (t) f f o L = 35 nm G D t u 1000 G v (t) C S 800 L = 70 nm G J. S. Ayubi-Moak, et al., IEEE TED, v (t) 600 54(9), pp. 2327-38, Sept. 2007. i (t) ΔV 10 -1 10 0 Source-Drain Spacing (µm) 0 T 0 T Lg=50 nm Lg=10 nm fT=1.3 THz fT=2.2 THz Nanostructures Research Group CENTER FOR SOLID STATE ELECTRONICS RESEARCH 6 ARIZONA INSTITUTE FOR NANOELECTRONICS
  • 7. z K.S. Yee, IEEE Trans. Antennas Propagat., 14(302) 1966 “Yee cell” Maxwell’s equations •  Most direct explicit solution of Ey Maxwell’s equations available (i.e.  Ex Ex no matrix inversion required).  Hz ∂H Ez ∇ × E = −µ Ex Ey •  A complete “full-wave” method ∂t Hx without approximation (i.e. no  Hy Hy pre-selection of output modes or  ∂E  Ez Ex solution form necessary.) ∇× H = ε +J Ex Hx Ey Ex y ∂t Hz Ey x PML Absorbing Boundary Conditions • 

“artificial” anisotropic electric/magnetic* conductivities within domain boundaries allow for absorption/attenuation waves. •  Numerical “split-field” approach allowing perfect transmission into absorbing layer (regardless of frequency, polarization, or angle of incidence). Nanostructures Research Group CENTER FOR SOLID STATE ELECTRONICS RESEARCH 7 J. P. Bérenger, IEEE Trans. Antennas Propagat., 44(110) 1996. ARIZONA INSTITUTE FOR NANOELECTRONICS
  • 8. Task 0 Setup Parallel Region Initial Scatter Task 1 Task N BC's BC's BC's calc H field calc H field calc H field calc E field calc E field calc E field Communication – plane exchange Output & Finish Nanostructures Research Group CENTER FOR SOLID STATE ELECTRONICS RESEARCH 8 ARIZONA INSTITUTE FOR NANOELECTRONICS
  • 9. y x 2D slice εr = 12.0 z •  Photonic crystals/PBM shown great deal of promise for true integrated optics. •  Waveguides with small bends possible making compact integrated photonic circuits (IPCs) achievable. εr = 1.0 a 3D MIT structure Nanostructures Research Group CENTER FOR SOLID STATE ELECTRONICS RESEARCH 9 ARIZONA INSTITUTE FOR NANOELECTRONICS
  • 10. Source plane 370 x 520 x 50 grid Bipolar pulse ~107 grid points Si slab (εr =12.0) Nanostructures Research Group 44 cylinders (εr =6.0) CENTER FOR SOLID STATE ELECTRONICS RESEARCH 10 ARIZONA INSTITUTE FOR NANOELECTRONICS
  • 11. PML d Air Top View of Coupled Simulation Domain: SiN GATE SiN DRAIN SOURCE SOURCE In 0.53 Ga 0.47 As In 0.53 Ga 0.47 As (cap) (cap) Excitation Source Plane In 0.52 Al0.48 As (barrier) δ − doping d (spacer) PML InAs PML GATE DRAIN In 0.75 Ga 0.25 As (channel) In 0.52 Al0.48 As (buffer) 15 µm InP (substrate) SOURCE GROUND PLANE SiN SiN S.I. Substrate S.I. Substrate 15 µm Nanostructures Research Group CENTER FOR SOLID STATE ELECTRONICS RESEARCH 11 ARIZONA INSTITUTE FOR NANOELECTRONICS
  • 12. PML d Air Top View of Coupled Simulation Domain: SiN GATE SiN DRAIN SOURCE In 0.53 Ga 0.47 As In 0.53 Ga 0.47 As SOURCE (cap) (cap) Excitation In 0.52 Al0.48 As (barrier) Source δ − doping Plane PML (spacer) PML d InAs In 0.75 Ga 0.25 As (channel) GATE DRAIN In 0.52 Al0.48 As (buffer) InP (substrate) 15 µm Nanostructures Research Group SOURCE CENTER FOR SOLID STATE ELECTRONICS RESEARCH 12 ARIZONA INSTITUTE FOR NANOELECTRONICS
  • 13. Steps full-wave simulation: FDTD:  Initialization  ∂H ∇ × E = −µ ∂t 1. Obtain quasi-static dc solution for dc bias point  (CMC/Poisson) and store E fields and J.  ∂E  ∇× H = ε +J 2. Initialize H field in FDTD solver using: ∂t  ∇× E = 0 CMC:   ∇ × H dc = J dc 1 ⎛ N (i , j ,k ) ⎞ J (i, j , k ) = ⎜ ∑ S n vn ⎟ ΔxΔyΔz ⎜ n =1 ⎟ 3.  Apply excitation source and begin updating ⎝ ⎠ fields:   J tot ∂E 1 ∂t ε [  ac  tot  dc = ∇× H − J − J ( )] FDTD  CMC ∂H 1    = − ∇× E (Etot , H tot ) ∂t µ Nanostructures Research Group CENTER FOR SOLID STATE ELECTRONICS RESEARCH 13 ARIZONA INSTITUTE FOR NANOELECTRONICS
  • 14. Excitation method: • 

Voltage on gate (or drain) in perturbed (Gaussian pulse, sinusoid, step voltage). •  Transverse E-fields (Ex, Ez ) computed via 2D Poisson solver (SOR) and applied to source plane at each timestep.
 z
 y
 x
 Nanostructures Research Group CENTER FOR SOLID STATE ELECTRONICS RESEARCH 14 ARIZONA INSTITUTE FOR NANOELECTRONICS
  • 15. Nanostructures Research Group CENTER FOR SOLID STATE ELECTRONICS RESEARCH 15 ARIZONA INSTITUTE FOR NANOELECTRONICS
  • 16. •  Simulations suggest fT well above 1 THz for 10-50 nm gate pHEMTs with source-to-drain spacing of 300 nm. • Analysis of average carrier velocity under the gate suggests an effective gate length that becomes important for small gate length devices. •  3D domain decomposition/parallel processing required for realistic simulation times using coupled simulator. Nanostructures Research Group CENTER FOR SOLID STATE ELECTRONICS RESEARCH 16 ARIZONA INSTITUTE FOR NANOELECTRONICS
  • 17. •  3D decomposition works best for more general geometries and particularly for large problem domains ( >108 grid cells) Nanostructures Research Group CENTER FOR SOLID STATE ELECTRONICS RESEARCH 17 ARIZONA INSTITUTE FOR NANOELECTRONICS