SlideShare ist ein Scribd-Unternehmen logo
1 von 30
Espectrofotometría
Ultravioleta / Visible
I.Q. Manuel Arturo Caballero Rdz. Campus Monterrey Norte
Universidad del Valle de México
Escuela de Ciencias de la Salud
Químico Farmaco Biotecnólogo
Química Analítica I
Medición de la “luz”
Los métodos de análisis que se basan en la
medición de luz y otras formas de radiación
electromagnética son los que más se
utilizan en la química analítica.
Radiación electromagnética
Es una forma de energía que se trasmite
por el espacio a velocidades muy altas.
A la radiación electromagnética de la región
UV/visible y en ocasiones a la del IR, la
llamamos luz, este término se considera
adecuado solo a la radiación visible.
Radiación electromagnética
Regiones bien conocidas del espectro
electromagnético:
- Rayos gamma (ƴ )
- Rayos X
- Radiación UV
- Visible
- Rayos infrarrojos (IR)
- Microondas
- Radiofrecuencia (RF)
Regiones del Espectro
Electromagnético
Abarca un intervalo tan grande de longitud de onda,
de frecuencia y de energía que necesita una escala
logarítmica.
Radiación electromagnética
La radiación electromagnética puede describirse como una
onda que tiene propiedades de longitud de onda,
frecuencia, velocidad y amplitud.
Las ondas luminosas no necesitan de un medio para
trasmitirse y por tanto se propagan fácilmente en el vacío
(más rápido que el sonido).
El modelo ondulatorio no explica satisfactoriamente los
procesos asociados con la absorción y la emisión de la
energía radiante.
Radiación electromagnética
Para entender la transmisión de energía, es más
conveniente considerar a la radiación
electromagnética como ondas de partículas o
paquetes discretos de energía llamados fotones o
cuantos.
Fotón: Partícula de luz que transporta una
cantidad de energía igual a hv.
Radiación electromagnética
Representación de un haz de radiación de una
sola frecuencia. Se aprecian su campo eléctrico y
en un plano perpendicular a él su campo
magnético.
Radiación electromagnética
En la siguiente figura se muestra únicamente la oscilación
del campo eléctrico. Se aprecian algunas propiedades de
las ondas como amplitud y longitud de onda.
Radiación electromagnética
El período p de la onda
es el tiempo necesario
para el paso de los
sucesivos máximos ó
mínimos por un punto fijo
en el espacio. En cuanto
a la frecuencia Ʋ es el
número de oscilaciones
del vector del campo por
unidad de tiempo y es
igual a 1/ p.
Métodos Ópticos
Métodos que miden la radiación
electromagnética que emana de la materia o
que interacciona con ella.
Los hay:
• Espectroscópicos (fenómeno energético)
• No Espectroscópicos (fenómeno ondulatorio)
Métodos Espectroscópicos
Miden la cantidad de radiación producida o
absorbida por las especies atómicas o
moleculares que se analizan (energía).
Clasificación:
• Absorción
• Emisión
• Dispersión
Métodos Espectroscópicos
• Absorción: La muestra se somete a una radiación y se
determina la fracción de radiación absorbida.
• Emisión: La muestra se expone a una fuente que hace
aumentar su contenido energético en el estado de alta
energía (excitado) y parte de la energía en exceso se
pierde en forma de radiación.
• Dispersión: Se mide la fracción transmitida en todas las
direcciones a partir de la trayectoria inicial.
Métodos No Espectroscópicos
Se basan en interacción entre la radiación
electromagnética y la materia cuando la radiación es
considerada únicamente como una onda.
Refracción
Refractometría
Interferometría
Polarimetría
Nefelometría
TurbidimetríaDispersión
Difracción De Rayos X
Propiedades
ondulatorias
Métodos Ópticos
Métodos Espectroscópicos
Dan lugar a la obtención de un espectro característico de
los constituyentes de la muestra producido como resultado
de la excitación de átomos/moléculas con energía térmica,
radiación electromagnética o choques con partículas
(electrones, iones o neutrones).
Métodos Espectroscópicos
FUENTES DE
EXCITACIÓN
Energía
Térmica
Energía
Electromagnética
Choques con
partículas
Campos
magnéticos
MUESTRA A ANALIZAR
MEDIDA DE FOTONES ELECTRONES IONES
Espectrometría
óptica
Espectrometría
de electrones
Espectrometría
de masas
Tipos de espectroscopia
Intervalo habitual de
longitudes de onda
Tipo de transición cuántica
Emisión de rayos gamma 0.005 – 1.4 Ǻ Nuclear
Absorción y emisión de
rayos X
0.1 – 100 Ǻ Electrones internos
Absorción UV de vacío 10 – 180 nm Electrones de valencia
Absorción y emisión
ultravioleta-visible
180 – 780 nm Electrones de valencia
Absorción infrarroja
Dispersión Raman
0.78- 300 μm Vibración de moléculas
Absorción de microondas 0.75 – 3.75 mm Rotación de moléculas
Resonancia de espín
electrónico
3 cm
Espín de los electrones en un
campo magnético
Resonancia magnética
nuclear
0.6 – 10 m
Espín de los núcleos en un
campo magnético
Métodos Espectroscópicos
Basados en la medida de la radiación electromagnética
METODOS ESPECTROSCOPICOS DE ABSORCION
Absorbancia: Atenuación de los fotones a medida que atraviesan una muestra.
Espectro de absorbancia: Gráfica de la absorbancia de la radiación
electromagnética producida por la muestra en función de la longitud de onda.
Emisión: Liberación de un fotón cuando un analito recupera su estado de menor
energía desde un estado de mayor energía.
METODOS ESPECTROSCOPICOS DE ABSORCION
- La absorción de radiación es un proceso en el que la energía electromagnética
se transfiere a los átomos, iones o moléculas que componen la muestra.
- La absorción provoca que estas partículas pasen de su estado normal a
temperatura ambiente a uno o más estados excitados de energía superior.
Conceptos importantes en la absorción:
Los métodos cuantitativos basados en la absorción requieren dos medidas de
potencia:
* una, antes de que el haz haya pasado a través del medio que contiene la
muestra (P0), y
* otra, después (P).
La transmitancia y la absorbancia son dos términos que se utilizan ampliamente
en la espectrometría de absorción y se relacionan por la razón de P0 y P.
*TRANSMITANCIA *ABSORBANCIA
T = P/P0 A = -log P/P0
%T = (P/ P0)x100 A = ε b C
A = log P0/P
P : intensidad (potencia) de la radiación transmitida
P0 : intensidad (potencia) de la radiación incidente
c : concentración molar de la sustancia absorbente
ε: absortividad molar (M-1cm-1)
b : espesor de la sustancia atravesada
Al contrario que con la transmitancia, la absorbancia de un medio aumenta cuando
la atenuación del haz se hace mayor.
Todo lo anterior se fundamenta en la siguiente ley:
Ley de Beer: Cuando un rayo de luz monocromática pasa a través de un medio
absorbente, su intensidad disminuye exponencialmente a medida que aumenta la
concentración de la sustancia absorbente en el medio, esto es:
log P0 /P = ε ·b·C
ESPECTROFOTOMETRO UV-VISIBLE
ESPECTROFOTOMETRO UV-VISIBLE
Este tipo de análisis fotométrico se realiza sobre numerosas especies químicas
tanto orgánicas como inorgánicas.
Las consideraciones a tener en cuenta antes de su realización son las siguientes:
 Selección de la longitud de onda: se necesita una longitud de onda que
produzca un pico de absorción para obtener así la máxima sensibilidad.
Esta longitud de onda dependerá de las condiciones de la muestra (pH,
temperatura y concentración).
 Limpieza y manipulación de las cubetas (celdas): se requieren celdas
calibradas y de buena calidad, para que la desviación del haz de luz y la
absorbancia se realice de forma correcta. Hay que evitar ralladuras, huellas
dactilares, etc.
 Determinación de la relación entre absorbancia y concentración: mediante la
toma de alícuotas de una sustancia patrón que vayan aumentando de
concentración progresivamente y midiendo su absorbancia a una misma
longitud de onda.
Componentes de un espectrofotómetro:
Los instrumentos incluyen cinco componentes:
- Fuente estable de energía radiante
- Recipiente transparente para contener la muestra.
- Dispositivo que aísla una región restringida del espectro para la medida.
- Detector de radiación que convierte la energía radiante en una señal
utilizable (generalmente eléctrica).
- Sistema de procesamiento y lectura de la señal (la señal detectada se
visualiza en escala de medida, pantalla, medidor digital, registrador).
Fuente
Monocromado
r Celdas Detector
 Proceso de lectura de muestras:
- Seleccionar la longitud de onda.
- Se lee un blanco contenido en una celda calibrada, esto se realiza para
establecer el cero de absorbancia.
- La muestra se introduce en la cubeta calibrada.
- El aparato procede a la lectura de la absorbancia.
- La potencia de la fuente y del detector deben ser constantes durante el
periodo de la valoración.
Las cubetas o celdas se
construyen de materiales
transparentes a las radiaciones
UV/Vis tales como el cuarzo,
vidrio o plástico.
Cuando se trabaja con
longitudes de onda inferiores a
300 nm, las cubetas han de
ser de cuarzo o silicio fundido,
ya que las demás ejercen una
absorción importante.
Las cubetas de mayor calidad
se fabrican con una forma
rectangular, de forma que la
radiación golpee la célula
formando un ángulo de 90°
para que las pérdidas por
reflexión sean mínimas.
Los tubos de ensayo cilíndricos
llegan a usarse en ocasiones en
instrumentos de haz simple.
TIPOS DE APARATOS
Espectrofotometría
Espectrofotometría

Weitere ähnliche Inhalte

Was ist angesagt? (20)

Medios de cultivo
Medios de cultivoMedios de cultivo
Medios de cultivo
 
Calibraciones, formas de calculo y materiales
Calibraciones, formas de calculo y materialesCalibraciones, formas de calculo y materiales
Calibraciones, formas de calculo y materiales
 
Agar manitol salado
Agar manitol saladoAgar manitol salado
Agar manitol salado
 
Espectrofotometro
EspectrofotometroEspectrofotometro
Espectrofotometro
 
Potenciometria
PotenciometriaPotenciometria
Potenciometria
 
2.5.morfologia colonial
2.5.morfologia colonial2.5.morfologia colonial
2.5.morfologia colonial
 
Métodos de siembra y aislamiento
Métodos de siembra y aislamientoMétodos de siembra y aislamiento
Métodos de siembra y aislamiento
 
Ley De Beer
Ley De BeerLey De Beer
Ley De Beer
 
Nefelometría
NefelometríaNefelometría
Nefelometría
 
1. técnica de asepsia y otros
1. técnica de asepsia  y   otros1. técnica de asepsia  y   otros
1. técnica de asepsia y otros
 
Pruebas bioquímicas
Pruebas bioquímicasPruebas bioquímicas
Pruebas bioquímicas
 
Medios de cultivo
Medios de cultivoMedios de cultivo
Medios de cultivo
 
Practica longitu-de-onda
Practica longitu-de-ondaPractica longitu-de-onda
Practica longitu-de-onda
 
FOTOCOLORIMETRIA
FOTOCOLORIMETRIAFOTOCOLORIMETRIA
FOTOCOLORIMETRIA
 
Radioinmunoensayo, ELISA y Western Blot
Radioinmunoensayo, ELISA y Western BlotRadioinmunoensayo, ELISA y Western Blot
Radioinmunoensayo, ELISA y Western Blot
 
Turbidimetría y nefelometría
Turbidimetría y nefelometríaTurbidimetría y nefelometría
Turbidimetría y nefelometría
 
Medios de cultivo
Medios de cultivoMedios de cultivo
Medios de cultivo
 
Prueba mio
Prueba mioPrueba mio
Prueba mio
 
Laboratorio no. 3 técnicas de inoculación
Laboratorio no. 3  técnicas de inoculaciónLaboratorio no. 3  técnicas de inoculación
Laboratorio no. 3 técnicas de inoculación
 
Clasificación de los medios de cultivo (bacteriología)
Clasificación de los medios de cultivo (bacteriología)Clasificación de los medios de cultivo (bacteriología)
Clasificación de los medios de cultivo (bacteriología)
 

Ähnlich wie Espectrofotometría

espectrofotometra-131223011255-phpapp01.pptx
espectrofotometra-131223011255-phpapp01.pptxespectrofotometra-131223011255-phpapp01.pptx
espectrofotometra-131223011255-phpapp01.pptxEderCuentasFigueroa
 
Clase Ai Semana 2
Clase Ai Semana 2Clase Ai Semana 2
Clase Ai Semana 2luis diaz
 
Espectrofotometro
EspectrofotometroEspectrofotometro
EspectrofotometroSANDRA G R
 
Metodos espectroscopicos
Metodos espectroscopicosMetodos espectroscopicos
Metodos espectroscopicosDerly Morales
 
Ultravioleta visible analitica (1)
Ultravioleta visible analitica (1)Ultravioleta visible analitica (1)
Ultravioleta visible analitica (1)mairapa95
 
1ra Parte Espestroscoopia Principios de medición
1ra Parte Espestroscoopia Principios de medición1ra Parte Espestroscoopia Principios de medición
1ra Parte Espestroscoopia Principios de mediciónSistemadeEstudiosMed
 
Presentación espectroscopía 2
Presentación  espectroscopía 2Presentación  espectroscopía 2
Presentación espectroscopía 2maricelalemus
 
Química Analítica Instrumental.pdf
Química Analítica Instrumental.pdfQuímica Analítica Instrumental.pdf
Química Analítica Instrumental.pdfJuanEstebanCampilloZ1
 
Analisis cuantitativo por absorción de la radiación 2
Analisis cuantitativo por       absorción de la radiación 2Analisis cuantitativo por       absorción de la radiación 2
Analisis cuantitativo por absorción de la radiación 2Facundo Carbajal
 
Teoria espectrometria
Teoria espectrometriaTeoria espectrometria
Teoria espectrometriaEdgar Loor
 
tema2absorcionatomica.pdf
tema2absorcionatomica.pdftema2absorcionatomica.pdf
tema2absorcionatomica.pdfCarlaPerez95
 
Espectrofotometria-ppt
Espectrofotometria-pptEspectrofotometria-ppt
Espectrofotometria-pptluchito38951
 
cl01principios fisicos radiacion.pptx
cl01principios fisicos radiacion.pptxcl01principios fisicos radiacion.pptx
cl01principios fisicos radiacion.pptxAndyCceresH
 

Ähnlich wie Espectrofotometría (20)

CLASE 9. ESPECTROFOTOMETRIA.pptx
CLASE 9. ESPECTROFOTOMETRIA.pptxCLASE 9. ESPECTROFOTOMETRIA.pptx
CLASE 9. ESPECTROFOTOMETRIA.pptx
 
espectrofotometra-131223011255-phpapp01.pptx
espectrofotometra-131223011255-phpapp01.pptxespectrofotometra-131223011255-phpapp01.pptx
espectrofotometra-131223011255-phpapp01.pptx
 
Espectroscopia optica
Espectroscopia opticaEspectroscopia optica
Espectroscopia optica
 
ESPECTOFOTOMETRO (1).pptx
ESPECTOFOTOMETRO (1).pptxESPECTOFOTOMETRO (1).pptx
ESPECTOFOTOMETRO (1).pptx
 
Clase Ai Semana 2
Clase Ai Semana 2Clase Ai Semana 2
Clase Ai Semana 2
 
Espectrofotometria_UV_visible_exposicion.pptx
Espectrofotometria_UV_visible_exposicion.pptxEspectrofotometria_UV_visible_exposicion.pptx
Espectrofotometria_UV_visible_exposicion.pptx
 
Espectrofotometro
EspectrofotometroEspectrofotometro
Espectrofotometro
 
Metodos espectroscopicos
Metodos espectroscopicosMetodos espectroscopicos
Metodos espectroscopicos
 
Ultravioleta visible analitica (1)
Ultravioleta visible analitica (1)Ultravioleta visible analitica (1)
Ultravioleta visible analitica (1)
 
1ra Parte Espestroscoopia Principios de medición
1ra Parte Espestroscoopia Principios de medición1ra Parte Espestroscoopia Principios de medición
1ra Parte Espestroscoopia Principios de medición
 
Instrumental
InstrumentalInstrumental
Instrumental
 
Presentación espectroscopía 2
Presentación  espectroscopía 2Presentación  espectroscopía 2
Presentación espectroscopía 2
 
Equipos de Laboratorio Clínico
Equipos de Laboratorio ClínicoEquipos de Laboratorio Clínico
Equipos de Laboratorio Clínico
 
Química Analítica Instrumental.pdf
Química Analítica Instrumental.pdfQuímica Analítica Instrumental.pdf
Química Analítica Instrumental.pdf
 
Analisis cuantitativo por absorción de la radiación 2
Analisis cuantitativo por       absorción de la radiación 2Analisis cuantitativo por       absorción de la radiación 2
Analisis cuantitativo por absorción de la radiación 2
 
Absorción atómica
Absorción atómicaAbsorción atómica
Absorción atómica
 
Teoria espectrometria
Teoria espectrometriaTeoria espectrometria
Teoria espectrometria
 
tema2absorcionatomica.pdf
tema2absorcionatomica.pdftema2absorcionatomica.pdf
tema2absorcionatomica.pdf
 
Espectrofotometria-ppt
Espectrofotometria-pptEspectrofotometria-ppt
Espectrofotometria-ppt
 
cl01principios fisicos radiacion.pptx
cl01principios fisicos radiacion.pptxcl01principios fisicos radiacion.pptx
cl01principios fisicos radiacion.pptx
 

Mehr von Arturo Caballero

Muestreo principios básicos
Muestreo principios básicosMuestreo principios básicos
Muestreo principios básicosArturo Caballero
 
Introducción a la Química Analítica
Introducción a la Química AnalíticaIntroducción a la Química Analítica
Introducción a la Química AnalíticaArturo Caballero
 
Validación de métodos analíticos
Validación de métodos analíticosValidación de métodos analíticos
Validación de métodos analíticosArturo Caballero
 
Tratamiento de la muestra: Extracciones
Tratamiento de la muestra: ExtraccionesTratamiento de la muestra: Extracciones
Tratamiento de la muestra: ExtraccionesArturo Caballero
 
Equilibrio de Fases: Líquido-Vapor
Equilibrio de Fases: Líquido-VaporEquilibrio de Fases: Líquido-Vapor
Equilibrio de Fases: Líquido-VaporArturo Caballero
 
Relación Kp y temperatura - Ecuacion Van't Hoff
Relación Kp y temperatura - Ecuacion Van't HoffRelación Kp y temperatura - Ecuacion Van't Hoff
Relación Kp y temperatura - Ecuacion Van't HoffArturo Caballero
 

Mehr von Arturo Caballero (10)

Muestreo principios básicos
Muestreo principios básicosMuestreo principios básicos
Muestreo principios básicos
 
Introducción a la Química Analítica
Introducción a la Química AnalíticaIntroducción a la Química Analítica
Introducción a la Química Analítica
 
Validación de métodos analíticos
Validación de métodos analíticosValidación de métodos analíticos
Validación de métodos analíticos
 
Tratamiento de la muestra: Extracciones
Tratamiento de la muestra: ExtraccionesTratamiento de la muestra: Extracciones
Tratamiento de la muestra: Extracciones
 
Equilibrio de Fases: Líquido-Vapor
Equilibrio de Fases: Líquido-VaporEquilibrio de Fases: Líquido-Vapor
Equilibrio de Fases: Líquido-Vapor
 
Relación Kp y temperatura - Ecuacion Van't Hoff
Relación Kp y temperatura - Ecuacion Van't HoffRelación Kp y temperatura - Ecuacion Van't Hoff
Relación Kp y temperatura - Ecuacion Van't Hoff
 
Equilibrio y solubilidad
Equilibrio y solubilidadEquilibrio y solubilidad
Equilibrio y solubilidad
 
Titulaciones acido base
Titulaciones acido baseTitulaciones acido base
Titulaciones acido base
 
Volumetría
VolumetríaVolumetría
Volumetría
 
Gravimetría
GravimetríaGravimetría
Gravimetría
 

Kürzlich hochgeladen

Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfManuel Molina
 
DETALLES EN EL DISEÑO DE INTERIOR
DETALLES EN EL DISEÑO DE INTERIORDETALLES EN EL DISEÑO DE INTERIOR
DETALLES EN EL DISEÑO DE INTERIORGonella
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdfOswaldoGonzalezCruz
 
Monitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptx
Monitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptxMonitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptx
Monitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptxJUANCARLOSAPARCANARE
 
PROGRAMACION ANUAL DE MATEMATICA 2024.docx
PROGRAMACION ANUAL DE MATEMATICA 2024.docxPROGRAMACION ANUAL DE MATEMATICA 2024.docx
PROGRAMACION ANUAL DE MATEMATICA 2024.docxEribertoPerezRamirez
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialpatriciaines1993
 
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALVOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALEDUCCUniversidadCatl
 
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...YobanaZevallosSantil1
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressionsConsueloSantana3
 
Manejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsaManejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsaLuis Minaya
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxYeseniaRivera50
 
PPT_Formación integral y educación CRESE (1).pdf
PPT_Formación integral y educación CRESE (1).pdfPPT_Formación integral y educación CRESE (1).pdf
PPT_Formación integral y educación CRESE (1).pdfEDILIAGAMBOA
 
Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)
Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)
Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)veganet
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDUgustavorojas179704
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024IES Vicent Andres Estelles
 
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfTema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfDaniel Ángel Corral de la Mata, Ph.D.
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfAlfredoRamirez953210
 
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfFisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfcoloncopias5
 

Kürzlich hochgeladen (20)

Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
 
DETALLES EN EL DISEÑO DE INTERIOR
DETALLES EN EL DISEÑO DE INTERIORDETALLES EN EL DISEÑO DE INTERIOR
DETALLES EN EL DISEÑO DE INTERIOR
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
 
Monitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptx
Monitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptxMonitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptx
Monitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptx
 
PROGRAMACION ANUAL DE MATEMATICA 2024.docx
PROGRAMACION ANUAL DE MATEMATICA 2024.docxPROGRAMACION ANUAL DE MATEMATICA 2024.docx
PROGRAMACION ANUAL DE MATEMATICA 2024.docx
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundial
 
VISITA À PROTEÇÃO CIVIL _
VISITA À PROTEÇÃO CIVIL                  _VISITA À PROTEÇÃO CIVIL                  _
VISITA À PROTEÇÃO CIVIL _
 
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALVOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
 
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressions
 
Manejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsaManejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsa
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
 
PPT_Formación integral y educación CRESE (1).pdf
PPT_Formación integral y educación CRESE (1).pdfPPT_Formación integral y educación CRESE (1).pdf
PPT_Formación integral y educación CRESE (1).pdf
 
Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)
Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)
Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024
 
Aedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptxAedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptx
 
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfTema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
 
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfFisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
 

Espectrofotometría

  • 1. Espectrofotometría Ultravioleta / Visible I.Q. Manuel Arturo Caballero Rdz. Campus Monterrey Norte Universidad del Valle de México Escuela de Ciencias de la Salud Químico Farmaco Biotecnólogo Química Analítica I
  • 2. Medición de la “luz” Los métodos de análisis que se basan en la medición de luz y otras formas de radiación electromagnética son los que más se utilizan en la química analítica.
  • 3. Radiación electromagnética Es una forma de energía que se trasmite por el espacio a velocidades muy altas. A la radiación electromagnética de la región UV/visible y en ocasiones a la del IR, la llamamos luz, este término se considera adecuado solo a la radiación visible.
  • 4. Radiación electromagnética Regiones bien conocidas del espectro electromagnético: - Rayos gamma (ƴ ) - Rayos X - Radiación UV - Visible - Rayos infrarrojos (IR) - Microondas - Radiofrecuencia (RF)
  • 5. Regiones del Espectro Electromagnético Abarca un intervalo tan grande de longitud de onda, de frecuencia y de energía que necesita una escala logarítmica.
  • 6. Radiación electromagnética La radiación electromagnética puede describirse como una onda que tiene propiedades de longitud de onda, frecuencia, velocidad y amplitud. Las ondas luminosas no necesitan de un medio para trasmitirse y por tanto se propagan fácilmente en el vacío (más rápido que el sonido). El modelo ondulatorio no explica satisfactoriamente los procesos asociados con la absorción y la emisión de la energía radiante.
  • 7. Radiación electromagnética Para entender la transmisión de energía, es más conveniente considerar a la radiación electromagnética como ondas de partículas o paquetes discretos de energía llamados fotones o cuantos. Fotón: Partícula de luz que transporta una cantidad de energía igual a hv.
  • 8. Radiación electromagnética Representación de un haz de radiación de una sola frecuencia. Se aprecian su campo eléctrico y en un plano perpendicular a él su campo magnético.
  • 9. Radiación electromagnética En la siguiente figura se muestra únicamente la oscilación del campo eléctrico. Se aprecian algunas propiedades de las ondas como amplitud y longitud de onda.
  • 10. Radiación electromagnética El período p de la onda es el tiempo necesario para el paso de los sucesivos máximos ó mínimos por un punto fijo en el espacio. En cuanto a la frecuencia Ʋ es el número de oscilaciones del vector del campo por unidad de tiempo y es igual a 1/ p.
  • 11. Métodos Ópticos Métodos que miden la radiación electromagnética que emana de la materia o que interacciona con ella. Los hay: • Espectroscópicos (fenómeno energético) • No Espectroscópicos (fenómeno ondulatorio)
  • 12. Métodos Espectroscópicos Miden la cantidad de radiación producida o absorbida por las especies atómicas o moleculares que se analizan (energía). Clasificación: • Absorción • Emisión • Dispersión
  • 13. Métodos Espectroscópicos • Absorción: La muestra se somete a una radiación y se determina la fracción de radiación absorbida. • Emisión: La muestra se expone a una fuente que hace aumentar su contenido energético en el estado de alta energía (excitado) y parte de la energía en exceso se pierde en forma de radiación. • Dispersión: Se mide la fracción transmitida en todas las direcciones a partir de la trayectoria inicial.
  • 14. Métodos No Espectroscópicos Se basan en interacción entre la radiación electromagnética y la materia cuando la radiación es considerada únicamente como una onda. Refracción Refractometría Interferometría Polarimetría Nefelometría TurbidimetríaDispersión Difracción De Rayos X Propiedades ondulatorias
  • 16. Métodos Espectroscópicos Dan lugar a la obtención de un espectro característico de los constituyentes de la muestra producido como resultado de la excitación de átomos/moléculas con energía térmica, radiación electromagnética o choques con partículas (electrones, iones o neutrones).
  • 17. Métodos Espectroscópicos FUENTES DE EXCITACIÓN Energía Térmica Energía Electromagnética Choques con partículas Campos magnéticos MUESTRA A ANALIZAR MEDIDA DE FOTONES ELECTRONES IONES Espectrometría óptica Espectrometría de electrones Espectrometría de masas
  • 18. Tipos de espectroscopia Intervalo habitual de longitudes de onda Tipo de transición cuántica Emisión de rayos gamma 0.005 – 1.4 Ǻ Nuclear Absorción y emisión de rayos X 0.1 – 100 Ǻ Electrones internos Absorción UV de vacío 10 – 180 nm Electrones de valencia Absorción y emisión ultravioleta-visible 180 – 780 nm Electrones de valencia Absorción infrarroja Dispersión Raman 0.78- 300 μm Vibración de moléculas Absorción de microondas 0.75 – 3.75 mm Rotación de moléculas Resonancia de espín electrónico 3 cm Espín de los electrones en un campo magnético Resonancia magnética nuclear 0.6 – 10 m Espín de los núcleos en un campo magnético Métodos Espectroscópicos Basados en la medida de la radiación electromagnética
  • 19.
  • 20. METODOS ESPECTROSCOPICOS DE ABSORCION Absorbancia: Atenuación de los fotones a medida que atraviesan una muestra. Espectro de absorbancia: Gráfica de la absorbancia de la radiación electromagnética producida por la muestra en función de la longitud de onda. Emisión: Liberación de un fotón cuando un analito recupera su estado de menor energía desde un estado de mayor energía.
  • 21. METODOS ESPECTROSCOPICOS DE ABSORCION - La absorción de radiación es un proceso en el que la energía electromagnética se transfiere a los átomos, iones o moléculas que componen la muestra. - La absorción provoca que estas partículas pasen de su estado normal a temperatura ambiente a uno o más estados excitados de energía superior. Conceptos importantes en la absorción: Los métodos cuantitativos basados en la absorción requieren dos medidas de potencia: * una, antes de que el haz haya pasado a través del medio que contiene la muestra (P0), y * otra, después (P). La transmitancia y la absorbancia son dos términos que se utilizan ampliamente en la espectrometría de absorción y se relacionan por la razón de P0 y P. *TRANSMITANCIA *ABSORBANCIA T = P/P0 A = -log P/P0 %T = (P/ P0)x100 A = ε b C A = log P0/P
  • 22. P : intensidad (potencia) de la radiación transmitida P0 : intensidad (potencia) de la radiación incidente c : concentración molar de la sustancia absorbente ε: absortividad molar (M-1cm-1) b : espesor de la sustancia atravesada Al contrario que con la transmitancia, la absorbancia de un medio aumenta cuando la atenuación del haz se hace mayor. Todo lo anterior se fundamenta en la siguiente ley: Ley de Beer: Cuando un rayo de luz monocromática pasa a través de un medio absorbente, su intensidad disminuye exponencialmente a medida que aumenta la concentración de la sustancia absorbente en el medio, esto es: log P0 /P = ε ·b·C
  • 24. ESPECTROFOTOMETRO UV-VISIBLE Este tipo de análisis fotométrico se realiza sobre numerosas especies químicas tanto orgánicas como inorgánicas. Las consideraciones a tener en cuenta antes de su realización son las siguientes:  Selección de la longitud de onda: se necesita una longitud de onda que produzca un pico de absorción para obtener así la máxima sensibilidad. Esta longitud de onda dependerá de las condiciones de la muestra (pH, temperatura y concentración).  Limpieza y manipulación de las cubetas (celdas): se requieren celdas calibradas y de buena calidad, para que la desviación del haz de luz y la absorbancia se realice de forma correcta. Hay que evitar ralladuras, huellas dactilares, etc.  Determinación de la relación entre absorbancia y concentración: mediante la toma de alícuotas de una sustancia patrón que vayan aumentando de concentración progresivamente y midiendo su absorbancia a una misma longitud de onda.
  • 25. Componentes de un espectrofotómetro: Los instrumentos incluyen cinco componentes: - Fuente estable de energía radiante - Recipiente transparente para contener la muestra. - Dispositivo que aísla una región restringida del espectro para la medida. - Detector de radiación que convierte la energía radiante en una señal utilizable (generalmente eléctrica). - Sistema de procesamiento y lectura de la señal (la señal detectada se visualiza en escala de medida, pantalla, medidor digital, registrador). Fuente Monocromado r Celdas Detector
  • 26.  Proceso de lectura de muestras: - Seleccionar la longitud de onda. - Se lee un blanco contenido en una celda calibrada, esto se realiza para establecer el cero de absorbancia. - La muestra se introduce en la cubeta calibrada. - El aparato procede a la lectura de la absorbancia. - La potencia de la fuente y del detector deben ser constantes durante el periodo de la valoración.
  • 27. Las cubetas o celdas se construyen de materiales transparentes a las radiaciones UV/Vis tales como el cuarzo, vidrio o plástico. Cuando se trabaja con longitudes de onda inferiores a 300 nm, las cubetas han de ser de cuarzo o silicio fundido, ya que las demás ejercen una absorción importante. Las cubetas de mayor calidad se fabrican con una forma rectangular, de forma que la radiación golpee la célula formando un ángulo de 90° para que las pérdidas por reflexión sean mínimas. Los tubos de ensayo cilíndricos llegan a usarse en ocasiones en instrumentos de haz simple.