SlideShare ist ein Scribd-Unternehmen logo
1 von 26
www.archaeolandscapes.e
ArchaeoLandscapes Europe
Roman-Germanic Commission of the German Archaeological Institute
You Ain’t Seen Nothing Yet
Geophysical Surveying Methods as a
Tool for Cultural Heritage Protection
World Universities Congress
Çanakkale, 23 October 2010
Dr. Axel G. Posluschny
Roman-Germanic Commission
of the German Archaeological Institute
Palmengartenstr. 10-12
D-60325 Frankfurt
posluschny@rgk.dainst.de
www.archaeolandscapes.eu
ArchaeoLandscapes Europe
Roman-Germanic Commission of the German Archaeological Institute
Content
• Introduction
• Problems of invisible features in Cultural Heritage
Management
• Traditional field walking
• What is geophysical surveying?
• Making the invisible visible
• Other methods of modern surveying
• Resume
www.archaeolandscapes.eu
ArchaeoLandscapes Europe
Roman-Germanic Commission of the German Archaeological Institute
Worldwide research projects of the German Archaeological Institute (DAI)
www.archaeolandscapes.eu
ArchaeoLandscapes Europe
Roman-Germanic Commission of the German Archaeological Institute
www.archaeolandscapes.eu
ArchaeoLandscapes Europe
Roman-Germanic Commission of the German Archaeological Institute
Features in Cultural Heritage Management
Zur Anzeige wird der QuickTime™
Dekompressor „“
benötigt.
Zur Anzeige wird der QuickTime™
Dekompressor „“
benötigt.
http://www.ohiotraveler.http://www.ohiotraveler.com/images/serpentcom/images/serpent%20mound.jpg%20mound.jpg
http://www.online-reisefuehrer.com/bilder-reisen/tuerkei/ephesos.jpghttp://www.online-reisefuehrer.com/bilder-reisen/tuerkei/ephesos.jpg
http://www.zum.de/Faecher/G/BW/Landeskunde/w3/provence/vienne/augustus1.jpghttp://www.zum.de/Faecher/G/BW/Landeskunde/w3/provence/vienne/augustus1.jpg
http://www.aegypten-spezialist.de/uploads/pics/gizeh-cheops-sphinx.jpghttp://www.aegypten-spezialist.de/uploads/pics/gizeh-cheops-sphinx.jpg
www.archaeolandscapes.eu
ArchaeoLandscapes Europe
Roman-Germanic Commission of the German Archaeological Institute
Invisible Features in Cultural Heritage
Management
www.archaeolandscapes.eu
ArchaeoLandscapes Europe
Roman-Germanic Commission of the German Archaeological Institute
Invisible Features in Cultural Heritage
Management
www.archaeolandscapes.eu
ArchaeoLandscapes Europe
Roman-Germanic Commission of the German Archaeological Institute
Invisible features in Cultural Heritage
Management
Braasch/Christlein1982
www.archaeolandscapes.eu
ArchaeoLandscapes Europe
Roman-Germanic Commission of the German Archaeological Institute
Traditional fieldwalking
Germania 71, 1993Ber. RGK 72, 1993
www.archaeolandscapes.eu
ArchaeoLandscapes Europe
Roman-Germanic Commission of the German Archaeological Institute
Geophysics and excavation
Ber. RGK 72, 1993
www.archaeolandscapes.eu
ArchaeoLandscapes Europe
Roman-Germanic Commission of the German Archaeological Institute
What is geophysical surveying?
• Geophysical surveying methods comprise a variety of different
techniques:
– Magnetometer survey
– Earth resistance survey (geoelectric survey)
– Ground-penetrating radar (GPR)
• They are:
– non-destructive
– machine-based
– in most cases less expensive than excavations
– can cover much larger areas than field walking, trial trenching or even
large scale excavations
• Their disadvantage is the expert knowledge one has to have in many
cases to be able to handle the data derived from various measurements
www.archaeolandscapes.eu
ArchaeoLandscapes Europe
Roman-Germanic Commission of the German Archaeological Institute
What is magnetometric surveying?
• Is used to rapidly generate data of
large scale areas, showing a wide
variety of anomalies that have been
cause by different kinds of human
activities
• It uses one or more sensors to
measure the gradient of the magnetic
field i.e. the difference between the
natural magnetic field of the Earth
and the structures that have been
cause by human impact
• Every kind of material has its own
magnetic property, they all result in a
different disturbance of the Earth’s
magnetic field
• Other than earth resistance surveys,
magnetometers do not usually detect
walls or other stone structures (if not
burned) directly D. Peters
English Heritage 2008
www.archaeolandscapes.eu
ArchaeoLandscapes Europe
Roman-Germanic Commission of the German Archaeological Institute
Examples of magnetometric surveys
Batora et al. in press
www.archaeolandscapes.eu
ArchaeoLandscapes Europe
Roman-Germanic Commission of the German Archaeological Institute
Examples of magnetometric surveys
Batora et al. in press
www.archaeolandscapes.eu
ArchaeoLandscapes Europe
Roman-Germanic Commission of the German Archaeological Institute
What is earth resistance surveying?
• Earth resistance survey (geoelectric
survey) is measuring the local
electrical resistance by inserting two
or more sensors into the ground,
which produce electrical circuits
• Features like ditches often contain
more moisture than the surrounding
soil and therefore have less resistivity
while wall structures, foundings and
so on usually have a higher resistivity
• The main disadvantage of a
resistance survey is the limitation
caused by the need for the sensors to
make direct electrical contact by the
insertion of electrodes. As a result
resistance survey is mainly used for
smaller areas
English Heritage 2008
English Heritage 2008
www.archaeolandscapes.eu
ArchaeoLandscapes Europe
Roman-Germanic Commission of the German Archaeological Institute
What is ground-penetrating radar (GPR)?
• Ground-penetrating radar (GPR) is
often used because of its abilities to
measure not only planar features but
also to estimate the depth of features. A
radar signal or electromagnetic impulse
is send into the ground, which causes
different kinds of reflections (travel time
of signals), depending on the depth and
the structure of the soil and of buried
features
• The resulting data represents a profile
information, that can also be
interpolated into a planview map by
taking into account the results of
several, densely measured profiles
• The main disadvantage of GPR is its
dependency on ideal soil conditions.
Another problem is the low speed of
measurements, especially when used
for larger areas
English Heritage 2008
Kvamme et al. 2006
www.archaeolandscapes.eu
ArchaeoLandscapes Europe
Roman-Germanic Commission of the German Archaeological Institute
Other methods of surveying
soil marks
crop marks
Braasch 2010Landesamt 1997
www.archaeolandscapes.eu
ArchaeoLandscapes Europe
Roman-Germanic Commission of the German Archaeological Institute
Other methods of surveying
www.archaeolandscapes.eu
ArchaeoLandscapes Europe
Roman-Germanic Commission of the German Archaeological Institute
Other methods of surveying
• Satellite images
• increasing resolution
• large scale availability
Cowley et al. 2010
www.archaeolandscapes.eu
ArchaeoLandscapes Europe
Roman-Germanic Commission of the German Archaeological Institute
Other methods of surveying
• LiDAR => Light Detection And
Ranging = Airborne Laserscan
(ALS)
• A high-resolution digital surface
model (DSM) can be derived and
also a „vegetation-free“ digital
elevation model (DEM)
• Many national cartography
agencies produce these scans
which can also be used for
archaeological purposes
English Heritage 2010
www.archaeolandscapes.eu
ArchaeoLandscapes Europe
Roman-Germanic Commission of the German Archaeological Institute
Other methods of surveying
www.archaeolandscapes.eu
ArchaeoLandscapes Europe
Roman-Germanic Commission of the German Archaeological Institute
Other methods of surveying
www.archaeolandscapes.eu
ArchaeoLandscapes Europe
Roman-Germanic Commission of the German Archaeological Institute
Resume
• One can only protect what he knows - so large scale surveying to discover
hidden subsoil archaeological features is not only a technique for
archaeological research but also for Cultural Heritage Management
• The large variety of geophysical and other modern surveying methods have
the great advantage of being non-destructive, they can amend each other and
they deliver a very precise and nearly complete picture of what is hidden to
the human eye
• Data from geophysical surveys are an ideal basis for decision making in
urban land-use planning, it can be used to assess the threads from erosion,
looting and plundering or from ploughing and it can be used for monitoring
archaeological sites
• During building and construction planning the areas of archaeological interest
can be taken into account, building sites can be replaced or at least the
amount of pre-building research activities to excavate archaeological features
can much better be assessed. So not only archaeology or Cultural Heritage
Management benefits from a large scale geophysical survey but also
investors and stakeholders from construction companies
www.archaeolandscapes.eu
ArchaeoLandscapes Europe
Roman-Germanic Commission of the German Archaeological Institute
Resume
• The ideal way of dealing with surveying is of course a combination
of several techniques: Geomagnetic surveying to detect ditch and
pit structures, geoelectrical survey to find wall structures and
ground penetrating radar to know more about the depth of the
hidden features - and maybe also some field walking or trial
trenching to know more about the dating and the condition of the
features
• Speaking about the role and the responsibilities of universities in
future, I think that it should be their aim to provide expert
knowledge and to teach students modern surveying methods - not
necessarily enabling them to conduct these investigations
themselves but to be able at least to work with data derived from
such techniques and to be able to critically interpret these data and
to be able to judge the interpretations of others
www.archaeolandscapes.eu
ArchaeoLandscapes Europe
Roman-Germanic Commission of the German Archaeological Institute
References
Bátora, J., Eitel, B., Hecht, S., Koch, A., Rassmann, K., Schukraft, G. and Winkelmann, K., in
press. Fidvár bei Vráble (Kr. Vráble, Südwestslowakei). Untersuchungen auf einem
äneolithisch-frühbronzezeitlichen Siedlungshügel. Germania (Zabern Verlag, Mainz).
Bofinger, J., 2007. Flugzeug, Laser, Sonde, Spaten – Fernerkundung und archäologische
Feldforschung am Beispiel der frühkeltischen Fürstensitze / Aircraft, Laser, Sensor, Spade –
Remote Sensing and Archaeological Fieldwork Using the Example of Early Celtic Princely
Seats (Esslingen)
Cowley, D. C., Standring, R. A., Abicht, M. J. (eds.), 2010. Landscapes through the Lens.
Aerial Photographs and Historic Environment. Occasional Publication of the Aerial
Archaeology Research Group No. 2 (Oxford, Oakville)
English Heritage 2008. http://www.english-heritage.org.uk/publications/geophysical-survey-
in-archaeological-field-evaluation/geophysics-guidelines.pdf
English Heritage 2010. http://www.english-heritage.org.uk/publications/light-fantastic/light-
fantastic.pdf
Kvamme, K., Ernenwein, E., Hargrave, M., Sever, Th., Harmon, D., Limp, F., Howell, B.,
Koons, M. and Tullis, J., 2006. New Approaches to the Use and Integration of Multi-Sensor
Remote Sensing for Historic Resource Identification and Evaluation. SERDP Project SI-
1263 (Fayetteville). http://www.serdp.org/Research/ upload/SI-1263-FR.pdf
Landesamt für Denkmalpflege Hessen (ed.), 1997. Zeitspuren. Luftbildarchäologie in Hessen
(Wiesbaden)
www.archaeolandscapes.eu
ArchaeoLandscapes Europe
Roman-Germanic Commission of the German Archaeological Institute
Thank you very much
for your attention
posluschny@rgk.dainst.de

Weitere ähnliche Inhalte

Ähnlich wie You Ain’t Seen Nothing Yet - Geophysical Surveying Methods as a Tool for Cultural Heritage Protection

05 daguerrobase
05 daguerrobase05 daguerrobase
05 daguerrobaseEuropeana
 
Presentation - IAI Autumn 2010
Presentation - IAI Autumn 2010Presentation - IAI Autumn 2010
Presentation - IAI Autumn 2010John Tierney
 
Geofysische prospectie, is de Nederlandse archeologie of bodem hier wel gesch...
Geofysische prospectie, is de Nederlandse archeologie of bodem hier wel gesch...Geofysische prospectie, is de Nederlandse archeologie of bodem hier wel gesch...
Geofysische prospectie, is de Nederlandse archeologie of bodem hier wel gesch...Onroerend Erfgoed
 
Geospatial Research At UCL
Geospatial Research At UCLGeospatial Research At UCL
Geospatial Research At UCLJeremy Morley
 
Inrap and geophysics: towards a sustainable approach door Hulin G., Direction...
Inrap and geophysics: towards a sustainable approach door Hulin G., Direction...Inrap and geophysics: towards a sustainable approach door Hulin G., Direction...
Inrap and geophysics: towards a sustainable approach door Hulin G., Direction...Onroerend Erfgoed
 
Archaeological Survey Techniques
Archaeological Survey TechniquesArchaeological Survey Techniques
Archaeological Survey TechniquesAlex Thompson
 
The mapping of areas where no archaeological heritage is expected in flanders
The mapping of areas where no archaeological heritage is expected in flandersThe mapping of areas where no archaeological heritage is expected in flanders
The mapping of areas where no archaeological heritage is expected in flandersOnroerend Erfgoed
 
Archaeological Impact Assessment VS. Rescue Archaeology: Brebemi Project (Italy)
Archaeological Impact Assessment VS. Rescue Archaeology: Brebemi Project (Italy)Archaeological Impact Assessment VS. Rescue Archaeology: Brebemi Project (Italy)
Archaeological Impact Assessment VS. Rescue Archaeology: Brebemi Project (Italy)Jessica Ogden
 
Archeology Anthropology project.pptx
Archeology Anthropology project.pptxArcheology Anthropology project.pptx
Archeology Anthropology project.pptxUneezaRajpoot
 
01 bräuer presentation washington 2016
01 bräuer presentation washington 201601 bräuer presentation washington 2016
01 bräuer presentation washington 2016leann_mays
 
Lampeter sliseshare
Lampeter sliseshareLampeter sliseshare
Lampeter sliseshareSimon Mahony
 
Tiago Biller_CV_201612_Geo_de
Tiago Biller_CV_201612_Geo_deTiago Biller_CV_201612_Geo_de
Tiago Biller_CV_201612_Geo_deTiago Biller
 
isprsarchives-XL-5-W2-675-2013
isprsarchives-XL-5-W2-675-2013isprsarchives-XL-5-W2-675-2013
isprsarchives-XL-5-W2-675-2013Paula Baptista
 
Europa Nostra Bedestan - Presentation by UNDP Cyprus Programme Manager Tizian...
Europa Nostra Bedestan - Presentation by UNDP Cyprus Programme Manager Tizian...Europa Nostra Bedestan - Presentation by UNDP Cyprus Programme Manager Tizian...
Europa Nostra Bedestan - Presentation by UNDP Cyprus Programme Manager Tizian...Undp Pff
 
Sustainable virtual reconstruction for the Keys2Rome exhibitions
Sustainable virtual reconstruction for the Keys2Rome exhibitionsSustainable virtual reconstruction for the Keys2Rome exhibitions
Sustainable virtual reconstruction for the Keys2Rome exhibitionsDaniel Pletinckx
 

Ähnlich wie You Ain’t Seen Nothing Yet - Geophysical Surveying Methods as a Tool for Cultural Heritage Protection (20)

Revealing the Past
Revealing the PastRevealing the Past
Revealing the Past
 
05 daguerrobase
05 daguerrobase05 daguerrobase
05 daguerrobase
 
ArcLand Network
ArcLand NetworkArcLand Network
ArcLand Network
 
Presentation - IAI Autumn 2010
Presentation - IAI Autumn 2010Presentation - IAI Autumn 2010
Presentation - IAI Autumn 2010
 
Geofysische prospectie, is de Nederlandse archeologie of bodem hier wel gesch...
Geofysische prospectie, is de Nederlandse archeologie of bodem hier wel gesch...Geofysische prospectie, is de Nederlandse archeologie of bodem hier wel gesch...
Geofysische prospectie, is de Nederlandse archeologie of bodem hier wel gesch...
 
Geospatial Research At UCL
Geospatial Research At UCLGeospatial Research At UCL
Geospatial Research At UCL
 
Bernard Tshcumi
Bernard TshcumiBernard Tshcumi
Bernard Tshcumi
 
Inrap and geophysics: towards a sustainable approach door Hulin G., Direction...
Inrap and geophysics: towards a sustainable approach door Hulin G., Direction...Inrap and geophysics: towards a sustainable approach door Hulin G., Direction...
Inrap and geophysics: towards a sustainable approach door Hulin G., Direction...
 
Archaeological Survey Techniques
Archaeological Survey TechniquesArchaeological Survey Techniques
Archaeological Survey Techniques
 
The mapping of areas where no archaeological heritage is expected in flanders
The mapping of areas where no archaeological heritage is expected in flandersThe mapping of areas where no archaeological heritage is expected in flanders
The mapping of areas where no archaeological heritage is expected in flanders
 
Hinterland, Influence, Environs
Hinterland, Influence, EnvironsHinterland, Influence, Environs
Hinterland, Influence, Environs
 
Archaeological Impact Assessment VS. Rescue Archaeology: Brebemi Project (Italy)
Archaeological Impact Assessment VS. Rescue Archaeology: Brebemi Project (Italy)Archaeological Impact Assessment VS. Rescue Archaeology: Brebemi Project (Italy)
Archaeological Impact Assessment VS. Rescue Archaeology: Brebemi Project (Italy)
 
Katzenbach - Le_TheHague-2016.pdf
Katzenbach - Le_TheHague-2016.pdfKatzenbach - Le_TheHague-2016.pdf
Katzenbach - Le_TheHague-2016.pdf
 
Archeology Anthropology project.pptx
Archeology Anthropology project.pptxArcheology Anthropology project.pptx
Archeology Anthropology project.pptx
 
01 bräuer presentation washington 2016
01 bräuer presentation washington 201601 bräuer presentation washington 2016
01 bräuer presentation washington 2016
 
Lampeter sliseshare
Lampeter sliseshareLampeter sliseshare
Lampeter sliseshare
 
Tiago Biller_CV_201612_Geo_de
Tiago Biller_CV_201612_Geo_deTiago Biller_CV_201612_Geo_de
Tiago Biller_CV_201612_Geo_de
 
isprsarchives-XL-5-W2-675-2013
isprsarchives-XL-5-W2-675-2013isprsarchives-XL-5-W2-675-2013
isprsarchives-XL-5-W2-675-2013
 
Europa Nostra Bedestan - Presentation by UNDP Cyprus Programme Manager Tizian...
Europa Nostra Bedestan - Presentation by UNDP Cyprus Programme Manager Tizian...Europa Nostra Bedestan - Presentation by UNDP Cyprus Programme Manager Tizian...
Europa Nostra Bedestan - Presentation by UNDP Cyprus Programme Manager Tizian...
 
Sustainable virtual reconstruction for the Keys2Rome exhibitions
Sustainable virtual reconstruction for the Keys2Rome exhibitionsSustainable virtual reconstruction for the Keys2Rome exhibitions
Sustainable virtual reconstruction for the Keys2Rome exhibitions
 

Kürzlich hochgeladen

Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jisc
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxDr. Ravikiran H M Gowda
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxPooja Bhuva
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024Elizabeth Walsh
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxJisc
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxPooja Bhuva
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...Amil baba
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsKarakKing
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...Nguyen Thanh Tu Collection
 

Kürzlich hochgeladen (20)

Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 

You Ain’t Seen Nothing Yet - Geophysical Surveying Methods as a Tool for Cultural Heritage Protection

  • 1. www.archaeolandscapes.e ArchaeoLandscapes Europe Roman-Germanic Commission of the German Archaeological Institute You Ain’t Seen Nothing Yet Geophysical Surveying Methods as a Tool for Cultural Heritage Protection World Universities Congress Çanakkale, 23 October 2010 Dr. Axel G. Posluschny Roman-Germanic Commission of the German Archaeological Institute Palmengartenstr. 10-12 D-60325 Frankfurt posluschny@rgk.dainst.de
  • 2. www.archaeolandscapes.eu ArchaeoLandscapes Europe Roman-Germanic Commission of the German Archaeological Institute Content • Introduction • Problems of invisible features in Cultural Heritage Management • Traditional field walking • What is geophysical surveying? • Making the invisible visible • Other methods of modern surveying • Resume
  • 3. www.archaeolandscapes.eu ArchaeoLandscapes Europe Roman-Germanic Commission of the German Archaeological Institute Worldwide research projects of the German Archaeological Institute (DAI)
  • 5. www.archaeolandscapes.eu ArchaeoLandscapes Europe Roman-Germanic Commission of the German Archaeological Institute Features in Cultural Heritage Management Zur Anzeige wird der QuickTime™ Dekompressor „“ benötigt. Zur Anzeige wird der QuickTime™ Dekompressor „“ benötigt. http://www.ohiotraveler.http://www.ohiotraveler.com/images/serpentcom/images/serpent%20mound.jpg%20mound.jpg http://www.online-reisefuehrer.com/bilder-reisen/tuerkei/ephesos.jpghttp://www.online-reisefuehrer.com/bilder-reisen/tuerkei/ephesos.jpg http://www.zum.de/Faecher/G/BW/Landeskunde/w3/provence/vienne/augustus1.jpghttp://www.zum.de/Faecher/G/BW/Landeskunde/w3/provence/vienne/augustus1.jpg http://www.aegypten-spezialist.de/uploads/pics/gizeh-cheops-sphinx.jpghttp://www.aegypten-spezialist.de/uploads/pics/gizeh-cheops-sphinx.jpg
  • 6. www.archaeolandscapes.eu ArchaeoLandscapes Europe Roman-Germanic Commission of the German Archaeological Institute Invisible Features in Cultural Heritage Management
  • 7. www.archaeolandscapes.eu ArchaeoLandscapes Europe Roman-Germanic Commission of the German Archaeological Institute Invisible Features in Cultural Heritage Management
  • 8. www.archaeolandscapes.eu ArchaeoLandscapes Europe Roman-Germanic Commission of the German Archaeological Institute Invisible features in Cultural Heritage Management Braasch/Christlein1982
  • 9. www.archaeolandscapes.eu ArchaeoLandscapes Europe Roman-Germanic Commission of the German Archaeological Institute Traditional fieldwalking Germania 71, 1993Ber. RGK 72, 1993
  • 10. www.archaeolandscapes.eu ArchaeoLandscapes Europe Roman-Germanic Commission of the German Archaeological Institute Geophysics and excavation Ber. RGK 72, 1993
  • 11. www.archaeolandscapes.eu ArchaeoLandscapes Europe Roman-Germanic Commission of the German Archaeological Institute What is geophysical surveying? • Geophysical surveying methods comprise a variety of different techniques: – Magnetometer survey – Earth resistance survey (geoelectric survey) – Ground-penetrating radar (GPR) • They are: – non-destructive – machine-based – in most cases less expensive than excavations – can cover much larger areas than field walking, trial trenching or even large scale excavations • Their disadvantage is the expert knowledge one has to have in many cases to be able to handle the data derived from various measurements
  • 12. www.archaeolandscapes.eu ArchaeoLandscapes Europe Roman-Germanic Commission of the German Archaeological Institute What is magnetometric surveying? • Is used to rapidly generate data of large scale areas, showing a wide variety of anomalies that have been cause by different kinds of human activities • It uses one or more sensors to measure the gradient of the magnetic field i.e. the difference between the natural magnetic field of the Earth and the structures that have been cause by human impact • Every kind of material has its own magnetic property, they all result in a different disturbance of the Earth’s magnetic field • Other than earth resistance surveys, magnetometers do not usually detect walls or other stone structures (if not burned) directly D. Peters English Heritage 2008
  • 13. www.archaeolandscapes.eu ArchaeoLandscapes Europe Roman-Germanic Commission of the German Archaeological Institute Examples of magnetometric surveys Batora et al. in press
  • 14. www.archaeolandscapes.eu ArchaeoLandscapes Europe Roman-Germanic Commission of the German Archaeological Institute Examples of magnetometric surveys Batora et al. in press
  • 15. www.archaeolandscapes.eu ArchaeoLandscapes Europe Roman-Germanic Commission of the German Archaeological Institute What is earth resistance surveying? • Earth resistance survey (geoelectric survey) is measuring the local electrical resistance by inserting two or more sensors into the ground, which produce electrical circuits • Features like ditches often contain more moisture than the surrounding soil and therefore have less resistivity while wall structures, foundings and so on usually have a higher resistivity • The main disadvantage of a resistance survey is the limitation caused by the need for the sensors to make direct electrical contact by the insertion of electrodes. As a result resistance survey is mainly used for smaller areas English Heritage 2008 English Heritage 2008
  • 16. www.archaeolandscapes.eu ArchaeoLandscapes Europe Roman-Germanic Commission of the German Archaeological Institute What is ground-penetrating radar (GPR)? • Ground-penetrating radar (GPR) is often used because of its abilities to measure not only planar features but also to estimate the depth of features. A radar signal or electromagnetic impulse is send into the ground, which causes different kinds of reflections (travel time of signals), depending on the depth and the structure of the soil and of buried features • The resulting data represents a profile information, that can also be interpolated into a planview map by taking into account the results of several, densely measured profiles • The main disadvantage of GPR is its dependency on ideal soil conditions. Another problem is the low speed of measurements, especially when used for larger areas English Heritage 2008 Kvamme et al. 2006
  • 17. www.archaeolandscapes.eu ArchaeoLandscapes Europe Roman-Germanic Commission of the German Archaeological Institute Other methods of surveying soil marks crop marks Braasch 2010Landesamt 1997
  • 18. www.archaeolandscapes.eu ArchaeoLandscapes Europe Roman-Germanic Commission of the German Archaeological Institute Other methods of surveying
  • 19. www.archaeolandscapes.eu ArchaeoLandscapes Europe Roman-Germanic Commission of the German Archaeological Institute Other methods of surveying • Satellite images • increasing resolution • large scale availability Cowley et al. 2010
  • 20. www.archaeolandscapes.eu ArchaeoLandscapes Europe Roman-Germanic Commission of the German Archaeological Institute Other methods of surveying • LiDAR => Light Detection And Ranging = Airborne Laserscan (ALS) • A high-resolution digital surface model (DSM) can be derived and also a „vegetation-free“ digital elevation model (DEM) • Many national cartography agencies produce these scans which can also be used for archaeological purposes English Heritage 2010
  • 21. www.archaeolandscapes.eu ArchaeoLandscapes Europe Roman-Germanic Commission of the German Archaeological Institute Other methods of surveying
  • 22. www.archaeolandscapes.eu ArchaeoLandscapes Europe Roman-Germanic Commission of the German Archaeological Institute Other methods of surveying
  • 23. www.archaeolandscapes.eu ArchaeoLandscapes Europe Roman-Germanic Commission of the German Archaeological Institute Resume • One can only protect what he knows - so large scale surveying to discover hidden subsoil archaeological features is not only a technique for archaeological research but also for Cultural Heritage Management • The large variety of geophysical and other modern surveying methods have the great advantage of being non-destructive, they can amend each other and they deliver a very precise and nearly complete picture of what is hidden to the human eye • Data from geophysical surveys are an ideal basis for decision making in urban land-use planning, it can be used to assess the threads from erosion, looting and plundering or from ploughing and it can be used for monitoring archaeological sites • During building and construction planning the areas of archaeological interest can be taken into account, building sites can be replaced or at least the amount of pre-building research activities to excavate archaeological features can much better be assessed. So not only archaeology or Cultural Heritage Management benefits from a large scale geophysical survey but also investors and stakeholders from construction companies
  • 24. www.archaeolandscapes.eu ArchaeoLandscapes Europe Roman-Germanic Commission of the German Archaeological Institute Resume • The ideal way of dealing with surveying is of course a combination of several techniques: Geomagnetic surveying to detect ditch and pit structures, geoelectrical survey to find wall structures and ground penetrating radar to know more about the depth of the hidden features - and maybe also some field walking or trial trenching to know more about the dating and the condition of the features • Speaking about the role and the responsibilities of universities in future, I think that it should be their aim to provide expert knowledge and to teach students modern surveying methods - not necessarily enabling them to conduct these investigations themselves but to be able at least to work with data derived from such techniques and to be able to critically interpret these data and to be able to judge the interpretations of others
  • 25. www.archaeolandscapes.eu ArchaeoLandscapes Europe Roman-Germanic Commission of the German Archaeological Institute References Bátora, J., Eitel, B., Hecht, S., Koch, A., Rassmann, K., Schukraft, G. and Winkelmann, K., in press. Fidvár bei Vráble (Kr. Vráble, Südwestslowakei). Untersuchungen auf einem äneolithisch-frühbronzezeitlichen Siedlungshügel. Germania (Zabern Verlag, Mainz). Bofinger, J., 2007. Flugzeug, Laser, Sonde, Spaten – Fernerkundung und archäologische Feldforschung am Beispiel der frühkeltischen Fürstensitze / Aircraft, Laser, Sensor, Spade – Remote Sensing and Archaeological Fieldwork Using the Example of Early Celtic Princely Seats (Esslingen) Cowley, D. C., Standring, R. A., Abicht, M. J. (eds.), 2010. Landscapes through the Lens. Aerial Photographs and Historic Environment. Occasional Publication of the Aerial Archaeology Research Group No. 2 (Oxford, Oakville) English Heritage 2008. http://www.english-heritage.org.uk/publications/geophysical-survey- in-archaeological-field-evaluation/geophysics-guidelines.pdf English Heritage 2010. http://www.english-heritage.org.uk/publications/light-fantastic/light- fantastic.pdf Kvamme, K., Ernenwein, E., Hargrave, M., Sever, Th., Harmon, D., Limp, F., Howell, B., Koons, M. and Tullis, J., 2006. New Approaches to the Use and Integration of Multi-Sensor Remote Sensing for Historic Resource Identification and Evaluation. SERDP Project SI- 1263 (Fayetteville). http://www.serdp.org/Research/ upload/SI-1263-FR.pdf Landesamt für Denkmalpflege Hessen (ed.), 1997. Zeitspuren. Luftbildarchäologie in Hessen (Wiesbaden)
  • 26. www.archaeolandscapes.eu ArchaeoLandscapes Europe Roman-Germanic Commission of the German Archaeological Institute Thank you very much for your attention posluschny@rgk.dainst.de

Hinweis der Redaktion

  1. Dear colleagues, During the next 15 minutes or so I am going to talk about ways of finding archaeological features in order to be able to protect them for cultural heritage purposes. Those of you that are archaeologists or are working in Cultural Heritage Management might already be aware of the methods I am talking about - you can lean back and enjoy the pictures. Those of you that are not archaeologists and who just came in because of the nice rock song title of my talk, will hopefully find the things that I am talking about interesting and might learn about archaeology, that is not so visible. Those of you that do work or will work in construction or land planning or in related fields might find some of he information useful for their further work and when collaborating with archaeologists or cultural heritage managers.
  2. I will start with a short introduction to the general problem of invisible features in archaeology. One method, or a couple of methods to overcome this problem is the use of geophysical survey, which I will explain quite briefly. Some examples from geophysical surveys will then show you, how helpful geophysics can be and in the end I would like to show you some more, also technically advanced methods for archaeological surveys.
  3. Before I start with the main part of my paper let me please very short explain what my research background is. I am working for the Roman-Germanic Commission of the German Archaeological Institute. While the DAI is operating worldwide - which you can see on this already outdated map - the Roman-Germanic Commission is concentrating on the archaeology of Europe north of the Alps and on the Balkan. We have a strong focus on landscape archaeology as well as on the use of modern surveying and research methods. wech?
  4. I am responsible in the Roman-Germanic Commission for the management and coordination of a EU funded networking project, called ArchaeoLandscapes Europe. It deals with all aspects of modern archaeological surveying such as aerial archaeology, remote sensing, LiDAR scanning and last but not least with geophysical surveys - which will be my main topic of today’s talk. As a landscape archaeologist with a strong focus on spatial techniques and on computer based methods, I am speaker of the German branch of the international society “COMPUTER APPLICATIONS AND QUANTITATIVE METHODS IN ARCHAEOLOGY” (CAA) - this might explain my point of view to a certain extent. wech?
  5. When we talk about archaeology or Cultural Heritage in general we usually think of well known objects like the Egyptian pyramids, a Roman temple, the library of Ephesos or large effigy mounds in the United States . They are so well known mainly because they are large and of course also because they are visible! But that of course is just a very small portion of what ancient cultures have left as traces of their former activities. Many structures and features in the soil are often not known at all – which makes it difficult to protect them as defined by the European Convention of the Protection of Archaeological Heritage.
  6. Features like pits, ditches and wells might be covered by soil and are invisible to the human eye. Even when excavated most of them do not look very spectacular.
  7. Yet they can contain such precious finds like this gilded horse head from a life size bronze statue of a Roman Emperor which was found in a well near Frankfurt, 11 meters below the surface - an object which is quite singular in Europe.
  8. What is left from many features, buildings, ditches and so on after a couple of hundreds or thousand years remains invisible at least when seen through the human eye. But still there are traces in the ground, traces that differ from their surrounding soil in their colour, texture and other physical and chemical properties.
  9. Some of these features can be discovered when parts of it - like stones from a wall or sherds from within a pit - are uncovered by ploughing. That is the basis for field walking surveys which usually is a good instrument to detect unknown archaeological sites. But it is not suitable in all cases as the following example shows: In 1982 this large ditch structure was discovered from an aerial archaeologist in northern Bavaria, Germany (KLICK) . No archaeological finds were known from that site so far though some field walking has been carried out before.The ditch is part of a Roman military camp from which you can see a small part on the excavation plan on the right hand side. It shows a large amount and a great variety of features, not only from the camp but also from neolithic burials and from an Iron Age settlement. All structures - besides the ditch - couldn’t be seen on the aerial photograph, but they were clearly visible in a magnetometric survey, which has been carried out a short time after the detection of the ditch from the air.
  10. If those investigations wouldn’t have been conducted, the whole area would have been overbuild after a few years and because no relevant archaeological traces were known before, the archaeology underneath the soil would have been destroyed if none of the building workers would have reported archaeological features during the construction of houses and streets. What we know now about the internal structure of the site, the area it covered and the features that were in it, is not only the result of an archaeological excavation but mainly coming from the geophysical survey. It was carried out in all rectangular areas that are marked on the left hand side plan while excavations (KLICK) were only undertaken in the areas marked here with the blue circles.
  11. Geophysical surveying methods comprise a variety of different techniques which I will introduce in a minute. They all have in common, that they are non-destructive, they are machine-based, in most cases they are less expensive than excavations and they can cover much larger areas than field walking or trial trenches or even large scale excavations. Their disadvantage is the expert knowledge one has to have in many cases to be able to handle the data derived from various measurements.
  12. I am not going into the technical details now, first of all because I am not a technician and second because of the limited time I have. Magnetometric survey is used to rapidly generate data of large scale areas, showing a wide variety of anomalies that have been caused by different kinds of human activities. It uses one or more sensors to measure the gradient of the magnetic field i.e. the difference between the natural magnetic field of the Earth and the structures that have been caused by human impact. Because every kind of material has its own magnetic property (even those kinds of material that we think of as “non-magnetic”), they all result in a different disturbance of the Earth’s magnetic field, showing the strongest impacts from metals like iron and steel or from burned soils and bricks. Also some ferrophagous bacteria produce a certain amount of magnetite when living in certain soils that are enriched by humous remains, caused by past human activities. Other than earth resistance surveys, magnetometers do not usually directly detect walls or other stone structures (if not burned).
  13. It is possible to measure an area of up to 2 hectares per day with a handheld array with 5 sensors; the average coverage is – depending on the terrain – 1 hectare per day. Modern systems with 16 sensors on a car-driven device can measure up to 30 hectares per day, the average still being 5 to 10 hectares. Systems like that have been used to investigate this lareg-scale area of the multi-period site of Vr abl e in Slovakia. over 100 hectare?
  14. The picture becomes complete when we add the results of traditional field-walking which delivers dated material. In green you can see the remains of an early neolithic settlement (ditches, houses), in red the early bronze age ditch, pit and house structures and in blue the remains from roman military camps. Large scale investigations like this can only be carried out with a highly sophisticated system, they produce results in a much shorter time than excavations, still being very precise in the location of features and therefore being a fantastic basis for further research and also for the management of large sites in order to protect them.
  15. Earth resistance survey (geoelectric survey) is measuring the local electrical resistance by inserting two or more sensors into the ground, which produce electrical circuits. The resulting data can be used to map (archaeological) features of higher or lower resistivity. Features like ditches often contain more moisture than the surrounding soil and therefore have less resistivity while wall structures, foundings and so on usually have a higher resistivity. The main disadvantage of a resistance survey is the limitation caused by the need for the sensors to make direct electrical contact by the insertion of electrodes. As a result resistance survey is mainly used for smaller areas, even if recent developments (like mounting the electrodes on a frame for a faster, automated data measurement) increased the possible speed of a survey.
  16. Ground-penetrating radar (GPR) is often used because of its abilities to measure not only planar features but also to estimate the depth of features. A radar signal or electromagnetic impulse is send into the ground, which causes different kinds of reflections (travel time of signals), depending on the depth and the structure of the soil and of buried features The resulting data represents a profile information, that can also be interpolated into a planview map by taking into account the results of several, densely measured profiles The main disadvantage of GPR measurements is its dependency on ideal soil conditions. Fine-grained soil sediments like clays or silt cause losses of signal strength whilst rocky or very heterogeneous sediments cause a scattered GPR signal. Another problem is the low speed of measurements, especially when used for larger areas
  17. I have already shown you an example for an aerial photography which is another advanced surveying technique used for the detection and the monitoring of both visible and hidden archaeological features as well as for the management of landscape changes and their impact on archaeological sites. XXX ZUSTANDEKOMMEN DER MAKRS ERKLÄREN? XXX erwähnen, dass es auch noch snow marks und water marks gibt
  18. The result and the success of an aerial survey is highly depending not only on the skills and the experience of the aerial archaeologist but also on weather conditions, general soil conditions and others. With a little bit of luck these conditions have been suitable when high resolution pictures from satellites have been taken, so tools like GoogleEarth also offer the opportunity to detect archaeological sites from your armchair - a good technique for those that otherwise would suffer from air sickness. This example shows a quite impressing earthwork in Romania with a multiple ditch system.
  19. Satellite images have been a source for archaeological and landscape feature detection since they are more or less easily available for research purposes. The development of the satellite cameras is rapidly increasing. While 10 years ago they produced images with a 1 m ground resolution the newer satellites like GeoEye have a resolution even below this 1m threshold. The large scale availability makes them a perfect instrument to not only detect new sites but especially to monitor changes of know sites (like the one shown here on the right from Sudan) and also to assess landscape features and to classify landscape for archaeological and other purposes.
  20. One very new technique is the use of Airborne Laser Scans, also known as LiDAR scans. This is not just a visibility technique, it is also a method to measure landscape. While flying over a landscape a plane or a helicopter can take pictures of the landscape but it can also make radar based measurements of the terrain. The big advantage when using LiDAR scans is the possibility to distinguish between different kinds of signals or signal echoes and thereby simply calculating a terrain even when it is covered with trees and bushes with a very high resolution.
  21. This example shows a digital elevation model, based on the LiDAR scan of an Early Iron Age hillfort near Frankfurt, Germany. You can clearly see shallow remains of a former rampart and ditch system (marked here with the arrows) that are not visible from the ground.
  22. With the help of these data we were also able to detect grave mounds in the forest that where unknown to the archaeological heritage management authorities before.
  23. One can only protect what he knows - so large scale surveying to discover hidden subsoil archaeological features is not only a technique for archaeological research but also for Cultural Heritage Management. The large variety of geophysical and other modern surveying methods have the great advantage of being non-destructive, they can they can amend each other and they deliver a very precise and nearly complete picture of what is hidden to the human eye. Data from geophysical surveys are an ideal basis for decision making in urban land-use planning, it can be used to assess the threads from erosion, looting and plundering or from ploughing and it can be used for monitoring archaeological sites. During building and construction planning the areas of archaeological interest can be taken into account, building sites can be replaced or at least the amount of pre-building research activities to excavate archaeological features can much better be assessed. So not only archaeology or Cultural Heritage Management benefits from a large scale geophysical survey but also investors and stakeholders from construction companies.
  24. The ideal way of dealing with surveying is of course a combination of several techniques: Geomagnetic surveying to detect ditch and pit structures, geoelectrical survey to find wall structures and ground penetrating radar to know more about the depth of the hidden features - and maybe also some field walking or trial trenching to know more about the dating and the condition of the features. Speaking about the role and the responsibilities of universities in future, I think that it should be their aim to provide expert knowledge and to teach students modern surveying methods - not necessarily enabling them to conduct these investigations themselves but to be able at least to work with data derived from such techniques and to be able to critically interpret these data and to be able to judge the interpretations of others
  25. I hope I could show you some interesting aspects of modern archaeological survey techniques and their use for Cultural Heritage Management and am looking forward for your questions.