SlideShare una empresa de Scribd logo
1 de 6
Descargar para leer sin conexión
investigación educativa educación química  •  abril de 2008	 108
INVESTIGACIÓN EDUCATIVA
Estudio exploratorio sobre la
comprensión de los conceptos de
evaporación, condensación y presión
de vapor en estudiantes universitarios
abstract  (Exploratory study on students’ conceptions of evaporation, condensation and vapor pressure)
This study investigates students’ conceptions of evaporation, condensation and vapor pressure that are Physical Chemistry
basic concepts. Chemical Engineer and Industrial Chemistry major students were questioned on three tasks that had been
designed around these topics. Qualitative analysis of student responses according to Robson’s method showed a range of
conceptions in each area, including some misconceptions. The implication in the teaching-learning process is that observation
of physical chemistry phenomena is not enough. On the contrary, it is necessary to give time to students for reflection and
to debate their hypothesis and conceptions.
palabras clave  Conceptos fisicoquímicos, evaporación, condensación, presión de vapor
Adolfo Obaya V., Yolanda Marina Vargas y Graciela Delgadillo G.1
Introducción
La Ingeniería Química y la Química Industrial son profesio-
nes en las cuales los fundamentos de ciencia son aplicados al
diseño de procesos químicos. Durante sus estudios los estu-
diantes de estas carreras aprenden las bases de Matemáticas,
Química y Física para aplicarlas en un amplio intervalo de
conceptos de Ingeniería.
En este trabajo se revisan conceptos fisicoquímicos básicos
como evaporación, condensación y presión de vapor, los cua-
les son aplicados en Ingeniería Química.
Hay evidencia (Cros, Chastrette y Fayol, 1998) que los es-
tudiantes a menudo se esfuerzan por aprender Química y
muchos de ellos no comprenden correctamente los conceptos
fundamentales teniendo serias implicaciones en la enseñanza
aprendizaje de tópicos de mayor nivel (Nakhleh, 1992).
Resultados de trabajos de evaluación de conocimientos de
Química desde la enseñanza secundaria hasta el ingreso al
posgrado (Chamizo y Sosa, 2002; Chamizo, Nieto y Sosa,
2004) indican que los alumnos llegan a las carreras de Quími-
ca sin dominar los conocimientos básicos de la disciplina y
que, luego, la enseñanza de los conocimientos intermedios
que se intenta proporcionar a nivel licenciatura no logra afian-
zar los conocimientos básicos ni, en consecuencia, incorporar
los intermedios.
Una particular dificultad que los conceptos de Química
presentan está en la necesidad de comprenderlos de forma
macroscópica y microscópica y su relación (Stavy, 1990; Ta-
ber, 2001; Talanquer, 2006; Stains y Talanquer, 2007) siendo
esto pertinente para el tópico de cambio de fase, cuando co-
existen líquido y vapor.
Por ejemplo, para el concepto evaporación se requiere un
alto grado de abstracción para su comprensión (Russell, Har-
len y Watt, 1989; Bar y Galili, 1994; Johnson, 1998a; Tytler y
Peterson, 2000; Taber, 2001; Tytler y Peterson, 2004; Cots¸u
y­ Ayas, 2005), porque la evaporación es esencialmente un fe-
nómeno “invisible” que acontece en el nivel microscópico con
la sola evidencia de un decremento en el nivel de líquido a
nivel macroscópico.
Se ha reportado que inclusive algunos profesores no com-
prenden claramente el concepto (Chang, 1999; Calik y Ayas,
2005; Canpolat, Pinarbasi y Sozbilir, 2006).
El concepto de condensación tiene aun mayor dificultad
de comprensión, dado lo difícil que resulta entender que va-
por de agua y aire coexisten a nuestro alrededor, con objeto
de explicar la formación visible de gotas de agua en una su-
perficie (Johnson, 1998b; Bar y Travis, 1991, Gopal, Kleinsmi-
dt, Case y Musonge, 2004). Además, a la condensación se le
relaciona solamente con frío (Chang, 1999; Tyler, 2000;
Canpolat, 2006).
En cuanto al concepto de presión de vapor se le confunde
generalmente con el concepto de presión atmosférica (Hwang
y Hwang, 1990; Fassoulopoulos, Kariotoglou y Koumaras,
2003).
El objetivo de este trabajo es investigar la comprensión de
los conceptos de evaporación, condensación y presión de va-
por en estudiantes de las carreras de Ingeniería Química y
Química Industrial, así como posibles concepciones alternati-
vas de los mismos. Dichos conceptos son considerados básicos
en el área de Fisicoquímica y se aplican en el diseño de proce-
sos químicos.
1
 FES-Cuautitlán UNAM. Campo 1.
Correo electrónico: obaya@servidor.unam.mx
Recibido: 11 de octubre de 2006; aceptado: 18 de septiembre de
2007.
abril de 2008  •  educación química investigación educativa 109
Metodología
La muestra consistió en 42 estudiantes (62% hombres y 38%
mujeres) de las dos carreras mencionadas que son del área
científico-tecnológica y con enfoque similar hacia la industria.
Los alumnos encuestados tienen una edad promedio de 21
años y estudian el cuarto semestre en la Facultad de Estudios
Superiores Cuautitlán de la UNAM, en México.
Los estudiantes del cuarto semestre de ambas carreras ya
cursaron el curso de Fisicoquímica Básica donde se revisaron
los conceptos de evaporación, condensación y presión de va-
por, por lo que se espera que los estudiantes no sólo compren-
dan dichos conceptos sino que también puedan aplicarlos.
Se explicó a los estudiantes que no se trataba de examinarlos,
por lo que se les pidió su colaboración en esta investigación.
El cuestionario que se aplicó se respondió en forma anóni-
ma en un tiempo de máximo de 30 minutos, en los horarios
de clase correspondientes en asignaturas diferentes a Fisico-
química.
El cuestionario consta de tres actividades de carácter di-
dáctico con preguntas abiertas (cuadro 1). Se basa en un tra-
bajo de Johnson (1998a), relacionada con el concepto de eva-
poración. La segunda actividad está basada en un trabajo de
Chang (1999) relacionada con el concepto de condensación y
la tercera actividad fue formulada por los autores para probar
el concepto de presión de vapor.
Los datos fueron analizados cualitativamente de acuerdo
con el método de Robson (1993) conocido como código de
distribuciones.Todas las respuestas fueron revisadas, categori-
zadas y codificadas en función del nivel de comprensión que
el estudiante mostró en la respuesta de las preguntas.
Con el objeto de contrastar las respuestas y poder clasifi-
carlas adecuadamente el cuestionario se aplicó también a tres
profesores de Fisicoquímica, con grado de doctor en el área y
una experiencia docente mayor de cinco años. Las categorías
fueron finalmente verificadas mediante discusión entre los
autores.
Resultados
Los estudiantes tuvieron la oportunidad de resolver proble-
mas de nivel conceptual sin el uso de cálculos avanzados, al
resolver el cuestionario (cuadro 1), lo que permitió establecer
la comprensión básica de dichos conceptos.
Con el fin de identificar y analizar las diferentes respuestas
al cuestionario éstas se categorizaron en torno de los procesos
Cuadro 1. Cuestionario aplicado sobre evaporación, condensación y presión vapor
RESPONDE A LAS PREGUNTAS DE CADA UNA DE LAS ACTIVIDADES PROPUESTAS.
Actividad A
Un recipiente con agua se encuentra sobre una mesa de laboratorio,
la temperatura del agua del recipiente, así como la temperatura ambiente
en el laboratorio, es de 25°C (figura 1).
1. ¿Qué pasaría con el nivel de agua después de que pasa el tiempo?
2. ¿Qué entiendes por evaporación?
Actividad B
Un recipiente con agua con una cubierta de plástico transparente se encuentra
sobre una mesa de laboratorio. La temperatura del agua del recipiente, así como
la temperatura ambiente en el laboratorio, es de 25°C (figura 2).
3. ¿Qué pasaría con el nivel de agua después de que pasa el tiempo?
4. ¿Qué se observaría en la parte superior de la cubierta transparente
después de que pasa el tiempo?
5. ¿Como sería la presión en el interior de la cubierta transparente
después de que pasa el tiempo?
Actividad C
Las presiones de vapor de acetona y agua son 30.6 y 3.17 kPa respectivamente a 25ºC.
6. Si en dos recipientes tipo actividad A, uno tuviera acetona y el otro agua, ¿qué se esperaría con el nivel de ambos líquidos
después de que pasa el tiempo?
7. ¿Qué entiendes por presión de vapor?
investigación educativa educación química  •  abril de 2008	 110
de evaporación, condensación y presión de vapor (diagrama 1,
diagrama 2, diagrama 3).
El criterio para establecer estas categorías y su codificación
fue diferenciar entre las explicaciones dadas por los estudian-
tes desde una descripción simple y superficial como un cam-
bio de fase de naturaleza macroscópica hasta una descripción
en términos de partículas mencionando colisiones e involu-
crando el concepto de energía.
Las categorías y su codificación ayudan a identificar las
tendencias entre los estudiantes en relación con la respuesta
científicamente aceptada. Lo deseable a este nivel de sus es­
tudios es que los estudiantes empleen la teoría cinética cor-
puscular al dar sus explicaciones.
La teoría cinética corpuscular es una primera explicación
de la materia. Está relacionada con todos los conceptos que se
estudian en química. Se considera que para entender el resto
de la química o los conocimientos propios de la química es
indispensable haber comprendido cabalmente las ideas cen-
trales de este modelo.
Las respuestas de los expertos en relación con los concep-
tos investigados siempre involucraron descripciones funda-
mentadas en la teoría cinética corpuscular involucrando coli-
siones, cambios en la energía cinética para la evaporación, la
condensación y la presión de vapor. Fueron descripciones ba-
sadas en los conceptos científicamente aceptados, mismos
que nos sirvieron para categorizar y codificar las respuestas
dadas por los estudiantes encuestados.
Algunos ejemplos de respuestas proporcionadas por los
estudiantes en relación con la evaporación son:
“Evaporación es agua pasando de líquido a la fase vapor.”
“Evaporación es el punto de temperatura cuando un líqui-
do pasa a vapor.”
“Evaporación es cambio del estado de la materia de líquido
a gaseoso por efecto de la temperatura.”
“Evaporación es cuando el agua pasa de líquido a vapor por
una elevación de temperatura incrementando el choque
de las moléculas.”
La mayoría de los estudiantes dio una definición superfi-
cial de evaporación: el 72% de los estudiantes encuestados
usaron términos macroscópicos para describir la evaporación
(diagrama 1).
Esto puede implicar que entre los estudiantes universita-
rios la teoría cinética corpuscular no es vista como una herra-
mienta para desarrollar a profundidad la comprensión de los
Evap 1
La evaporación es simplemente descrita como un cambio
de fase de vapor a líquido (macroscópica)
Evap 2
La evaporación descrita en términos de partículas
incluyendo energía cinética (macroscópica)
Diagrama 1. Categorías de las respuestas relacionadas
al nivel de comprensión de la evaporación.
Evap 1
Evap 2
Pvap 1 Definición completamente incorrecta de presión de vapor.
Pvap 2 Definición parcialmente correcta.
Pvap 3 Definición de presión de vapor útil basada en
experiencia previa.
Pvap 4 Definición correcta de presión de vapor.
Diagrama 3. Categorías de las respuestas relacionadas
con presión de vapor.
Pvap 1
Pvap 4
Pvap 3
Pvap 2
Cond 1 La condensación es superficialmente descrita como un
cambio de fase de vapor a líquido (macroscópica)
Cond 2 La condensación es superficialmente descrita como un
cambio de fase de vapor a líquido (macroscópica)
Diagrama 2. Categorías de las respuestas relacionadas
al nivel de comprensión de la condensación.
Cond 1
Cond 2
abril de 2008  •  educación química investigación educativa 111
fenómenos naturales y está contextualizada como un concep-
to fisicoquímico para ser aprendido para los exámenes y des-
pués ser olvidado.
En relación con la evaporación, la categorización y codifi-
cación de las respuestas permitió establecer concepciones al-
ternativas relacionadas con dicho proceso (tabla 1). La más
común es que los estudiantes creen que un gradiente de tem-
peratura es requerido para iniciar el proceso de evaporación.
Es decir que una diferencia de temperatura debe existir entre
el agua en el recipiente y los alrededores. Los estudiantes con
esta concepción alternativa creen que el nivel de agua no
cambiará porque el sistema está a temperatura ambiente o
bien porque no existe gradiente de temperatura.
Ejemplos de respuestas proporcionadas por los estudiantes
en relación con lo anterior son:
“Si la temperatura es constante el nivel del agua no
disminuirá.”
“Si el laboratorio y el recipiente están a la misma tempera-
tura no hay transferencia de energía, por lo tanto no habrá
cambio de fase.”
En relación con el proceso de condensación, la categoriza-
ción y codificación de las respuestas se presenta en el diagra-
ma 2. Se esperaría que los estudiantes fueran capaces de apli-
car la teoría cinética corpuscular para explicar el proceso de
condensación.
Sólo el 7% de la muestra encuestada dio una respuesta que
involucrara una comprensión microscópica del concepto de
condensación. Al igual que en la evaporación la concepción
alternativa más común se relaciona con la existencia de un
gradiente de temperatura, aun cuando en la pregunta relacio-
nada con el proceso de condensación se establece que la tem-
peratura de 25°C es constante. Un estudiante fue más allá al
explicar que el agua necesitaba calentarse a más de 25°C y
que el recipiente debía ser enfriado a menos de 25°C para
justificar la evaporación y la condensación.
Algunos estudiantes no pudieron predecir qué pasaría con
la presión cuando pasa el tiempo en el sistema cerrado. En vez
de usar la teoría cinética para explicar el incremento de la
presión al equilibrio, optaron por conceptos de nivel medio
superior como que la presión fue inversamente proporcional
al volumen cuando la cubierta transparente fue colocada para
cerrar el sistema.
Ejemplos de respuestas proporcionadas por los estudiantes
en relación con esto son:
“La presión con el paso del tiempo sería la misma.”
“Cuando pasa el tiempo la presión en el recipiente tapado
aumenta ya que el volumen de agua disminuye.”
Otros estudiantes creen que la presión debería incrementar-
se debido a la reducción en el volumen cuando la tapa es colo-
cada en la botella o la cubierta es puesta sobre el recipiente, y
no ven que cualquier incremento en la presión debería ser atri-
buido al incremento en moléculas de agua en la fase vapor.
En cuanto a la condensación, se observa con base en los
resultados que la concepción alternativa que presenta la ma-
yoría de los estudiantes es necesitar una superficie fría o un
gradiente de temperatura negativo para explicar la condensa-
ción. Esto puede deberse al tipo de demostraciones usadas
para describirla, así como a las explicaciones que dan los li-
bros de texto en torno de ello. Algunos autores señalan que
los estudiantes consideran que algo la causa (Chang, 1999;
Jeevaratnam, 2000).
En la actividad C del cuestionario relacionada con presión
de vapor, se esperaría que la mayoría de los estudiantes res-
pondieran que la acetona se evaporaría más rápido que el
agua, ya que tiene mayor presión de vapor a la misma tempe-
ratura. La categorización y codificación de las respuestas se
presenta en el diagrama 3. Para su resolución sólo el 7% de la
muestra usó su experiencia previa para resolver la actividad,
en cuanto a las propiedades de la acetona como disolvente y
su volatilidad, y no propiamente con los datos de las presiones
de vapor.
Con relación al concepto presión de vapor, la mayoría de
los estudiantes no tiene una buena idea de lo que significa;
sólo 12% de la muestra encuestada dio una definición formal
de presión de vapor.
Los resultados indican que la evidencia física por sí sola no
puede generar un cambio conceptual completo desde con-
cepciones alternativas pero puede definitivamente ser vista
como una herramienta complementaria que se añade a este
proceso.
Recomendaciones
Con el fin de precisar, acotar, redefinir conceptos vistos en
clase y evitar en lo posible concepciones alternativas de los
Tabla 1. Concepciones alternativas asociadas con
la evaporación
Código Descripción
Evap CA Concepción alternativa que la evaporación
requiere de un gradiente de temperatura.
Evap SC Concepción alternativa que la evaporación
solamente ocurre en un sistema cerrado.
Tabla 2. Concepciones alternativas asociadas con
la condensación.
Código Descripción
Cond CA Concepción alternativa que la condensación
requiere de un gradiente de temperatura.
Cond SC Concepción alternativa que la condensación
solamente ocurre en un sistema cerrado.
investigación educativa educación química  •  abril de 2008	 112
alumnos, recomendamos las denominadas sesiones de discu-
sión como estrategia de instrucción. Los estudiantes logran
una mejor comprensión de los conceptos revisados después
de participar en una estrategia de instrucción que los motivó
a explicar sus conceptos (Obaya, 2004).
Las entrevistas ilustran qué tan arraigadas están las con-
cepciones de los estudiantes que interfieren con el aprendiza-
je y cómo las sesiones de discusión los habilitan para razonar
mejor y poder explicar sus propias ideas en relación con los
conceptos vistos en clase, ya que los estudiantes al explicar
sus ideas, clarifican y reorganizan su conocimiento permitien-
do además descubrir y corregir sus inconsistencias sobre el
tema estudiado (Obaya, 2004).
El aprendizaje enciclopedista ya no es procedente en
las  condiciones actuales, según la propia percepción de los
estudiantes.
Por otra parte, la importancia otorgada a escuchar con
atención a los estudiantes puede ser reveladora de que la clase
magistral o la exposición oral del profesor, que sigue siendo
usual como vehículo de enseñanza de la Fisicoquímica, ya no
es la más aconsejable en todos los casos para propiciar el
aprendizaje.
Conclusiones
En general, nuestros resultados refuerzan algunas conclusio-
nes de estudios previos sobre el tema investigado.
Con base en la muestra estudiada, la mayoría de los estu-
diantes encuestados tiene una comprensión inadecuada de los
conceptos de evaporación, condensación y presión de vapor
que son conceptos básicos de Fisicoquímica, que confirma lo
reportado por Johnson (1998a) mostrando una comprensión
superficial de los conceptos.
Una concepción alternativa que se identificó es que, para la
mayoría de los estudiantes, para los conceptos de evaporación
y condensación se requiere un gradiente de temperatura
(Chang, 1999).
Otra concepción alternativa encontrada y reportada ante-
riormente por Johnson (1998b), se relaciona con el hecho de
que sólo ocurren en sistemas cerrados (tablas 1 y 2).
Aunque sólo el 12% de los estudiantes encuestados esta-
blecieron en forma correcta el concepto de presión de vapor,
la mayoría de ellos puede hacer uso de datos y de evidencia
física.
Se corroboró la dificultad que tienen los estudiantes de
comprender en forma simultánea lo macroscópico y lo mi-
croscópico, así como su relación, al igual que la abstracción de
ciertos conceptos básicos en el área de Fisicoquímica (Taber,
2001; Talanquer, 2006).
Los estudiantes tienen dificultad para entender el abstrac-
to e inobservable mundo microscópico y las representaciones
simbólicas de sustancias y procesos (Chamizo, Nieto y Sosa,
2004; Stains y Talanquer, 2007) cuando se les pide que pien-
sen como científicos.
Conceptos básicos de Fisicoquímica (como los aquí inves-
tigados) no llegan a ser plenamente comprendidos ni mucho
menos dominados; se construye en los distintos niveles sobre
cimientos frágiles e inestables que no permiten un aprendiza-
je íntegro de la disciplina. Sobra decir que éste puede ser un
factor importante en los resultados pobres que tradicional-
mente muestra la enseñanza de la Fisicoquímica. Cuando los
alumnos aprenden “mal” un concepto es muy difícil revertir
ese aprendizaje posteriormente.
Las implicaciones para la práctica docente son que los es-
tudiantes necesitan no solamente de experiencia y observar
fenómenos fisicoquímicos básicos en el laboratorio sino tam-
bién debe dárseles tiempo para reflexionar y cuestionar sus
propias hipótesis y concepciones, estableciendo un diálogo
con sus profesores.
Los resultados de este estudio exploratorio sobre los con-
ceptos de evaporación, condensación y presión de vapor en
estudiantes universitarios pueden ayudar a los profesores de
Fisicoquímica a identificar, comprender y aun explicarse las
posibles concepciones alternativas que sus estudiantes pudie-
ran tener sobre los conceptos aquí investigados.
Bibliografía
Bar, V. y Galili, I. Stages of children’s views about evapora-
tion,International Journal of Science Education,16,157-174,
1994.
Bar, V. y Travis, S. Children’s views concerning phase changes,
Journal of Research in Science Teaching, 28(4) 363-382, 1991.
Calik, M. y Ayas,A.A comparison of level of understanding of
eight-students and science student teachers related to se-
lected chemistry concepts, Journal of Research in Science
Teaching, 42(6) 638-667, 2005.
Canpolat, N. Turkish undergraduates’ misconceptions of evap-
oration, evaporation rate, and vapour pressure, Internation-
al Journal of Science Education, 28(15) 1757-1770, 2006.
Canpolat, N. Pinarbasi, T. y Sozbilir, M. Prospective teachers’
misconceptions of vaporization and vapor pressure, Jour-
nal of Chemical Education, 83(8) 1237-1242, 2006.
Chamizo, J.A., Nieto, E. y Sosa, P. La enseñanza de la Quími-
ca. Tercera parte. Ev de los conocimientos de química
desde secundaria hasta licenciatura, Educ. quím., 15(2)
108-112, 2004.
Chamizo, J.A. y Sosa, P. La enseñanza de la Química. Segunda
parte. El ingreso al posgrado, Educ. quím., 13(4) 254-258,
2002.
Chang, J. Teachers college students’ conceptions about evap-
oration,condensation,and boiling,Science Education, 83(5)
511-526, 1999.
Cots¸u, B. y Ayas, A. Evaporation in different liquids: second-
ary students conceptions, Research in Science & Technologi-
cal Education, 23(1) 75-97, 2005.
Cros, D., Chastrette, M. y Fayol, M. Conceptions of second
year university students of some fundamental notions in
chemistry, International Journal of Science Education, 10(3)
331-336, 1998.
Fassoulopoulos, G. Kariotoglou, P. y Koumaras, P. Consistent
and inconsistent pupils’reasoning about intensive quanti-
abril de 2008  •  educación química investigación educativa 113
ties: The case of density and pressure, Research in Science
Education, 33(1) 71-87, 2003.
Gopal, H., Kleinsmidt, J., Case, J. y Musonge, P. An investiga-
tion of tertiary students understanding of evaporation,
condensation and vapour pressure, International Journal of
Science Education 26(13) 1597-1620, 2004.
Hwang, B. y Hwang, H. A study of cognitive development of the
concepts of solution. Research report sponsored by the Na-
tional Science Council, R.O.C. Taipei, Taiwan, 1990.
Jeevaratnam, E., Msiza, A., Case, J. y Fraser, D. Understanding
of energy by first year students. Proceedings of the 3rd
Working
Conference on Engineering Education for the 21st
Century,
Sheffield Hallam University, Sheffield, 117-122, 2000.
Johnson, P. Children’s understanding of changes of state in-
volving the gas state, Part 1: Boiling water and the particle
theory, International Journal of Science Education, 20(6)
567-583, 1998a.
Johnson, P. Children’s understanding of changes of state in-
volving the gas state, Part 2: Evaporation and condensation
below boiling point, International Journal of Science Educa-
tion, 20(6) 695-709, 1998b.
Nakhleh, M. Why some students don´t learn chemistry, Jour-
nal of Chemical Education, 69(3) 191-196, 1992.
Obaya, A. Cambio de energía libre y espontaneidad a través
de las explicaciones de los estudiantes e integración de sus
ideas, Educ. quim., 15(4) 436-440, 2004.
Robson, C. Real World Research: A Resource for Social Scien-
tists and Practitioner-Researchers. Oxford: Blackwell, 1993.
Russell, T. Harlen, W. y Watt, D. Children’s ideas about evap-
oration, International Journal of Science Education, 11,
566-576, 1989.
Stains, M. y Talanquer, V. Classification of Chemical Sub-
stances using Particulate Representations of Matter: An
analysis of student thinking, International Journal of Science
Education, 29(5) 643-661, 2007.
Stavy, R. Children’s conception of changes in the state of
matter: from liquid (or solid) to gas, Journal of Science Edu-
cation, 11, 566-576, 1990.
Taber, K. Building the structural concepts of chemistry: some
considerations from educational research, Chemistry Edu-
cation: Research and Practice in Europe, 2(2) 123-158, 2001.
Talanquer, V. Common sense chemistry: A model for under-
standing students alternative conceptions, Journal of Chem-
ical Education, 83(5) 811-816, 2006.
Tytler, R.A comparison of year 1 and year 6 students’ concep-
tions of evaporation and condensation: dimensions of con-
ceptual progression, International Journal of Science Educa-
tion, 22(5) 447-467, 2000.
Tytler, R. y Peterson, S. Deconstructing learning in science:
Young children’s responses to a classroom sequence on
evaporation, Research in Science Education, 30(4) 339-355,
2000.
Tytler, R. y Peterson, S. Young children learning about evapo-
ration: Insights from a longitudinal study, Canadian Jour-
nal of Science, Mathematics & Technological Education, 4(1)
111-126, 2004.
Gracias a la
DGAPA-UNAM
PAPIME PE2004406
Educación Química agradece a la Dirección General
de Asuntos del Personal Académico de la Universidad
Nacional Autónoma de México el apoyo otorgado, que
fue utilizado parcialmente para la construcción de esta
nueva página para la venta electrónica de la revista, a
través del Proyecto PAPIME PE2004406, denominado
‘El vigésimo aniversario de la revista Educación Química’.

Más contenido relacionado

La actualidad más candente

PLAN ANUAL DE QUÍMICA
PLAN ANUAL DE QUÍMICAPLAN ANUAL DE QUÍMICA
PLAN ANUAL DE QUÍMICAqflucio
 
Planificación curricular fisico química mónica
Planificación curricular fisico   química   mónicaPlanificación curricular fisico   química   mónica
Planificación curricular fisico química mónicaxiombyta
 
Enseñanza de la quimica
Enseñanza de la quimicaEnseñanza de la quimica
Enseñanza de la quimicaProyectosCPE
 
Situación de aprendizaje en la aplicación de la Tabla Periodica
Situación de aprendizaje en la aplicación de la Tabla PeriodicaSituación de aprendizaje en la aplicación de la Tabla Periodica
Situación de aprendizaje en la aplicación de la Tabla PeriodicaAby Ba
 
Planificación de Fisicoquímica. 8vo año.
Planificación de Fisicoquímica. 8vo año.Planificación de Fisicoquímica. 8vo año.
Planificación de Fisicoquímica. 8vo año.veritolaflak
 
Plan de grado 10 y 11 biología y química
Plan de grado 10 y 11 biología y química Plan de grado 10 y 11 biología y química
Plan de grado 10 y 11 biología y química FELIX HERNANDEZ
 
Termodinamica quimica-elemental bruce-mahan
Termodinamica quimica-elemental bruce-mahanTermodinamica quimica-elemental bruce-mahan
Termodinamica quimica-elemental bruce-mahanyeaninarosmari
 
La enseñanza de la química
La enseñanza de la química La enseñanza de la química
La enseñanza de la química camilacastillo94
 
Una revisión sobre las concepciones alternativas de los estudiantes en relaci...
Una revisión sobre las concepciones alternativas de los estudiantes en relaci...Una revisión sobre las concepciones alternativas de los estudiantes en relaci...
Una revisión sobre las concepciones alternativas de los estudiantes en relaci...angelo26_
 
150961829 fisica-vol-2-alonso-finn cap 14 al cap 24 excelente
150961829 fisica-vol-2-alonso-finn cap 14 al cap 24 excelente150961829 fisica-vol-2-alonso-finn cap 14 al cap 24 excelente
150961829 fisica-vol-2-alonso-finn cap 14 al cap 24 excelente.. ..
 

La actualidad más candente (19)

Proyecto anual cesep 2017
Proyecto anual cesep 2017Proyecto anual cesep 2017
Proyecto anual cesep 2017
 
PLAN ANUAL DE QUÍMICA
PLAN ANUAL DE QUÍMICAPLAN ANUAL DE QUÍMICA
PLAN ANUAL DE QUÍMICA
 
Planeacion de Fisica segundo bloque
Planeacion de Fisica segundo bloquePlaneacion de Fisica segundo bloque
Planeacion de Fisica segundo bloque
 
Mapa curricular ciencias_unidad 4.3
Mapa curricular ciencias_unidad 4.3Mapa curricular ciencias_unidad 4.3
Mapa curricular ciencias_unidad 4.3
 
Valencia
ValenciaValencia
Valencia
 
Programa de fisica i
Programa de fisica iPrograma de fisica i
Programa de fisica i
 
Planificación curricular fisico química mónica
Planificación curricular fisico   química   mónicaPlanificación curricular fisico   química   mónica
Planificación curricular fisico química mónica
 
Precisiones fisica
Precisiones fisicaPrecisiones fisica
Precisiones fisica
 
Enseñanza de la quimica
Enseñanza de la quimicaEnseñanza de la quimica
Enseñanza de la quimica
 
Planif. unidad 1 ciencias 4° marzo
Planif. unidad 1 ciencias 4° marzoPlanif. unidad 1 ciencias 4° marzo
Planif. unidad 1 ciencias 4° marzo
 
Mapa curricular ciencias unidad 2.3
Mapa curricular ciencias unidad 2.3Mapa curricular ciencias unidad 2.3
Mapa curricular ciencias unidad 2.3
 
Situación de aprendizaje en la aplicación de la Tabla Periodica
Situación de aprendizaje en la aplicación de la Tabla PeriodicaSituación de aprendizaje en la aplicación de la Tabla Periodica
Situación de aprendizaje en la aplicación de la Tabla Periodica
 
Planificación de Fisicoquímica. 8vo año.
Planificación de Fisicoquímica. 8vo año.Planificación de Fisicoquímica. 8vo año.
Planificación de Fisicoquímica. 8vo año.
 
Plan de grado 10 y 11 biología y química
Plan de grado 10 y 11 biología y química Plan de grado 10 y 11 biología y química
Plan de grado 10 y 11 biología y química
 
Termodinamica quimica-elemental bruce-mahan
Termodinamica quimica-elemental bruce-mahanTermodinamica quimica-elemental bruce-mahan
Termodinamica quimica-elemental bruce-mahan
 
Plan anual de quimica organica. terminada
Plan anual de quimica organica. terminadaPlan anual de quimica organica. terminada
Plan anual de quimica organica. terminada
 
La enseñanza de la química
La enseñanza de la química La enseñanza de la química
La enseñanza de la química
 
Una revisión sobre las concepciones alternativas de los estudiantes en relaci...
Una revisión sobre las concepciones alternativas de los estudiantes en relaci...Una revisión sobre las concepciones alternativas de los estudiantes en relaci...
Una revisión sobre las concepciones alternativas de los estudiantes en relaci...
 
150961829 fisica-vol-2-alonso-finn cap 14 al cap 24 excelente
150961829 fisica-vol-2-alonso-finn cap 14 al cap 24 excelente150961829 fisica-vol-2-alonso-finn cap 14 al cap 24 excelente
150961829 fisica-vol-2-alonso-finn cap 14 al cap 24 excelente
 

Destacado

Ejercicio: Cambios de estado
Ejercicio: Cambios de estadoEjercicio: Cambios de estado
Ejercicio: Cambios de estadoangelo26_
 
Tabla Periodica, configuración electronica y electrones de valencia
Tabla Periodica, configuración electronica y electrones de valenciaTabla Periodica, configuración electronica y electrones de valencia
Tabla Periodica, configuración electronica y electrones de valenciaJorge Arizpe Dodero
 
Conceptos quimica ejercicio
Conceptos quimica ejercicioConceptos quimica ejercicio
Conceptos quimica ejercicioangelo26_
 
Enlace covalente
Enlace covalenteEnlace covalente
Enlace covalentePisuka12
 
Numero de valencia Quimica
Numero de valencia QuimicaNumero de valencia Quimica
Numero de valencia QuimicaDaniel Rojas P
 
Valencia y número de oxidación ariel
Valencia y número de oxidación arielValencia y número de oxidación ariel
Valencia y número de oxidación arielcristianariel13
 
Tabla periódica de los elementos químicos actualizada
Tabla periódica de los elementos químicos actualizadaTabla periódica de los elementos químicos actualizada
Tabla periódica de los elementos químicos actualizadaKal El
 
Polaridad de enlaces y moléculas
Polaridad de enlaces y moléculasPolaridad de enlaces y moléculas
Polaridad de enlaces y moléculasNikkyPeri
 
Estructura de Lewis
Estructura de LewisEstructura de Lewis
Estructura de LewisMRcdz Ryz
 
Como realizar estructuras de Lewis para Moleculas...
Como realizar estructuras de Lewis para Moleculas...Como realizar estructuras de Lewis para Moleculas...
Como realizar estructuras de Lewis para Moleculas...Yesenia M Carrillo
 
ELECTRONES DE VALENCIA, ESTRUCTURA DE LEWIS Y REGLA DEL OCTETO
ELECTRONES DE VALENCIA, ESTRUCTURA DE LEWIS Y REGLA DEL OCTETOELECTRONES DE VALENCIA, ESTRUCTURA DE LEWIS Y REGLA DEL OCTETO
ELECTRONES DE VALENCIA, ESTRUCTURA DE LEWIS Y REGLA DEL OCTETOProfr Quimica
 
Enlace quimico y la regla del octeto
Enlace quimico y la regla del octetoEnlace quimico y la regla del octeto
Enlace quimico y la regla del octetonataliadiazrojas
 
Estructuras de lewis y la regla del octeto
Estructuras  de lewis y la regla del octetoEstructuras  de lewis y la regla del octeto
Estructuras de lewis y la regla del octetodayanamontoya22
 
NOMENCLATURA QUIMICA
NOMENCLATURA QUIMICANOMENCLATURA QUIMICA
NOMENCLATURA QUIMICAguest34f42b1
 
Tabla de Valencias Elementos Químicos
Tabla de Valencias Elementos QuímicosTabla de Valencias Elementos Químicos
Tabla de Valencias Elementos QuímicosYasmin Pérez
 

Destacado (20)

Ejercicio: Cambios de estado
Ejercicio: Cambios de estadoEjercicio: Cambios de estado
Ejercicio: Cambios de estado
 
Tabla Periodica, configuración electronica y electrones de valencia
Tabla Periodica, configuración electronica y electrones de valenciaTabla Periodica, configuración electronica y electrones de valencia
Tabla Periodica, configuración electronica y electrones de valencia
 
Conceptos quimica ejercicio
Conceptos quimica ejercicioConceptos quimica ejercicio
Conceptos quimica ejercicio
 
Enlace covalente
Enlace covalenteEnlace covalente
Enlace covalente
 
Crucigrama
CrucigramaCrucigrama
Crucigrama
 
Regla del octeto
Regla del octetoRegla del octeto
Regla del octeto
 
Numero de valencia Quimica
Numero de valencia QuimicaNumero de valencia Quimica
Numero de valencia Quimica
 
Quimica 3
Quimica 3Quimica 3
Quimica 3
 
Valencia y número de oxidación ariel
Valencia y número de oxidación arielValencia y número de oxidación ariel
Valencia y número de oxidación ariel
 
Tabla periódica de los elementos químicos actualizada
Tabla periódica de los elementos químicos actualizadaTabla periódica de los elementos químicos actualizada
Tabla periódica de los elementos químicos actualizada
 
Polaridad de enlaces y moléculas
Polaridad de enlaces y moléculasPolaridad de enlaces y moléculas
Polaridad de enlaces y moléculas
 
Estructura de Lewis
Estructura de LewisEstructura de Lewis
Estructura de Lewis
 
Estructuras de lewis
Estructuras  de  lewisEstructuras  de  lewis
Estructuras de lewis
 
Como realizar estructuras de Lewis para Moleculas...
Como realizar estructuras de Lewis para Moleculas...Como realizar estructuras de Lewis para Moleculas...
Como realizar estructuras de Lewis para Moleculas...
 
ELECTRONES DE VALENCIA, ESTRUCTURA DE LEWIS Y REGLA DEL OCTETO
ELECTRONES DE VALENCIA, ESTRUCTURA DE LEWIS Y REGLA DEL OCTETOELECTRONES DE VALENCIA, ESTRUCTURA DE LEWIS Y REGLA DEL OCTETO
ELECTRONES DE VALENCIA, ESTRUCTURA DE LEWIS Y REGLA DEL OCTETO
 
Enlace quimico y la regla del octeto
Enlace quimico y la regla del octetoEnlace quimico y la regla del octeto
Enlace quimico y la regla del octeto
 
Estructuras de lewis y la regla del octeto
Estructuras  de lewis y la regla del octetoEstructuras  de lewis y la regla del octeto
Estructuras de lewis y la regla del octeto
 
NOMENCLATURA QUIMICA
NOMENCLATURA QUIMICANOMENCLATURA QUIMICA
NOMENCLATURA QUIMICA
 
Tabla de Valencias Elementos Químicos
Tabla de Valencias Elementos QuímicosTabla de Valencias Elementos Químicos
Tabla de Valencias Elementos Químicos
 
Control de sonido
Control de sonidoControl de sonido
Control de sonido
 

Similar a Cambios de estado

Modelos 4
Modelos 4Modelos 4
Modelos 4Jose
 
Diseño de Situación de Aprendizaje ROSALBA
Diseño de Situación de Aprendizaje ROSALBADiseño de Situación de Aprendizaje ROSALBA
Diseño de Situación de Aprendizaje ROSALBAAdri Pérez
 
Mecánica del cuerpo rígido
Mecánica del cuerpo rígidoMecánica del cuerpo rígido
Mecánica del cuerpo rígidoDavidSPZGZ
 
La física en el ciclo básico de carreras con base química sebastian seeligmann
La física en el ciclo básico de carreras con base química sebastian seeligmannLa física en el ciclo básico de carreras con base química sebastian seeligmann
La física en el ciclo básico de carreras con base química sebastian seeligmannsebastian_seeligmann
 
1er. Parcial Postitulo Corregido 3a. Presentación
1er. Parcial Postitulo Corregido 3a. Presentación1er. Parcial Postitulo Corregido 3a. Presentación
1er. Parcial Postitulo Corregido 3a. Presentaciónmaria mercedes macellari
 
Articulo ley de stokes simplicidad(1)
Articulo  ley de stokes simplicidad(1)Articulo  ley de stokes simplicidad(1)
Articulo ley de stokes simplicidad(1)flakmile
 
Nat6 b pauta-prueba_inicial
Nat6 b pauta-prueba_inicialNat6 b pauta-prueba_inicial
Nat6 b pauta-prueba_inicialAdriana Jimenez
 
Articulo ondas didáctica
Articulo ondas didácticaArticulo ondas didáctica
Articulo ondas didácticagatoleona
 
Libro hidraulica-basica
Libro hidraulica-basicaLibro hidraulica-basica
Libro hidraulica-basicaRoberto Cuadra
 
Referencias sobre Texto (sugerencia: trabaja a doble ventana)
Referencias sobre  Texto (sugerencia: trabaja a doble ventana)Referencias sobre  Texto (sugerencia: trabaja a doble ventana)
Referencias sobre Texto (sugerencia: trabaja a doble ventana)maria mercedes macellari
 
Termodinámica química - Irving M. Klotz-LIBROSVIRTUAL.COM.pdf
Termodinámica química - Irving M. Klotz-LIBROSVIRTUAL.COM.pdfTermodinámica química - Irving M. Klotz-LIBROSVIRTUAL.COM.pdf
Termodinámica química - Irving M. Klotz-LIBROSVIRTUAL.COM.pdfJennyFernandezVivanc
 
285702-Texto del artículo-393904-1-10-20150116.pdf
285702-Texto del artículo-393904-1-10-20150116.pdf285702-Texto del artículo-393904-1-10-20150116.pdf
285702-Texto del artículo-393904-1-10-20150116.pdfPieroAaronSolano
 
Hugo Medina Guzmán Fisica II Solucionario
Hugo Medina Guzmán Fisica II SolucionarioHugo Medina Guzmán Fisica II Solucionario
Hugo Medina Guzmán Fisica II SolucionarioPavel Gomez M
 
Fsica2hugomedinaguzmn 141021193234-conversion-gate02
Fsica2hugomedinaguzmn 141021193234-conversion-gate02Fsica2hugomedinaguzmn 141021193234-conversion-gate02
Fsica2hugomedinaguzmn 141021193234-conversion-gate02Bosch Cbf
 

Similar a Cambios de estado (20)

Modelos 4
Modelos 4Modelos 4
Modelos 4
 
Diseño de Situación de Aprendizaje ROSALBA
Diseño de Situación de Aprendizaje ROSALBADiseño de Situación de Aprendizaje ROSALBA
Diseño de Situación de Aprendizaje ROSALBA
 
Anadidadcneq
AnadidadcneqAnadidadcneq
Anadidadcneq
 
Mecánica del cuerpo rígido
Mecánica del cuerpo rígidoMecánica del cuerpo rígido
Mecánica del cuerpo rígido
 
La física en el ciclo básico de carreras con base química sebastian seeligmann
La física en el ciclo básico de carreras con base química sebastian seeligmannLa física en el ciclo básico de carreras con base química sebastian seeligmann
La física en el ciclo básico de carreras con base química sebastian seeligmann
 
1er. Parcial Postitulo Corregido 3a. Presentación
1er. Parcial Postitulo Corregido 3a. Presentación1er. Parcial Postitulo Corregido 3a. Presentación
1er. Parcial Postitulo Corregido 3a. Presentación
 
Articulo ley de stokes simplicidad(1)
Articulo  ley de stokes simplicidad(1)Articulo  ley de stokes simplicidad(1)
Articulo ley de stokes simplicidad(1)
 
GASES LECTURA 18-G1.pdf
GASES LECTURA 18-G1.pdfGASES LECTURA 18-G1.pdf
GASES LECTURA 18-G1.pdf
 
Nat6 b pauta-prueba_inicial
Nat6 b pauta-prueba_inicialNat6 b pauta-prueba_inicial
Nat6 b pauta-prueba_inicial
 
estequiometria y ley de conservacion masa
estequiometria y ley de conservacion masaestequiometria y ley de conservacion masa
estequiometria y ley de conservacion masa
 
Articulo ondas didáctica
Articulo ondas didácticaArticulo ondas didáctica
Articulo ondas didáctica
 
Libro hidraulica-basica
Libro hidraulica-basicaLibro hidraulica-basica
Libro hidraulica-basica
 
Referencias sobre Texto (sugerencia: trabaja a doble ventana)
Referencias sobre  Texto (sugerencia: trabaja a doble ventana)Referencias sobre  Texto (sugerencia: trabaja a doble ventana)
Referencias sobre Texto (sugerencia: trabaja a doble ventana)
 
Resolucion Consignas 1er Parcial
Resolucion Consignas 1er ParcialResolucion Consignas 1er Parcial
Resolucion Consignas 1er Parcial
 
212974199 fisicoquimica-laidler
212974199 fisicoquimica-laidler212974199 fisicoquimica-laidler
212974199 fisicoquimica-laidler
 
Termodinámica química - Irving M. Klotz-LIBROSVIRTUAL.COM.pdf
Termodinámica química - Irving M. Klotz-LIBROSVIRTUAL.COM.pdfTermodinámica química - Irving M. Klotz-LIBROSVIRTUAL.COM.pdf
Termodinámica química - Irving M. Klotz-LIBROSVIRTUAL.COM.pdf
 
285702-Texto del artículo-393904-1-10-20150116.pdf
285702-Texto del artículo-393904-1-10-20150116.pdf285702-Texto del artículo-393904-1-10-20150116.pdf
285702-Texto del artículo-393904-1-10-20150116.pdf
 
Hugo Medina Guzmán Fisica II Solucionario
Hugo Medina Guzmán Fisica II SolucionarioHugo Medina Guzmán Fisica II Solucionario
Hugo Medina Guzmán Fisica II Solucionario
 
Física 2 hugo medina guzmán
Física 2  hugo medina guzmánFísica 2  hugo medina guzmán
Física 2 hugo medina guzmán
 
Fsica2hugomedinaguzmn 141021193234-conversion-gate02
Fsica2hugomedinaguzmn 141021193234-conversion-gate02Fsica2hugomedinaguzmn 141021193234-conversion-gate02
Fsica2hugomedinaguzmn 141021193234-conversion-gate02
 

Más de angelo26_

Bio hidrogeno
Bio hidrogenoBio hidrogeno
Bio hidrogenoangelo26_
 
Ejercicio: Biohidrogeno
Ejercicio: BiohidrogenoEjercicio: Biohidrogeno
Ejercicio: Biohidrogenoangelo26_
 
Ejercicio: Ácidos y bases
Ejercicio: Ácidos y basesEjercicio: Ácidos y bases
Ejercicio: Ácidos y basesangelo26_
 
Acidos y bases
Acidos y basesAcidos y bases
Acidos y basesangelo26_
 
Ejercicio: Electroquimica
Ejercicio: ElectroquimicaEjercicio: Electroquimica
Ejercicio: Electroquimicaangelo26_
 
Electroquimica
ElectroquimicaElectroquimica
Electroquimicaangelo26_
 
Ejercicio producción de plástico parcialmente degradable con polietileno de a...
Ejercicio producción de plástico parcialmente degradable con polietileno de a...Ejercicio producción de plástico parcialmente degradable con polietileno de a...
Ejercicio producción de plástico parcialmente degradable con polietileno de a...angelo26_
 
Producción de plástico parcialmente degradable con polietileno de alta densid...
Producción de plástico parcialmente degradable con polietileno de alta densid...Producción de plástico parcialmente degradable con polietileno de alta densid...
Producción de plástico parcialmente degradable con polietileno de alta densid...angelo26_
 
Los supermateriales
Los supermaterialesLos supermateriales
Los supermaterialesangelo26_
 
Tabla periodica
Tabla periodicaTabla periodica
Tabla periodicaangelo26_
 
Ejercicio tabla periodica
Ejercicio tabla periodicaEjercicio tabla periodica
Ejercicio tabla periodicaangelo26_
 
Corriente eléctrica a partir de hidrógeno con celdas electroquimicas pág14
Corriente eléctrica a partir de hidrógeno con celdas electroquimicas pág14Corriente eléctrica a partir de hidrógeno con celdas electroquimicas pág14
Corriente eléctrica a partir de hidrógeno con celdas electroquimicas pág14angelo26_
 
Ejercicio corriente eléctrica a partir de hidrógeno con celdas electroquimica...
Ejercicio corriente eléctrica a partir de hidrógeno con celdas electroquimica...Ejercicio corriente eléctrica a partir de hidrógeno con celdas electroquimica...
Ejercicio corriente eléctrica a partir de hidrógeno con celdas electroquimica...angelo26_
 
Sintesis microquímica y microelectroquímica de acetato de cobre
Sintesis microquímica y microelectroquímica de acetato de cobreSintesis microquímica y microelectroquímica de acetato de cobre
Sintesis microquímica y microelectroquímica de acetato de cobreangelo26_
 
Química inorgánica medicinal, vanadio, platino, oro
Química inorgánica medicinal, vanadio, platino, oroQuímica inorgánica medicinal, vanadio, platino, oro
Química inorgánica medicinal, vanadio, platino, oroangelo26_
 
Ejercicio sintesis microquímica y microelectroquímica de acetato de cobre act...
Ejercicio sintesis microquímica y microelectroquímica de acetato de cobre act...Ejercicio sintesis microquímica y microelectroquímica de acetato de cobre act...
Ejercicio sintesis microquímica y microelectroquímica de acetato de cobre act...angelo26_
 
Ejercicio química inorgánica medicinal, vanadio, platino, oro
Ejercicio química inorgánica medicinal, vanadio, platino, oroEjercicio química inorgánica medicinal, vanadio, platino, oro
Ejercicio química inorgánica medicinal, vanadio, platino, oroangelo26_
 
La incomprendida electronegatividad (trilogía) parte ii evolución en la cuant...
La incomprendida electronegatividad (trilogía) parte ii evolución en la cuant...La incomprendida electronegatividad (trilogía) parte ii evolución en la cuant...
La incomprendida electronegatividad (trilogía) parte ii evolución en la cuant...angelo26_
 
La incomprendible electronegatividad (trilogía) parte iii comprendiendo a la ...
La incomprendible electronegatividad (trilogía) parte iii comprendiendo a la ...La incomprendible electronegatividad (trilogía) parte iii comprendiendo a la ...
La incomprendible electronegatividad (trilogía) parte iii comprendiendo a la ...angelo26_
 
La incomprendible electronegatividad (trilogía) parte i el pensamiento en la ...
La incomprendible electronegatividad (trilogía) parte i el pensamiento en la ...La incomprendible electronegatividad (trilogía) parte i el pensamiento en la ...
La incomprendible electronegatividad (trilogía) parte i el pensamiento en la ...angelo26_
 

Más de angelo26_ (20)

Bio hidrogeno
Bio hidrogenoBio hidrogeno
Bio hidrogeno
 
Ejercicio: Biohidrogeno
Ejercicio: BiohidrogenoEjercicio: Biohidrogeno
Ejercicio: Biohidrogeno
 
Ejercicio: Ácidos y bases
Ejercicio: Ácidos y basesEjercicio: Ácidos y bases
Ejercicio: Ácidos y bases
 
Acidos y bases
Acidos y basesAcidos y bases
Acidos y bases
 
Ejercicio: Electroquimica
Ejercicio: ElectroquimicaEjercicio: Electroquimica
Ejercicio: Electroquimica
 
Electroquimica
ElectroquimicaElectroquimica
Electroquimica
 
Ejercicio producción de plástico parcialmente degradable con polietileno de a...
Ejercicio producción de plástico parcialmente degradable con polietileno de a...Ejercicio producción de plástico parcialmente degradable con polietileno de a...
Ejercicio producción de plástico parcialmente degradable con polietileno de a...
 
Producción de plástico parcialmente degradable con polietileno de alta densid...
Producción de plástico parcialmente degradable con polietileno de alta densid...Producción de plástico parcialmente degradable con polietileno de alta densid...
Producción de plástico parcialmente degradable con polietileno de alta densid...
 
Los supermateriales
Los supermaterialesLos supermateriales
Los supermateriales
 
Tabla periodica
Tabla periodicaTabla periodica
Tabla periodica
 
Ejercicio tabla periodica
Ejercicio tabla periodicaEjercicio tabla periodica
Ejercicio tabla periodica
 
Corriente eléctrica a partir de hidrógeno con celdas electroquimicas pág14
Corriente eléctrica a partir de hidrógeno con celdas electroquimicas pág14Corriente eléctrica a partir de hidrógeno con celdas electroquimicas pág14
Corriente eléctrica a partir de hidrógeno con celdas electroquimicas pág14
 
Ejercicio corriente eléctrica a partir de hidrógeno con celdas electroquimica...
Ejercicio corriente eléctrica a partir de hidrógeno con celdas electroquimica...Ejercicio corriente eléctrica a partir de hidrógeno con celdas electroquimica...
Ejercicio corriente eléctrica a partir de hidrógeno con celdas electroquimica...
 
Sintesis microquímica y microelectroquímica de acetato de cobre
Sintesis microquímica y microelectroquímica de acetato de cobreSintesis microquímica y microelectroquímica de acetato de cobre
Sintesis microquímica y microelectroquímica de acetato de cobre
 
Química inorgánica medicinal, vanadio, platino, oro
Química inorgánica medicinal, vanadio, platino, oroQuímica inorgánica medicinal, vanadio, platino, oro
Química inorgánica medicinal, vanadio, platino, oro
 
Ejercicio sintesis microquímica y microelectroquímica de acetato de cobre act...
Ejercicio sintesis microquímica y microelectroquímica de acetato de cobre act...Ejercicio sintesis microquímica y microelectroquímica de acetato de cobre act...
Ejercicio sintesis microquímica y microelectroquímica de acetato de cobre act...
 
Ejercicio química inorgánica medicinal, vanadio, platino, oro
Ejercicio química inorgánica medicinal, vanadio, platino, oroEjercicio química inorgánica medicinal, vanadio, platino, oro
Ejercicio química inorgánica medicinal, vanadio, platino, oro
 
La incomprendida electronegatividad (trilogía) parte ii evolución en la cuant...
La incomprendida electronegatividad (trilogía) parte ii evolución en la cuant...La incomprendida electronegatividad (trilogía) parte ii evolución en la cuant...
La incomprendida electronegatividad (trilogía) parte ii evolución en la cuant...
 
La incomprendible electronegatividad (trilogía) parte iii comprendiendo a la ...
La incomprendible electronegatividad (trilogía) parte iii comprendiendo a la ...La incomprendible electronegatividad (trilogía) parte iii comprendiendo a la ...
La incomprendible electronegatividad (trilogía) parte iii comprendiendo a la ...
 
La incomprendible electronegatividad (trilogía) parte i el pensamiento en la ...
La incomprendible electronegatividad (trilogía) parte i el pensamiento en la ...La incomprendible electronegatividad (trilogía) parte i el pensamiento en la ...
La incomprendible electronegatividad (trilogía) parte i el pensamiento en la ...
 

Último

PAE ARTITRIS- ENFERMERIA GERIATRICA.pptx
PAE ARTITRIS- ENFERMERIA GERIATRICA.pptxPAE ARTITRIS- ENFERMERIA GERIATRICA.pptx
PAE ARTITRIS- ENFERMERIA GERIATRICA.pptxrenegon1213
 
Woods, Thomas E. - Cómo la Iglesia construyó la Civilización Occidental [ocr]...
Woods, Thomas E. - Cómo la Iglesia construyó la Civilización Occidental [ocr]...Woods, Thomas E. - Cómo la Iglesia construyó la Civilización Occidental [ocr]...
Woods, Thomas E. - Cómo la Iglesia construyó la Civilización Occidental [ocr]...frank0071
 
Codigo rojo manejo y tratamient 2022.pptx
Codigo rojo manejo y tratamient 2022.pptxCodigo rojo manejo y tratamient 2022.pptx
Codigo rojo manejo y tratamient 2022.pptxSergioSanto4
 
Tema 1. Generalidades de Microbiologia Universidad de Oriente
Tema 1. Generalidades de Microbiologia Universidad de OrienteTema 1. Generalidades de Microbiologia Universidad de Oriente
Tema 1. Generalidades de Microbiologia Universidad de OrienteUnaLuzParaLasNacione
 
DESPOTISMO ILUSTRADOO - copia - copia - copia - copia.pdf
DESPOTISMO ILUSTRADOO - copia - copia - copia - copia.pdfDESPOTISMO ILUSTRADOO - copia - copia - copia - copia.pdf
DESPOTISMO ILUSTRADOO - copia - copia - copia - copia.pdfssuser6a4120
 
Glándulas Salivales.pptx................
Glándulas Salivales.pptx................Glándulas Salivales.pptx................
Glándulas Salivales.pptx................sebascarr467
 
Matemáticas Aplicadas usando Python
Matemáticas Aplicadas   usando    PythonMatemáticas Aplicadas   usando    Python
Matemáticas Aplicadas usando PythonErnesto Crespo
 
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)s.calleja
 
inspeccion del pescado.pdfMedicinaveteri
inspeccion del pescado.pdfMedicinaveteriinspeccion del pescado.pdfMedicinaveteri
inspeccion del pescado.pdfMedicinaveteriManrriquezLujanYasbe
 
Informe Aemet Tornados Sabado Santo Marchena Paradas
Informe Aemet Tornados Sabado Santo Marchena ParadasInforme Aemet Tornados Sabado Santo Marchena Paradas
Informe Aemet Tornados Sabado Santo Marchena ParadasRevista Saber Mas
 
Patologias del quiasma optico .pptxxxxxx
Patologias del quiasma optico .pptxxxxxxPatologias del quiasma optico .pptxxxxxx
Patologias del quiasma optico .pptxxxxxxFranciscaValentinaGa1
 
Harris, Marvin. - Caníbales y reyes. Los orígenes de la cultura [ocr] [1986].pdf
Harris, Marvin. - Caníbales y reyes. Los orígenes de la cultura [ocr] [1986].pdfHarris, Marvin. - Caníbales y reyes. Los orígenes de la cultura [ocr] [1986].pdf
Harris, Marvin. - Caníbales y reyes. Los orígenes de la cultura [ocr] [1986].pdffrank0071
 
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdfGribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdffrank0071
 
Mata, S. - Kriegsmarine. La flota de Hitler [2017].pdf
Mata, S. - Kriegsmarine. La flota de Hitler [2017].pdfMata, S. - Kriegsmarine. La flota de Hitler [2017].pdf
Mata, S. - Kriegsmarine. La flota de Hitler [2017].pdffrank0071
 
Diálisis peritoneal en los pacientes delicados de salud
Diálisis peritoneal en los pacientes delicados de saludDiálisis peritoneal en los pacientes delicados de salud
Diálisis peritoneal en los pacientes delicados de saludFernandoACamachoCher
 
Un repaso de los ensayos recientes de historia de la ciencia y la tecnología ...
Un repaso de los ensayos recientes de historia de la ciencia y la tecnología ...Un repaso de los ensayos recientes de historia de la ciencia y la tecnología ...
Un repaso de los ensayos recientes de historia de la ciencia y la tecnología ...Juan Carlos Fonseca Mata
 
Características emociones y sentimientos
Características emociones y sentimientosCaracterísticas emociones y sentimientos
Características emociones y sentimientosFiorelaMondragon
 
PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...
PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...
PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...ocanajuanpablo0
 
Holland, Tom - Milenio. El fin del mundo y el origen del cristianismo [2010].pdf
Holland, Tom - Milenio. El fin del mundo y el origen del cristianismo [2010].pdfHolland, Tom - Milenio. El fin del mundo y el origen del cristianismo [2010].pdf
Holland, Tom - Milenio. El fin del mundo y el origen del cristianismo [2010].pdffrank0071
 
cgm medicina interna clinica delgado.pdf
cgm medicina interna clinica delgado.pdfcgm medicina interna clinica delgado.pdf
cgm medicina interna clinica delgado.pdfSergioSanto4
 

Último (20)

PAE ARTITRIS- ENFERMERIA GERIATRICA.pptx
PAE ARTITRIS- ENFERMERIA GERIATRICA.pptxPAE ARTITRIS- ENFERMERIA GERIATRICA.pptx
PAE ARTITRIS- ENFERMERIA GERIATRICA.pptx
 
Woods, Thomas E. - Cómo la Iglesia construyó la Civilización Occidental [ocr]...
Woods, Thomas E. - Cómo la Iglesia construyó la Civilización Occidental [ocr]...Woods, Thomas E. - Cómo la Iglesia construyó la Civilización Occidental [ocr]...
Woods, Thomas E. - Cómo la Iglesia construyó la Civilización Occidental [ocr]...
 
Codigo rojo manejo y tratamient 2022.pptx
Codigo rojo manejo y tratamient 2022.pptxCodigo rojo manejo y tratamient 2022.pptx
Codigo rojo manejo y tratamient 2022.pptx
 
Tema 1. Generalidades de Microbiologia Universidad de Oriente
Tema 1. Generalidades de Microbiologia Universidad de OrienteTema 1. Generalidades de Microbiologia Universidad de Oriente
Tema 1. Generalidades de Microbiologia Universidad de Oriente
 
DESPOTISMO ILUSTRADOO - copia - copia - copia - copia.pdf
DESPOTISMO ILUSTRADOO - copia - copia - copia - copia.pdfDESPOTISMO ILUSTRADOO - copia - copia - copia - copia.pdf
DESPOTISMO ILUSTRADOO - copia - copia - copia - copia.pdf
 
Glándulas Salivales.pptx................
Glándulas Salivales.pptx................Glándulas Salivales.pptx................
Glándulas Salivales.pptx................
 
Matemáticas Aplicadas usando Python
Matemáticas Aplicadas   usando    PythonMatemáticas Aplicadas   usando    Python
Matemáticas Aplicadas usando Python
 
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)
 
inspeccion del pescado.pdfMedicinaveteri
inspeccion del pescado.pdfMedicinaveteriinspeccion del pescado.pdfMedicinaveteri
inspeccion del pescado.pdfMedicinaveteri
 
Informe Aemet Tornados Sabado Santo Marchena Paradas
Informe Aemet Tornados Sabado Santo Marchena ParadasInforme Aemet Tornados Sabado Santo Marchena Paradas
Informe Aemet Tornados Sabado Santo Marchena Paradas
 
Patologias del quiasma optico .pptxxxxxx
Patologias del quiasma optico .pptxxxxxxPatologias del quiasma optico .pptxxxxxx
Patologias del quiasma optico .pptxxxxxx
 
Harris, Marvin. - Caníbales y reyes. Los orígenes de la cultura [ocr] [1986].pdf
Harris, Marvin. - Caníbales y reyes. Los orígenes de la cultura [ocr] [1986].pdfHarris, Marvin. - Caníbales y reyes. Los orígenes de la cultura [ocr] [1986].pdf
Harris, Marvin. - Caníbales y reyes. Los orígenes de la cultura [ocr] [1986].pdf
 
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdfGribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
 
Mata, S. - Kriegsmarine. La flota de Hitler [2017].pdf
Mata, S. - Kriegsmarine. La flota de Hitler [2017].pdfMata, S. - Kriegsmarine. La flota de Hitler [2017].pdf
Mata, S. - Kriegsmarine. La flota de Hitler [2017].pdf
 
Diálisis peritoneal en los pacientes delicados de salud
Diálisis peritoneal en los pacientes delicados de saludDiálisis peritoneal en los pacientes delicados de salud
Diálisis peritoneal en los pacientes delicados de salud
 
Un repaso de los ensayos recientes de historia de la ciencia y la tecnología ...
Un repaso de los ensayos recientes de historia de la ciencia y la tecnología ...Un repaso de los ensayos recientes de historia de la ciencia y la tecnología ...
Un repaso de los ensayos recientes de historia de la ciencia y la tecnología ...
 
Características emociones y sentimientos
Características emociones y sentimientosCaracterísticas emociones y sentimientos
Características emociones y sentimientos
 
PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...
PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...
PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...
 
Holland, Tom - Milenio. El fin del mundo y el origen del cristianismo [2010].pdf
Holland, Tom - Milenio. El fin del mundo y el origen del cristianismo [2010].pdfHolland, Tom - Milenio. El fin del mundo y el origen del cristianismo [2010].pdf
Holland, Tom - Milenio. El fin del mundo y el origen del cristianismo [2010].pdf
 
cgm medicina interna clinica delgado.pdf
cgm medicina interna clinica delgado.pdfcgm medicina interna clinica delgado.pdf
cgm medicina interna clinica delgado.pdf
 

Cambios de estado

  • 1. investigación educativa educación química  •  abril de 2008 108 INVESTIGACIÓN EDUCATIVA Estudio exploratorio sobre la comprensión de los conceptos de evaporación, condensación y presión de vapor en estudiantes universitarios abstract  (Exploratory study on students’ conceptions of evaporation, condensation and vapor pressure) This study investigates students’ conceptions of evaporation, condensation and vapor pressure that are Physical Chemistry basic concepts. Chemical Engineer and Industrial Chemistry major students were questioned on three tasks that had been designed around these topics. Qualitative analysis of student responses according to Robson’s method showed a range of conceptions in each area, including some misconceptions. The implication in the teaching-learning process is that observation of physical chemistry phenomena is not enough. On the contrary, it is necessary to give time to students for reflection and to debate their hypothesis and conceptions. palabras clave  Conceptos fisicoquímicos, evaporación, condensación, presión de vapor Adolfo Obaya V., Yolanda Marina Vargas y Graciela Delgadillo G.1 Introducción La Ingeniería Química y la Química Industrial son profesio- nes en las cuales los fundamentos de ciencia son aplicados al diseño de procesos químicos. Durante sus estudios los estu- diantes de estas carreras aprenden las bases de Matemáticas, Química y Física para aplicarlas en un amplio intervalo de conceptos de Ingeniería. En este trabajo se revisan conceptos fisicoquímicos básicos como evaporación, condensación y presión de vapor, los cua- les son aplicados en Ingeniería Química. Hay evidencia (Cros, Chastrette y Fayol, 1998) que los es- tudiantes a menudo se esfuerzan por aprender Química y muchos de ellos no comprenden correctamente los conceptos fundamentales teniendo serias implicaciones en la enseñanza aprendizaje de tópicos de mayor nivel (Nakhleh, 1992). Resultados de trabajos de evaluación de conocimientos de Química desde la enseñanza secundaria hasta el ingreso al posgrado (Chamizo y Sosa, 2002; Chamizo, Nieto y Sosa, 2004) indican que los alumnos llegan a las carreras de Quími- ca sin dominar los conocimientos básicos de la disciplina y que, luego, la enseñanza de los conocimientos intermedios que se intenta proporcionar a nivel licenciatura no logra afian- zar los conocimientos básicos ni, en consecuencia, incorporar los intermedios. Una particular dificultad que los conceptos de Química presentan está en la necesidad de comprenderlos de forma macroscópica y microscópica y su relación (Stavy, 1990; Ta- ber, 2001; Talanquer, 2006; Stains y Talanquer, 2007) siendo esto pertinente para el tópico de cambio de fase, cuando co- existen líquido y vapor. Por ejemplo, para el concepto evaporación se requiere un alto grado de abstracción para su comprensión (Russell, Har- len y Watt, 1989; Bar y Galili, 1994; Johnson, 1998a; Tytler y Peterson, 2000; Taber, 2001; Tytler y Peterson, 2004; Cots¸u y­ Ayas, 2005), porque la evaporación es esencialmente un fe- nómeno “invisible” que acontece en el nivel microscópico con la sola evidencia de un decremento en el nivel de líquido a nivel macroscópico. Se ha reportado que inclusive algunos profesores no com- prenden claramente el concepto (Chang, 1999; Calik y Ayas, 2005; Canpolat, Pinarbasi y Sozbilir, 2006). El concepto de condensación tiene aun mayor dificultad de comprensión, dado lo difícil que resulta entender que va- por de agua y aire coexisten a nuestro alrededor, con objeto de explicar la formación visible de gotas de agua en una su- perficie (Johnson, 1998b; Bar y Travis, 1991, Gopal, Kleinsmi- dt, Case y Musonge, 2004). Además, a la condensación se le relaciona solamente con frío (Chang, 1999; Tyler, 2000; Canpolat, 2006). En cuanto al concepto de presión de vapor se le confunde generalmente con el concepto de presión atmosférica (Hwang y Hwang, 1990; Fassoulopoulos, Kariotoglou y Koumaras, 2003). El objetivo de este trabajo es investigar la comprensión de los conceptos de evaporación, condensación y presión de va- por en estudiantes de las carreras de Ingeniería Química y Química Industrial, así como posibles concepciones alternati- vas de los mismos. Dichos conceptos son considerados básicos en el área de Fisicoquímica y se aplican en el diseño de proce- sos químicos. 1  FES-Cuautitlán UNAM. Campo 1. Correo electrónico: obaya@servidor.unam.mx Recibido: 11 de octubre de 2006; aceptado: 18 de septiembre de 2007.
  • 2. abril de 2008  •  educación química investigación educativa 109 Metodología La muestra consistió en 42 estudiantes (62% hombres y 38% mujeres) de las dos carreras mencionadas que son del área científico-tecnológica y con enfoque similar hacia la industria. Los alumnos encuestados tienen una edad promedio de 21 años y estudian el cuarto semestre en la Facultad de Estudios Superiores Cuautitlán de la UNAM, en México. Los estudiantes del cuarto semestre de ambas carreras ya cursaron el curso de Fisicoquímica Básica donde se revisaron los conceptos de evaporación, condensación y presión de va- por, por lo que se espera que los estudiantes no sólo compren- dan dichos conceptos sino que también puedan aplicarlos. Se explicó a los estudiantes que no se trataba de examinarlos, por lo que se les pidió su colaboración en esta investigación. El cuestionario que se aplicó se respondió en forma anóni- ma en un tiempo de máximo de 30 minutos, en los horarios de clase correspondientes en asignaturas diferentes a Fisico- química. El cuestionario consta de tres actividades de carácter di- dáctico con preguntas abiertas (cuadro 1). Se basa en un tra- bajo de Johnson (1998a), relacionada con el concepto de eva- poración. La segunda actividad está basada en un trabajo de Chang (1999) relacionada con el concepto de condensación y la tercera actividad fue formulada por los autores para probar el concepto de presión de vapor. Los datos fueron analizados cualitativamente de acuerdo con el método de Robson (1993) conocido como código de distribuciones.Todas las respuestas fueron revisadas, categori- zadas y codificadas en función del nivel de comprensión que el estudiante mostró en la respuesta de las preguntas. Con el objeto de contrastar las respuestas y poder clasifi- carlas adecuadamente el cuestionario se aplicó también a tres profesores de Fisicoquímica, con grado de doctor en el área y una experiencia docente mayor de cinco años. Las categorías fueron finalmente verificadas mediante discusión entre los autores. Resultados Los estudiantes tuvieron la oportunidad de resolver proble- mas de nivel conceptual sin el uso de cálculos avanzados, al resolver el cuestionario (cuadro 1), lo que permitió establecer la comprensión básica de dichos conceptos. Con el fin de identificar y analizar las diferentes respuestas al cuestionario éstas se categorizaron en torno de los procesos Cuadro 1. Cuestionario aplicado sobre evaporación, condensación y presión vapor RESPONDE A LAS PREGUNTAS DE CADA UNA DE LAS ACTIVIDADES PROPUESTAS. Actividad A Un recipiente con agua se encuentra sobre una mesa de laboratorio, la temperatura del agua del recipiente, así como la temperatura ambiente en el laboratorio, es de 25°C (figura 1). 1. ¿Qué pasaría con el nivel de agua después de que pasa el tiempo? 2. ¿Qué entiendes por evaporación? Actividad B Un recipiente con agua con una cubierta de plástico transparente se encuentra sobre una mesa de laboratorio. La temperatura del agua del recipiente, así como la temperatura ambiente en el laboratorio, es de 25°C (figura 2). 3. ¿Qué pasaría con el nivel de agua después de que pasa el tiempo? 4. ¿Qué se observaría en la parte superior de la cubierta transparente después de que pasa el tiempo? 5. ¿Como sería la presión en el interior de la cubierta transparente después de que pasa el tiempo? Actividad C Las presiones de vapor de acetona y agua son 30.6 y 3.17 kPa respectivamente a 25ºC. 6. Si en dos recipientes tipo actividad A, uno tuviera acetona y el otro agua, ¿qué se esperaría con el nivel de ambos líquidos después de que pasa el tiempo? 7. ¿Qué entiendes por presión de vapor?
  • 3. investigación educativa educación química  •  abril de 2008 110 de evaporación, condensación y presión de vapor (diagrama 1, diagrama 2, diagrama 3). El criterio para establecer estas categorías y su codificación fue diferenciar entre las explicaciones dadas por los estudian- tes desde una descripción simple y superficial como un cam- bio de fase de naturaleza macroscópica hasta una descripción en términos de partículas mencionando colisiones e involu- crando el concepto de energía. Las categorías y su codificación ayudan a identificar las tendencias entre los estudiantes en relación con la respuesta científicamente aceptada. Lo deseable a este nivel de sus es­ tudios es que los estudiantes empleen la teoría cinética cor- puscular al dar sus explicaciones. La teoría cinética corpuscular es una primera explicación de la materia. Está relacionada con todos los conceptos que se estudian en química. Se considera que para entender el resto de la química o los conocimientos propios de la química es indispensable haber comprendido cabalmente las ideas cen- trales de este modelo. Las respuestas de los expertos en relación con los concep- tos investigados siempre involucraron descripciones funda- mentadas en la teoría cinética corpuscular involucrando coli- siones, cambios en la energía cinética para la evaporación, la condensación y la presión de vapor. Fueron descripciones ba- sadas en los conceptos científicamente aceptados, mismos que nos sirvieron para categorizar y codificar las respuestas dadas por los estudiantes encuestados. Algunos ejemplos de respuestas proporcionadas por los estudiantes en relación con la evaporación son: “Evaporación es agua pasando de líquido a la fase vapor.” “Evaporación es el punto de temperatura cuando un líqui- do pasa a vapor.” “Evaporación es cambio del estado de la materia de líquido a gaseoso por efecto de la temperatura.” “Evaporación es cuando el agua pasa de líquido a vapor por una elevación de temperatura incrementando el choque de las moléculas.” La mayoría de los estudiantes dio una definición superfi- cial de evaporación: el 72% de los estudiantes encuestados usaron términos macroscópicos para describir la evaporación (diagrama 1). Esto puede implicar que entre los estudiantes universita- rios la teoría cinética corpuscular no es vista como una herra- mienta para desarrollar a profundidad la comprensión de los Evap 1 La evaporación es simplemente descrita como un cambio de fase de vapor a líquido (macroscópica) Evap 2 La evaporación descrita en términos de partículas incluyendo energía cinética (macroscópica) Diagrama 1. Categorías de las respuestas relacionadas al nivel de comprensión de la evaporación. Evap 1 Evap 2 Pvap 1 Definición completamente incorrecta de presión de vapor. Pvap 2 Definición parcialmente correcta. Pvap 3 Definición de presión de vapor útil basada en experiencia previa. Pvap 4 Definición correcta de presión de vapor. Diagrama 3. Categorías de las respuestas relacionadas con presión de vapor. Pvap 1 Pvap 4 Pvap 3 Pvap 2 Cond 1 La condensación es superficialmente descrita como un cambio de fase de vapor a líquido (macroscópica) Cond 2 La condensación es superficialmente descrita como un cambio de fase de vapor a líquido (macroscópica) Diagrama 2. Categorías de las respuestas relacionadas al nivel de comprensión de la condensación. Cond 1 Cond 2
  • 4. abril de 2008  •  educación química investigación educativa 111 fenómenos naturales y está contextualizada como un concep- to fisicoquímico para ser aprendido para los exámenes y des- pués ser olvidado. En relación con la evaporación, la categorización y codifi- cación de las respuestas permitió establecer concepciones al- ternativas relacionadas con dicho proceso (tabla 1). La más común es que los estudiantes creen que un gradiente de tem- peratura es requerido para iniciar el proceso de evaporación. Es decir que una diferencia de temperatura debe existir entre el agua en el recipiente y los alrededores. Los estudiantes con esta concepción alternativa creen que el nivel de agua no cambiará porque el sistema está a temperatura ambiente o bien porque no existe gradiente de temperatura. Ejemplos de respuestas proporcionadas por los estudiantes en relación con lo anterior son: “Si la temperatura es constante el nivel del agua no disminuirá.” “Si el laboratorio y el recipiente están a la misma tempera- tura no hay transferencia de energía, por lo tanto no habrá cambio de fase.” En relación con el proceso de condensación, la categoriza- ción y codificación de las respuestas se presenta en el diagra- ma 2. Se esperaría que los estudiantes fueran capaces de apli- car la teoría cinética corpuscular para explicar el proceso de condensación. Sólo el 7% de la muestra encuestada dio una respuesta que involucrara una comprensión microscópica del concepto de condensación. Al igual que en la evaporación la concepción alternativa más común se relaciona con la existencia de un gradiente de temperatura, aun cuando en la pregunta relacio- nada con el proceso de condensación se establece que la tem- peratura de 25°C es constante. Un estudiante fue más allá al explicar que el agua necesitaba calentarse a más de 25°C y que el recipiente debía ser enfriado a menos de 25°C para justificar la evaporación y la condensación. Algunos estudiantes no pudieron predecir qué pasaría con la presión cuando pasa el tiempo en el sistema cerrado. En vez de usar la teoría cinética para explicar el incremento de la presión al equilibrio, optaron por conceptos de nivel medio superior como que la presión fue inversamente proporcional al volumen cuando la cubierta transparente fue colocada para cerrar el sistema. Ejemplos de respuestas proporcionadas por los estudiantes en relación con esto son: “La presión con el paso del tiempo sería la misma.” “Cuando pasa el tiempo la presión en el recipiente tapado aumenta ya que el volumen de agua disminuye.” Otros estudiantes creen que la presión debería incrementar- se debido a la reducción en el volumen cuando la tapa es colo- cada en la botella o la cubierta es puesta sobre el recipiente, y no ven que cualquier incremento en la presión debería ser atri- buido al incremento en moléculas de agua en la fase vapor. En cuanto a la condensación, se observa con base en los resultados que la concepción alternativa que presenta la ma- yoría de los estudiantes es necesitar una superficie fría o un gradiente de temperatura negativo para explicar la condensa- ción. Esto puede deberse al tipo de demostraciones usadas para describirla, así como a las explicaciones que dan los li- bros de texto en torno de ello. Algunos autores señalan que los estudiantes consideran que algo la causa (Chang, 1999; Jeevaratnam, 2000). En la actividad C del cuestionario relacionada con presión de vapor, se esperaría que la mayoría de los estudiantes res- pondieran que la acetona se evaporaría más rápido que el agua, ya que tiene mayor presión de vapor a la misma tempe- ratura. La categorización y codificación de las respuestas se presenta en el diagrama 3. Para su resolución sólo el 7% de la muestra usó su experiencia previa para resolver la actividad, en cuanto a las propiedades de la acetona como disolvente y su volatilidad, y no propiamente con los datos de las presiones de vapor. Con relación al concepto presión de vapor, la mayoría de los estudiantes no tiene una buena idea de lo que significa; sólo 12% de la muestra encuestada dio una definición formal de presión de vapor. Los resultados indican que la evidencia física por sí sola no puede generar un cambio conceptual completo desde con- cepciones alternativas pero puede definitivamente ser vista como una herramienta complementaria que se añade a este proceso. Recomendaciones Con el fin de precisar, acotar, redefinir conceptos vistos en clase y evitar en lo posible concepciones alternativas de los Tabla 1. Concepciones alternativas asociadas con la evaporación Código Descripción Evap CA Concepción alternativa que la evaporación requiere de un gradiente de temperatura. Evap SC Concepción alternativa que la evaporación solamente ocurre en un sistema cerrado. Tabla 2. Concepciones alternativas asociadas con la condensación. Código Descripción Cond CA Concepción alternativa que la condensación requiere de un gradiente de temperatura. Cond SC Concepción alternativa que la condensación solamente ocurre en un sistema cerrado.
  • 5. investigación educativa educación química  •  abril de 2008 112 alumnos, recomendamos las denominadas sesiones de discu- sión como estrategia de instrucción. Los estudiantes logran una mejor comprensión de los conceptos revisados después de participar en una estrategia de instrucción que los motivó a explicar sus conceptos (Obaya, 2004). Las entrevistas ilustran qué tan arraigadas están las con- cepciones de los estudiantes que interfieren con el aprendiza- je y cómo las sesiones de discusión los habilitan para razonar mejor y poder explicar sus propias ideas en relación con los conceptos vistos en clase, ya que los estudiantes al explicar sus ideas, clarifican y reorganizan su conocimiento permitien- do además descubrir y corregir sus inconsistencias sobre el tema estudiado (Obaya, 2004). El aprendizaje enciclopedista ya no es procedente en las  condiciones actuales, según la propia percepción de los estudiantes. Por otra parte, la importancia otorgada a escuchar con atención a los estudiantes puede ser reveladora de que la clase magistral o la exposición oral del profesor, que sigue siendo usual como vehículo de enseñanza de la Fisicoquímica, ya no es la más aconsejable en todos los casos para propiciar el aprendizaje. Conclusiones En general, nuestros resultados refuerzan algunas conclusio- nes de estudios previos sobre el tema investigado. Con base en la muestra estudiada, la mayoría de los estu- diantes encuestados tiene una comprensión inadecuada de los conceptos de evaporación, condensación y presión de vapor que son conceptos básicos de Fisicoquímica, que confirma lo reportado por Johnson (1998a) mostrando una comprensión superficial de los conceptos. Una concepción alternativa que se identificó es que, para la mayoría de los estudiantes, para los conceptos de evaporación y condensación se requiere un gradiente de temperatura (Chang, 1999). Otra concepción alternativa encontrada y reportada ante- riormente por Johnson (1998b), se relaciona con el hecho de que sólo ocurren en sistemas cerrados (tablas 1 y 2). Aunque sólo el 12% de los estudiantes encuestados esta- blecieron en forma correcta el concepto de presión de vapor, la mayoría de ellos puede hacer uso de datos y de evidencia física. Se corroboró la dificultad que tienen los estudiantes de comprender en forma simultánea lo macroscópico y lo mi- croscópico, así como su relación, al igual que la abstracción de ciertos conceptos básicos en el área de Fisicoquímica (Taber, 2001; Talanquer, 2006). Los estudiantes tienen dificultad para entender el abstrac- to e inobservable mundo microscópico y las representaciones simbólicas de sustancias y procesos (Chamizo, Nieto y Sosa, 2004; Stains y Talanquer, 2007) cuando se les pide que pien- sen como científicos. Conceptos básicos de Fisicoquímica (como los aquí inves- tigados) no llegan a ser plenamente comprendidos ni mucho menos dominados; se construye en los distintos niveles sobre cimientos frágiles e inestables que no permiten un aprendiza- je íntegro de la disciplina. Sobra decir que éste puede ser un factor importante en los resultados pobres que tradicional- mente muestra la enseñanza de la Fisicoquímica. Cuando los alumnos aprenden “mal” un concepto es muy difícil revertir ese aprendizaje posteriormente. Las implicaciones para la práctica docente son que los es- tudiantes necesitan no solamente de experiencia y observar fenómenos fisicoquímicos básicos en el laboratorio sino tam- bién debe dárseles tiempo para reflexionar y cuestionar sus propias hipótesis y concepciones, estableciendo un diálogo con sus profesores. Los resultados de este estudio exploratorio sobre los con- ceptos de evaporación, condensación y presión de vapor en estudiantes universitarios pueden ayudar a los profesores de Fisicoquímica a identificar, comprender y aun explicarse las posibles concepciones alternativas que sus estudiantes pudie- ran tener sobre los conceptos aquí investigados. Bibliografía Bar, V. y Galili, I. Stages of children’s views about evapora- tion,International Journal of Science Education,16,157-174, 1994. Bar, V. y Travis, S. Children’s views concerning phase changes, Journal of Research in Science Teaching, 28(4) 363-382, 1991. Calik, M. y Ayas,A.A comparison of level of understanding of eight-students and science student teachers related to se- lected chemistry concepts, Journal of Research in Science Teaching, 42(6) 638-667, 2005. Canpolat, N. Turkish undergraduates’ misconceptions of evap- oration, evaporation rate, and vapour pressure, Internation- al Journal of Science Education, 28(15) 1757-1770, 2006. Canpolat, N. Pinarbasi, T. y Sozbilir, M. Prospective teachers’ misconceptions of vaporization and vapor pressure, Jour- nal of Chemical Education, 83(8) 1237-1242, 2006. Chamizo, J.A., Nieto, E. y Sosa, P. La enseñanza de la Quími- ca. Tercera parte. Ev de los conocimientos de química desde secundaria hasta licenciatura, Educ. quím., 15(2) 108-112, 2004. Chamizo, J.A. y Sosa, P. La enseñanza de la Química. Segunda parte. El ingreso al posgrado, Educ. quím., 13(4) 254-258, 2002. Chang, J. Teachers college students’ conceptions about evap- oration,condensation,and boiling,Science Education, 83(5) 511-526, 1999. Cots¸u, B. y Ayas, A. Evaporation in different liquids: second- ary students conceptions, Research in Science & Technologi- cal Education, 23(1) 75-97, 2005. Cros, D., Chastrette, M. y Fayol, M. Conceptions of second year university students of some fundamental notions in chemistry, International Journal of Science Education, 10(3) 331-336, 1998. Fassoulopoulos, G. Kariotoglou, P. y Koumaras, P. Consistent and inconsistent pupils’reasoning about intensive quanti-
  • 6. abril de 2008  •  educación química investigación educativa 113 ties: The case of density and pressure, Research in Science Education, 33(1) 71-87, 2003. Gopal, H., Kleinsmidt, J., Case, J. y Musonge, P. An investiga- tion of tertiary students understanding of evaporation, condensation and vapour pressure, International Journal of Science Education 26(13) 1597-1620, 2004. Hwang, B. y Hwang, H. A study of cognitive development of the concepts of solution. Research report sponsored by the Na- tional Science Council, R.O.C. Taipei, Taiwan, 1990. Jeevaratnam, E., Msiza, A., Case, J. y Fraser, D. Understanding of energy by first year students. Proceedings of the 3rd Working Conference on Engineering Education for the 21st Century, Sheffield Hallam University, Sheffield, 117-122, 2000. Johnson, P. Children’s understanding of changes of state in- volving the gas state, Part 1: Boiling water and the particle theory, International Journal of Science Education, 20(6) 567-583, 1998a. Johnson, P. Children’s understanding of changes of state in- volving the gas state, Part 2: Evaporation and condensation below boiling point, International Journal of Science Educa- tion, 20(6) 695-709, 1998b. Nakhleh, M. Why some students don´t learn chemistry, Jour- nal of Chemical Education, 69(3) 191-196, 1992. Obaya, A. Cambio de energía libre y espontaneidad a través de las explicaciones de los estudiantes e integración de sus ideas, Educ. quim., 15(4) 436-440, 2004. Robson, C. Real World Research: A Resource for Social Scien- tists and Practitioner-Researchers. Oxford: Blackwell, 1993. Russell, T. Harlen, W. y Watt, D. Children’s ideas about evap- oration, International Journal of Science Education, 11, 566-576, 1989. Stains, M. y Talanquer, V. Classification of Chemical Sub- stances using Particulate Representations of Matter: An analysis of student thinking, International Journal of Science Education, 29(5) 643-661, 2007. Stavy, R. Children’s conception of changes in the state of matter: from liquid (or solid) to gas, Journal of Science Edu- cation, 11, 566-576, 1990. Taber, K. Building the structural concepts of chemistry: some considerations from educational research, Chemistry Edu- cation: Research and Practice in Europe, 2(2) 123-158, 2001. Talanquer, V. Common sense chemistry: A model for under- standing students alternative conceptions, Journal of Chem- ical Education, 83(5) 811-816, 2006. Tytler, R.A comparison of year 1 and year 6 students’ concep- tions of evaporation and condensation: dimensions of con- ceptual progression, International Journal of Science Educa- tion, 22(5) 447-467, 2000. Tytler, R. y Peterson, S. Deconstructing learning in science: Young children’s responses to a classroom sequence on evaporation, Research in Science Education, 30(4) 339-355, 2000. Tytler, R. y Peterson, S. Young children learning about evapo- ration: Insights from a longitudinal study, Canadian Jour- nal of Science, Mathematics & Technological Education, 4(1) 111-126, 2004. Gracias a la DGAPA-UNAM PAPIME PE2004406 Educación Química agradece a la Dirección General de Asuntos del Personal Académico de la Universidad Nacional Autónoma de México el apoyo otorgado, que fue utilizado parcialmente para la construcción de esta nueva página para la venta electrónica de la revista, a través del Proyecto PAPIME PE2004406, denominado ‘El vigésimo aniversario de la revista Educación Química’.