SlideShare ist ein Scribd-Unternehmen logo
1 von 65
Downloaden Sie, um offline zu lesen
Immunodefisiensi
(HIV sebagai Role Model)

Ricky Herlianto
Jopi Chandra Sindhutomo
Jason Julianus
Alfredo Bambang

(2012-060-152)
(2012-060-153)
(2012-060-172)
(2012-060-193)
Definisi
• Penyakit immunodefisiensi didefinisikan
sebagai kegagalan, kerusakan atau
kemunduran fungsi dari satu atau lebih
komponen dalam sistem imun yang pada
akhirnya dapat menyebabkan penyakit
atau kelainan yang serius
Jenis Immunodefisiensi






Secara umum terdapat 2 jenis immunodefisiensi
immunodefisiensi primer (congenital)
Immunodefisiensi sekunder (didapat / acquired)
Immunodefisiensi baik primer maupun sekunder
dapat meningkatkan kerentanan terhadap infeksi,
terkena kanker dan juga dapat mencetuskan
penyakit autoimun.
Immunodefisiensi Primer




Penyakit immunodefisiensi primer disebabkan
karena adanya kelainan genetik
Ada berbagai jenis kelainan immunodefisiensi
primer, contohnya
 kelainan

pada sistem imun innate
 defisiensi antibody
 defisiensi sel T
Terapi





Transplantasi antibody, sumsum tulang atau stem
cell
enzyme replacement.
Saat ini juga berkembang gene therapy dengan
menggunakan virus yang telah dimodifikasi.(1)(5)
Immunodefisiensi Sekunder
HIV/AIDS
Pendahuluan




HIV termasuk dalam keluarga lentivirus, dan
merupakan suatu retrovirus.(2)
Salah satu karakteristik unik dari lentivirus adalah
kemampuannya untuk menyebabkan efek sitopatik
dalam jangka pendek, dan infeksi yang latent
dalam jangka panjang
Pendahuluan




Terdapat dua tipe virus HIV, yaitu HIV-1 dan HIV-2.
HIV-1 paling banyak menyebabkan AIDS. HIV-2
menyebabkan AIDS yang progresinya lebih
lambat.(1)
Pendahuluan




Menurut penelitian, HIV-1 kemungkinan berasal
dari virus yang menyerang simpanse
(Pantroglodytes), yang banyak terdapat di Afrika
Pusat.
Di sisi lain, HIV-2, dengan gen 40-60% homolog
dengan HIV-1, datang dari sooty mangabey
(Cercocebus atys), yang banyak terdapat di Africa
Barat dari Senegal sampai Pantai Gading
Filogenetik HIV
A phylogenetic tree based on
the complete genomes of
primate immunodeficiency
viruses. The scale (0.10)
indicates a 10% difference at
the nucleotide level.
Epidemiologi HIV
Struktur HIV
Genom HIV
Mekanisme Masuknya HIV dan
Siklus Kehidupan HIV
Tahapan Infeksi HIV
Infeksi HIV




Infeksi HIV dibagi menjadi tiga fase, yaitu
infeksi awal atau akut
 Pada

infeksi akut, infeksi terjadi di jaringan mukosa,
yang merupakan reservoir untuk sel T dan tempat
dimana sebagian besar sel T memori berdiam. Dalam
2 minggu, jumlah sel T CD4 berkurang drastis.(1)(5)





transisi dari infeksi akut ke infeksi kronis
infeksi lanjutan atau kronis
Fase Transisi






Fase transisi dimulai dengan sel dendritik yang
memfagosit virus dan membawanya ke nodus
limfatikus. Di nodus limfatikus, sel dendritik
mentransfer virus HIV kepada sel T CD4.
Fase transisi diakhiri dengan bekerjanya sistem imun
humoral dan selular, yang menyebabkan jumlah
virus di plasma berkurang dalam waktu 12 minggu
menjadi jauh lebih rendah (berakhirnya viremia).
Selama fase transisi, ada kemungkinan terjadi
peningkatan jumlah sel T CD4 karena diferensiasi
dari progenitor.(1)
Fase Infeksi Kronis dan Clinical Latency




Pada fase infeksi kronis, penderita asimptomatik
atau hanya mendapat gejala ringan. Hal ini karena
jumlah virus HIV di plasma menurun secara drastis
Fase clinical latency dapat berlangsung selama
bertahun-tahun. Dengan berjalannya waktu,
penderita juga akan menjadi lebih mudah terinfeksi
penyakit karena berkurangnya sel T CD4 secara
bertahap
Pathogenesis HIV
Untuk lebih
jelasnya,
gambarnya dapat
dilihat di file pdf
asli poster nature
reviews
immunology
*dilampirkan
pada slide paling
akhir (slide versi
PDF)
Awal


Infeksi HIV dimulai dari penerobosan virus melewati
sawar mukosa (mucosal barrier)
 melewati

celah antar sel
 melalui mikroabrasi atau sobekan pada epitel
 mekanisme transcytosis


Sel dendritik juga memegang peranan penting
dalam penerobosan virus melewati sawar mukosa
Infeksi Makrofag






Selain sel T CD4, terdapat juga sel-sel lain yang
juga diinfeksi oleh virus HIV seperti makrofag, sel
dendritik, dan sel folikular dendritik
Makrofag memiliki kadar CD4 yang rendah, tetapi
memiliki banyak proteoglikan heparan sulfat yang
disebut syndecan pada permukaannya
Syndecan juga dapat memediasi absorpsi virus HIV
dengan menempel ke gp120
Infeksi sel Dendritic




Sel dendritik memiliki kadar CD4, CXCR4, dan
CCR5 yang lebih rendah dari sel T CD4, sehingga
tidak terlalu rentan terhadap virus HIV
sel dendritik memiliki DC-SIGN pada
permukaannya yang berfungsi untuk
mengagregasikan virus pada permukaan, sehingga
saat berkontak dengan sel T CD4, virus HIV dapat
dengan mudah berpindah
• Sel dendritik bertanggungjawab
untuk menginisiasi respon imun
adaptif terhadap virus di nodus
limfatikus. Lebih jauh lagi, sel
dendritik dapat mengaktifasi sel
NK dengan sekresi IL-12, IL-15
dan IL-18.
• Sel dendritik memiliki SAMHD1
dan APOBEC3G yang dapat
menginhibisi replikasi virus HIV,
tetapi interaksi dari capsid HIV
dengan cyclophilin (CYPA) di sel
dendritik dapat menginduksi
terbentuknya interferon tipe 1
yang bersifat antiviral melalui
cryptic cytoplasmic sensor
Sel T




+
CD4

sebagai reservoir virus

infeksi dapat menyebabkan sel T CD4 menjadi
berhenti berproliferasi dan tidak aktif.
Dalam kondisi seperti itu, sel T CD4 disebut sebagai
latent reservoir, dan memiliki masa hidup yang
sangat panjang, dengan waktu paruh 44 bulan,
bahkan setelah 7 tahun penderita menjalani supresi
replikasi virus.(8)
Transmisi Virus HIV






Transmisi HIV dapat melalui berbagai cara. Cara
yang paling umum adalah melalui kontak seksual,
baik pada lawan jenis ataupun sesama jenis.
HIV pada anak-anak paling banyak ditransfer dari
ibunya, baik saat didalam rahim, saat melahirkan,
ataupun saat menyusui anaknya.
Metode lain yang juga sering terjadi adalah
pemakaian jarum suntik secara bersama-sama. (1)
Terapi
•

•
•
•
•
•

•
•
•

REFERENSI
Abbas AK, Lichtman AH, Pillai S. Cellular and Molecular immunology. 7th

1.
Edition. United States of America: Elsevier; 2012.
2. Longo D, Fauci A, Kasper D, Hauser S, Jameson J, Localzo J. Harrison’s
Principles of Internal Medicine. 18th edition. New York: McGrawHill; 2012.
3. Arason G, Jorgensen G, Ludviksson B. Primary Immunodeficiency and
Autoimmunity: Lessons From Human Diseases. Scand J Immunol. 2010;71:317–28.
4. Ballow M. Primary immunodeficiency disorders: Antibody deficiency. J Allergy
Clin Immunol. 2002 Apr;109(4):581–91.
5. Rich RR, Fleisher TA, Shearer WT, Schroeder HW, Frew AJ, Weyand CM. Clinical
Immunology Principles and Practice. 3rd edition. China: Elsevier; 2008.
6. Bhardwaj N, Hladik F, Moir S. The immune response to HIV. 2012 [cited 2013
Sep 2]; Available from:
http://web2.mendelu.cz/af_239_nanotech/data/up/mats/nri1201_hiv_references.
pdf
7. Levy JA. HIV pathogenesis: 25 years of progress and persistent challenges:
AIDS. 2009 Jan;23(2):147–60.
8. Stebbing J, Gazzard B, Douek DC. Where Does HIV Live? N Engl J Med.
2004;350(18):1872–80.
9. http://www.nature.com/nri/posters/hiv
Thank You
For Your
Attention
Supplement to Nature Publishing Group

The immune response to HIV
Nina Bhardwaj, Florian Hladik and Susan Moir
Since HIV was discovered as the causative agent of
AIDS almost 30 years ago, HIV infection has become
a devastating pandemic, with millions of individuals
becoming infected and dying from HIV-related
disease every year. A global research effort over the
past three decades has discovered more about HIV
than perhaps any other pathogen. Immunologists
continue to be intrigued by the capacity of HIV to
effectively knock out an essential component of the

IMMUNOLOGY
Breaching the mucosal barrier

Donor virus population
Stratified
squamous
epithelium

Vagina or ectocervix

Inserted
HIV genome

Endocervix

HIV virion
Infected
intraepithelial
CD4+ T cell

Impermeable
tight junctions
between cells

CD1a+
Langerhans cell

Langerin

Advanced disease

HIV penetration and infection
A few hours

Increased number of immature
transitional B cells

CCR5
HIV uptake by
DC-SIGN blocks
DC maturation

APOBEC3G

Conventional DC

Lack of
effective
antiviral
immunity

CD8+ T cell
response
1 week
NK cell

Type I
IFNs

NK cell
activation

Draining
lymphatic vessels

Early infection

CD8
T cell

+

HIV-specific B cell
and antibody
response

TCR

MHC
class I

Follicular
B cell

Clonal expansion
of HIV-specific
CD8+ T cells

IL-10

HIV-bearing
DC

TReg cell

Activated
mature
B cell

Increased B cell
apoptosis and
GC destruction

Inadequate
CD4+ T cell
help

Exhausted
memory
B cell

Increased in
association with
HIV viraemia

Follicular DC

Decreased number of
resting memory B cells
and splenic marginal
zone B cells

Inadequate
CD4+ T cell
help

T cell
zone

Medulla

Follicular
hyperplasia

Short-lived
plasmablast

B cell follicle

Decreased
class-switch
recombination
(Nef-mediated)
Paucity of HIVspecific IgA at
mucosal sites

Increased turnover
and polyclonal
activation of B cells

TFH cell
MHC
class II

Naive
mature
B cell

Immune activation
(pro-inflammatory
cytokines)

Subcapsular
sinus macrophage

CD4+
T cell

CTLA4

Infected
memory T cell

HIV virions and
HIV-bearing cells

CD8
T cell

Inhibition of
viral replication

Decreased
response to
antigens

Amplification in draining lymph nodes

+

IL-12,
IL-15,
IL-18

pDC

CD4+

HIV-bearing
stromal DC

TRIM5
CYPA

Chronic infection

Local amplification
of initial founder
virus(es) in a single
focus of CD4+ T cells

Internalized
virion

DC dysfunction

SAMHD1

Type I
IFNs

IL-7

T cell-attracting
chemokines

DC-SIGN CD4

IL-10

CD4+ T cell
lymphopenia

Transcytosis
of HIV virions

Infected
CD4+ T cell

Subepithelial
DC

Stroma

CYPA and
TRIM5
recognize
HIV capsid

The B cell
response to HIV

Tear in the
mucosal
epithelium

Monocyte

SAMHD1 and
APOBEC3G
restrict HIV
replication

Columnar
epithelium

CD1a

The DC
response to HIV

HIV uptake by
langerin leads to
virus degradation

Scientists Helping Scientists™ | WWW.STEMCELL.COM

HIV-infected
donor cell

Lack of tight
junctions
between cells

Mucus
layer

adaptive immune system — CD4+ T helper cells. This
Poster summarizes how HIV establishes infection at
mucosal surfaces, the ensuing immune response to
the virus involving DCs, B cells and T cells, and how
HIV subverts this response to establish a chronic
infection. Based on a clearer understanding of HIV
infection and the response to it, the field has now
entered an era of renewed optimism for the
development of a successful vaccine.

Decreased
natural immunity
to secondary
pathogens

Hypergammaglobulinaemia

Poor antibody
response

CD4
IDO
Viral RNA
pDC

Systemic infection

2–4 weeks

TRAIL
TLR7
IFN-induced
T cell apoptosis

Few high-affinity broadly
neutralizing antibodies

Efferent lymphatic

TReg cell
differentiation
promoted by IDO

HIV reservoirs in gutassociated and other
lymphoid tissues

Weeks

Months
gp120

gp41

Years
gp41

gp120

Several
years gp120
CD4binding
site

The T cell response to HIV

T cell-attracting
chemokines

Galectin 9
TRAIL-induced
T cell apoptosis

TReg cell

• Non-neutralizing
• Lack of viral
control

Suppression
+
TIM3 of CD8 T cell
response

• Neutralizing, but
limited breadth
• Virus acquires
escape mutations

• Neutralizing with
wider breadth
• ~20% of infected
individuals

• Affinity matured,
broadly neutralizing
• ~1% of infected
individuals

HIV-specific
CD8+ T cell
Cytokines
and other
soluble
factors

Chemokine-mediated
recruitment of new
CD4+ T cells for HIV
to infect

TCR
MHC
class I

Viral
replication

Several
months

T cell-escape
mutations in HIV
• First Env and Nef
• Later Gag and Pol

Viral spread

Broadly neutralizing HIV-specific antibodies

• ↓ MHC class I binding
• ↓ TCR recognition
• ↓ Epitope processing

Several
years

Cell Isolation Solutions for HIV Research
From STEMCELL Technologies
STEMCELL Technologies offers a complete portfolio of fast and
easy cell isolation solutions for HIV research, allowing viable,
functional cells to be isolated from virtually any sample source for
use in cell-based models and assays. STEMCELL Technologies’
products are used by leading HIV research groups worldwide,
including the National Institute of Allergy and Infectious Disease
and the Ragon Institute.
• EasySep™ (www.EasySep.com) is a fast, easy and column-free
immunomagnetic cell separation system for isolating highly purified
immune cells in as little as 25 minutes. Cells are immediately ready
for downstream functional assays.

Name of
antibody
2G12

Perforin and
granzymes
Perforin
pore
Apoptosis
LAG3 TIM3 CTLA4

HIV-infected
CD4+ T cell

CD4+ T cell depletion
and immunodeficiency

PD1

Decreased T helper
cell function

CD8+ T cell response
insufficient to clear infection
• Chronic infection
• Repeated T cell activation

Upregulation of inhibitory
receptors on CD8+ T cells

• RoboSep™ (www.RoboSep.com) fully automates the immunomagnetic
cell isolation process, reducing hands-on time, minimizing human
exposure to potentially hazardous samples and eliminating crosscontamination, making it the method of choice for HIV research labs.
• RosetteSep™ (www.RosetteSep.com) is a unique immunodensitybased cell isolation system for one-step enrichment of untouched
human cells directly from whole blood during density gradient
centrifugation.
• SepMate™ (www.SepMate.com) allows hassle-free PBMC isolation in just
15 minutes. The SepMate™-50 tube contains a unique insert that prevents
mixing between the blood and density medium, allowing all density
gradient centrifugation steps to be carried out quickly and consistently.
To learn more about our specialized cell isolation products for
HIV research, or to request a sample or demonstration, visit
www.stemcell.com/HIV.

T cell exhaustion (loss
of effector function and
proliferative capacity)

Source or
approach
B cell
immortalization
Phage-display
library

Target on HIV

Properties

Carbohydrates on
gp120
CD4-binding site of
gp120

Unique heavy-chain
domain swap
IgG1 b12
Long heavy-chain
CDR3; heavy-chaindominant binding
2F5 and
B cell
Membrane-proximal
Autoreactive; bind host
4E10
immortalization external region of gp41 lipids
PG9 and
Large screen;
gp120 conformational Dependent on
PG16
cultured clone epitope in variable
quaternary structure;
loops (V1–V2)
long heavy-chain CDR3
VRC01 and Large screen;
CD4-binding site of
Highly mutated; mimic
NIH45-46 single-cell sort gp120
CD4 binding to gp120
PGT121
Large screen;
gp120 V3
Diverse, with
and
cultured clone carbohydratesimilarities to 2G12
PGT125
dependent epitope
10E8
Large screen;
Membrane-proximal
Binds cell-surface
cultured clone external region of gp41 epitopes

Abbreviations

Affiliations

APOBEC3G, apolipoprotein B mRNA editing, catalytic polypeptide-like 3G;
CCR5, CC-chemokine receptor 5; CDR3, complementarity-determining
region 3; CTLA4, cytotoxic T lymphocyte antigen 4; CYPA, cyclophilin A;
DC, dendritic cell; DC-SIGN, DC-specific ICAM3-grabbing nonintegrin; GC, germinal centre; IDO, indoleamine 2,3-dioxygenase;
IFN, interferon; IL, interleukin; LAG3, lymphocyte activation gene 3;
NK, natural killer; PD1, programmed cell death protein 1; PDC,
plasmacytoid DC; SAMHD1, SAM domain- and HD domain-containing
protein 1; TCR, T cell receptor; TFH cell, T follicular helper cell; TIM3,
T cell immunoglobulin domain- and mucin domain-containing protein 3;
TLR7, Toll-like receptor 7; TRAIL, TNF-related apoptosis-inducing ligand;
TReg cell, regulatory T cell; TRIM5, tripartite motif-containing protein 5.

Nina Bhardwaj is at the NYU Langone Medical Center, Smilow Research
Building, New York 10016, USA. e-mail: Nina.Bhardwaj@nyumc.org

Acknowledgements
N.B. thanks D. Frleta for his review and contributions to the poster.

© 2012 Macmillan Publishers Limited. All rights reserved

Florian Hladik is at the Department of OBGYN, University of Washington,
Seattle, Washington 98195, USA. e-mail: fhladik@fhcrc.org
Susan Moir is at the Laboratory of Immunoregulation, NIAID/NIH,
Bethesda, Maryland 20892, USA. e-mail: smoir@niaid.nih.gov
The authors declare no competing financial interests.
Edited by Kirsty Minton; copyedited by Isabel Woodman;
designed by Simon Bradbrook.
© 2012 Nature Publishing Group. All rights reserved.
http://www.nature.com/nri/posters/hiv
Supplementary text and further reading available online.

Weitere ähnliche Inhalte

Was ist angesagt?

Was ist angesagt? (20)

Pathology of hiv and hiv associated diseases
Pathology of hiv and hiv associated diseasesPathology of hiv and hiv associated diseases
Pathology of hiv and hiv associated diseases
 
A Review AIDS
A Review AIDSA Review AIDS
A Review AIDS
 
Medical micro
Medical microMedical micro
Medical micro
 
56947428 hiv-aids
56947428 hiv-aids56947428 hiv-aids
56947428 hiv-aids
 
HIV & AIDS- RAHUL SAHU
HIV & AIDS- RAHUL SAHUHIV & AIDS- RAHUL SAHU
HIV & AIDS- RAHUL SAHU
 
HIV (human immunodeficiency virus)
HIV (human immunodeficiency virus) HIV (human immunodeficiency virus)
HIV (human immunodeficiency virus)
 
Immune Response to HIV
Immune Response to HIVImmune Response to HIV
Immune Response to HIV
 
Pathogenesis Hiv Slide
Pathogenesis Hiv SlidePathogenesis Hiv Slide
Pathogenesis Hiv Slide
 
AIDS
AIDSAIDS
AIDS
 
Hiv vrus
Hiv vrus Hiv vrus
Hiv vrus
 
HIV Infection- A summary
HIV Infection- A summaryHIV Infection- A summary
HIV Infection- A summary
 
Aids
AidsAids
Aids
 
Oral Manifestation of Human Immunodeficiency Virus
Oral Manifestation of Human Immunodeficiency VirusOral Manifestation of Human Immunodeficiency Virus
Oral Manifestation of Human Immunodeficiency Virus
 
Structure of hiv virus/ dental implant courses
Structure of hiv virus/ dental implant coursesStructure of hiv virus/ dental implant courses
Structure of hiv virus/ dental implant courses
 
Hiv
HivHiv
Hiv
 
Aids
AidsAids
Aids
 
Aids an other immunodeficiencies.....
Aids an other immunodeficiencies.....Aids an other immunodeficiencies.....
Aids an other immunodeficiencies.....
 
Cryptococcal lung infections
Cryptococcal lung infectionsCryptococcal lung infections
Cryptococcal lung infections
 
Acquired immunodeficiency syndrome.pptx
Acquired immunodeficiency  syndrome.pptxAcquired immunodeficiency  syndrome.pptx
Acquired immunodeficiency syndrome.pptx
 
Herpes simplex virus
Herpes simplex virusHerpes simplex virus
Herpes simplex virus
 

Andere mochten auch

Terapi gen dengan target gen ccr5 untuk pencegahan hiv
Terapi gen dengan target gen ccr5 untuk pencegahan hivTerapi gen dengan target gen ccr5 untuk pencegahan hiv
Terapi gen dengan target gen ccr5 untuk pencegahan hivAlfredo Bambang
 
Sifat fisika dan kimia sel serta cara menganalisa sel
Sifat fisika dan kimia sel serta cara menganalisa selSifat fisika dan kimia sel serta cara menganalisa sel
Sifat fisika dan kimia sel serta cara menganalisa selAlfredo Bambang
 
Collage de la revolucion mexicana
Collage de la revolucion mexicanaCollage de la revolucion mexicana
Collage de la revolucion mexicanasanchezq
 
Struktur dan fungsi organel sel
Struktur dan fungsi organel selStruktur dan fungsi organel sel
Struktur dan fungsi organel selAlfredo Bambang
 

Andere mochten auch (8)

Terapi gen dengan target gen ccr5 untuk pencegahan hiv
Terapi gen dengan target gen ccr5 untuk pencegahan hivTerapi gen dengan target gen ccr5 untuk pencegahan hiv
Terapi gen dengan target gen ccr5 untuk pencegahan hiv
 
dengue fever management
dengue fever managementdengue fever management
dengue fever management
 
Sifat fisika dan kimia sel serta cara menganalisa sel
Sifat fisika dan kimia sel serta cara menganalisa selSifat fisika dan kimia sel serta cara menganalisa sel
Sifat fisika dan kimia sel serta cara menganalisa sel
 
Collage de la revolucion mexicana
Collage de la revolucion mexicanaCollage de la revolucion mexicana
Collage de la revolucion mexicana
 
Toxoplasmosis
ToxoplasmosisToxoplasmosis
Toxoplasmosis
 
Struktur dan fungsi organel sel
Struktur dan fungsi organel selStruktur dan fungsi organel sel
Struktur dan fungsi organel sel
 
Trematoda pbl8
Trematoda pbl8Trematoda pbl8
Trematoda pbl8
 
Acinetobacter
Acinetobacter Acinetobacter
Acinetobacter
 

Ähnlich wie Immunodefisiensi

Ähnlich wie Immunodefisiensi (20)

2.HIV infections.ppt
2.HIV infections.ppt2.HIV infections.ppt
2.HIV infections.ppt
 
Tutorial secondary idd aids
Tutorial secondary idd aids Tutorial secondary idd aids
Tutorial secondary idd aids
 
Hiv infection by ved
Hiv infection by vedHiv infection by ved
Hiv infection by ved
 
Acquired immuno deficiency syndrome (aids)
Acquired immuno deficiency syndrome (aids)Acquired immuno deficiency syndrome (aids)
Acquired immuno deficiency syndrome (aids)
 
HIV & AIDS BY Dr.Nom Kumar Naik.pptx
HIV & AIDS BY Dr.Nom Kumar Naik.pptxHIV & AIDS BY Dr.Nom Kumar Naik.pptx
HIV & AIDS BY Dr.Nom Kumar Naik.pptx
 
HIV / AIDS Pathology
HIV / AIDS PathologyHIV / AIDS Pathology
HIV / AIDS Pathology
 
AIDS.pptx
AIDS.pptxAIDS.pptx
AIDS.pptx
 
Hiv dr.tanushka
Hiv dr.tanushkaHiv dr.tanushka
Hiv dr.tanushka
 
Immunopathology 5
Immunopathology 5Immunopathology 5
Immunopathology 5
 
HIV.ppt
HIV.pptHIV.ppt
HIV.ppt
 
CD4 Cells Essay
CD4 Cells EssayCD4 Cells Essay
CD4 Cells Essay
 
Secondary Immunodeficiency
Secondary ImmunodeficiencySecondary Immunodeficiency
Secondary Immunodeficiency
 
Human Immunodeficiency virus , (AIDS)
Human Immunodeficiency virus , (AIDS)Human Immunodeficiency virus , (AIDS)
Human Immunodeficiency virus , (AIDS)
 
Lecture 14. aids
Lecture 14. aidsLecture 14. aids
Lecture 14. aids
 
Immunodeficiency
ImmunodeficiencyImmunodeficiency
Immunodeficiency
 
Hiv infection-and-aids dr bikal
Hiv infection-and-aids dr bikalHiv infection-and-aids dr bikal
Hiv infection-and-aids dr bikal
 
Hiv & pregnancy
Hiv & pregnancyHiv & pregnancy
Hiv & pregnancy
 
Microbiology of HIV VIRUSES
Microbiology of HIV VIRUSESMicrobiology of HIV VIRUSES
Microbiology of HIV VIRUSES
 
Acquired immunodeficiency syndrome
Acquired immunodeficiency syndromeAcquired immunodeficiency syndrome
Acquired immunodeficiency syndrome
 
Pathogenisis of aids
Pathogenisis of aidsPathogenisis of aids
Pathogenisis of aids
 

Immunodefisiensi

  • 1. Immunodefisiensi (HIV sebagai Role Model) Ricky Herlianto Jopi Chandra Sindhutomo Jason Julianus Alfredo Bambang (2012-060-152) (2012-060-153) (2012-060-172) (2012-060-193)
  • 2. Definisi • Penyakit immunodefisiensi didefinisikan sebagai kegagalan, kerusakan atau kemunduran fungsi dari satu atau lebih komponen dalam sistem imun yang pada akhirnya dapat menyebabkan penyakit atau kelainan yang serius
  • 3. Jenis Immunodefisiensi     Secara umum terdapat 2 jenis immunodefisiensi immunodefisiensi primer (congenital) Immunodefisiensi sekunder (didapat / acquired) Immunodefisiensi baik primer maupun sekunder dapat meningkatkan kerentanan terhadap infeksi, terkena kanker dan juga dapat mencetuskan penyakit autoimun.
  • 4. Immunodefisiensi Primer   Penyakit immunodefisiensi primer disebabkan karena adanya kelainan genetik Ada berbagai jenis kelainan immunodefisiensi primer, contohnya  kelainan pada sistem imun innate  defisiensi antibody  defisiensi sel T
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11. Terapi    Transplantasi antibody, sumsum tulang atau stem cell enzyme replacement. Saat ini juga berkembang gene therapy dengan menggunakan virus yang telah dimodifikasi.(1)(5)
  • 13.
  • 15. Pendahuluan   HIV termasuk dalam keluarga lentivirus, dan merupakan suatu retrovirus.(2) Salah satu karakteristik unik dari lentivirus adalah kemampuannya untuk menyebabkan efek sitopatik dalam jangka pendek, dan infeksi yang latent dalam jangka panjang
  • 16. Pendahuluan   Terdapat dua tipe virus HIV, yaitu HIV-1 dan HIV-2. HIV-1 paling banyak menyebabkan AIDS. HIV-2 menyebabkan AIDS yang progresinya lebih lambat.(1)
  • 17. Pendahuluan   Menurut penelitian, HIV-1 kemungkinan berasal dari virus yang menyerang simpanse (Pantroglodytes), yang banyak terdapat di Afrika Pusat. Di sisi lain, HIV-2, dengan gen 40-60% homolog dengan HIV-1, datang dari sooty mangabey (Cercocebus atys), yang banyak terdapat di Africa Barat dari Senegal sampai Pantai Gading
  • 19.
  • 20. A phylogenetic tree based on the complete genomes of primate immunodeficiency viruses. The scale (0.10) indicates a 10% difference at the nucleotide level.
  • 22.
  • 23.
  • 25.
  • 26.
  • 28.
  • 29.
  • 30.
  • 31. Mekanisme Masuknya HIV dan Siklus Kehidupan HIV
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 38.
  • 39. Infeksi HIV   Infeksi HIV dibagi menjadi tiga fase, yaitu infeksi awal atau akut  Pada infeksi akut, infeksi terjadi di jaringan mukosa, yang merupakan reservoir untuk sel T dan tempat dimana sebagian besar sel T memori berdiam. Dalam 2 minggu, jumlah sel T CD4 berkurang drastis.(1)(5)   transisi dari infeksi akut ke infeksi kronis infeksi lanjutan atau kronis
  • 40.
  • 41.
  • 42. Fase Transisi    Fase transisi dimulai dengan sel dendritik yang memfagosit virus dan membawanya ke nodus limfatikus. Di nodus limfatikus, sel dendritik mentransfer virus HIV kepada sel T CD4. Fase transisi diakhiri dengan bekerjanya sistem imun humoral dan selular, yang menyebabkan jumlah virus di plasma berkurang dalam waktu 12 minggu menjadi jauh lebih rendah (berakhirnya viremia). Selama fase transisi, ada kemungkinan terjadi peningkatan jumlah sel T CD4 karena diferensiasi dari progenitor.(1)
  • 43. Fase Infeksi Kronis dan Clinical Latency   Pada fase infeksi kronis, penderita asimptomatik atau hanya mendapat gejala ringan. Hal ini karena jumlah virus HIV di plasma menurun secara drastis Fase clinical latency dapat berlangsung selama bertahun-tahun. Dengan berjalannya waktu, penderita juga akan menjadi lebih mudah terinfeksi penyakit karena berkurangnya sel T CD4 secara bertahap
  • 45. Untuk lebih jelasnya, gambarnya dapat dilihat di file pdf asli poster nature reviews immunology *dilampirkan pada slide paling akhir (slide versi PDF)
  • 46. Awal  Infeksi HIV dimulai dari penerobosan virus melewati sawar mukosa (mucosal barrier)  melewati celah antar sel  melalui mikroabrasi atau sobekan pada epitel  mekanisme transcytosis  Sel dendritik juga memegang peranan penting dalam penerobosan virus melewati sawar mukosa
  • 47.
  • 48. Infeksi Makrofag    Selain sel T CD4, terdapat juga sel-sel lain yang juga diinfeksi oleh virus HIV seperti makrofag, sel dendritik, dan sel folikular dendritik Makrofag memiliki kadar CD4 yang rendah, tetapi memiliki banyak proteoglikan heparan sulfat yang disebut syndecan pada permukaannya Syndecan juga dapat memediasi absorpsi virus HIV dengan menempel ke gp120
  • 49. Infeksi sel Dendritic   Sel dendritik memiliki kadar CD4, CXCR4, dan CCR5 yang lebih rendah dari sel T CD4, sehingga tidak terlalu rentan terhadap virus HIV sel dendritik memiliki DC-SIGN pada permukaannya yang berfungsi untuk mengagregasikan virus pada permukaan, sehingga saat berkontak dengan sel T CD4, virus HIV dapat dengan mudah berpindah
  • 50. • Sel dendritik bertanggungjawab untuk menginisiasi respon imun adaptif terhadap virus di nodus limfatikus. Lebih jauh lagi, sel dendritik dapat mengaktifasi sel NK dengan sekresi IL-12, IL-15 dan IL-18. • Sel dendritik memiliki SAMHD1 dan APOBEC3G yang dapat menginhibisi replikasi virus HIV, tetapi interaksi dari capsid HIV dengan cyclophilin (CYPA) di sel dendritik dapat menginduksi terbentuknya interferon tipe 1 yang bersifat antiviral melalui cryptic cytoplasmic sensor
  • 51.
  • 52.
  • 53.
  • 54.
  • 55. Sel T   + CD4 sebagai reservoir virus infeksi dapat menyebabkan sel T CD4 menjadi berhenti berproliferasi dan tidak aktif. Dalam kondisi seperti itu, sel T CD4 disebut sebagai latent reservoir, dan memiliki masa hidup yang sangat panjang, dengan waktu paruh 44 bulan, bahkan setelah 7 tahun penderita menjalani supresi replikasi virus.(8)
  • 56. Transmisi Virus HIV    Transmisi HIV dapat melalui berbagai cara. Cara yang paling umum adalah melalui kontak seksual, baik pada lawan jenis ataupun sesama jenis. HIV pada anak-anak paling banyak ditransfer dari ibunya, baik saat didalam rahim, saat melahirkan, ataupun saat menyusui anaknya. Metode lain yang juga sering terjadi adalah pemakaian jarum suntik secara bersama-sama. (1)
  • 57.
  • 58.
  • 60.
  • 61.
  • 62.
  • 63. • • • • • • • • • REFERENSI Abbas AK, Lichtman AH, Pillai S. Cellular and Molecular immunology. 7th 1. Edition. United States of America: Elsevier; 2012. 2. Longo D, Fauci A, Kasper D, Hauser S, Jameson J, Localzo J. Harrison’s Principles of Internal Medicine. 18th edition. New York: McGrawHill; 2012. 3. Arason G, Jorgensen G, Ludviksson B. Primary Immunodeficiency and Autoimmunity: Lessons From Human Diseases. Scand J Immunol. 2010;71:317–28. 4. Ballow M. Primary immunodeficiency disorders: Antibody deficiency. J Allergy Clin Immunol. 2002 Apr;109(4):581–91. 5. Rich RR, Fleisher TA, Shearer WT, Schroeder HW, Frew AJ, Weyand CM. Clinical Immunology Principles and Practice. 3rd edition. China: Elsevier; 2008. 6. Bhardwaj N, Hladik F, Moir S. The immune response to HIV. 2012 [cited 2013 Sep 2]; Available from: http://web2.mendelu.cz/af_239_nanotech/data/up/mats/nri1201_hiv_references. pdf 7. Levy JA. HIV pathogenesis: 25 years of progress and persistent challenges: AIDS. 2009 Jan;23(2):147–60. 8. Stebbing J, Gazzard B, Douek DC. Where Does HIV Live? N Engl J Med. 2004;350(18):1872–80. 9. http://www.nature.com/nri/posters/hiv
  • 65. Supplement to Nature Publishing Group The immune response to HIV Nina Bhardwaj, Florian Hladik and Susan Moir Since HIV was discovered as the causative agent of AIDS almost 30 years ago, HIV infection has become a devastating pandemic, with millions of individuals becoming infected and dying from HIV-related disease every year. A global research effort over the past three decades has discovered more about HIV than perhaps any other pathogen. Immunologists continue to be intrigued by the capacity of HIV to effectively knock out an essential component of the IMMUNOLOGY Breaching the mucosal barrier Donor virus population Stratified squamous epithelium Vagina or ectocervix Inserted HIV genome Endocervix HIV virion Infected intraepithelial CD4+ T cell Impermeable tight junctions between cells CD1a+ Langerhans cell Langerin Advanced disease HIV penetration and infection A few hours Increased number of immature transitional B cells CCR5 HIV uptake by DC-SIGN blocks DC maturation APOBEC3G Conventional DC Lack of effective antiviral immunity CD8+ T cell response 1 week NK cell Type I IFNs NK cell activation Draining lymphatic vessels Early infection CD8 T cell + HIV-specific B cell and antibody response TCR MHC class I Follicular B cell Clonal expansion of HIV-specific CD8+ T cells IL-10 HIV-bearing DC TReg cell Activated mature B cell Increased B cell apoptosis and GC destruction Inadequate CD4+ T cell help Exhausted memory B cell Increased in association with HIV viraemia Follicular DC Decreased number of resting memory B cells and splenic marginal zone B cells Inadequate CD4+ T cell help T cell zone Medulla Follicular hyperplasia Short-lived plasmablast B cell follicle Decreased class-switch recombination (Nef-mediated) Paucity of HIVspecific IgA at mucosal sites Increased turnover and polyclonal activation of B cells TFH cell MHC class II Naive mature B cell Immune activation (pro-inflammatory cytokines) Subcapsular sinus macrophage CD4+ T cell CTLA4 Infected memory T cell HIV virions and HIV-bearing cells CD8 T cell Inhibition of viral replication Decreased response to antigens Amplification in draining lymph nodes + IL-12, IL-15, IL-18 pDC CD4+ HIV-bearing stromal DC TRIM5 CYPA Chronic infection Local amplification of initial founder virus(es) in a single focus of CD4+ T cells Internalized virion DC dysfunction SAMHD1 Type I IFNs IL-7 T cell-attracting chemokines DC-SIGN CD4 IL-10 CD4+ T cell lymphopenia Transcytosis of HIV virions Infected CD4+ T cell Subepithelial DC Stroma CYPA and TRIM5 recognize HIV capsid The B cell response to HIV Tear in the mucosal epithelium Monocyte SAMHD1 and APOBEC3G restrict HIV replication Columnar epithelium CD1a The DC response to HIV HIV uptake by langerin leads to virus degradation Scientists Helping Scientists™ | WWW.STEMCELL.COM HIV-infected donor cell Lack of tight junctions between cells Mucus layer adaptive immune system — CD4+ T helper cells. This Poster summarizes how HIV establishes infection at mucosal surfaces, the ensuing immune response to the virus involving DCs, B cells and T cells, and how HIV subverts this response to establish a chronic infection. Based on a clearer understanding of HIV infection and the response to it, the field has now entered an era of renewed optimism for the development of a successful vaccine. Decreased natural immunity to secondary pathogens Hypergammaglobulinaemia Poor antibody response CD4 IDO Viral RNA pDC Systemic infection 2–4 weeks TRAIL TLR7 IFN-induced T cell apoptosis Few high-affinity broadly neutralizing antibodies Efferent lymphatic TReg cell differentiation promoted by IDO HIV reservoirs in gutassociated and other lymphoid tissues Weeks Months gp120 gp41 Years gp41 gp120 Several years gp120 CD4binding site The T cell response to HIV T cell-attracting chemokines Galectin 9 TRAIL-induced T cell apoptosis TReg cell • Non-neutralizing • Lack of viral control Suppression + TIM3 of CD8 T cell response • Neutralizing, but limited breadth • Virus acquires escape mutations • Neutralizing with wider breadth • ~20% of infected individuals • Affinity matured, broadly neutralizing • ~1% of infected individuals HIV-specific CD8+ T cell Cytokines and other soluble factors Chemokine-mediated recruitment of new CD4+ T cells for HIV to infect TCR MHC class I Viral replication Several months T cell-escape mutations in HIV • First Env and Nef • Later Gag and Pol Viral spread Broadly neutralizing HIV-specific antibodies • ↓ MHC class I binding • ↓ TCR recognition • ↓ Epitope processing Several years Cell Isolation Solutions for HIV Research From STEMCELL Technologies STEMCELL Technologies offers a complete portfolio of fast and easy cell isolation solutions for HIV research, allowing viable, functional cells to be isolated from virtually any sample source for use in cell-based models and assays. STEMCELL Technologies’ products are used by leading HIV research groups worldwide, including the National Institute of Allergy and Infectious Disease and the Ragon Institute. • EasySep™ (www.EasySep.com) is a fast, easy and column-free immunomagnetic cell separation system for isolating highly purified immune cells in as little as 25 minutes. Cells are immediately ready for downstream functional assays. Name of antibody 2G12 Perforin and granzymes Perforin pore Apoptosis LAG3 TIM3 CTLA4 HIV-infected CD4+ T cell CD4+ T cell depletion and immunodeficiency PD1 Decreased T helper cell function CD8+ T cell response insufficient to clear infection • Chronic infection • Repeated T cell activation Upregulation of inhibitory receptors on CD8+ T cells • RoboSep™ (www.RoboSep.com) fully automates the immunomagnetic cell isolation process, reducing hands-on time, minimizing human exposure to potentially hazardous samples and eliminating crosscontamination, making it the method of choice for HIV research labs. • RosetteSep™ (www.RosetteSep.com) is a unique immunodensitybased cell isolation system for one-step enrichment of untouched human cells directly from whole blood during density gradient centrifugation. • SepMate™ (www.SepMate.com) allows hassle-free PBMC isolation in just 15 minutes. The SepMate™-50 tube contains a unique insert that prevents mixing between the blood and density medium, allowing all density gradient centrifugation steps to be carried out quickly and consistently. To learn more about our specialized cell isolation products for HIV research, or to request a sample or demonstration, visit www.stemcell.com/HIV. T cell exhaustion (loss of effector function and proliferative capacity) Source or approach B cell immortalization Phage-display library Target on HIV Properties Carbohydrates on gp120 CD4-binding site of gp120 Unique heavy-chain domain swap IgG1 b12 Long heavy-chain CDR3; heavy-chaindominant binding 2F5 and B cell Membrane-proximal Autoreactive; bind host 4E10 immortalization external region of gp41 lipids PG9 and Large screen; gp120 conformational Dependent on PG16 cultured clone epitope in variable quaternary structure; loops (V1–V2) long heavy-chain CDR3 VRC01 and Large screen; CD4-binding site of Highly mutated; mimic NIH45-46 single-cell sort gp120 CD4 binding to gp120 PGT121 Large screen; gp120 V3 Diverse, with and cultured clone carbohydratesimilarities to 2G12 PGT125 dependent epitope 10E8 Large screen; Membrane-proximal Binds cell-surface cultured clone external region of gp41 epitopes Abbreviations Affiliations APOBEC3G, apolipoprotein B mRNA editing, catalytic polypeptide-like 3G; CCR5, CC-chemokine receptor 5; CDR3, complementarity-determining region 3; CTLA4, cytotoxic T lymphocyte antigen 4; CYPA, cyclophilin A; DC, dendritic cell; DC-SIGN, DC-specific ICAM3-grabbing nonintegrin; GC, germinal centre; IDO, indoleamine 2,3-dioxygenase; IFN, interferon; IL, interleukin; LAG3, lymphocyte activation gene 3; NK, natural killer; PD1, programmed cell death protein 1; PDC, plasmacytoid DC; SAMHD1, SAM domain- and HD domain-containing protein 1; TCR, T cell receptor; TFH cell, T follicular helper cell; TIM3, T cell immunoglobulin domain- and mucin domain-containing protein 3; TLR7, Toll-like receptor 7; TRAIL, TNF-related apoptosis-inducing ligand; TReg cell, regulatory T cell; TRIM5, tripartite motif-containing protein 5. Nina Bhardwaj is at the NYU Langone Medical Center, Smilow Research Building, New York 10016, USA. e-mail: Nina.Bhardwaj@nyumc.org Acknowledgements N.B. thanks D. Frleta for his review and contributions to the poster. © 2012 Macmillan Publishers Limited. All rights reserved Florian Hladik is at the Department of OBGYN, University of Washington, Seattle, Washington 98195, USA. e-mail: fhladik@fhcrc.org Susan Moir is at the Laboratory of Immunoregulation, NIAID/NIH, Bethesda, Maryland 20892, USA. e-mail: smoir@niaid.nih.gov The authors declare no competing financial interests. Edited by Kirsty Minton; copyedited by Isabel Woodman; designed by Simon Bradbrook. © 2012 Nature Publishing Group. All rights reserved. http://www.nature.com/nri/posters/hiv Supplementary text and further reading available online.