SlideShare ist ein Scribd-Unternehmen logo
1 von 26
Question 3 a) Given the function:  f(x) = 3(x-2)^2 + 2 ,  determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. b) The points of intersection between the lines tangent to g(x) when x=2 and the line tangent to f(x) when x=5 are the centers of three circles with a radius of 5. Determine the equations of the circles where  g(x)= squareroot[x] .
Part A a) Given the function:  f(x) = 3(x-2)^2 + 2 ,  determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. ,[object Object],[object Object],[object Object],[object Object],This question involves fundamental knowledge on derivatives.
Intro. a) Given the function:  f(x) = 3(x-2)^2 + 2 ,  determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. The derivative of any constant is zero. So the derivative of 5, 10, 11 is “zero.” To understand this, graph y=5, y=10, and y=11. They all have no slope, so the derivative is zero. The derivative of any variable to the exponent “1” is “1”. To understand this, graph y=x. X is the variable. You should see through rise over run that the slope is “1.” Y=x is also just another form of y=mx+b where m=1. Common Notation This is a common form of Leibniz’s Notation. This is Lagrange’s notation, also known as prime notation.
Intro. It is hard to explain this stuff since I’m fairly new to this stuff, so I won’t go into very much detail. Power Rule The derivative of a power of x is equal to the product of the exponent times x with an exponent reduced by 1 For example: Let’s find the derivative of x^6 You can see that n=6. The derivative of x^6 is 6x^5. Now let’s proceed to my question.
Part A Continued a) Given the function:  f(x) = 3(x-2)^2 + 2 ,  determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. First, you put the equation into general form. f(x) = 3(x-2)^2 + 2 f(x) = 3(x^2 -4x +4) + 2 f(x) = 3x^2 -12x + 12 + 2 f(x) = 3x^2 -12x + 14 Now, we can find the derivative of this equation. f 1 (x) = 3(2)(x) – (12x^0) - 0 = 6x – 12 The exponent on each reduces by one and you multiply the base by the original exponent. The derivative of any constant is zero like mentioned earlier.
Part A Continued a) Given the function:  f(x) = 3(x-2)^2 + 2 ,  determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. So this is the equation to obtain the slope of a line tangent to any point on f(x). f 1 (x) = 3(2)(x) – (12x^0) - 0 = 6x – 12 We want the line tangent when x=4, so we plug in 4 for x. f 1 (4) = 6(4) – 12 = 24 – 12 = 12 This is just the slope, but we need to find the equation. If you think about it, we can use the point-slope formula
Part A Continued a) Given the function:  f(x) = 3(x-2)^2 + 2 ,  determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. This is the point-slope formula. Y-Y1 = M(X-X1) The point when x=4 is found on both graphs obviously. However, we need the y-coordinate of the point. What we do is plug 4 into the original equation, not the derivative one because that equation determines slopes. f(x) = 3x^2 -12x + 14 f(4) = 3(4^2) -12(4) + 14 f(4) = 48 – 48 +14 f(4) = 14 Therefore, the point is (4,14). Now let’s plug that in.
Part A Continued a) Given the function:  f(x) = 3(x-2)^2 + 2 ,  determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. This is the point-slope formula. Y – 14 = 12(X-4) Y – 14 = 12x – 48 Y  = 12x – 48 + 14 Y = 12x – 34 This is the equation of the line tangent to f(x) when x=4. Let’s take a look at a graph to see this.
Part A End a) Given the function:  f(x) = 3(x-2)^2 + 2 ,  determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. You can see that at (4,14), the line  Y = 12x – 34  touches  f(x) = 3x^2 -12x + 14
Part B b) The points of intersection between the lines tangent to g(x) when x=2 and the line tangent to f(x) when x=5 are the centers of three circles with a radius of 5. Determine the equations of the circles where  g(x)= squareroot[x] . We now have two functions: g(x) = squareroot[x] f(x) = 3(x-2)^2 + 2 Let’s start by finding the line tangent to g(x) when x=4.
Part B b) The points of intersection between the lines tangent to g(x) when x=2 and the line tangent to f(x) when x=5 are the centers of three circles with a radius of 5. Determine the equations of the circles where  g(x)= squareroot[x] . g(x) = squareroot[x] We have x already, which is 4, so let’s find y. g(4) = squareroot[4] g(4) = +2 and -2 Oh snap, that’s two values. This is because for every x value on the graph, there are 2 y values, excluding the vertex. Now let’s obtain the slope
Part B b) The points of intersection between the lines tangent to g(x) when x=2 and the line tangent to f(x) when x=5 are the centers of three circles with a radius of 5. Determine the equations of the circles where  g(x)= squareroot[x] . We must find the derivative of g(x) g(x) = squareroot[x] g 1 (x) = (1/2)x^(-1/2) The squareroot of x is equal to x^(1/2). We multiply that exponent by x and subtract 1 from ½ which gives us -1/2. Now we plug in x to obtain the slope. g 1 (x) = (1/2)x^(-1/2) g 1 (4) = (1/2)4^(-1/2) *exponents first* *bedmas* g 1 (4) = (1/2)(1/-2) or (1/2)(1/2) g 1 (4) = (1/-4) or (1/4) Okay, so these are our slopes. Now we find the equations.
Part B What a great slope we have ! Slope = +1/4 and -1/4 Now let’s use the point-slope formula to solve for the equation. Earlier, we obtained 2 y values, +2 and -2. We have four possibilities for the equation now. Y-Y1 = M(X-X1) Let’s use 2 as our y value with the 2 slopes Y – 2 = ¼(x-4) Y = (x/4) + 1 Or Y – 2 = -¼(x-4) Y = (-x/4) + 3 Let’s use -2 as our y value with the 2 slopes Y + 2 = ¼(x-4) Y = (x/4) - 3 Or Y + 2 = -¼(x-4) Y = (-x/4) - 1 Amazingly, the equations in the black are the correct ones. The next slide shows a graph.
Part B
Part B We know the derivative of f(x) from earlier, except not the y-value when x=16. f 1 (x) = 6x – 12 f(x) = 3(x-2)^2 + 2 Let’s find the y-value f(16) = 3(16-2)^2 + 2 f(16) = 3(14)^2 + 2 f(16) = 3(16-2)^2 + 2 f(16) = 590 Therefore, the point is (16, 590). Now we need to obtain the slope. b) The points of intersection between the lines tangent to g(x) when x=2 and the line tangent to f(x) when x=5 are the centers of three circles with a radius of 5. Determine the equations of the circles where  g(x)= squareroot[x] .
Part B We use the derivative of f(x) to find the slope. f 1 (x) = 6x – 12 Plug in 16 for X f 1 (16) = 6(16) – 12 f 1 (16) = 96 – 12 f 1 (16) = 84 Now that we have the slope and 2 points, we can find the equation of the line. Y-Y1 = M(X-X1) Y-590 = 84(x-16) Y = 84x – 1344 + 590 Y = 84x – 754 Great. This is the equation of the line tangent to f(x) when x=16. Let’s see a graph to verify this. b) The points of intersection between the lines tangent to g(x) when x=2 and the line tangent to f(x) when x=5 are the centers of three circles with a radius of 5. Determine the equations of the circles where  g(x)= squareroot[x] .
Part B The graphs are very ugly, but you can see that the equations are correct. Now we must find the points of intersection between the tangent lines!
Part B Here are the three equations of tangent lines we have. To find the points of intersection, we make two equations equal other because at that specific point, they share the same coordinate. For example, making the y’s equal other shows which values of y are shared amongst the graphs. From g(x), we have: 1) Y = (x/4) + 1 2) Y = (-x/4) - 1 From f(x), we have: 3) Y = 84x – 754 There are going to be three intersections because each of these graphs are lines that never end. I assigned each of the equations numbers to show which intersections I’ll be finding.
Part B 1,2 1) Y = (x/4) + 1 2) Y = (-x/4) – 1 (x/4) + 1 = (-x/4) – 1 (x/4) – (-x/4) = – 1 -1 2x/4 = -2 X = -4 Now we must find the y-value to find the coordinate. We can plug x into anyone of the equations above because they both contain a point when x=-4 Y = (-4/4) + 1 Y = 0 Our first point of intersection is (-4,0)
 
Part B 1,3 1) Y = (x/4) + 1 3) Y = 84x - 754 (x/4) + 1 = 84x – 754 (x/4) – (84x) = – 754 – 1 (x – 336x)/4 = -755 x(1 – 336) = -3020 x(-335) = -3020 x = 604/67 This is approximately 9.0149 Now we must find the y-value to find the coordinate. We can plug x into anyone of the equations above because they both contain a point when x=604/67 Y = ((604/67)/4) + 1 Y = 151/67 + 67/67 Y = 218/67 This approximately equals 3.2537 Our second point of intersection is ( 604/67 , 218/67)
Part B
Part B 2,3 2) Y = (-x/4) - 1 3) Y = 84x - 754 (-x/4) - 1 = 84x – 754 (-x/4) – (84x) = – 754 + 1 (-x – 336x)/4 = -753 -337X = -3012 x = 3012/337 This approximately equals 8.9377 Now we must find the y-value to find the coordinate. We can plug x into anyone of the equations above because they both contain a point when x=3012/337 Y = (-(3012/337)/4) + 1 Y = -753/337 - 337/337 Y = - 1090/337 This approximately equals -3.2344 Our third point of intersection is ( 3012/337 , 1090/337 )
Part B
Part B Alright, so our final step is to find the equations of the circles where their origins are the intersections we found. Each circle has a radius of 5. This is perhaps the HARDEST part of the problem because it requires so much work to get this far. Our points of intersection are: ( -4 , 0 ) ( 604/67 , 218/67 ) ( 3012/337 , 1090/337 ) The radius is 5. Now we just plug them into the equation: (x-h)^2 + (y-k)^2 = r^2 (x+4)^2 + (y-0)^2 = 25 (x-604/67)^2 + (y-218/67)^2 = 25 (x-3012/337)^2 + (y-1090/337)^2 = 25
Congratulations! You finished question 3!

Weitere ähnliche Inhalte

Was ist angesagt?

5 3 the graphs of quadratic equations-x
5 3 the graphs of quadratic equations-x5 3 the graphs of quadratic equations-x
5 3 the graphs of quadratic equations-xmath123b
 
Module 2 linear functions
Module 2   linear functionsModule 2   linear functions
Module 2 linear functionsdionesioable
 
4.6 radical equations
4.6 radical equations4.6 radical equations
4.6 radical equationsmath123b
 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functionsdionesioable
 
Assignments for class XII
Assignments for class XIIAssignments for class XII
Assignments for class XIIindu thakur
 
2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functionsmath260
 
Add maths module form 4 & 5
Add maths module form 4 & 5Add maths module form 4 & 5
Add maths module form 4 & 5smktsj2
 
Question bank -xi (hots)
Question bank -xi (hots)Question bank -xi (hots)
Question bank -xi (hots)indu psthakur
 
3.2 properties of division and roots
3.2 properties of division and roots3.2 properties of division and roots
3.2 properties of division and rootsmath260
 
5 2 solving 2nd degree equations
5 2 solving 2nd degree equations5 2 solving 2nd degree equations
5 2 solving 2nd degree equationsmath123b
 
5 parametric equations, tangents and curve lengths in polar coordinates
5 parametric equations, tangents and curve lengths in polar coordinates5 parametric equations, tangents and curve lengths in polar coordinates
5 parametric equations, tangents and curve lengths in polar coordinatesmath267
 
Module 1 quadratic functions
Module 1   quadratic functionsModule 1   quadratic functions
Module 1 quadratic functionsdionesioable
 
10 rectangular coordinate system x
10 rectangular coordinate system x10 rectangular coordinate system x
10 rectangular coordinate system xmath260
 
2.4 grapgs of second degree functions
2.4 grapgs of second degree functions2.4 grapgs of second degree functions
2.4 grapgs of second degree functionsmath260
 
Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)Juan Miguel Palero
 
5 4 equations that may be reduced to quadratics
5 4 equations that may be reduced to quadratics5 4 equations that may be reduced to quadratics
5 4 equations that may be reduced to quadraticsmath123b
 
4.2 stem parabolas revisited
4.2 stem parabolas revisited4.2 stem parabolas revisited
4.2 stem parabolas revisitedmath123c
 
Linear ineqns. and statistics
Linear ineqns. and statisticsLinear ineqns. and statistics
Linear ineqns. and statisticsindu psthakur
 

Was ist angesagt? (20)

5 3 the graphs of quadratic equations-x
5 3 the graphs of quadratic equations-x5 3 the graphs of quadratic equations-x
5 3 the graphs of quadratic equations-x
 
Module 2 linear functions
Module 2   linear functionsModule 2   linear functions
Module 2 linear functions
 
4.6 radical equations
4.6 radical equations4.6 radical equations
4.6 radical equations
 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functions
 
Assignments for class XII
Assignments for class XIIAssignments for class XII
Assignments for class XII
 
Presentation on calculus
Presentation on calculusPresentation on calculus
Presentation on calculus
 
2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions
 
Add maths module form 4 & 5
Add maths module form 4 & 5Add maths module form 4 & 5
Add maths module form 4 & 5
 
Question bank -xi (hots)
Question bank -xi (hots)Question bank -xi (hots)
Question bank -xi (hots)
 
3.2 properties of division and roots
3.2 properties of division and roots3.2 properties of division and roots
3.2 properties of division and roots
 
5 2 solving 2nd degree equations
5 2 solving 2nd degree equations5 2 solving 2nd degree equations
5 2 solving 2nd degree equations
 
5 parametric equations, tangents and curve lengths in polar coordinates
5 parametric equations, tangents and curve lengths in polar coordinates5 parametric equations, tangents and curve lengths in polar coordinates
5 parametric equations, tangents and curve lengths in polar coordinates
 
Module 1 quadratic functions
Module 1   quadratic functionsModule 1   quadratic functions
Module 1 quadratic functions
 
10 rectangular coordinate system x
10 rectangular coordinate system x10 rectangular coordinate system x
10 rectangular coordinate system x
 
2.4 grapgs of second degree functions
2.4 grapgs of second degree functions2.4 grapgs of second degree functions
2.4 grapgs of second degree functions
 
Assignmen ts --x
Assignmen ts  --xAssignmen ts  --x
Assignmen ts --x
 
Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)
 
5 4 equations that may be reduced to quadratics
5 4 equations that may be reduced to quadratics5 4 equations that may be reduced to quadratics
5 4 equations that may be reduced to quadratics
 
4.2 stem parabolas revisited
4.2 stem parabolas revisited4.2 stem parabolas revisited
4.2 stem parabolas revisited
 
Linear ineqns. and statistics
Linear ineqns. and statisticsLinear ineqns. and statistics
Linear ineqns. and statistics
 

Ähnlich wie Solution 3

Quadratic Function Presentation
Quadratic Function PresentationQuadratic Function Presentation
Quadratic Function PresentationRyanWatt
 
Quadraticfunctionpresentation 100127142417-phpapp02
Quadraticfunctionpresentation 100127142417-phpapp02Quadraticfunctionpresentation 100127142417-phpapp02
Quadraticfunctionpresentation 100127142417-phpapp02Vine Gonzales
 
Form 4 Add Maths Note
Form 4 Add Maths NoteForm 4 Add Maths Note
Form 4 Add Maths NoteChek Wei Tan
 
Form 4-add-maths-note
Form 4-add-maths-noteForm 4-add-maths-note
Form 4-add-maths-notejacey tan
 
Solving Linear Equations
Solving Linear EquationsSolving Linear Equations
Solving Linear Equationstaco40
 
Quadraticfuntions
QuadraticfuntionsQuadraticfuntions
Quadraticfuntionssuefee
 
Quadraticfuntions
QuadraticfuntionsQuadraticfuntions
Quadraticfuntionssuefee
 
Straight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptxStraight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptxKviskvis
 
Algebra 2. 9.16 Quadratics 2
Algebra 2.  9.16 Quadratics 2Algebra 2.  9.16 Quadratics 2
Algebra 2. 9.16 Quadratics 2dmatkeson21
 
Graphing quadratic equations
Graphing quadratic equationsGraphing quadratic equations
Graphing quadratic equationsswartzje
 
Mathematics 9 Quadratic Functions (Module 2)
Mathematics 9 Quadratic Functions (Module 2)Mathematics 9 Quadratic Functions (Module 2)
Mathematics 9 Quadratic Functions (Module 2)Juan Miguel Palero
 
Developing Expert Voices
Developing Expert VoicesDeveloping Expert Voices
Developing Expert Voicessuzanne
 
chapter1_part2.pdf
chapter1_part2.pdfchapter1_part2.pdf
chapter1_part2.pdfAliEb2
 

Ähnlich wie Solution 3 (20)

Grph quad fncts
Grph quad fnctsGrph quad fncts
Grph quad fncts
 
Quadratic function
Quadratic functionQuadratic function
Quadratic function
 
mc-ty-polynomial-2009-1.pdf
mc-ty-polynomial-2009-1.pdfmc-ty-polynomial-2009-1.pdf
mc-ty-polynomial-2009-1.pdf
 
Function
FunctionFunction
Function
 
Quadratic Function Presentation
Quadratic Function PresentationQuadratic Function Presentation
Quadratic Function Presentation
 
Quadraticfunctionpresentation 100127142417-phpapp02
Quadraticfunctionpresentation 100127142417-phpapp02Quadraticfunctionpresentation 100127142417-phpapp02
Quadraticfunctionpresentation 100127142417-phpapp02
 
Form 4 add maths note
Form 4 add maths noteForm 4 add maths note
Form 4 add maths note
 
Form 4 Add Maths Note
Form 4 Add Maths NoteForm 4 Add Maths Note
Form 4 Add Maths Note
 
Form 4-add-maths-note
Form 4-add-maths-noteForm 4-add-maths-note
Form 4-add-maths-note
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Solving Linear Equations
Solving Linear EquationsSolving Linear Equations
Solving Linear Equations
 
Quadraticfuntions
QuadraticfuntionsQuadraticfuntions
Quadraticfuntions
 
Quadraticfuntions
QuadraticfuntionsQuadraticfuntions
Quadraticfuntions
 
QUADRATIC FUNCTIONS
QUADRATIC FUNCTIONSQUADRATIC FUNCTIONS
QUADRATIC FUNCTIONS
 
Straight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptxStraight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptx
 
Algebra 2. 9.16 Quadratics 2
Algebra 2.  9.16 Quadratics 2Algebra 2.  9.16 Quadratics 2
Algebra 2. 9.16 Quadratics 2
 
Graphing quadratic equations
Graphing quadratic equationsGraphing quadratic equations
Graphing quadratic equations
 
Mathematics 9 Quadratic Functions (Module 2)
Mathematics 9 Quadratic Functions (Module 2)Mathematics 9 Quadratic Functions (Module 2)
Mathematics 9 Quadratic Functions (Module 2)
 
Developing Expert Voices
Developing Expert VoicesDeveloping Expert Voices
Developing Expert Voices
 
chapter1_part2.pdf
chapter1_part2.pdfchapter1_part2.pdf
chapter1_part2.pdf
 

Mehr von aldrins

Problem 3
Problem 3Problem 3
Problem 3aldrins
 
Solution 3
Solution 3Solution 3
Solution 3aldrins
 
Problem 1
Problem 1Problem 1
Problem 1aldrins
 
Solution 1
Solution 1Solution 1
Solution 1aldrins
 
Problem 4
Problem 4Problem 4
Problem 4aldrins
 
Solution 4
Solution 4Solution 4
Solution 4aldrins
 
Solution 4
Solution 4Solution 4
Solution 4aldrins
 
Problem 4
Problem 4Problem 4
Problem 4aldrins
 
Solution 2
Solution 2Solution 2
Solution 2aldrins
 
Problem 3
Problem 3Problem 3
Problem 3aldrins
 
Problem 2
Problem 2Problem 2
Problem 2aldrins
 
Solution 1
Solution 1Solution 1
Solution 1aldrins
 
Problem 1
Problem 1Problem 1
Problem 1aldrins
 

Mehr von aldrins (16)

Problem 3
Problem 3Problem 3
Problem 3
 
Solution 3
Solution 3Solution 3
Solution 3
 
Problem 1
Problem 1Problem 1
Problem 1
 
Solution 1
Solution 1Solution 1
Solution 1
 
Problem 4
Problem 4Problem 4
Problem 4
 
Solution 4
Solution 4Solution 4
Solution 4
 
Solution 4
Solution 4Solution 4
Solution 4
 
Problem 4
Problem 4Problem 4
Problem 4
 
Solution 2
Solution 2Solution 2
Solution 2
 
Problem 3
Problem 3Problem 3
Problem 3
 
Problem 2
Problem 2Problem 2
Problem 2
 
Solution 1
Solution 1Solution 1
Solution 1
 
Problem 1
Problem 1Problem 1
Problem 1
 
Scribe
ScribeScribe
Scribe
 
Scribe
ScribeScribe
Scribe
 
Sup
SupSup
Sup
 

Kürzlich hochgeladen

Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESmohitsingh558521
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfPrecisely
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxLoriGlavin3
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersRaghuram Pandurangan
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 

Kürzlich hochgeladen (20)

Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptx
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information Developers
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 

Solution 3

  • 1. Question 3 a) Given the function: f(x) = 3(x-2)^2 + 2 , determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. b) The points of intersection between the lines tangent to g(x) when x=2 and the line tangent to f(x) when x=5 are the centers of three circles with a radius of 5. Determine the equations of the circles where g(x)= squareroot[x] .
  • 2.
  • 3. Intro. a) Given the function: f(x) = 3(x-2)^2 + 2 , determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. The derivative of any constant is zero. So the derivative of 5, 10, 11 is “zero.” To understand this, graph y=5, y=10, and y=11. They all have no slope, so the derivative is zero. The derivative of any variable to the exponent “1” is “1”. To understand this, graph y=x. X is the variable. You should see through rise over run that the slope is “1.” Y=x is also just another form of y=mx+b where m=1. Common Notation This is a common form of Leibniz’s Notation. This is Lagrange’s notation, also known as prime notation.
  • 4. Intro. It is hard to explain this stuff since I’m fairly new to this stuff, so I won’t go into very much detail. Power Rule The derivative of a power of x is equal to the product of the exponent times x with an exponent reduced by 1 For example: Let’s find the derivative of x^6 You can see that n=6. The derivative of x^6 is 6x^5. Now let’s proceed to my question.
  • 5. Part A Continued a) Given the function: f(x) = 3(x-2)^2 + 2 , determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. First, you put the equation into general form. f(x) = 3(x-2)^2 + 2 f(x) = 3(x^2 -4x +4) + 2 f(x) = 3x^2 -12x + 12 + 2 f(x) = 3x^2 -12x + 14 Now, we can find the derivative of this equation. f 1 (x) = 3(2)(x) – (12x^0) - 0 = 6x – 12 The exponent on each reduces by one and you multiply the base by the original exponent. The derivative of any constant is zero like mentioned earlier.
  • 6. Part A Continued a) Given the function: f(x) = 3(x-2)^2 + 2 , determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. So this is the equation to obtain the slope of a line tangent to any point on f(x). f 1 (x) = 3(2)(x) – (12x^0) - 0 = 6x – 12 We want the line tangent when x=4, so we plug in 4 for x. f 1 (4) = 6(4) – 12 = 24 – 12 = 12 This is just the slope, but we need to find the equation. If you think about it, we can use the point-slope formula
  • 7. Part A Continued a) Given the function: f(x) = 3(x-2)^2 + 2 , determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. This is the point-slope formula. Y-Y1 = M(X-X1) The point when x=4 is found on both graphs obviously. However, we need the y-coordinate of the point. What we do is plug 4 into the original equation, not the derivative one because that equation determines slopes. f(x) = 3x^2 -12x + 14 f(4) = 3(4^2) -12(4) + 14 f(4) = 48 – 48 +14 f(4) = 14 Therefore, the point is (4,14). Now let’s plug that in.
  • 8. Part A Continued a) Given the function: f(x) = 3(x-2)^2 + 2 , determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. This is the point-slope formula. Y – 14 = 12(X-4) Y – 14 = 12x – 48 Y = 12x – 48 + 14 Y = 12x – 34 This is the equation of the line tangent to f(x) when x=4. Let’s take a look at a graph to see this.
  • 9. Part A End a) Given the function: f(x) = 3(x-2)^2 + 2 , determine the derivative of the function and find the equation of the line tangent to f(x) when x is 4. You can see that at (4,14), the line Y = 12x – 34 touches f(x) = 3x^2 -12x + 14
  • 10. Part B b) The points of intersection between the lines tangent to g(x) when x=2 and the line tangent to f(x) when x=5 are the centers of three circles with a radius of 5. Determine the equations of the circles where g(x)= squareroot[x] . We now have two functions: g(x) = squareroot[x] f(x) = 3(x-2)^2 + 2 Let’s start by finding the line tangent to g(x) when x=4.
  • 11. Part B b) The points of intersection between the lines tangent to g(x) when x=2 and the line tangent to f(x) when x=5 are the centers of three circles with a radius of 5. Determine the equations of the circles where g(x)= squareroot[x] . g(x) = squareroot[x] We have x already, which is 4, so let’s find y. g(4) = squareroot[4] g(4) = +2 and -2 Oh snap, that’s two values. This is because for every x value on the graph, there are 2 y values, excluding the vertex. Now let’s obtain the slope
  • 12. Part B b) The points of intersection between the lines tangent to g(x) when x=2 and the line tangent to f(x) when x=5 are the centers of three circles with a radius of 5. Determine the equations of the circles where g(x)= squareroot[x] . We must find the derivative of g(x) g(x) = squareroot[x] g 1 (x) = (1/2)x^(-1/2) The squareroot of x is equal to x^(1/2). We multiply that exponent by x and subtract 1 from ½ which gives us -1/2. Now we plug in x to obtain the slope. g 1 (x) = (1/2)x^(-1/2) g 1 (4) = (1/2)4^(-1/2) *exponents first* *bedmas* g 1 (4) = (1/2)(1/-2) or (1/2)(1/2) g 1 (4) = (1/-4) or (1/4) Okay, so these are our slopes. Now we find the equations.
  • 13. Part B What a great slope we have ! Slope = +1/4 and -1/4 Now let’s use the point-slope formula to solve for the equation. Earlier, we obtained 2 y values, +2 and -2. We have four possibilities for the equation now. Y-Y1 = M(X-X1) Let’s use 2 as our y value with the 2 slopes Y – 2 = ¼(x-4) Y = (x/4) + 1 Or Y – 2 = -¼(x-4) Y = (-x/4) + 3 Let’s use -2 as our y value with the 2 slopes Y + 2 = ¼(x-4) Y = (x/4) - 3 Or Y + 2 = -¼(x-4) Y = (-x/4) - 1 Amazingly, the equations in the black are the correct ones. The next slide shows a graph.
  • 15. Part B We know the derivative of f(x) from earlier, except not the y-value when x=16. f 1 (x) = 6x – 12 f(x) = 3(x-2)^2 + 2 Let’s find the y-value f(16) = 3(16-2)^2 + 2 f(16) = 3(14)^2 + 2 f(16) = 3(16-2)^2 + 2 f(16) = 590 Therefore, the point is (16, 590). Now we need to obtain the slope. b) The points of intersection between the lines tangent to g(x) when x=2 and the line tangent to f(x) when x=5 are the centers of three circles with a radius of 5. Determine the equations of the circles where g(x)= squareroot[x] .
  • 16. Part B We use the derivative of f(x) to find the slope. f 1 (x) = 6x – 12 Plug in 16 for X f 1 (16) = 6(16) – 12 f 1 (16) = 96 – 12 f 1 (16) = 84 Now that we have the slope and 2 points, we can find the equation of the line. Y-Y1 = M(X-X1) Y-590 = 84(x-16) Y = 84x – 1344 + 590 Y = 84x – 754 Great. This is the equation of the line tangent to f(x) when x=16. Let’s see a graph to verify this. b) The points of intersection between the lines tangent to g(x) when x=2 and the line tangent to f(x) when x=5 are the centers of three circles with a radius of 5. Determine the equations of the circles where g(x)= squareroot[x] .
  • 17. Part B The graphs are very ugly, but you can see that the equations are correct. Now we must find the points of intersection between the tangent lines!
  • 18. Part B Here are the three equations of tangent lines we have. To find the points of intersection, we make two equations equal other because at that specific point, they share the same coordinate. For example, making the y’s equal other shows which values of y are shared amongst the graphs. From g(x), we have: 1) Y = (x/4) + 1 2) Y = (-x/4) - 1 From f(x), we have: 3) Y = 84x – 754 There are going to be three intersections because each of these graphs are lines that never end. I assigned each of the equations numbers to show which intersections I’ll be finding.
  • 19. Part B 1,2 1) Y = (x/4) + 1 2) Y = (-x/4) – 1 (x/4) + 1 = (-x/4) – 1 (x/4) – (-x/4) = – 1 -1 2x/4 = -2 X = -4 Now we must find the y-value to find the coordinate. We can plug x into anyone of the equations above because they both contain a point when x=-4 Y = (-4/4) + 1 Y = 0 Our first point of intersection is (-4,0)
  • 20.  
  • 21. Part B 1,3 1) Y = (x/4) + 1 3) Y = 84x - 754 (x/4) + 1 = 84x – 754 (x/4) – (84x) = – 754 – 1 (x – 336x)/4 = -755 x(1 – 336) = -3020 x(-335) = -3020 x = 604/67 This is approximately 9.0149 Now we must find the y-value to find the coordinate. We can plug x into anyone of the equations above because they both contain a point when x=604/67 Y = ((604/67)/4) + 1 Y = 151/67 + 67/67 Y = 218/67 This approximately equals 3.2537 Our second point of intersection is ( 604/67 , 218/67)
  • 23. Part B 2,3 2) Y = (-x/4) - 1 3) Y = 84x - 754 (-x/4) - 1 = 84x – 754 (-x/4) – (84x) = – 754 + 1 (-x – 336x)/4 = -753 -337X = -3012 x = 3012/337 This approximately equals 8.9377 Now we must find the y-value to find the coordinate. We can plug x into anyone of the equations above because they both contain a point when x=3012/337 Y = (-(3012/337)/4) + 1 Y = -753/337 - 337/337 Y = - 1090/337 This approximately equals -3.2344 Our third point of intersection is ( 3012/337 , 1090/337 )
  • 25. Part B Alright, so our final step is to find the equations of the circles where their origins are the intersections we found. Each circle has a radius of 5. This is perhaps the HARDEST part of the problem because it requires so much work to get this far. Our points of intersection are: ( -4 , 0 ) ( 604/67 , 218/67 ) ( 3012/337 , 1090/337 ) The radius is 5. Now we just plug them into the equation: (x-h)^2 + (y-k)^2 = r^2 (x+4)^2 + (y-0)^2 = 25 (x-604/67)^2 + (y-218/67)^2 = 25 (x-3012/337)^2 + (y-1090/337)^2 = 25