SlideShare ist ein Scribd-Unternehmen logo
1 von 40
“Teach A Level Maths”
 Vol. 2: A2 Core Modules

25: Integration by Parts




                     © Christine Crisp
Integration by Parts



                     Module C3                                               Module C4
                            AQA                                               Edexcel
                        MEI/OCR                                                   OCR




"Certain images and/or photos on this presentation are the copyrighted property of JupiterImages and are being used with
permission under license. These images and/or photos may not be copied or downloaded without permission from JupiterImages"
Integration by Parts

There is a formula for integrating some products.

I’m going to show you how we get the formula but
it is tricky so if you want to go directly to the
summary and examples click below.

                    Summary
Integration by Parts
We develop the formula by considering how to
differentiate products.
If   y  uv , dy    du     dv     where u and v are
                 v     u        both functions of x.
              dx    dx     dx
Substituting for y, 
                          d ( uv )    du    dv
                                   v    u
                            dx        dx    dx
e.g. If   y  x sin x ,
             d ( x sin x )
                            sin x  1  x  cos x
                  dx
Integration by Parts

So,         d ( x sin x )
                           sin x  1  x  cos x
                 dx
Integrating this equation, we get


                                        
          d ( x sin x )
                        dx  sin x dx        x cos x dx
               dx
The l.h.s. is just the integral of a derivative, so,
since integration is the reverse of differentiation,
we get

                          
                x sin x  sin x dx 
                                             x cos x dx
Can you see what this has to do with integrating a
product?
Integration by Parts



                   
        x sin x  sin x dx 
                                       x cos x dx

                  Here’s the product . . .
if we rearrange, we get

          x cos x dx  x sin x 
                                       sin x dx

The function in the integral on the l.h.s. . . .
 . . . is a product, but the one on the r.h.s. . . .
is a simple function that we can integrate easily.
Integration by Parts



                     
         x sin x  sin x dx 
                                        x cos x dx

                   Here’s the product . . .
  if we rearrange, we get

           x cos x dx  x sin x 
                                        sin x dx
                        x sin x  (  cos x )  C
                        x sin x  cos x  C
         So, we’ve   integrated xcos x !
We need to turn this method ( called integration by
parts ) into a formula.
Integration by Parts
  Example
  d ( x sin x )                                     Generalisation
                 sin x  x cos x
       dx                                      d ( uv )    du     dv
 Integrating:                                           v     u
                                                 dx        dx     dx
                                    
     d ( x sin x )
                   dx  sin x dx         x cos x dx
          dx

                                                            
                                     d ( uv )       du              dv
                                              dx  v dx           u dx
Simplifying the l.h.s.:                dx           dx              dx

             
  x sinx  sinx dx 
                              x cos x dx
                                                              
                                                   du               dv
 Rearranging:                                uv  v dx            u dx
                                                   dx               dx
                           
     x cos x dx  x sinx  sinx dx

                                                              
                                                   dv          du
                                                  u dx  uv  v dx
                                                   dx          dx
Integration by Parts

SUMMARY
               Integration by Parts

To integrate some products we can use the formula



                              
                dv          du
               u dx  uv  v dx
                dx          dx
Integration by Parts



                           
              dv          du
             u dx  uv  v dx
              dx          dx
Using this formula means that we differentiate one
factor, u to get du . . .
                  dx
Integration by Parts

So,
                           
              dv          du
             u dx  uv  v dx
              dx          dx
Using this formula means that we differentiate one
factor, u to get du . . .
                  dx                     dv ,
               and integrate the other        to get v
                                         dx
Integration by Parts

  So,
                              
                dv          du
               u dx  uv  v dx
                dx          dx
 Using this formula means that we differentiate one
 factor, u to get du . . .
                         dx                 dv ,
                 and integrate the other         to get v
                                            dx
   e.g. 1 Find

   1
                
   Having substituted in x dx
                   2 x sin the formula, notice that the
                     completed
                                  dv
     st term, uv, is u  2 x andbut the sin x
                                      2nd term still
                                   dx
differentiatebe integrated.
    needs to
                  du                             integrate
                         2        v   cos x
                    dx
                                     ( +C comes later )
Integration by Parts
 So,                                   dv
                          u  2 x and      sin x
                                       dx
differentiate                                           integrate
                         du
                            2        v   cos x
                         dx
 We can now substitute into the formula

                                       
                          dv          du
                         u dx  uv  v dx
                          dx          dx

        2 x sin x dx  2 x( cos x )
          u     dv            u     v
                                                
                                             (  cos x ) 2 dx
                                                    v     du
                dx                                        dx
Integration by Parts
 So,                               dv
                      u  2 x and      sin x
                                   dx
differentiate                                      integrate
                     du
                        2        v   cos x
                     dx
 We can now substitute into the formula

                                 
                      dv          du
                     u dx  uv  v dx
                      dx          dx

        2 x sin x dx  2 x( cos x )       
                                         (  cos x ) 2 dx
                        2 x cos x 
                                             2 cos x dx
                         2 x cos x  2 sin x  C
                       The 2nd term needs integrating
Integration by Parts

 e.g. 2 Find
                       xe 2 x dx
                                          
                                               dv
                                                            
                                                           du
                                              u dx  uv  v dx
                                               dx          dx
 Solution:
                                       dv
                          u  x and         e2x
differentiate
                                       dx      2x          integrate
                         du                  e
                            1           v
                         dx                    2
                                This is a compound         function,
                             e2x    so we mustx be careful.
                                              e2 
So,    xe        dx  ( x )        
                                                1 dx
             2x
                             2             
                                                2 
                                                    
          xe 2 x             e2x           xe 2 x e 2 x
        
           2
                 
                             2
                                 dx      
                                            2
                                                 
                                                   4
                                                        C
Integration by Parts

  Exercises
   Find
           1.
                 xe dx                 2.
                                              x cos 3 x dx
                           x


Solutions:
                 xe       dx    xe   e dx
                       x            x             x
      1.

                                xe  e  C
                                    x         x


                               sin3 x 
                                                      
                                           sin3 x
   2.
         x cos 3 x dx  ( x ) 3  
                                           3
                                                  dx

                          x sin 3 x cos 3 x
                                           C
                               3         9
Integration by Parts
 Definite Integration by Parts
With a definite integral it’s often easier to do the
indefinite integral and insert the limits at the end.
We’ll use the question in the exercise you have just
done to illustrate.

                xe x dx    xe x   e x dx
                            xe x  e x  C
         0
            1      x
                xe dx         
                            xe        x     x 1
                                           e 0  
                            1e   1
                                       e   1
                                                  0e   0
                                                              e   0
                                                                       
                            0   1  1
Integration by Parts

Using Integration by Parts

Integration by parts cannot be used for every product.
It works if
     we can integrate one factor of the product,

     the integral on the r.h.s. is easier* than the
      one we started with.


 * There is an exception but you need to learn the
    general rule.
Integration by Parts

The following exercises and examples are harder
so you may want to practice more of the
straightforward questions before you tackle them.
Integration by Parts


                                              
                                     dv          du
e.g. 3 Find     x ln x dx          u dx  uv  v dx
                                     dx          dx
Solution:
            What’s a possible problem?
            ANS: We can’t integrate   ln x .
Can you see what to do?
                         dv
  If we let u  ln x and     x , we will need to
                         dx
  differentiate ln x and integrate x.

  Tip: Whenever ln x appears in an integration by
  parts we choose to let it equal u.
Integration by Parts


                                                 
                                      dv           du
 e.g. 3 Find     x ln x dx         u dx  uv  v dx
                                      dx           dx
          So,       u  ln x
                                   dv
                                      x
                                   dx       integrate
differentiate   du 1                    x2
                                   v
                dx x                     2
                   x2                  x2 1
     x ln x dx 
                    2
                      ln x 
                                         dx
                                       2 x
  The r.h.s. integral still seems to be a product!
  BUT . . . x cancels.        2

                                       
                             x             x
        So,     x ln x dx       ln x       dx
                              2            2
                            x2          x2
          
               x ln x dx 
                            2
                                ln x 
                                        4
                                           C
Integration by Parts

e.g. 4
              x 2 e  x dx
                                                          
                                         dv                du
                                       u dx  uv  v dx
                                         dx                dx
Solution:
           Let                            dv
                         u  x and
                              2
                                               ex
                                          dx
                      du
                           2x              v  e  x
                      dx
            x 2 e  x dx   x 2 e  x    2 xe  x dx
               x 2 e  x dx   x 2 e  x 
                  I1
                                                 2 xe  x dx
                                                   I2
The integral on the r.h.s. is still a product but using
the method again will give us a simple function.
We write        I   x 2e  x  I
                    1                    2
Integration by Parts

 e.g. 4
                 x 2 e  x dx
Solution:             I1   x 2e  x  I 2 . . . . . ( 1 )
I 2   2 xe  x dx
                                              dv
              Let       u  2x       and          ex
                       du
                                              dx
                          2                   v  e  x
                       dx
                      So,    I 2   2 xe  x    2e  x dx
                                   2 xe  x 
                                                  x
                                                   2e  x dx
                                   2 xe  x  2e  C
Substitute in ( 1 )
                        x e dx   x e
                            2 x           2 x            x          x
                                                   2 xe         2e        C
Integration by Parts

The next example is interesting but is not essential.
Click below if you want to miss it out.

                     Omit Example


                                               
                                       dv          du
            
e.g. 5 Find e sin x dx
                x
                                      u dx  uv  v dx
                                       dx          dx
Solution:
It doesn’t look as though integration by parts will
help since neither function in the product gets easier
when we differentiate it.
However, there’s something special about the 2
functions that means the method does work.
Integration by Parts


                                                      
                                    dv            du
e.g. 5 Find  e sin x dx
               x
                                  u dx  uv  v dx
                                    dx            dx
 Solution:                 dv
                ue  x
                                sin x
                           dx
              du
                   ex      v  cos x
               dx
  e x sin x dx   e x cos x    e x cos x dx
                     e cos x        e x cos x dx
                        x


We write this as:     I1  e cos x  I 2
                              x
Integration by Parts


                                                   
                                         dv          du
              
e.g. 5 Find e sin x dx
                  x
                                        u dx  uv  v dx
                                         dx          dx
 So,        I1  e x cos x  I 2
         I 1   e x sin x dx and I 2  e x cos x dx
where
                                       
We next use integration by parts for I2
                              dv
            ue       x
                                  cos x
            du                dx
                ex            v  sin x
            dx

   e x cos x dx  e x sinx        e x sin x dx
              I 2  e sinx  I1
                          x
Integration by Parts


                                                   
                                         dv          du
              
e.g. 5 Find e sin x dx
                  x
                                        u dx  uv  v dx
                                         dx          dx
 So,        I1  e x cos x  I 2
         I 1   e x sin x dx and I 2  e x cos x dx
where
                                       
We next use integration by parts for I2
                              dv
            ue       x
                                  cos x
            du                dx
                ex            v  sin x
            dx

   e x cos x dx  e x sinx        e x sin x dx
              I 2  e sinx  I1
                          x
Integration by Parts


                                                  
                                          dv          du
             
e.g. 5 Find e sin x dx
                 x
                                         u dx  uv  v dx
                                          dx          dx
So,        I1  e x cos x  I 2 . . . . . ( 1 )

           I 2  e x sinx  I1      .....(2)

      2 equations, 2 unknowns ( I1 and I2 ) !
Substituting for I2 in ( 1 )

         I1  e x cos x 
Integration by Parts


                                                  
                                          dv          du
             
e.g. 5 Find e sin x dx
                 x
                                         u dx  uv  v dx
                                          dx          dx
So,        I1  e x cos x  I 2 . . . . . ( 1 )

           I 2  e x sin x  I 1    .....(2)

      2 equations, 2 unknowns ( I1 and I2 ) !
Substituting for I2 in ( 1 )

         I1  e x cos x  e x sin x  I 1
Integration by Parts


                                                  
                                          dv          du
             
e.g. 5 Find e sin x dx
                 x
                                         u dx  uv  v dx
                                          dx          dx
So,        I1  e x cos x  I 2 . . . . . ( 1 )

           I 2  e x sin x  I 1    .....(2)

      2 equations, 2 unknowns ( I1 and I2 ) !
Substituting for I2 in ( 1 )

     I1  e x cos x  e x sin x  I 1
   2I1  e x cos x  e x sinx
             e x cos x  e x sin x
     I1                           C
                       2
Integration by Parts
Exercises

          x
                                             2
     1.                              2.   1 ln x dx
               2
                   sin x dx
( Hint: Although 2. is not a product it can be turned
  into one by writing the function as 1 ln x . )
Integration by Parts
Solutions:
                                                         dv
 1.   x       sin x dx Let u  x              and           sin x
           2                              2

               I1                   du                   dx
                                        2x               v  cos x
                                    dx
                       I 1   x 2 cos x    2 x cos x dx
                     I 1   x cos x 
                                              dv
                                2
                                               2 x cos x dx . . . . . ( 1 )
                                                    I2
For I2:               Let   u  2 x and              cos x
                            du                dx
                               2               v  sin x
                            dx
                      I 2  2 x sin x   2 sin x dx
                           2 x sin x  2 cos x  C
Subs. in ( 1 )
      x 2 sin x dx   x 2 cos x  2 x sin x  2 cos x  C
Integration by Parts
       2                2
2.
      1 ln x dx  1 1 ln x dx                   This is an important
     Let u  ln x and      dv                      application of
                              1
       du 1                dx                      integration by parts
                           vx
       dx x

                                         
                                  1
       1 ln x dx  x ln x  x  dx
                                  x
                            
                            
                                           C
                                x ln x  1 dx
                                x ln x  x
                              x ln x  x 
            2
           1 ln x dx
                                               2
 So,                                           1

                              2 ln2  2    1 ln1  1 
                             2 ln 2  1
Integration by Parts
Integration by Parts




The following slides contain repeats of
information on earlier slides, shown without
colour, so that they can be printed and
photocopied.
For most purposes the slides can be printed
as “Handouts” with up to 6 slides per sheet.
Integration by Parts

SUMMARY
               Integration by Parts

To integrate some products we can use the formula



                              
                dv          du
               u dx  uv  v dx
                dx          dx
Integration by Parts

 e.g.    Find
                       xe 2 x dx
                                              
                                                   dv          du
                                                  u dx  uv  v dx
                                                                     
                                                   dx          dx
 Solution:
                                                  dv
                          u x          and           e2x
differentiate
                                                  dx     2x          integrate
                         du                            e
                            1                     v
                         dx                              2
                             e2x                 e2x   
So,    xe        dx  ( x )                           1 dx
             2x
                             2                  
                                                   2     
                                                       
          xe 2 x             e2x              xe 2 x e 2 x
        
           2
                 
                             2
                                 dx         
                                               2
                                                    
                                                      4
                                                           C
Integration by Parts

Using Integration by Parts

Integration by parts can’t be used for every product.
It works if
     we can integrate one factor of the product,

     the integral on the r.h.s. is easier* than the
      one we started with.


 * There is an exception but you need to learn the
    general rule.
Integration by Parts


                                                
                                      dv          du
 e.g. 3 Find     x ln x dx          u dx  uv  v dx
                                      dx          dx
 We can’t integrate ln x so,
                                 dv
                    u  ln x        x
                                 dx          integrate
differentiate   du 1                 x2
                                 v
                dx x                 2
                   x2                x2 1
     x ln x dx 
                    2
                      ln x 
                                       dx
                                     2 x
  The r.h.s. integral still seems to be a product!
  BUT . . . x cancels.
          So,  x ln x dx 
                            x2        x2  C
                               ln x 
                            2         4
Integration by Parts

                                          This is an important
2.    ln x dx   1 ln x dx             application of
                                          integration by parts
       Let    u  ln x   and
                                  dv
                                     1
                                  dx
             du 1
                                 vx
             dx x

                                  
                                         1
       1 ln x dx  x ln x         x  dx
                                         x
                      x ln x 
                                         1 dx

                      x ln x  x  C

Weitere ähnliche Inhalte

Was ist angesagt?

Was ist angesagt? (20)

Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equation
 
Diagonalization
DiagonalizationDiagonalization
Diagonalization
 
First order partial differential equations
First order partial differential equationsFirst order partial differential equations
First order partial differential equations
 
The integral
The integralThe integral
The integral
 
Vector Spaces
Vector SpacesVector Spaces
Vector Spaces
 
Techniques of Integration ppt.ppt
Techniques of Integration ppt.pptTechniques of Integration ppt.ppt
Techniques of Integration ppt.ppt
 
Rolles theorem
Rolles theoremRolles theorem
Rolles theorem
 
Integration by parts
Integration by partsIntegration by parts
Integration by parts
 
Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first order
 
Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl
 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equation
 
Integral Domains
Integral DomainsIntegral Domains
Integral Domains
 
Linear dependence & independence vectors
Linear dependence & independence vectorsLinear dependence & independence vectors
Linear dependence & independence vectors
 
Limits And Derivative
Limits And DerivativeLimits And Derivative
Limits And Derivative
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
linear transformation
linear transformationlinear transformation
linear transformation
 
Inner product space
Inner product spaceInner product space
Inner product space
 
Complex number
Complex numberComplex number
Complex number
 
PPT of Improper Integrals IMPROPER INTEGRAL
PPT of Improper Integrals IMPROPER INTEGRALPPT of Improper Integrals IMPROPER INTEGRAL
PPT of Improper Integrals IMPROPER INTEGRAL
 
MEAN VALUE THEOREM
MEAN VALUE THEOREMMEAN VALUE THEOREM
MEAN VALUE THEOREM
 

Andere mochten auch

презентация николаев апрель_2013_1
презентация николаев апрель_2013_1презентация николаев апрель_2013_1
презентация николаев апрель_2013_1
Katherine Sereda
 
результаты социологического исследования 1
результаты социологического исследования 1результаты социологического исследования 1
результаты социологического исследования 1
Katherine Sereda
 

Andere mochten auch (9)

гайдлайни для вивісок
гайдлайни для вивісокгайдлайни для вивісок
гайдлайни для вивісок
 
презентация николаев апрель_2013_1
презентация николаев апрель_2013_1презентация николаев апрель_2013_1
презентация николаев апрель_2013_1
 
результаты социологического исследования 1
результаты социологического исследования 1результаты социологического исследования 1
результаты социологического исследования 1
 
Ancient india
Ancient indiaAncient india
Ancient india
 
Learn BEM: CSS Naming Convention
Learn BEM: CSS Naming ConventionLearn BEM: CSS Naming Convention
Learn BEM: CSS Naming Convention
 
SEO: Getting Personal
SEO: Getting PersonalSEO: Getting Personal
SEO: Getting Personal
 
Succession “Losers”: What Happens to Executives Passed Over for the CEO Job?
Succession “Losers”: What Happens to Executives Passed Over for the CEO Job? Succession “Losers”: What Happens to Executives Passed Over for the CEO Job?
Succession “Losers”: What Happens to Executives Passed Over for the CEO Job?
 
How to Build a Dynamic Social Media Plan
How to Build a Dynamic Social Media PlanHow to Build a Dynamic Social Media Plan
How to Build a Dynamic Social Media Plan
 
Lightning Talk #9: How UX and Data Storytelling Can Shape Policy by Mika Aldaba
Lightning Talk #9: How UX and Data Storytelling Can Shape Policy by Mika AldabaLightning Talk #9: How UX and Data Storytelling Can Shape Policy by Mika Aldaba
Lightning Talk #9: How UX and Data Storytelling Can Shape Policy by Mika Aldaba
 

Ähnlich wie integration by parts

Integration+using+u-substitutions
Integration+using+u-substitutionsIntegration+using+u-substitutions
Integration+using+u-substitutions
tutorcircle1
 
Math lecture 10 (Introduction to Integration)
Math lecture 10 (Introduction to Integration)Math lecture 10 (Introduction to Integration)
Math lecture 10 (Introduction to Integration)
Osama Zahid
 
Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!
A Jorge Garcia
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
Matthew Leingang
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
Matthew Leingang
 
Switkes01200543268
Switkes01200543268Switkes01200543268
Switkes01200543268
Hitesh Wagle
 

Ähnlich wie integration by parts (20)

Integration by parts to solve it clearly
Integration by parts  to solve it clearlyIntegration by parts  to solve it clearly
Integration by parts to solve it clearly
 
Core 2 indefinite integration
Core 2 indefinite integrationCore 2 indefinite integration
Core 2 indefinite integration
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
 
Integration+using+u-substitutions
Integration+using+u-substitutionsIntegration+using+u-substitutions
Integration+using+u-substitutions
 
Integration
IntegrationIntegration
Integration
 
Integration by parts
Integration by partsIntegration by parts
Integration by parts
 
Math lecture 10 (Introduction to Integration)
Math lecture 10 (Introduction to Integration)Math lecture 10 (Introduction to Integration)
Math lecture 10 (Introduction to Integration)
 
Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!
 
13 integration by parts x
13 integration by parts x13 integration by parts x
13 integration by parts x
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
 
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
 
Switkes01200543268
Switkes01200543268Switkes01200543268
Switkes01200543268
 
gfg
gfggfg
gfg
 
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
 
14 formulas from integration by parts x
14 formulas from integration by parts x14 formulas from integration by parts x
14 formulas from integration by parts x
 
Lesson 27: Integration by Substitution (Section 4 version)
Lesson 27: Integration by Substitution (Section 4 version)Lesson 27: Integration by Substitution (Section 4 version)
Lesson 27: Integration by Substitution (Section 4 version)
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 

Kürzlich hochgeladen

Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Kürzlich hochgeladen (20)

Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Magic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxMagic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptx
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 

integration by parts

  • 1. “Teach A Level Maths” Vol. 2: A2 Core Modules 25: Integration by Parts © Christine Crisp
  • 2. Integration by Parts Module C3 Module C4 AQA Edexcel MEI/OCR OCR "Certain images and/or photos on this presentation are the copyrighted property of JupiterImages and are being used with permission under license. These images and/or photos may not be copied or downloaded without permission from JupiterImages"
  • 3. Integration by Parts There is a formula for integrating some products. I’m going to show you how we get the formula but it is tricky so if you want to go directly to the summary and examples click below. Summary
  • 4. Integration by Parts We develop the formula by considering how to differentiate products. If y  uv , dy du dv where u and v are v  u both functions of x. dx dx dx Substituting for y,  d ( uv ) du dv v u dx dx dx e.g. If y  x sin x , d ( x sin x )  sin x  1  x  cos x dx
  • 5. Integration by Parts So, d ( x sin x )  sin x  1  x  cos x dx Integrating this equation, we get    d ( x sin x ) dx  sin x dx  x cos x dx dx The l.h.s. is just the integral of a derivative, so, since integration is the reverse of differentiation, we get  x sin x  sin x dx   x cos x dx Can you see what this has to do with integrating a product?
  • 6. Integration by Parts  x sin x  sin x dx   x cos x dx Here’s the product . . . if we rearrange, we get  x cos x dx  x sin x   sin x dx The function in the integral on the l.h.s. . . . . . . is a product, but the one on the r.h.s. . . . is a simple function that we can integrate easily.
  • 7. Integration by Parts  x sin x  sin x dx   x cos x dx Here’s the product . . . if we rearrange, we get  x cos x dx  x sin x   sin x dx  x sin x  (  cos x )  C  x sin x  cos x  C So, we’ve integrated xcos x ! We need to turn this method ( called integration by parts ) into a formula.
  • 8. Integration by Parts Example d ( x sin x ) Generalisation  sin x  x cos x dx d ( uv ) du dv Integrating: v  u dx dx dx    d ( x sin x ) dx  sin x dx  x cos x dx dx    d ( uv ) du dv dx  v dx  u dx Simplifying the l.h.s.: dx dx dx  x sinx  sinx dx   x cos x dx   du dv Rearranging: uv  v dx  u dx dx dx   x cos x dx  x sinx  sinx dx   dv du u dx  uv  v dx dx dx
  • 9. Integration by Parts SUMMARY Integration by Parts To integrate some products we can use the formula   dv du u dx  uv  v dx dx dx
  • 10. Integration by Parts   dv du u dx  uv  v dx dx dx Using this formula means that we differentiate one factor, u to get du . . . dx
  • 11. Integration by Parts So,   dv du u dx  uv  v dx dx dx Using this formula means that we differentiate one factor, u to get du . . . dx dv , and integrate the other to get v dx
  • 12. Integration by Parts So,   dv du u dx  uv  v dx dx dx Using this formula means that we differentiate one factor, u to get du . . . dx dv , and integrate the other to get v dx e.g. 1 Find 1  Having substituted in x dx 2 x sin the formula, notice that the completed dv st term, uv, is u  2 x andbut the sin x  2nd term still dx differentiatebe integrated. needs to du integrate 2 v   cos x dx ( +C comes later )
  • 13. Integration by Parts So, dv u  2 x and  sin x dx differentiate integrate du 2 v   cos x dx We can now substitute into the formula   dv du u dx  uv  v dx dx dx  2 x sin x dx  2 x( cos x ) u dv u v   (  cos x ) 2 dx v du dx dx
  • 14. Integration by Parts So, dv u  2 x and  sin x dx differentiate integrate du 2 v   cos x dx We can now substitute into the formula   dv du u dx  uv  v dx dx dx  2 x sin x dx  2 x( cos x )   (  cos x ) 2 dx  2 x cos x   2 cos x dx   2 x cos x  2 sin x  C The 2nd term needs integrating
  • 15. Integration by Parts e.g. 2 Find  xe 2 x dx  dv  du u dx  uv  v dx dx dx Solution: dv u  x and  e2x differentiate dx 2x integrate du e 1 v dx 2 This is a compound function,  e2x  so we mustx be careful.  e2  So,  xe dx  ( x )      1 dx 2x  2     2   xe 2 x e2x xe 2 x e 2 x  2   2 dx  2  4 C
  • 16. Integration by Parts Exercises Find 1.  xe dx 2.  x cos 3 x dx x Solutions:  xe dx  xe   e dx x x x 1.  xe  e  C x x  sin3 x   sin3 x 2.  x cos 3 x dx  ( x ) 3     3 dx x sin 3 x cos 3 x   C 3 9
  • 17. Integration by Parts Definite Integration by Parts With a definite integral it’s often easier to do the indefinite integral and insert the limits at the end. We’ll use the question in the exercise you have just done to illustrate.  xe x dx  xe x   e x dx  xe x  e x  C  0 1 x xe dx   xe x x 1 e 0   1e 1 e 1   0e 0 e 0   0   1  1
  • 18. Integration by Parts Using Integration by Parts Integration by parts cannot be used for every product. It works if  we can integrate one factor of the product,  the integral on the r.h.s. is easier* than the one we started with. * There is an exception but you need to learn the general rule.
  • 19. Integration by Parts The following exercises and examples are harder so you may want to practice more of the straightforward questions before you tackle them.
  • 20. Integration by Parts   dv du e.g. 3 Find  x ln x dx u dx  uv  v dx dx dx Solution: What’s a possible problem? ANS: We can’t integrate ln x . Can you see what to do? dv If we let u  ln x and  x , we will need to dx differentiate ln x and integrate x. Tip: Whenever ln x appears in an integration by parts we choose to let it equal u.
  • 21. Integration by Parts   dv du e.g. 3 Find  x ln x dx u dx  uv  v dx dx dx So, u  ln x dv x dx integrate differentiate du 1 x2  v dx x 2 x2 x2 1   x ln x dx  2 ln x    dx 2 x The r.h.s. integral still seems to be a product! BUT . . . x cancels. 2   x x So, x ln x dx  ln x  dx 2 2 x2 x2   x ln x dx  2 ln x  4 C
  • 22. Integration by Parts e.g. 4  x 2 e  x dx   dv du u dx  uv  v dx dx dx Solution: Let dv u  x and 2  ex dx du  2x v  e  x dx   x 2 e  x dx   x 2 e  x    2 xe  x dx   x 2 e  x dx   x 2 e  x  I1  2 xe  x dx I2 The integral on the r.h.s. is still a product but using the method again will give us a simple function. We write I   x 2e  x  I 1 2
  • 23. Integration by Parts e.g. 4  x 2 e  x dx Solution: I1   x 2e  x  I 2 . . . . . ( 1 ) I 2   2 xe  x dx dv Let u  2x and  ex du dx 2 v  e  x dx So, I 2   2 xe  x    2e  x dx   2 xe  x   x 2e  x dx   2 xe  x  2e  C Substitute in ( 1 )  x e dx   x e 2 x 2 x x x  2 xe  2e C
  • 24. Integration by Parts The next example is interesting but is not essential. Click below if you want to miss it out. Omit Example   dv du  e.g. 5 Find e sin x dx x u dx  uv  v dx dx dx Solution: It doesn’t look as though integration by parts will help since neither function in the product gets easier when we differentiate it. However, there’s something special about the 2 functions that means the method does work.
  • 25. Integration by Parts   dv du e.g. 5 Find  e sin x dx x u dx  uv  v dx dx dx Solution: dv ue x  sin x dx du  ex v  cos x dx   e x sin x dx   e x cos x    e x cos x dx   e cos x   e x cos x dx x We write this as: I1  e cos x  I 2 x
  • 26. Integration by Parts   dv du  e.g. 5 Find e sin x dx x u dx  uv  v dx dx dx So, I1  e x cos x  I 2 I 1   e x sin x dx and I 2  e x cos x dx where  We next use integration by parts for I2 dv ue x  cos x du dx  ex v  sin x dx  e x cos x dx  e x sinx   e x sin x dx  I 2  e sinx  I1 x
  • 27. Integration by Parts   dv du  e.g. 5 Find e sin x dx x u dx  uv  v dx dx dx So, I1  e x cos x  I 2 I 1   e x sin x dx and I 2  e x cos x dx where  We next use integration by parts for I2 dv ue x  cos x du dx  ex v  sin x dx  e x cos x dx  e x sinx   e x sin x dx  I 2  e sinx  I1 x
  • 28. Integration by Parts   dv du  e.g. 5 Find e sin x dx x u dx  uv  v dx dx dx So, I1  e x cos x  I 2 . . . . . ( 1 ) I 2  e x sinx  I1 .....(2) 2 equations, 2 unknowns ( I1 and I2 ) ! Substituting for I2 in ( 1 ) I1  e x cos x 
  • 29. Integration by Parts   dv du  e.g. 5 Find e sin x dx x u dx  uv  v dx dx dx So, I1  e x cos x  I 2 . . . . . ( 1 ) I 2  e x sin x  I 1 .....(2) 2 equations, 2 unknowns ( I1 and I2 ) ! Substituting for I2 in ( 1 ) I1  e x cos x  e x sin x  I 1
  • 30. Integration by Parts   dv du  e.g. 5 Find e sin x dx x u dx  uv  v dx dx dx So, I1  e x cos x  I 2 . . . . . ( 1 ) I 2  e x sin x  I 1 .....(2) 2 equations, 2 unknowns ( I1 and I2 ) ! Substituting for I2 in ( 1 ) I1  e x cos x  e x sin x  I 1  2I1  e x cos x  e x sinx  e x cos x  e x sin x  I1  C 2
  • 31. Integration by Parts Exercises x 2 1. 2. 1 ln x dx 2 sin x dx ( Hint: Although 2. is not a product it can be turned into one by writing the function as 1 ln x . )
  • 32. Integration by Parts Solutions: dv 1. x sin x dx Let u  x and  sin x 2 2 I1 du dx  2x v  cos x dx I 1   x 2 cos x    2 x cos x dx  I 1   x cos x  dv 2 2 x cos x dx . . . . . ( 1 ) I2 For I2: Let u  2 x and  cos x du dx 2 v  sin x dx  I 2  2 x sin x   2 sin x dx  2 x sin x  2 cos x  C Subs. in ( 1 )   x 2 sin x dx   x 2 cos x  2 x sin x  2 cos x  C
  • 33. Integration by Parts 2 2 2. 1 ln x dx  1 1 ln x dx This is an important Let u  ln x and dv application of 1 du 1 dx integration by parts  vx dx x  1   1 ln x dx  x ln x  x  dx x    C x ln x  1 dx x ln x  x   x ln x  x  2 1 ln x dx 2 So, 1   2 ln2  2    1 ln1  1   2 ln 2  1
  • 35. Integration by Parts The following slides contain repeats of information on earlier slides, shown without colour, so that they can be printed and photocopied. For most purposes the slides can be printed as “Handouts” with up to 6 slides per sheet.
  • 36. Integration by Parts SUMMARY Integration by Parts To integrate some products we can use the formula   dv du u dx  uv  v dx dx dx
  • 37. Integration by Parts e.g. Find  xe 2 x dx  dv du u dx  uv  v dx  dx dx Solution: dv u x and  e2x differentiate dx 2x integrate du e 1 v dx 2  e2x   e2x  So,  xe dx  ( x )     1 dx 2x  2    2      xe 2 x e2x xe 2 x e 2 x  2   2 dx  2  4 C
  • 38. Integration by Parts Using Integration by Parts Integration by parts can’t be used for every product. It works if  we can integrate one factor of the product,  the integral on the r.h.s. is easier* than the one we started with. * There is an exception but you need to learn the general rule.
  • 39. Integration by Parts   dv du e.g. 3 Find  x ln x dx u dx  uv  v dx dx dx We can’t integrate ln x so, dv u  ln x x dx integrate differentiate du 1 x2  v dx x 2 x2 x2 1   x ln x dx  2 ln x    dx 2 x The r.h.s. integral still seems to be a product! BUT . . . x cancels. So,  x ln x dx  x2 x2  C ln x  2 4
  • 40. Integration by Parts This is an important 2.  ln x dx   1 ln x dx application of integration by parts Let u  ln x and dv 1 dx du 1  vx dx x  1   1 ln x dx  x ln x  x  dx x  x ln x   1 dx  x ln x  x  C