SlideShare ist ein Scribd-Unternehmen logo
1 von 41
Resolving the dissociation
  catastrophe in fluctuating-
  charge models
                             Jiahao Chen
                             MIT
                             UIUC


Thanks to:

Susan R. Atlas, UNM
Benjamin G. Levine, Temple
Todd J. Martínez, Stanford
Steven M. Valone, LANL
Troy van Voorhis, MIT        University of
                             Chicago
                             2010-06-29
Polarization is key to describing
  condensed phase chemistry
  Ex. 1: Stabilizes carbonium in
  lysozyme
      carbonium
        forms
                                      sugar bond
                                        cleaved

   TIP4P/FQ                                    OPLS/AA
   polarizable                              non-polarizable
   force field                                 force field
                 1. A Warshel and M Levitt J. Mol. Biol. 103 (1976),
                 227-249.
                 2. SJ Stuart and BJ Berne J. Phys. Chem. 100 (1996),
Outline
The concept of fluctuating charges
  Principle of electronegativity equalization
  Circuit analogy
  The dissociation catastrophe

Fixing the dissociation catastrophe
  Charge transfer variables
  Charge transfer topologies

Applications
  Water
  Metal clusters
The idea of fluctuating
                 charges

      A


Atoms in isolation have no charge*




                            *In general, ions in isolation have integer charges
The idea of fluctuating
                 charges
     +q                    -q
     A                     B
            coupling, J

Atoms in isolation have no charge
but atoms nearby interact by
inducing charges on each other
The idea of fluctuating
                 charges
     +q
      A

To determine the charge, let
electronegativity vary with charge
          χeff (q) = χ + ηq
                                                        ∂χeff
effective                      (chemical) hardness η =    ∂q     q=0
electronegativity      electronegativity
The idea of fluctuating
                 charges
     +q                       -q
     A                        B
            coupling, J
To determine the charge, let
electronegativity vary with charge
and allow for interactions with
other charges

            χeff,A (qA , qB ) = χA + ηA qA + JAB qB
            χeff,B (qB , qA ) = χB + ηB qB + JBA qA
The idea of fluctuating
                 charges
     +q                       -q
     A                        B

Assume that the electronegativities
on all atoms become equal
           χeff,A = χeff,B
Principle of electronegativity
equalization (Sanderson, 1951)
            χeff,A (qA , qB ) = χA + ηA qA + JAB qB
            χeff,B (qB , qA ) = χB + ηB qB + JBA qA
The idea of fluctuating
                     charges                     Modern examples:

                                                 Electronegativity equalization model (EEM)
       +q                                  -q    Mortier, Shankar and Ghosh, 1985/6

        A                                  B     Charge equilibration model (QEq)
                                                 Rappé and Goddard, 1991

                                                 Fluctuating-charge model ( uc-q)
  e charge distribution                          Rick, Stuart and Berne, 1996
minimizes the energy
                                                 plus many more variants since
                     1 2      1
E=            qi χi + qi ηi +              Jij
        i
                     2        2
                                     i=j

                                                  J       1        q                −χ
 P min           E(q1 , . . . qN )     =⇒                                  =
  i   qi =Q                                       1T
                                                          0       −X                Q
                       Lagrange multiplier = global electronegativity
Analogies to electrical
            circuits

                                          screened
                 electro- chemical        Coulomb
 molecule      negativity hardness      interaction
 electrical      electric (inverse)       Coulomb
  circuits      potential capacitance    interaction
More electropositive
                         χ
     - Voltage +




                   η     1
                   1
                                             χ
                                        η    2
                                        2   0V
More electronegative
The dissociation catastrophe

    +q                     -q
     A                         B
We immediately see a problem.
 e solution for two atoms is
                 χA − χB
         qA =
              ηA + ηB − 2JAB
and so at in nite separation
              χA − χB
         qA =         =0
              ηA + ηB
Wrong long-range behavior!
The dissociation catastrophe

             +q                                      -q
               A                                     B
                                 R
 1.0
         q/e




 0.8


 0.6
                                                   QEq

 0.4


 0.2

                                               ab initio
 0.0                                                           R/Å
       0.0     1.0   2.0   3.0   4.0   5.0   6.0         7.0     8.0

Long-range CT = metallic
Outline
The concept of fluctuating charges
  Principle of electronegativity equalization
  Circuit analogy
  The dissociation catastrophe

Fixing the dissociation catastrophe
  Charge transfer variables
  Charge transfer topologies

Applications
  Water
  Metal clusters
Fixing the dissociation
           catastrophe
 One solution is to constrain certain atoms to be
 unable to transfer charge.
                 A                   B

 Another is to modify the electronegativity difference
 to be distance dependent
         q                                   q
A                B                  A                B
    (χA − χB )                         (χA − χB ) SAB
                                     Morales and Martínez, 2001, 2004
                                     Chen and Martínez, 2007
 Long-range charge transfer goes smoothly to 0 at
 dissociation
Fixing the dissociation
           catastrophe
 How to apply this distance dependent
 electronegativity to many atoms? p                    C      pBC
                                    AC
         q                                                    pAB
A                B                  A                               B
                                                        pCD
                                              pAD
                                                       D
 Introduce charge transfer variables
                         qi =       pj→i
                                j
that account for the amount of charge transfer
between each pair of atoms     Chelli, Procacci, Righini, and
                                      Califano, 1999
      E=          pj→i (χi − χj ) Sij +           pj→i pl→k Jik
             ji                            ijkl
                                      Chen and Martínez, 2007
Attenuation fixes long-range
             CT
1.0
        q/e

                                      Na                Cl
                                             R
0.8
                                                  χ1 − χ2
                                           q=
                                              J11 + J22 − J12
0.6
                                                       QEq

0.4                                            (χ1 − χ2 )S12
                                           q=
                                              J11 + J22 − J12
                                                   QTPIE
0.2

                                                   ab initio
0.0                                                                R/Å
      0.0     1.0   2.0   3.0   4.0    5.0       6.0         7.0     8.0
Origin of rank deficiency
  Charge transfer variables are
  massively redundant due to
                   p12
                               p31

                         p23

              p12 + p13 + p31 = 0

only N-1 of these variables are linearly
independent!
Therefore, charge transfer variables contain
exactly the same amount of information as
Reverting to atomic charges
                             qi =       pji        q1
     p12                            j
                 p31

           p23                                q2        q3
                                    ?

Topological analysis of the relationship between
charges and charge transfer variables allows the
    reverse transformation to be derived as
                                        qi − qj
                       pji     =
                                           N
Reverting to charge variables
                           qi =         pji              q4
            p14
                                  j                 q1
                p24 p34
    p12
            p13
                                               q2        q3
          p23                       ?                                 
                                                             p12
  q1     −1               −1   −1        0     0    0           p13   
                                                                      
 q2   1                 0    0       −1    −1     0         p14   
    =                                                             
 q3   0                 1    0       1     0     −1  
                                                                p23   
                                                                       
  q4      0                0    1       0     1      1          p24   
             Adjacency matrix of an                              p34
            oriented complete graph
                 with 4 vertices
Reverting to charge variables
                                   qi =                 pji                            q4
              p14
                                                   j                          q1
                   p24 p34
    p12
             p13
                                                                         q2            q3
           p
           23     
                                                   ?
             p12                                                    +           
           p13             −1         −1    −1        0    0    0       q1
                  
           p14            1           0     0       −1   −1     0   q2        
                     =                                                        
           p23            0           1     0       1    0     −1   q3        
                  
           p24             0           0     1       0    1      1      q4
             p34
                                                           
                                   −1     1     0       0          
                                  −1     0     1       0        q1
                                                           
                             1
                                  −1     0     0       1   
                                                                q2 
                                                                     
                       =
                             4
                                   0    −1     1       0   
                                                                 q3 
                                   0    −1     0       1        q4
                                    0     0    −1       1

 Inverse transformation is determined by
    pseudoinverse of adjacency matrix
Reverting to charge variables
                                   qi =                 pji                            q4
              p14
                                                   j                          q1
                   p24 p34
    p12
             p13
                                         qi − qj                         q2            q3
           p
           23     
                                   pji =
             p12                           N                        +           
           p13             −1         −1    −1        0    0    0       q1
                  
           p14            1           0     0       −1   −1     0   q2        
                     =                                                        
           p23            0           1     0       1    0     −1   q3        
                  
           p24             0           0     1       0    1      1      q4
             p34
                                                           
                                   −1     1     0       0          
                                  −1     0     1       0        q1
                                                           
                             1
                                  −1     0     0       1   
                                                                q2 
                                                                     
                       =
                             4
                                   0    −1     1       0   
                                                                 q3 
                                   0    −1     0       1        q4
                                    0     0    −1       1

 Inverse transformation is determined by
    pseudoinverse of adjacency matrix
Execution times
                                    TImes to solve the QTPIE model
                       4
                     10


                                 N6.20
                    1000
                                                                      N1.81
                     100
Solution time (s)




                      10




                       1




                     0.1
                                                          Bond-space SVD
                                                          Bond-space COF
                                                          Atom-space iterative solver
                                                          Atom-space direct solver
                    0.01
                                                                      4                  5
                           10        100           1000              10                 10
                                                                                  N
                                              Number of atoms
Atom-space QTPIE vs QEq
                                        1
        E    QEq
                    =           qi χi +             qi qj Jij
                            i
                                        2      ij
                                        1
   E   QT P IE
                    =           qi χi +
                                   ¯                qi qj Jij
                            i
                                        2      ij
        A charge model with bond
electronegativities is equivalent to one with
  renormalized atomic electronegativities
             kij Sij (χi − χj )            kij Sij         kij Sij χj
   χ=
   ¯                            = χi               −
         j
                     N                 j
                                             N         j
                                                               N
Cooperative polarization in
           water

       +              −→
• Dipole moment of water increases from
  1.854 Debye 1  in gas phase to 2.95±0.20
  Debye2 at r.t.p. (liquid phase)

• Polarization enhances dipole moments
• Missing in models with implicit or no
  polarization, e.g. Bernal-Fowler, SPC,
             1. D R Lide, CRC Handbook of Chemistry and Physics,
             73rd ed., 1992.
Outline
The concept of fluctuating charges
  Principle of electronegativity equalization
  Circuit analogy
  The dissociation catastrophe

Fixing the dissociation catastrophe
  Charge transfer variables
  Charge transfer topologies

Applications
  Water
  Metal clusters
Polarization in water chains
 • Use parameters from gas phase
   data 1   to model chains of waters


 • Compare QTPIE with:
  ๏   QEq and reparameterized QEq
  ๏                                ˆ
      Ab initio DF-LMP2/aug-cc-pVTZHΨ = EΨ
  ๏   AMOEBA2, an inducible dipole model

                1. WF Murphy J. Chem. Phys. 67 (1977), 5877-5882.
                2. P Ren and JW Ponder J. Phys. Chem. B 107 (2003),
The flexible SPC model
E   =         kO–H RO–H −         0
                                 RO–H
                                      2        bond
                                              stretch
        O–H                                         Urey-
                                              2
        +          UB
                  kH—H    RH—H −        0
                                       RH—H        Bradley
            H—H                                   1,3 term
                                                     angle
                                              2
        +         κ∠HOH θ∠HOH −          0
                                        θ∠HOH
         ∠HOH
                                                       torsion
                                                  12                   6
                                          σO—H              σO—H
        +                    4   O—H                   −
                                          RO—H              RO—H
         O—H,nonbonded
                         qi qj                         dispersion
        +
                         Rij
        electrostati
        ij,nonbonded

              cs                                           Dang and Pettitt,
Our new water model
                                      2
E   =         kO–H RO–H −         0
                                 RO–H         bond stretch
        O–H
                                                          Urey-
                                            2
        +          UB
                  kH—H    RH—H −        0
                                       RH—H            Bradley 1,3
            H—H                                           term
                                                2
        +         κ∠HOH θ∠HOH −            0
                                          θ∠HOH        angle torsion
         ∠HOH
                                                        12                    6
                                            σO—H                  σO—H
        +                    4   O—H                         −
                                            RO—H                  RO—H
         O—H,nonbonded
                         qi qj                               dispersion
        +                        EQTPIE
                         Rij
         ij,nonbonded
                                 electrostatics
                            LX Dang and BM Pettitt J. Phys. Chem. 91 (1987) 3349-3354.
Our new water model
                          reparameterized
E   =       kO–H RO–H −        0
                              RO–H
                                   2   to ab initio (DF-
        O–H                             LMP2/aug-cc-
        +      UB            0
              kH—H RH—H − RH—H
                                   2
                                       pVTZ) energies,
          H—H                              dipoles and
        +                      0
              κ∠HOH θ∠HOH − θ∠HOH
                                     2
                                        polarizabilities
         ∠HOH                              of sampled
                                σO—H     monomer and
                                        12
                                               σO—H
                                                     6
        +              4 O—H               −
                               RO—H           dimer
                                               RO—H
         O—H,nonbonded
                   qi qj                   geometries
        +                     EQTPIE
                        Rij
         ij,nonbonded
Parameterization
1 230 monomers sampled by systematic
variation of coords.
890 dimers sampled from flexible SPC at 30 000
K
Step 2: Fit non-electrostatic parameters with ab
Step 1: Fit electrostatics to dipoles andflexible work
initio energies New QEq QTPIE
  Parameter/eV QEq
                                 Parameter
                                           SPC
                                                  This

        H           4.528 3.678     4.528     LJ radius of  3.1656    1.7055
 electronegativit
   H hardness       13.89 18.448    11.774       OH/Å
        y                                    LJ well depth/ 0.1554    0.2798
        O           8.741 9.591     7.651         kcm
                                             bond stretch 527.2       226
 electronegativit
   O hardness       13.364 17.448   13.364
        y                                       eq. bond      1       1.118
                                               length /Å
                                              angle stretch   37.95   40.81
                                             eq. angle/deg. 109.47    111.48
                                               UB stretch     39.9    54.32
                                             UB eq. length/Å 1.633    1.518
Dipole moment per water
                                     2.6
Dipole moment per molecule (Debye)

                                                              DF-LMP2/aug-cc-PVTZ
                                     2.5                                 AMOEBA

                                     2.4                                      QTPIE

                                     2.3                       QEq (reparameterized)
                                     2.2

                                     2.1

                                     2.0

                                     1.9
                                                                               QEq
                                     1.8
                                           0   5       10       15       20          25
                                                   Number of molecules
Polarizability per water
Longitudinal polarizability per molecule (Å!)
                                                5.0
                                                          QEq

                                                4.0       QEq (reparameterized)


                                                3.0


                                                2.0                                       AMOEBA
                                                                        DF-LMP2/aug-cc-PVTZ QTPIE
                                                1.0


                                                 .0
                                                      0       5        10         15     20         25
                                                                   Number of molecules
Polarizability per water
Transverse polarizability per molecule (Å!)
                                              3.5


                                              3.0
                                                                                                QEq
                                              2.5


                                              2.0

                                                                                              QTPIE
                                              1.5                                           AMOEBA

                                                        QEq (reparameterized)   DF-LMP2/aug-cc-PVTZ
                                              1.0
                                                    0         5         10        15       20         25
                                                                   Number of molecules
Polarizability per water
Out of plane polarizability per molecule (Å!)
                                                1.5
                                                                             DF-LMP2/aug-cc-PVTZ

                                                1.0                                       AMOEBA



                                                 .5



                                                              QTPIE, QEq (reparameterized) and QEq
                                                 .0



                                                -.5
                                                      0   5          10        15       20           25
                                                                 Number of molecules
Charge transfer in 15 waters
                   .20



                   .10
Molecular charge




                   .00


                                            QEq
                   -.10
                                            QEq (reparameterized)
                                            QTPIE
                                            DMA Charges
                   -.20



                   -.30
                          1   2   3   4   5 6 7 8 9 10 11 12 13 14 15
                                           Index of water molecule
Interaction energies in water
           clusters
 Interaction energy per molecule (kcal/mol)
                                                0


                                                                            DF-LMP2/aug-cc-pVTZ


                                               -50


                                                                                                 QTPIE
                                                                                               AMOEBA
                                              -100


                                                                                             flexible SPC

                                              -150
                                                     2   3   4    5   6     7     8    9      10   11   12
                                                                 Number of water molecules
Polarizability of sodium clusters
Polarizability of sodium clusters
                   √
                   3
                                  3
             α=        N rs + δ


                    rs (Å)          δ (Å)
          QEq                     0.987(10)
         QTPIE    2.0896(23
        Knight    )
                  0.4070(13 4.2573(45)
                             0.631(73)
        Rayane    )
                  2.320(38) 0.55(13)
       Tikhonov   2.339(71) 0.71(14)
         Liang    2.298(47) 0.763(17)
         bulk     2.2370(43
                     2.12       -
                  )
Freidel oscillation in polarized
            Na55(Ih)




     QEq              QTPIE
Freidel oscillations in Na309(Ih)




     QEq               QTPIE
Conclusions
Long-range charge transfer can
be attenuated smoothly at
similar computational cost to
non-attenuated models
A three-site water model can
correctly describe in-plane
polarizability scaling
quantitatively, and charge
transfer behavior qualitatively
Data from sodium clusters
suggest need to develop
models that interpolate
smoothly between metallic and

Weitere ähnliche Inhalte

Was ist angesagt?

Brendan's Second Year Seminar Test
Brendan's Second Year Seminar TestBrendan's Second Year Seminar Test
Brendan's Second Year Seminar Testbgiff529
 
June2006 P1
June2006 P1June2006 P1
June2006 P1nazarin
 
Spin qubits for quantum information processing
Spin qubits for quantum information processingSpin qubits for quantum information processing
Spin qubits for quantum information processingGabriel O'Brien
 
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?Tuong Do
 
Representing molecules as atomic-scale electrical circuits with fluctuating-c...
Representing molecules as atomic-scale electrical circuits with fluctuating-c...Representing molecules as atomic-scale electrical circuits with fluctuating-c...
Representing molecules as atomic-scale electrical circuits with fluctuating-c...Jiahao Chen
 
Nucleic Acid Engineering Math
Nucleic Acid Engineering MathNucleic Acid Engineering Math
Nucleic Acid Engineering MathBrian Frezza
 
Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?ABDERRAHMANE REGGAD
 
Structure of atom
Structure of atom Structure of atom
Structure of atom sahil9100
 
Cbse class 12 physics sample paper 02 (for 2014)
Cbse class 12 physics sample paper 02 (for 2014)Cbse class 12 physics sample paper 02 (for 2014)
Cbse class 12 physics sample paper 02 (for 2014)mycbseguide
 

Was ist angesagt? (20)

Electromagnetic waves
Electromagnetic wavesElectromagnetic waves
Electromagnetic waves
 
Rumus fisika
Rumus fisikaRumus fisika
Rumus fisika
 
Brendan's Second Year Seminar Test
Brendan's Second Year Seminar TestBrendan's Second Year Seminar Test
Brendan's Second Year Seminar Test
 
June2006 P1
June2006 P1June2006 P1
June2006 P1
 
Cours 1
Cours 1Cours 1
Cours 1
 
AMU - Physics - 2001
AMU - Physics  - 2001AMU - Physics  - 2001
AMU - Physics - 2001
 
Spin qubits for quantum information processing
Spin qubits for quantum information processingSpin qubits for quantum information processing
Spin qubits for quantum information processing
 
solucion cap 37
solucion cap  37solucion cap  37
solucion cap 37
 
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
 
Wavemechanics
WavemechanicsWavemechanics
Wavemechanics
 
Representing molecules as atomic-scale electrical circuits with fluctuating-c...
Representing molecules as atomic-scale electrical circuits with fluctuating-c...Representing molecules as atomic-scale electrical circuits with fluctuating-c...
Representing molecules as atomic-scale electrical circuits with fluctuating-c...
 
TIPLER CAP r25
TIPLER CAP r25TIPLER CAP r25
TIPLER CAP r25
 
Nucleic Acid Engineering Math
Nucleic Acid Engineering MathNucleic Acid Engineering Math
Nucleic Acid Engineering Math
 
Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?
 
Electrostatics
ElectrostaticsElectrostatics
Electrostatics
 
capt 38
capt 38capt 38
capt 38
 
Structure of atom
Structure of atom Structure of atom
Structure of atom
 
Phy electro
Phy electroPhy electro
Phy electro
 
Aieee Physics 2006
Aieee Physics   2006Aieee Physics   2006
Aieee Physics 2006
 
Cbse class 12 physics sample paper 02 (for 2014)
Cbse class 12 physics sample paper 02 (for 2014)Cbse class 12 physics sample paper 02 (for 2014)
Cbse class 12 physics sample paper 02 (for 2014)
 

Andere mochten auch

Julia, genomics data and their principal components
Julia, genomics data and their principal componentsJulia, genomics data and their principal components
Julia, genomics data and their principal componentsJiahao Chen
 
Group meeting 3/11 - sticky electrons
Group meeting 3/11 - sticky electronsGroup meeting 3/11 - sticky electrons
Group meeting 3/11 - sticky electronsJiahao Chen
 
Technical computing in Julia
Technical computing in JuliaTechnical computing in Julia
Technical computing in JuliaJiahao Chen
 
An introduction to Julia
An introduction to JuliaAn introduction to Julia
An introduction to JuliaJiahao Chen
 
Excitation Energy Transfer In Photosynthetic Membranes
Excitation Energy Transfer In Photosynthetic MembranesExcitation Energy Transfer In Photosynthetic Membranes
Excitation Energy Transfer In Photosynthetic MembranesJiahao Chen
 
Julia? why a new language, an an application to genomics data analysis
Julia? why a new language, an an application to genomics data analysisJulia? why a new language, an an application to genomics data analysis
Julia? why a new language, an an application to genomics data analysisJiahao Chen
 
Julia: Multimethods for abstraction and performance
Julia: Multimethods for abstraction and performanceJulia: Multimethods for abstraction and performance
Julia: Multimethods for abstraction and performanceJiahao Chen
 
A brief introduction to Hartree-Fock and TDDFT
A brief introduction to Hartree-Fock and TDDFTA brief introduction to Hartree-Fock and TDDFT
A brief introduction to Hartree-Fock and TDDFTJiahao Chen
 
Genomics data analysis in Julia
Genomics data analysis in JuliaGenomics data analysis in Julia
Genomics data analysis in JuliaJiahao Chen
 
Understanding ECG signals in the MIMIC II database
Understanding ECG signals in the MIMIC II databaseUnderstanding ECG signals in the MIMIC II database
Understanding ECG signals in the MIMIC II databaseJiahao Chen
 
Programming languages: history, relativity and design
Programming languages: history, relativity and designProgramming languages: history, relativity and design
Programming languages: history, relativity and designJiahao Chen
 
A Julia package for iterative SVDs with applications to genomics data analysis
A Julia package for iterative SVDs with applications to genomics data analysisA Julia package for iterative SVDs with applications to genomics data analysis
A Julia package for iterative SVDs with applications to genomics data analysisJiahao Chen
 
Julia: compiler and community
Julia: compiler and communityJulia: compiler and community
Julia: compiler and communityJiahao Chen
 
What's next in Julia
What's next in JuliaWhat's next in Julia
What's next in JuliaJiahao Chen
 
Theory and application of fluctuating-charge models
Theory and application of fluctuating-charge modelsTheory and application of fluctuating-charge models
Theory and application of fluctuating-charge modelsJiahao Chen
 
Python as number crunching code glue
Python as number crunching code gluePython as number crunching code glue
Python as number crunching code glueJiahao Chen
 

Andere mochten auch (16)

Julia, genomics data and their principal components
Julia, genomics data and their principal componentsJulia, genomics data and their principal components
Julia, genomics data and their principal components
 
Group meeting 3/11 - sticky electrons
Group meeting 3/11 - sticky electronsGroup meeting 3/11 - sticky electrons
Group meeting 3/11 - sticky electrons
 
Technical computing in Julia
Technical computing in JuliaTechnical computing in Julia
Technical computing in Julia
 
An introduction to Julia
An introduction to JuliaAn introduction to Julia
An introduction to Julia
 
Excitation Energy Transfer In Photosynthetic Membranes
Excitation Energy Transfer In Photosynthetic MembranesExcitation Energy Transfer In Photosynthetic Membranes
Excitation Energy Transfer In Photosynthetic Membranes
 
Julia? why a new language, an an application to genomics data analysis
Julia? why a new language, an an application to genomics data analysisJulia? why a new language, an an application to genomics data analysis
Julia? why a new language, an an application to genomics data analysis
 
Julia: Multimethods for abstraction and performance
Julia: Multimethods for abstraction and performanceJulia: Multimethods for abstraction and performance
Julia: Multimethods for abstraction and performance
 
A brief introduction to Hartree-Fock and TDDFT
A brief introduction to Hartree-Fock and TDDFTA brief introduction to Hartree-Fock and TDDFT
A brief introduction to Hartree-Fock and TDDFT
 
Genomics data analysis in Julia
Genomics data analysis in JuliaGenomics data analysis in Julia
Genomics data analysis in Julia
 
Understanding ECG signals in the MIMIC II database
Understanding ECG signals in the MIMIC II databaseUnderstanding ECG signals in the MIMIC II database
Understanding ECG signals in the MIMIC II database
 
Programming languages: history, relativity and design
Programming languages: history, relativity and designProgramming languages: history, relativity and design
Programming languages: history, relativity and design
 
A Julia package for iterative SVDs with applications to genomics data analysis
A Julia package for iterative SVDs with applications to genomics data analysisA Julia package for iterative SVDs with applications to genomics data analysis
A Julia package for iterative SVDs with applications to genomics data analysis
 
Julia: compiler and community
Julia: compiler and communityJulia: compiler and community
Julia: compiler and community
 
What's next in Julia
What's next in JuliaWhat's next in Julia
What's next in Julia
 
Theory and application of fluctuating-charge models
Theory and application of fluctuating-charge modelsTheory and application of fluctuating-charge models
Theory and application of fluctuating-charge models
 
Python as number crunching code glue
Python as number crunching code gluePython as number crunching code glue
Python as number crunching code glue
 

Ähnlich wie Resolving the dissociation catastrophe in fluctuating-charge models

Application of laplace transform
Application of laplace transformApplication of laplace transform
Application of laplace transformAshishbaruah4
 
QTPIE: A fluctuating-charge model for molecular systems with correct asymptotics
QTPIE: A fluctuating-charge model for molecular systems with correct asymptoticsQTPIE: A fluctuating-charge model for molecular systems with correct asymptotics
QTPIE: A fluctuating-charge model for molecular systems with correct asymptoticsJiahao Chen
 
Nonlinear Electromagnetic Response in Quark-Gluon Plasma
Nonlinear Electromagnetic Response in Quark-Gluon PlasmaNonlinear Electromagnetic Response in Quark-Gluon Plasma
Nonlinear Electromagnetic Response in Quark-Gluon PlasmaDaisuke Satow
 
ACTC 2011 poster
ACTC 2011 posterACTC 2011 poster
ACTC 2011 posterJiahao Chen
 
ELECTROSTATICS:Coulomb's law, Electric field & problems
ELECTROSTATICS:Coulomb's law, Electric field & problemsELECTROSTATICS:Coulomb's law, Electric field & problems
ELECTROSTATICS:Coulomb's law, Electric field & problemsDr.SHANTHI K.G
 
Nuclear Basics Summer 2010
Nuclear Basics Summer 2010Nuclear Basics Summer 2010
Nuclear Basics Summer 2010Roppon Picha
 
Phys e8(2000)1
Phys e8(2000)1Phys e8(2000)1
Phys e8(2000)1FISICO2012
 
Physics fs2009
Physics fs2009Physics fs2009
Physics fs2009bjmeef
 
Lecture 21 applications of moving charge in magnetic field
Lecture 21   applications of moving charge in magnetic fieldLecture 21   applications of moving charge in magnetic field
Lecture 21 applications of moving charge in magnetic fieldAlbania Energy Association
 
Mit6 007 s11_lec20
Mit6 007 s11_lec20Mit6 007 s11_lec20
Mit6 007 s11_lec20Bipin Kujur
 
Electrostatics_1.ppt
Electrostatics_1.pptElectrostatics_1.ppt
Electrostatics_1.pptbshada8888
 
Science Cafe Discovers a New Form of Alternative Energy
Science Cafe Discovers a New Form of Alternative EnergyScience Cafe Discovers a New Form of Alternative Energy
Science Cafe Discovers a New Form of Alternative EnergyEngenuitySC
 
Chapter 1: Electrostatics
Chapter 1: ElectrostaticsChapter 1: Electrostatics
Chapter 1: Electrostaticskerolaiman
 
JEE Main Advanced 12 Sample ebook
JEE Main Advanced 12 Sample ebookJEE Main Advanced 12 Sample ebook
JEE Main Advanced 12 Sample ebookMiso Study
 
JEE Main 12 Sample ebook
JEE Main 12 Sample ebookJEE Main 12 Sample ebook
JEE Main 12 Sample ebookMiso Study
 

Ähnlich wie Resolving the dissociation catastrophe in fluctuating-charge models (20)

Application of laplace transform
Application of laplace transformApplication of laplace transform
Application of laplace transform
 
QTPIE: A fluctuating-charge model for molecular systems with correct asymptotics
QTPIE: A fluctuating-charge model for molecular systems with correct asymptoticsQTPIE: A fluctuating-charge model for molecular systems with correct asymptotics
QTPIE: A fluctuating-charge model for molecular systems with correct asymptotics
 
Variation of Fundamental Constants
Variation of Fundamental ConstantsVariation of Fundamental Constants
Variation of Fundamental Constants
 
Nonlinear Electromagnetic Response in Quark-Gluon Plasma
Nonlinear Electromagnetic Response in Quark-Gluon PlasmaNonlinear Electromagnetic Response in Quark-Gluon Plasma
Nonlinear Electromagnetic Response in Quark-Gluon Plasma
 
Pot.ppt.pdf
Pot.ppt.pdfPot.ppt.pdf
Pot.ppt.pdf
 
ACTC 2011 poster
ACTC 2011 posterACTC 2011 poster
ACTC 2011 poster
 
ELECTROSTATICS:Coulomb's law, Electric field & problems
ELECTROSTATICS:Coulomb's law, Electric field & problemsELECTROSTATICS:Coulomb's law, Electric field & problems
ELECTROSTATICS:Coulomb's law, Electric field & problems
 
Nuclear Basics Summer 2010
Nuclear Basics Summer 2010Nuclear Basics Summer 2010
Nuclear Basics Summer 2010
 
Phys e8(2000)1
Phys e8(2000)1Phys e8(2000)1
Phys e8(2000)1
 
Crystal dynamics
Crystal dynamicsCrystal dynamics
Crystal dynamics
 
4 b5lecture62008
4 b5lecture620084 b5lecture62008
4 b5lecture62008
 
Physics fs2009
Physics fs2009Physics fs2009
Physics fs2009
 
Lecture 21 applications of moving charge in magnetic field
Lecture 21   applications of moving charge in magnetic fieldLecture 21   applications of moving charge in magnetic field
Lecture 21 applications of moving charge in magnetic field
 
Mit6 007 s11_lec20
Mit6 007 s11_lec20Mit6 007 s11_lec20
Mit6 007 s11_lec20
 
Electrostatics_1.ppt
Electrostatics_1.pptElectrostatics_1.ppt
Electrostatics_1.ppt
 
Caldwellcolloquium
CaldwellcolloquiumCaldwellcolloquium
Caldwellcolloquium
 
Science Cafe Discovers a New Form of Alternative Energy
Science Cafe Discovers a New Form of Alternative EnergyScience Cafe Discovers a New Form of Alternative Energy
Science Cafe Discovers a New Form of Alternative Energy
 
Chapter 1: Electrostatics
Chapter 1: ElectrostaticsChapter 1: Electrostatics
Chapter 1: Electrostatics
 
JEE Main Advanced 12 Sample ebook
JEE Main Advanced 12 Sample ebookJEE Main Advanced 12 Sample ebook
JEE Main Advanced 12 Sample ebook
 
JEE Main 12 Sample ebook
JEE Main 12 Sample ebookJEE Main 12 Sample ebook
JEE Main 12 Sample ebook
 

Kürzlich hochgeladen

Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxVanesaIglesias10
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...JojoEDelaCruz
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 

Kürzlich hochgeladen (20)

Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptx
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 

Resolving the dissociation catastrophe in fluctuating-charge models

  • 1. Resolving the dissociation catastrophe in fluctuating- charge models Jiahao Chen MIT UIUC Thanks to: Susan R. Atlas, UNM Benjamin G. Levine, Temple Todd J. Martínez, Stanford Steven M. Valone, LANL Troy van Voorhis, MIT University of Chicago 2010-06-29
  • 2. Polarization is key to describing condensed phase chemistry Ex. 1: Stabilizes carbonium in lysozyme carbonium forms sugar bond cleaved TIP4P/FQ OPLS/AA polarizable non-polarizable force field force field 1. A Warshel and M Levitt J. Mol. Biol. 103 (1976), 227-249. 2. SJ Stuart and BJ Berne J. Phys. Chem. 100 (1996),
  • 3. Outline The concept of fluctuating charges Principle of electronegativity equalization Circuit analogy The dissociation catastrophe Fixing the dissociation catastrophe Charge transfer variables Charge transfer topologies Applications Water Metal clusters
  • 4. The idea of fluctuating charges A Atoms in isolation have no charge* *In general, ions in isolation have integer charges
  • 5. The idea of fluctuating charges +q -q A B coupling, J Atoms in isolation have no charge but atoms nearby interact by inducing charges on each other
  • 6. The idea of fluctuating charges +q A To determine the charge, let electronegativity vary with charge χeff (q) = χ + ηq ∂χeff effective (chemical) hardness η = ∂q q=0 electronegativity electronegativity
  • 7. The idea of fluctuating charges +q -q A B coupling, J To determine the charge, let electronegativity vary with charge and allow for interactions with other charges χeff,A (qA , qB ) = χA + ηA qA + JAB qB χeff,B (qB , qA ) = χB + ηB qB + JBA qA
  • 8. The idea of fluctuating charges +q -q A B Assume that the electronegativities on all atoms become equal χeff,A = χeff,B Principle of electronegativity equalization (Sanderson, 1951) χeff,A (qA , qB ) = χA + ηA qA + JAB qB χeff,B (qB , qA ) = χB + ηB qB + JBA qA
  • 9. The idea of fluctuating charges Modern examples: Electronegativity equalization model (EEM) +q -q Mortier, Shankar and Ghosh, 1985/6 A B Charge equilibration model (QEq) Rappé and Goddard, 1991 Fluctuating-charge model ( uc-q) e charge distribution Rick, Stuart and Berne, 1996 minimizes the energy plus many more variants since 1 2 1 E= qi χi + qi ηi + Jij i 2 2 i=j J 1 q −χ P min E(q1 , . . . qN ) =⇒ = i qi =Q 1T 0 −X Q Lagrange multiplier = global electronegativity
  • 10. Analogies to electrical circuits screened electro- chemical Coulomb molecule negativity hardness interaction electrical electric (inverse) Coulomb circuits potential capacitance interaction More electropositive χ - Voltage + η 1 1 χ η 2 2 0V More electronegative
  • 11. The dissociation catastrophe +q -q A B We immediately see a problem. e solution for two atoms is χA − χB qA = ηA + ηB − 2JAB and so at in nite separation χA − χB qA = =0 ηA + ηB Wrong long-range behavior!
  • 12. The dissociation catastrophe +q -q A B R 1.0 q/e 0.8 0.6 QEq 0.4 0.2 ab initio 0.0 R/Å 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 Long-range CT = metallic
  • 13. Outline The concept of fluctuating charges Principle of electronegativity equalization Circuit analogy The dissociation catastrophe Fixing the dissociation catastrophe Charge transfer variables Charge transfer topologies Applications Water Metal clusters
  • 14. Fixing the dissociation catastrophe One solution is to constrain certain atoms to be unable to transfer charge. A B Another is to modify the electronegativity difference to be distance dependent q q A B A B (χA − χB ) (χA − χB ) SAB Morales and Martínez, 2001, 2004 Chen and Martínez, 2007 Long-range charge transfer goes smoothly to 0 at dissociation
  • 15. Fixing the dissociation catastrophe How to apply this distance dependent electronegativity to many atoms? p C pBC AC q pAB A B A B pCD pAD D Introduce charge transfer variables qi = pj→i j that account for the amount of charge transfer between each pair of atoms Chelli, Procacci, Righini, and Califano, 1999 E= pj→i (χi − χj ) Sij + pj→i pl→k Jik ji ijkl Chen and Martínez, 2007
  • 16. Attenuation fixes long-range CT 1.0 q/e Na Cl R 0.8 χ1 − χ2 q= J11 + J22 − J12 0.6 QEq 0.4 (χ1 − χ2 )S12 q= J11 + J22 − J12 QTPIE 0.2 ab initio 0.0 R/Å 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
  • 17. Origin of rank deficiency Charge transfer variables are massively redundant due to p12 p31 p23 p12 + p13 + p31 = 0 only N-1 of these variables are linearly independent! Therefore, charge transfer variables contain exactly the same amount of information as
  • 18. Reverting to atomic charges qi = pji q1 p12 j p31 p23 q2 q3 ? Topological analysis of the relationship between charges and charge transfer variables allows the reverse transformation to be derived as qi − qj pji = N
  • 19. Reverting to charge variables qi = pji q4 p14 j q1 p24 p34 p12 p13 q2 q3 p23 ?       p12 q1 −1 −1 −1 0 0 0  p13     q2   1 0 0 −1 −1 0  p14   =    q3   0 1 0 1 0 −1    p23   q4 0 0 1 0 1 1  p24  Adjacency matrix of an p34 oriented complete graph with 4 vertices
  • 20. Reverting to charge variables qi = pji q4 p14 j q1 p24 p34 p12 p13 q2 q3 p  23  ? p12  +    p13  −1 −1 −1 0 0 0 q1    p14   1 0 0 −1 −1 0   q2    =      p23   0 1 0 1 0 −1   q3     p24  0 0 1 0 1 1 q4 p34   −1 1 0 0    −1 0 1 0  q1   1  −1 0 0 1   q2   = 4  0 −1 1 0   q3   0 −1 0 1  q4 0 0 −1 1 Inverse transformation is determined by pseudoinverse of adjacency matrix
  • 21. Reverting to charge variables qi = pji q4 p14 j q1 p24 p34 p12 p13 qi − qj q2 q3 p  23  pji = p12  N +    p13  −1 −1 −1 0 0 0 q1    p14   1 0 0 −1 −1 0   q2    =      p23   0 1 0 1 0 −1   q3     p24  0 0 1 0 1 1 q4 p34   −1 1 0 0    −1 0 1 0  q1   1  −1 0 0 1   q2   = 4  0 −1 1 0   q3   0 −1 0 1  q4 0 0 −1 1 Inverse transformation is determined by pseudoinverse of adjacency matrix
  • 22. Execution times TImes to solve the QTPIE model 4 10 N6.20 1000 N1.81 100 Solution time (s) 10 1 0.1 Bond-space SVD Bond-space COF Atom-space iterative solver Atom-space direct solver 0.01 4 5 10 100 1000 10 10 N Number of atoms
  • 23. Atom-space QTPIE vs QEq 1 E QEq = qi χi + qi qj Jij i 2 ij 1 E QT P IE = qi χi + ¯ qi qj Jij i 2 ij A charge model with bond electronegativities is equivalent to one with renormalized atomic electronegativities kij Sij (χi − χj ) kij Sij kij Sij χj χ= ¯ = χi − j N j N j N
  • 24. Cooperative polarization in water + −→ • Dipole moment of water increases from 1.854 Debye 1 in gas phase to 2.95±0.20 Debye2 at r.t.p. (liquid phase) • Polarization enhances dipole moments • Missing in models with implicit or no polarization, e.g. Bernal-Fowler, SPC, 1. D R Lide, CRC Handbook of Chemistry and Physics, 73rd ed., 1992.
  • 25. Outline The concept of fluctuating charges Principle of electronegativity equalization Circuit analogy The dissociation catastrophe Fixing the dissociation catastrophe Charge transfer variables Charge transfer topologies Applications Water Metal clusters
  • 26. Polarization in water chains • Use parameters from gas phase data 1 to model chains of waters • Compare QTPIE with: ๏ QEq and reparameterized QEq ๏ ˆ Ab initio DF-LMP2/aug-cc-pVTZHΨ = EΨ ๏ AMOEBA2, an inducible dipole model 1. WF Murphy J. Chem. Phys. 67 (1977), 5877-5882. 2. P Ren and JW Ponder J. Phys. Chem. B 107 (2003),
  • 27. The flexible SPC model E = kO–H RO–H − 0 RO–H 2 bond stretch O–H Urey- 2 + UB kH—H RH—H − 0 RH—H Bradley H—H 1,3 term angle 2 + κ∠HOH θ∠HOH − 0 θ∠HOH ∠HOH torsion 12 6 σO—H σO—H + 4 O—H − RO—H RO—H O—H,nonbonded qi qj dispersion + Rij electrostati ij,nonbonded cs Dang and Pettitt,
  • 28. Our new water model 2 E = kO–H RO–H − 0 RO–H bond stretch O–H Urey- 2 + UB kH—H RH—H − 0 RH—H Bradley 1,3 H—H term 2 + κ∠HOH θ∠HOH − 0 θ∠HOH angle torsion ∠HOH 12 6 σO—H σO—H + 4 O—H − RO—H RO—H O—H,nonbonded qi qj dispersion + EQTPIE Rij ij,nonbonded electrostatics LX Dang and BM Pettitt J. Phys. Chem. 91 (1987) 3349-3354.
  • 29. Our new water model reparameterized E = kO–H RO–H − 0 RO–H 2 to ab initio (DF- O–H LMP2/aug-cc- + UB 0 kH—H RH—H − RH—H 2 pVTZ) energies, H—H dipoles and + 0 κ∠HOH θ∠HOH − θ∠HOH 2 polarizabilities ∠HOH of sampled σO—H monomer and 12 σO—H 6 + 4 O—H − RO—H dimer RO—H O—H,nonbonded qi qj geometries + EQTPIE Rij ij,nonbonded
  • 30. Parameterization 1 230 monomers sampled by systematic variation of coords. 890 dimers sampled from flexible SPC at 30 000 K Step 2: Fit non-electrostatic parameters with ab Step 1: Fit electrostatics to dipoles andflexible work initio energies New QEq QTPIE Parameter/eV QEq Parameter SPC This H 4.528 3.678 4.528 LJ radius of 3.1656 1.7055 electronegativit H hardness 13.89 18.448 11.774 OH/Å y LJ well depth/ 0.1554 0.2798 O 8.741 9.591 7.651 kcm bond stretch 527.2 226 electronegativit O hardness 13.364 17.448 13.364 y eq. bond 1 1.118 length /Å angle stretch 37.95 40.81 eq. angle/deg. 109.47 111.48 UB stretch 39.9 54.32 UB eq. length/Å 1.633 1.518
  • 31. Dipole moment per water 2.6 Dipole moment per molecule (Debye) DF-LMP2/aug-cc-PVTZ 2.5 AMOEBA 2.4 QTPIE 2.3 QEq (reparameterized) 2.2 2.1 2.0 1.9 QEq 1.8 0 5 10 15 20 25 Number of molecules
  • 32. Polarizability per water Longitudinal polarizability per molecule (Å!) 5.0 QEq 4.0 QEq (reparameterized) 3.0 2.0 AMOEBA DF-LMP2/aug-cc-PVTZ QTPIE 1.0 .0 0 5 10 15 20 25 Number of molecules
  • 33. Polarizability per water Transverse polarizability per molecule (Å!) 3.5 3.0 QEq 2.5 2.0 QTPIE 1.5 AMOEBA QEq (reparameterized) DF-LMP2/aug-cc-PVTZ 1.0 0 5 10 15 20 25 Number of molecules
  • 34. Polarizability per water Out of plane polarizability per molecule (Å!) 1.5 DF-LMP2/aug-cc-PVTZ 1.0 AMOEBA .5 QTPIE, QEq (reparameterized) and QEq .0 -.5 0 5 10 15 20 25 Number of molecules
  • 35. Charge transfer in 15 waters .20 .10 Molecular charge .00 QEq -.10 QEq (reparameterized) QTPIE DMA Charges -.20 -.30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Index of water molecule
  • 36. Interaction energies in water clusters Interaction energy per molecule (kcal/mol) 0 DF-LMP2/aug-cc-pVTZ -50 QTPIE AMOEBA -100 flexible SPC -150 2 3 4 5 6 7 8 9 10 11 12 Number of water molecules
  • 38. Polarizability of sodium clusters √ 3 3 α= N rs + δ rs (Å) δ (Å) QEq 0.987(10) QTPIE 2.0896(23 Knight ) 0.4070(13 4.2573(45) 0.631(73) Rayane ) 2.320(38) 0.55(13) Tikhonov 2.339(71) 0.71(14) Liang 2.298(47) 0.763(17) bulk 2.2370(43 2.12 - )
  • 39. Freidel oscillation in polarized Na55(Ih) QEq QTPIE
  • 40. Freidel oscillations in Na309(Ih) QEq QTPIE
  • 41. Conclusions Long-range charge transfer can be attenuated smoothly at similar computational cost to non-attenuated models A three-site water model can correctly describe in-plane polarizability scaling quantitatively, and charge transfer behavior qualitatively Data from sodium clusters suggest need to develop models that interpolate smoothly between metallic and

Hinweis der Redaktion