SlideShare ist ein Scribd-Unternehmen logo
1 von 24
Downloaden Sie, um offline zu lesen
Constructing a rigorous fluctuating-
charge model for molecular mechanics
             -           -
                                             +   -
         +       +   +       +                       +

             -           -         -!+       -
                                                 +
                 +           +                    +
         +           +           +!- +!+
Funding                                  Acknowledgments
NSF DMR-03 25939 ITR                     •Todd Martínez
DOE DE-FG02-05ER46260                    •Martínez Group members,
                                         esp. Ben Levine
                        Jiahao Chen
                     September 19, 2006
Molecular mechanics is useful



           water flow in aquaporins1                     mechanical deformation in ceramics2

     • Since atomic nuclei behave mostly classically, molecular
       mechanics (MM) is a useful method for doing dynamics
     • In MM, classical electrostatic effects are important,
       including polarization


1. E. Tajkhorshid et. al., Science 296 (2002), 525-530.
2. P. S. Branicio, R. K. Kalia, A. Nakano, P. Vashishta, Phys. Rev. Lett. 96 (2006), art. no. 065502.
Molecular mechanics
• Classical energy function with bonded and
  nonbonded terms




                                Van der Waals interactions


                                Molecular electrostatics

• Nuclear motions propagated using classical
  equations of motion
MM leaves out something
                  time 0                time
• Ab initio molecular dynamics (MD)
  nuclear forces from wavefunction




• MM/MD
  nuclear forces from fixed charge distribution
      -            -
                                    +    -
 +        +   +        +                     +
  specified

• MM/MD cannot describe chemical reactions
QEq1, a fluctuating charge model
    • Given geometry, find charge distribution
                     energy to charge atom      Coulomb interaction
                                                                                   q1
                                                                         q2


                                                                              q3


    • Minimization with fixed total charge                           q4                  q5
      defines Lagrange multiplier μ




1. A. K. Rappe, W. A. Goddard III, J. Phys. Chem. 95 (1991) 3358-3363.
Physical interpretation of QEq
• In equilibrium:
  – each atom i has the same chemical potential μ
  – μ uniquely determines the atomic charges qi
• Atoms interpreted as subsystems in equilibrium
                                                        molecule
                                       i                atom




                                N, V, T


            Energy derivatives: chemical potential μ, hardness
Physical interpretation of QEq
     • Three-point approximation for derivatives


                                                         Mulliken1
                                                     E   Parr-Pearson2
                                                  IP

                                            EA

                                                                    N
                                   N0-1         N0        N0+1
1. R. S. Mulliken, J. Chem. Phys. 2 (1934) 782-793.
2. R. G. Parr, R. G. Pearson, J. Am. Chem. Soc. 105 (1983) 7512-7516.
Why QEq is bad
• Wrong asymptotic charges predicted
     1.2
           q/e
                                   equilibrium geometry
     1.0

     0.8

     0.6                                                              QEq
                                 Mulliken
     0.4         ab initio
                                     DMA
                 charges
     0.2                      Ideal dipole
     0.0
       0.0        1.0        2.0    3.0      4.0   5.0    6.0   7.0   R/Å
                                                                        8.0

• No penalty for long-range charge transfer
• Overestimates molecular electrostatic properties
• Especially bad far from equilibrium
New charge model: Desiderata
•       Transferable parameters
    –     Generic, application-independent
    –     No atom typing
•       Accurate
    –     Able to describe polarization and charge transfer
    –     Correct asymptotic charge distributions
    –     Predicts electrostatic properties accurately
•       Flexible
    –     Able to handle arbitrary total charge
    –     Able to describe electronic excited states
•       Rigorous
    –     Well-defined coarse-graining picture from conventional
          electronic structure methods
•       Practical to compute
    –     O(N ) or better
    –     Faster than conventional electronic structure methods
QTPIE: charge transfer with
 polarization current equilibration
• Shift focus to charge transfer variables pji:
   – Charge accounting: where it came from, where it’s
     going                                         p      12




                                                    p23


                                                         p34
                                                           p45

   – Explicitly penalize long-distance charge transfer
NaCl asymptote correct
• QTPIE prediction improved over QEq, even without
  reoptimized parameters
   1.2
   q/e




   1.0                  equilibrium geometry

   0.8


   0.6
                                                     QEq

   0.4

                                                 QTPIE
   0.2

                                                     DMA
   0.0
     0.0    1.0   2.0     3.0    4.0     5.0   6.0         7.0   R / Å8.0
• Slope wrong: cannot capture nonadiabatic effects
Water fragments correctly
       • Asymmetric dissociation: correct asymptotics, charge
         transfer on OH fragment retained
1.0
       q/e    equilibrium geometry


                                                             R
0.5

                                                                             R/Å

0.0
   0.5       1.0    1.5      2.0     2.5   3.0   3.5   4.0       4.5   5.0     5.5


-0.5




-1.0
Water parameters transferable
• Parameters transferable across geometries
1.0
          q/e
0.8
                                         O        H
0.6
                                              H
0.4             DMA
0.2
                                                      QEq
0.0                                                   QTPIE
                                               R/Å
                                                      QTPIE
-0.20.5           1.5   2.5    3.5       4.5
                                                      DMA
-0.4

-0.6
                                                      QEq
-0.8
-1.0
Water parameters transferable
• Parameters transferable across geometries
1.0
          q/e
0.8
                                         O      H
0.6

0.4             DMA
                                         H
0.2
                                                     QEq
0.0                                                  QTPIE
                                               R/Å
-0.20.5           1.5   2.5    3.5       4.5         QTPIE
                                                     DMA
-0.4
-0.6
                                                     QEq
-0.8

-1.0
Water parameters transferable
• Parameters transferable across geometries
1.0
          q/e
0.8
                                                        O    H
0.6
0.4                                                 H
          DMA
0.2
                                                                  QEq
0.0                                                               QTPIE
                                                            R / Å QTPIE
-0.20.5   1.0   1.5   2.0   2.5   3.0   3.5   4.0       4.5     5.0
                                                                  DMA
-0.4

-0.6
                                                                 QEq
-0.8
-1.0
Water parameters transferable
• Parameters transferable across geometries
1.0
          q/e
0.8
                                                    O    H
0.6                                            H
0.4
          DMA
0.2
                                                              QEq
0.0                                                           QTPIE
                                                        R / Å QTPIE
-0.20.5   1.0   1.5   2.0   2.5   3.0   3.5   4.0   4.5     5.0
                                                              DMA
-0.4

-0.6
                                                             QEq
-0.8
-1.0
Water parameters transferable
1.0       • Parameters transferable across geometries
          q/e                                                   1.0
                                                                          q/e
0.8
                                              O       H         0.8
0.6                                                                                                                      O   H
                                                                0.6
                                                  H
0.4
                                                                0.4                                                  H
                DMA
0.2                                                             0.2        DMA
0.0                                                     QEq                                                                      QEq
                                                    R/Å QTPIE 0.0                                                            R / Å QTPIE
-0.20.5           1.5     2.5     3.5         4.5
                                                        QTPIE-0.20.5      1.0   1.5    2.0   2.5   3.0   3.5   4.0       4.5     5.0
                                                                                                                                 QTPIE
-0.4                                                    DMA -0.4                                                                 DMA
-0.6                                                            -0.6

-0.8                                                      QEq   -0.8                                                             QEq
-1.0                                                            -1.0
1.0                                                             1.0
          q/e                                                             q/e
0.8                                                             0.8
                                        O      H                                                                         O   H
0.6                                                             0.6                                             H
0.4                                     H                       0.4

0.2
                DMA                                             0.2        DMA
0.0                                                   QEq       0.0                                                              QEq
                                              R/Å                                                                            R / Å QTPIE
                                                      QTPIE
-0.20.5          1.5    2.5     3.5     4.5                     -0.20.5   1.0    1.5   2.0   2.5   3.0   3.5   4.0       4.5     5.0
                                                                                                                                 QTPIE
                                                      QTPIE
-0.4                                                  DMA       -0.4
                                                                                                                                 DMA
-0.6                                                            -0.6

-0.8                                                  QEq       -0.8                                                             QEq
-1.0                                                            -1.0
Dipole polarizability of phenol
    • Response of dipole moment to external electric
      field



    • QTPIE: overestimates less than QEq
     QEq/STO    QTPIE/STO   MP2/STO-    MP2/aug-cc-
                            3G          pVDZ
x     24.6244     13.0298      8.4240       13.6758
y     20.3270     10.7566     7.0488        12.3621
z     0.0000      0.0000      0.8595         6.9981   (Å )

    • Out-of-plane component missing in QEq, QTPIE
    • MP2/STO-3G suggests this is largely because of
      inflexible basis set
QTPIE = coarse-grained ab initio?
• Reparameterizing with ab initio (MP2/aug-cc-
  pVDZ) IPs and EAs improves agreement of in-
  plane polarizabilities at same level of theory
 (eV)   Original   ab initio               Eigenvalues of dipole
IP(H)    11.473    13.588                 polarizability tensor/Å
IP(C)    10.406     9.607      Old QTPIE      New QTPIE       ab initio
IP(O)    15.423    14.565       13.0298         13.4285       13.6758
EA(H)    -2.417     -0.068      10.7566         11.1316       12.3621
EA(C)    0.280      1.000       0.0000           0.0000        6.9981
EA(O)    2.059      3.127

• Similar results for other ab initio methods, e.g.
  FCI/STO-3G, RHF/aug-cc-pVDZ…
Dealing with charged systems I
• Constrained minimization with Lagrange
  multipliers


  – Problem 1: Cannot be enforced for diatomic molecule

                 and

  – Problem 2: Generalizing to non-zero diagonal charge
    transfer variables destroys asymptotic property
  – Model has insufficient constraints at large bond
    lengths to guarantee integer charges
Dealing with charged systems II
     • Redefine atoms with formal charges

                               E                                                         E
                                                                                 IP+1
                                    IP              - e-
                                                                       EA+1
                        EA
                                            N                                                  N
                      N0-1   N0          N0+1                        N0-2   N0-1        N0
     • Problem: must account for multiple references
           IP0, EA0                                     IP+1, EA+1                           IP0, EA0
                             - e-                   +
                                                                            +                            +…
                IP0, EA0                                     IP0, EA0                 +            IP0, EA0
IP0, EA0                                 IP0, EA0                               IP+1, EA+1
Test case - water : phenol : sodium -stack
 • Chemically “obvious”
   localized charge
 • Reparameterization
   appears to work well for
   QTPIE
 • Need to figure out
   extension to general
   systems
  qNa/e       QEq         QTPIE
Lagrange      0.6177      0.1876

reparam.      0.4798      0.8648

 Mulliken/MP2/cc-pVDZ charge: 0.7394
Outlook
• QTPIE is a promising new charge model
  – Implement scalable solution algorithm
  – Interface with MD code
  – Chemical applications, e.g. enzyme-substrate
    docking, electrochemistry
• Many open theoretical questions, e.g.:
  – How to account for out-of-plane polarizabilities?
  – When does a molecule stop being a molecule?
  – What is the quantum-mechanical analogue of charge
    transfer variables?
  – How to deal with excited states?
Conclusions
• Focus on charge transfer and including distance penalty
  improves description of atomic charges
              Fluctuating-charge model     QEq         QTPIE (now)
             Transferable parameters        Yes            Yes
                 Correct asymptotics        No            Yes
      Correct molecular electrostatics      No           Almost!
                                                                      Established
                Arbitrary total charge     Yes*            No
                                                                      New result
             Coarse-graining picture       Yes*       Some evidence   In progress
                     Practical scaling   Yes, O(N2)     No, O(N4)     Need ideas
                        Excited states      No             No
                                                                      *with caveats

Weitere ähnliche Inhalte

Ähnlich wie Constructing a rigorous fluctuating-charge model for molecular mechanics

Polarization and charge transfer in classical molecular dynamics
Polarization and charge transfer in classical molecular dynamicsPolarization and charge transfer in classical molecular dynamics
Polarization and charge transfer in classical molecular dynamicsJiahao Chen
 
14.40 o2 p allfrey
14.40 o2 p allfrey14.40 o2 p allfrey
14.40 o2 p allfreyNZIP
 
QTPIE: A fluctuating-charge model for molecular systems with correct asymptotics
QTPIE: A fluctuating-charge model for molecular systems with correct asymptoticsQTPIE: A fluctuating-charge model for molecular systems with correct asymptotics
QTPIE: A fluctuating-charge model for molecular systems with correct asymptoticsJiahao Chen
 
Summary of select research projects (Early 2013)
Summary of select research projects (Early 2013)Summary of select research projects (Early 2013)
Summary of select research projects (Early 2013)molmodbasics
 
QTPIE and water (Part 1)
QTPIE and water (Part 1)QTPIE and water (Part 1)
QTPIE and water (Part 1)Jiahao Chen
 
QTPIE: A new charge model for arbitrary geometries and systems
QTPIE: A new charge model for arbitrary geometries and systemsQTPIE: A new charge model for arbitrary geometries and systems
QTPIE: A new charge model for arbitrary geometries and systemsJiahao Chen
 
Tifr goa presentation - akshay
Tifr   goa presentation - akshayTifr   goa presentation - akshay
Tifr goa presentation - akshayAkshay Ganguly
 
Methods for computing partial charges
Methods for computing partial chargesMethods for computing partial charges
Methods for computing partial chargesJiahao Chen
 
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCDNucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCDChristos Kallidonis
 
[L'angolo del PhD] Alessandro Palma - XXII Ciclo - 2009
[L'angolo del PhD] Alessandro Palma - XXII Ciclo - 2009[L'angolo del PhD] Alessandro Palma - XXII Ciclo - 2009
[L'angolo del PhD] Alessandro Palma - XXII Ciclo - 2009accatagliato
 
Types of radioactive decay
Types of radioactive decayTypes of radioactive decay
Types of radioactive decayDavid Graff
 
Resolving the dissociation catastrophe in fluctuating-charge models
Resolving the dissociation catastrophe in fluctuating-charge modelsResolving the dissociation catastrophe in fluctuating-charge models
Resolving the dissociation catastrophe in fluctuating-charge modelsJiahao Chen
 
A. Rock - Final Poster - 2015
A. Rock - Final Poster - 2015A. Rock - Final Poster - 2015
A. Rock - Final Poster - 2015Anthony Rock
 
Fundamentals Of Space Systems & Space Subsystems course sampler
Fundamentals Of Space Systems & Space Subsystems course samplerFundamentals Of Space Systems & Space Subsystems course sampler
Fundamentals Of Space Systems & Space Subsystems course samplerJim Jenkins
 
ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compens...
ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compens...ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compens...
ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compens...ESS BILBAO
 
лекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физикилекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физикиSergey Sozykin
 

Ähnlich wie Constructing a rigorous fluctuating-charge model for molecular mechanics (20)

Polarization and charge transfer in classical molecular dynamics
Polarization and charge transfer in classical molecular dynamicsPolarization and charge transfer in classical molecular dynamics
Polarization and charge transfer in classical molecular dynamics
 
14.40 o2 p allfrey
14.40 o2 p allfrey14.40 o2 p allfrey
14.40 o2 p allfrey
 
QTPIE: A fluctuating-charge model for molecular systems with correct asymptotics
QTPIE: A fluctuating-charge model for molecular systems with correct asymptoticsQTPIE: A fluctuating-charge model for molecular systems with correct asymptotics
QTPIE: A fluctuating-charge model for molecular systems with correct asymptotics
 
Summary of select research projects (Early 2013)
Summary of select research projects (Early 2013)Summary of select research projects (Early 2013)
Summary of select research projects (Early 2013)
 
QTPIE and water (Part 1)
QTPIE and water (Part 1)QTPIE and water (Part 1)
QTPIE and water (Part 1)
 
QTPIE: A new charge model for arbitrary geometries and systems
QTPIE: A new charge model for arbitrary geometries and systemsQTPIE: A new charge model for arbitrary geometries and systems
QTPIE: A new charge model for arbitrary geometries and systems
 
Tifr goa presentation - akshay
Tifr   goa presentation - akshayTifr   goa presentation - akshay
Tifr goa presentation - akshay
 
Methods for computing partial charges
Methods for computing partial chargesMethods for computing partial charges
Methods for computing partial charges
 
Variation of Fundamental Constants
Variation of Fundamental ConstantsVariation of Fundamental Constants
Variation of Fundamental Constants
 
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCDNucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
 
52 57
52 5752 57
52 57
 
Advanced Molecular Dynamics 2016
Advanced Molecular Dynamics 2016Advanced Molecular Dynamics 2016
Advanced Molecular Dynamics 2016
 
[L'angolo del PhD] Alessandro Palma - XXII Ciclo - 2009
[L'angolo del PhD] Alessandro Palma - XXII Ciclo - 2009[L'angolo del PhD] Alessandro Palma - XXII Ciclo - 2009
[L'angolo del PhD] Alessandro Palma - XXII Ciclo - 2009
 
Types of radioactive decay
Types of radioactive decayTypes of radioactive decay
Types of radioactive decay
 
Resolving the dissociation catastrophe in fluctuating-charge models
Resolving the dissociation catastrophe in fluctuating-charge modelsResolving the dissociation catastrophe in fluctuating-charge models
Resolving the dissociation catastrophe in fluctuating-charge models
 
A. Rock - Final Poster - 2015
A. Rock - Final Poster - 2015A. Rock - Final Poster - 2015
A. Rock - Final Poster - 2015
 
Fundamentals Of Space Systems & Space Subsystems course sampler
Fundamentals Of Space Systems & Space Subsystems course samplerFundamentals Of Space Systems & Space Subsystems course sampler
Fundamentals Of Space Systems & Space Subsystems course sampler
 
ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compens...
ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compens...ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compens...
ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compens...
 
Power Electronics lab manual BE EEE
Power Electronics lab manual BE EEEPower Electronics lab manual BE EEE
Power Electronics lab manual BE EEE
 
лекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физикилекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физики
 

Kürzlich hochgeladen

"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rick Flair
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????blackmambaettijean
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxhariprasad279825
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESmohitsingh558521
 

Kürzlich hochgeladen (20)

"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptx
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
 

Constructing a rigorous fluctuating-charge model for molecular mechanics

  • 1. Constructing a rigorous fluctuating- charge model for molecular mechanics - - + - + + + + + - - -!+ - + + + + + + +!- +!+ Funding Acknowledgments NSF DMR-03 25939 ITR •Todd Martínez DOE DE-FG02-05ER46260 •Martínez Group members, esp. Ben Levine Jiahao Chen September 19, 2006
  • 2. Molecular mechanics is useful water flow in aquaporins1 mechanical deformation in ceramics2 • Since atomic nuclei behave mostly classically, molecular mechanics (MM) is a useful method for doing dynamics • In MM, classical electrostatic effects are important, including polarization 1. E. Tajkhorshid et. al., Science 296 (2002), 525-530. 2. P. S. Branicio, R. K. Kalia, A. Nakano, P. Vashishta, Phys. Rev. Lett. 96 (2006), art. no. 065502.
  • 3. Molecular mechanics • Classical energy function with bonded and nonbonded terms Van der Waals interactions Molecular electrostatics • Nuclear motions propagated using classical equations of motion
  • 4. MM leaves out something time 0 time • Ab initio molecular dynamics (MD) nuclear forces from wavefunction • MM/MD nuclear forces from fixed charge distribution - - + - + + + + + specified • MM/MD cannot describe chemical reactions
  • 5. QEq1, a fluctuating charge model • Given geometry, find charge distribution energy to charge atom Coulomb interaction q1 q2 q3 • Minimization with fixed total charge q4 q5 defines Lagrange multiplier μ 1. A. K. Rappe, W. A. Goddard III, J. Phys. Chem. 95 (1991) 3358-3363.
  • 6. Physical interpretation of QEq • In equilibrium: – each atom i has the same chemical potential μ – μ uniquely determines the atomic charges qi • Atoms interpreted as subsystems in equilibrium molecule i atom N, V, T Energy derivatives: chemical potential μ, hardness
  • 7. Physical interpretation of QEq • Three-point approximation for derivatives Mulliken1 E Parr-Pearson2 IP EA N N0-1 N0 N0+1 1. R. S. Mulliken, J. Chem. Phys. 2 (1934) 782-793. 2. R. G. Parr, R. G. Pearson, J. Am. Chem. Soc. 105 (1983) 7512-7516.
  • 8. Why QEq is bad • Wrong asymptotic charges predicted 1.2 q/e equilibrium geometry 1.0 0.8 0.6 QEq Mulliken 0.4 ab initio DMA charges 0.2 Ideal dipole 0.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 R/Å 8.0 • No penalty for long-range charge transfer • Overestimates molecular electrostatic properties • Especially bad far from equilibrium
  • 9. New charge model: Desiderata • Transferable parameters – Generic, application-independent – No atom typing • Accurate – Able to describe polarization and charge transfer – Correct asymptotic charge distributions – Predicts electrostatic properties accurately • Flexible – Able to handle arbitrary total charge – Able to describe electronic excited states • Rigorous – Well-defined coarse-graining picture from conventional electronic structure methods • Practical to compute – O(N ) or better – Faster than conventional electronic structure methods
  • 10. QTPIE: charge transfer with polarization current equilibration • Shift focus to charge transfer variables pji: – Charge accounting: where it came from, where it’s going p 12 p23 p34 p45 – Explicitly penalize long-distance charge transfer
  • 11. NaCl asymptote correct • QTPIE prediction improved over QEq, even without reoptimized parameters 1.2 q/e 1.0 equilibrium geometry 0.8 0.6 QEq 0.4 QTPIE 0.2 DMA 0.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 R / Å8.0 • Slope wrong: cannot capture nonadiabatic effects
  • 12. Water fragments correctly • Asymmetric dissociation: correct asymptotics, charge transfer on OH fragment retained 1.0 q/e equilibrium geometry R 0.5 R/Å 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 -0.5 -1.0
  • 13. Water parameters transferable • Parameters transferable across geometries 1.0 q/e 0.8 O H 0.6 H 0.4 DMA 0.2 QEq 0.0 QTPIE R/Å QTPIE -0.20.5 1.5 2.5 3.5 4.5 DMA -0.4 -0.6 QEq -0.8 -1.0
  • 14. Water parameters transferable • Parameters transferable across geometries 1.0 q/e 0.8 O H 0.6 0.4 DMA H 0.2 QEq 0.0 QTPIE R/Å -0.20.5 1.5 2.5 3.5 4.5 QTPIE DMA -0.4 -0.6 QEq -0.8 -1.0
  • 15. Water parameters transferable • Parameters transferable across geometries 1.0 q/e 0.8 O H 0.6 0.4 H DMA 0.2 QEq 0.0 QTPIE R / Å QTPIE -0.20.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 DMA -0.4 -0.6 QEq -0.8 -1.0
  • 16. Water parameters transferable • Parameters transferable across geometries 1.0 q/e 0.8 O H 0.6 H 0.4 DMA 0.2 QEq 0.0 QTPIE R / Å QTPIE -0.20.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 DMA -0.4 -0.6 QEq -0.8 -1.0
  • 17. Water parameters transferable 1.0 • Parameters transferable across geometries q/e 1.0 q/e 0.8 O H 0.8 0.6 O H 0.6 H 0.4 0.4 H DMA 0.2 0.2 DMA 0.0 QEq QEq R/Å QTPIE 0.0 R / Å QTPIE -0.20.5 1.5 2.5 3.5 4.5 QTPIE-0.20.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 QTPIE -0.4 DMA -0.4 DMA -0.6 -0.6 -0.8 QEq -0.8 QEq -1.0 -1.0 1.0 1.0 q/e q/e 0.8 0.8 O H O H 0.6 0.6 H 0.4 H 0.4 0.2 DMA 0.2 DMA 0.0 QEq 0.0 QEq R/Å R / Å QTPIE QTPIE -0.20.5 1.5 2.5 3.5 4.5 -0.20.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 QTPIE QTPIE -0.4 DMA -0.4 DMA -0.6 -0.6 -0.8 QEq -0.8 QEq -1.0 -1.0
  • 18. Dipole polarizability of phenol • Response of dipole moment to external electric field • QTPIE: overestimates less than QEq QEq/STO QTPIE/STO MP2/STO- MP2/aug-cc- 3G pVDZ x 24.6244 13.0298 8.4240 13.6758 y 20.3270 10.7566 7.0488 12.3621 z 0.0000 0.0000 0.8595 6.9981 (Å ) • Out-of-plane component missing in QEq, QTPIE • MP2/STO-3G suggests this is largely because of inflexible basis set
  • 19. QTPIE = coarse-grained ab initio? • Reparameterizing with ab initio (MP2/aug-cc- pVDZ) IPs and EAs improves agreement of in- plane polarizabilities at same level of theory (eV) Original ab initio Eigenvalues of dipole IP(H) 11.473 13.588 polarizability tensor/Å IP(C) 10.406 9.607 Old QTPIE New QTPIE ab initio IP(O) 15.423 14.565 13.0298 13.4285 13.6758 EA(H) -2.417 -0.068 10.7566 11.1316 12.3621 EA(C) 0.280 1.000 0.0000 0.0000 6.9981 EA(O) 2.059 3.127 • Similar results for other ab initio methods, e.g. FCI/STO-3G, RHF/aug-cc-pVDZ…
  • 20. Dealing with charged systems I • Constrained minimization with Lagrange multipliers – Problem 1: Cannot be enforced for diatomic molecule and – Problem 2: Generalizing to non-zero diagonal charge transfer variables destroys asymptotic property – Model has insufficient constraints at large bond lengths to guarantee integer charges
  • 21. Dealing with charged systems II • Redefine atoms with formal charges E E IP+1 IP - e- EA+1 EA N N N0-1 N0 N0+1 N0-2 N0-1 N0 • Problem: must account for multiple references IP0, EA0 IP+1, EA+1 IP0, EA0 - e- + + +… IP0, EA0 IP0, EA0 + IP0, EA0 IP0, EA0 IP0, EA0 IP+1, EA+1
  • 22. Test case - water : phenol : sodium -stack • Chemically “obvious” localized charge • Reparameterization appears to work well for QTPIE • Need to figure out extension to general systems qNa/e QEq QTPIE Lagrange 0.6177 0.1876 reparam. 0.4798 0.8648 Mulliken/MP2/cc-pVDZ charge: 0.7394
  • 23. Outlook • QTPIE is a promising new charge model – Implement scalable solution algorithm – Interface with MD code – Chemical applications, e.g. enzyme-substrate docking, electrochemistry • Many open theoretical questions, e.g.: – How to account for out-of-plane polarizabilities? – When does a molecule stop being a molecule? – What is the quantum-mechanical analogue of charge transfer variables? – How to deal with excited states?
  • 24. Conclusions • Focus on charge transfer and including distance penalty improves description of atomic charges Fluctuating-charge model QEq QTPIE (now) Transferable parameters Yes Yes Correct asymptotics No Yes Correct molecular electrostatics No Almost! Established Arbitrary total charge Yes* No New result Coarse-graining picture Yes* Some evidence In progress Practical scaling Yes, O(N2) No, O(N4) Need ideas Excited states No No *with caveats