SlideShare ist ein Scribd-Unternehmen logo
1 von 17
Downloaden Sie, um offline zu lesen
MEEG 202 Strength
of Materials
26-06-201226-06-2012
Beam Deflections Using Singularity
Functions
Admin
• Preview Example Problems
BEFORE Class
• Homework #4 Due Thursday
• Next class Thursday 1-4
 Please be on Time
Lesson Objectives
1. Understand the meaning of a singularity
functions.
2. Be able to integrate singularity functions.
3. Be able to calculate the deflection of a
beam by using singularity functions.beam by using singularity functions.
Surprise Quiz
Name:_____________________________ Roll #____________________
1) The drawing below shows a simply supported beam with a center load. The
cross section is triangular.
a) At what point in the cross section do you expect the transverse shear
stress (due to the shear load) to be the greatest?
b) What is its value? Sketch:
x
A
m2
C
m1
kN50
B
mm90
mm90
My
bhIxx  3
36
1
2) What was the subject of the pre-class example problem for today?
Ib
SQ
I
My




Beam Deflection by
Integration Summary
F
x
Deflection at any point is y
dx
yd
EI


4
4
 xfy
dx
dy
dx
yd
EI
M
dx
yd
EI
S
dxEI






2
2
3
3
4
Review Beam Deflection by Integration
ProcessF
x
Deflection at any point is y
dx
yd
EI


4
4
xF
S
M
A
Fl
FlFxM 
2) Put M(x) into the integral:
 Mdx
dx
dy
EI    dxFlFx
dx
dy
EI
3) Integrate to get slope function 21
CFlxFx
dy
EI 
C
A
1) Write Moment Function as a function of x
 xfy
dx
dy
dx
yd
EI
M
dx
yd
EI
S
dxEI






2
2
3
3
4
3) Integrate to get slope function
1
2
2
1
CFlxFx
dx
dy
EI 
4) Integrate again to get deflection
21
23
1
2
2
1
6
1
2
1
CxCFlxFxEIy
dxCFlxFxEIy







 
5) Apply slope and deflection boundary
conditions to get C1 and C2.
 
  00
00


y

At y=0
0
0
2
1


C
C
Therefore:
Superposition Example
 mkN /10
x
A
m2
B
kN40
mm150
mm100
F
x
A l
EI
Fl
y
3
3
max  lx
EI
Fx
2
2

 mN /
x
A
l
B
EI
l
y
8
4

max  22
33
6
xlxl
EI
x



 lx
EI
Fx
y 3
6
2

 22
2
46
24
xlxl
EI
x
y 

Singularity Functions
• Know as Macaulay’s Method for
finding beam deflections
Unit Step FunctionUnit Step Function
x
1
a
  0
axxf 
1
0
0
0


ax
ax
What does the Integral of
ax
ax


0
ax  Look like?
dxax 
0
Singularity Functions
• Unit Ramp Function
1
  1
axxf 
ax 
1
0 ax 
10
axdxax 
  1
axxf 
x
1
a
axax
ax


1
0
What is the Integral of
ax
ax


1
ax  ?
1
2
2
1 ax
dxax


 
22
0
2
22
2
axax
ax





ax
ax


Singularity Functions
What is the Derivative of the Unit Step Function?
x
  0
axxf 
1
a
This is the Unit Impulse (Concentrated Force Function)
  1
 axxf
1
0
1
1




ax
ax
ax
ax


01
axdxax 

x
  1
 axxf

a
This is the Unit Impulse (Concentrated Force Function)
Singularity Functions
x
  1
 axxf

a
What is the Derivative of the Unit Impulse Function?
The derivative of the Unit impulse is the unit doublet
(or concentrated moment function)?
  2
 axxf




2
2
0
ax
ax
ax
ax


12 
 axdxax
x
  2
 axxf
a
Singularity Function Summary




2
2
0
ax
ax
ax
ax


12 
 axdxax
x
  2
 axxf
a
1
0
1
1




ax
ax
ax
ax


01
axdxax 

  1
 axxf

x
1
a
  0
axxf 
1
0
0
0


ax
ax
ax
ax


10
axdxax 
axdxax 
x
a
x
1
a
  1
axxf  axax
ax


1
1
0
ax
ax


1
2
2
1 ax
dxax


Singularity Function
Process
1) Write the load function w(x) in
terms of singularity functions.
2) Integrate again to get S(x)
3) Integrate twice to get M(x)
4) Integrate again to get EIθ(x) plus an dx
yd
EI
S
dx
yd
EI



3
3
4
4
4) Integrate again to get EIθ(x) plus an
integration constant
5) One more integration gets you
EIy(x) with another integration
constant
6) Use boundary conditions to find
integration constants.
 xfy
dx
dy
dx
yd
EI
M
dxEI




2
2
3
Find a function that describes the deflection of the
beam shown at right as a function of x.
Solution:
Problem Type:
Find:
Given: The figure of the simply supported beam
at right.
y(x)
Beam Deflections
Example 10 – Beam Deflection Using Singularity Functions
First find the reactions.
l
Fa
R
FalR
M
C
C
A



0
0
Now write an equation for the loading in terms of singularity functions.
Sketch:
x
A
l
C
a
F
x
A
l
C
a
F
B
B
AR CR
l
Fb
R
FblR
M
A
A
C



0
0
b
Now write an equation for the loading in terms of singularity functions.
Next, Integrate w(x) to get S(x), the shear loading function
No constant of integration is needed
since this completely describes the
shear.
  111 
 lx
l
Fa
axFx
l
Fb
xw
  000
lx
l
Fb
axFx
l
Fa
xS 
Next, Integrate S(x) to get M(x), the bending moment function
No constant of integration is needed
again since this completely describes
the moment function.
  111
lx
l
Fa
axFx
l
Fb
xM 
Note that the first term in the singularity function will always be evaluated as x2 since x is
always greater than 0 and the last term will always be zero since x≤l. We can then simplify
the last two equations.
Now integrate to get EIθ(x)
  1
222
222
Clx
l
Fa
ax
F
x
l
Fb
xEI 
Now we need to have a constant
of integration to make sure any
physical boundary conditions are
met.
Lastly, integrate one more time to get EIy(x)
  21
333
666
CxClx
l
Fa
ax
F
x
l
Fb
xEIy  We need 1 more constant of
integration.
  1
22
22
Cax
F
x
l
Fb
xEI 
  21
33
66
CxCax
F
x
l
Fb
xEIy 
66l
 
  0
00


ly
y
Now apply Boundary Conditions
And 
   
0
0000
00
6
0
6
0
66
2
2
21
33
21
33




C
C
CCa
F
l
Fb
EI
CxCax
F
x
l
Fb
xEIy
 
   
 
 22
1
1
33
1
33
1
33
21
33
6
66
0
66
0
0
66
0
66
bl
l
Fb
C
lCb
F
l
l
Fb
lCal
F
l
l
Fb
ClCal
F
l
l
Fb
EI
CxCax
F
x
l
Fb
xEIy





alb
sub

Now substitute C1 and C2 into the deflection function and solve for y(x)
This equation completely describes the displacement, if we want we can split it into two
continuous functions. One for the interval 0<x≤a and one for a≤x<l
   
    
    3222
2233
2233
6
6
666
1
axlblxbx
EIl
F
xy
xblbaxlbx
EIl
F
xy
xbl
l
Fb
ax
F
x
l
Fb
EI
xy









   222
6
blx
EIl
Fbx
xy 
For 0<x≤a For a≤x<l
      axlblxbx
EIl
F
xy
6
3222

Reflection:
This result can now be used for any simply supported beam with a
single load in between the supports. It can also be used in
conjunction with superposition.
         
   
    lxax
EIl
xlFa
xy
laxalxaalxax
EIl
F
xy
axlallxxal
EIl
F
xy
alb
EIl
2
6
23
6
6
6
22
32323
3222






To do for next time
• Next Class on Thursday 1-4
 We will practice beam deflection
problems

Weitere ähnliche Inhalte

Was ist angesagt?

Mechanics of Materials 8th Edition R.C. Hibbeler
Mechanics of Materials 8th Edition R.C. HibbelerMechanics of Materials 8th Edition R.C. Hibbeler
Mechanics of Materials 8th Edition R.C. HibbelerBahzad5
 
Solution manual for introduction to finite element analysis and design nam ...
Solution manual for introduction to finite element analysis and design   nam ...Solution manual for introduction to finite element analysis and design   nam ...
Solution manual for introduction to finite element analysis and design nam ...Salehkhanovic
 
6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areasetcenterrbru
 
Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)Alessandro Palmeri
 
Isoparametric bilinear quadrilateral element _ ppt presentation
Isoparametric bilinear quadrilateral element _ ppt presentationIsoparametric bilinear quadrilateral element _ ppt presentation
Isoparametric bilinear quadrilateral element _ ppt presentationFilipe Giesteira
 
Lec5-Torsion of thin walled beams
Lec5-Torsion of thin walled beamsLec5-Torsion of thin walled beams
Lec5-Torsion of thin walled beamsMahdi Damghani
 
Solution manual for mechanics of materials 10th edition hibbeler sample
Solution manual for mechanics of materials 10th edition hibbeler  sampleSolution manual for mechanics of materials 10th edition hibbeler  sample
Solution manual for mechanics of materials 10th edition hibbeler samplezammok
 
6161103 9.2 center of gravity and center of mass and centroid for a body
6161103 9.2 center of gravity and center of mass and centroid for a body6161103 9.2 center of gravity and center of mass and centroid for a body
6161103 9.2 center of gravity and center of mass and centroid for a bodyetcenterrbru
 
Lecture 12 deflection in beams
Lecture 12 deflection in beamsLecture 12 deflection in beams
Lecture 12 deflection in beamsDeepak Agarwal
 
Solution 2 3_8_bar_with_a_hole
Solution 2 3_8_bar_with_a_holeSolution 2 3_8_bar_with_a_hole
Solution 2 3_8_bar_with_a_holePraditaFirmansyah
 
thin walled vessel and thick wall cylinder(strength of the material)
thin walled vessel and thick wall cylinder(strength of the material)thin walled vessel and thick wall cylinder(strength of the material)
thin walled vessel and thick wall cylinder(strength of the material)Ugeswran Thamalinggam
 
0136023126 ism 06(1)
0136023126 ism 06(1)0136023126 ism 06(1)
0136023126 ism 06(1)aryaanuj1
 
Solution shigley's
Solution shigley'sSolution shigley's
Solution shigley'sAlemu Abera
 
Plane stress and plane strain
Plane stress and plane strainPlane stress and plane strain
Plane stress and plane strainmullerasmare
 
Centroids moments of inertia
Centroids moments of inertiaCentroids moments of inertia
Centroids moments of inertiacoolzero2012
 
Solution manual for advanced mechanics of materials and applied elasticity, 5...
Solution manual for advanced mechanics of materials and applied elasticity, 5...Solution manual for advanced mechanics of materials and applied elasticity, 5...
Solution manual for advanced mechanics of materials and applied elasticity, 5...zammok
 

Was ist angesagt? (20)

Mechanics of Materials 8th Edition R.C. Hibbeler
Mechanics of Materials 8th Edition R.C. HibbelerMechanics of Materials 8th Edition R.C. Hibbeler
Mechanics of Materials 8th Edition R.C. Hibbeler
 
Solution manual for introduction to finite element analysis and design nam ...
Solution manual for introduction to finite element analysis and design   nam ...Solution manual for introduction to finite element analysis and design   nam ...
Solution manual for introduction to finite element analysis and design nam ...
 
6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas
 
Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)
 
Isoparametric bilinear quadrilateral element _ ppt presentation
Isoparametric bilinear quadrilateral element _ ppt presentationIsoparametric bilinear quadrilateral element _ ppt presentation
Isoparametric bilinear quadrilateral element _ ppt presentation
 
Lec5-Torsion of thin walled beams
Lec5-Torsion of thin walled beamsLec5-Torsion of thin walled beams
Lec5-Torsion of thin walled beams
 
Energy methods for damped systems
Energy methods for damped systemsEnergy methods for damped systems
Energy methods for damped systems
 
Lec8 buckling v2_1
Lec8 buckling v2_1Lec8 buckling v2_1
Lec8 buckling v2_1
 
Solution manual for mechanics of materials 10th edition hibbeler sample
Solution manual for mechanics of materials 10th edition hibbeler  sampleSolution manual for mechanics of materials 10th edition hibbeler  sample
Solution manual for mechanics of materials 10th edition hibbeler sample
 
6161103 9.2 center of gravity and center of mass and centroid for a body
6161103 9.2 center of gravity and center of mass and centroid for a body6161103 9.2 center of gravity and center of mass and centroid for a body
6161103 9.2 center of gravity and center of mass and centroid for a body
 
Lecture 12 deflection in beams
Lecture 12 deflection in beamsLecture 12 deflection in beams
Lecture 12 deflection in beams
 
Truss examples
Truss examplesTruss examples
Truss examples
 
Solution 2 3_8_bar_with_a_hole
Solution 2 3_8_bar_with_a_holeSolution 2 3_8_bar_with_a_hole
Solution 2 3_8_bar_with_a_hole
 
01 01 chapgere[1]
01 01 chapgere[1]01 01 chapgere[1]
01 01 chapgere[1]
 
thin walled vessel and thick wall cylinder(strength of the material)
thin walled vessel and thick wall cylinder(strength of the material)thin walled vessel and thick wall cylinder(strength of the material)
thin walled vessel and thick wall cylinder(strength of the material)
 
0136023126 ism 06(1)
0136023126 ism 06(1)0136023126 ism 06(1)
0136023126 ism 06(1)
 
Solution shigley's
Solution shigley'sSolution shigley's
Solution shigley's
 
Plane stress and plane strain
Plane stress and plane strainPlane stress and plane strain
Plane stress and plane strain
 
Centroids moments of inertia
Centroids moments of inertiaCentroids moments of inertia
Centroids moments of inertia
 
Solution manual for advanced mechanics of materials and applied elasticity, 5...
Solution manual for advanced mechanics of materials and applied elasticity, 5...Solution manual for advanced mechanics of materials and applied elasticity, 5...
Solution manual for advanced mechanics of materials and applied elasticity, 5...
 

Ähnlich wie Beam deflections using singularity functions

Finite Element Analysis of Truss Structures
Finite Element Analysis of Truss StructuresFinite Element Analysis of Truss Structures
Finite Element Analysis of Truss StructuresMahdi Damghani
 
Lecture 2.pdf
Lecture 2.pdfLecture 2.pdf
Lecture 2.pdfYesuf3
 
102_2_digitalSystem_Chap_2_part_1.ppt
102_2_digitalSystem_Chap_2_part_1.ppt102_2_digitalSystem_Chap_2_part_1.ppt
102_2_digitalSystem_Chap_2_part_1.pptSATHYARAJECE
 
Principle of Definite Integra - Integral Calculus - by Arun Umrao
Principle of Definite Integra - Integral Calculus - by Arun UmraoPrinciple of Definite Integra - Integral Calculus - by Arun Umrao
Principle of Definite Integra - Integral Calculus - by Arun Umraossuserd6b1fd
 
Definite Integral
Definite IntegralDefinite Integral
Definite IntegralArun Umrao
 
Convex Optimization
Convex OptimizationConvex Optimization
Convex Optimizationadil raja
 
Lecture 3.pdf
Lecture 3.pdfLecture 3.pdf
Lecture 3.pdfYesuf3
 
B sc cs i bo-de u-ii logic gates
B sc cs i bo-de u-ii logic gatesB sc cs i bo-de u-ii logic gates
B sc cs i bo-de u-ii logic gatesRai University
 
Lec9 finite element_beam_structures 1
Lec9 finite element_beam_structures 1Lec9 finite element_beam_structures 1
Lec9 finite element_beam_structures 1Mahdi Damghani
 
complete-manual-of-multivariable-optimization.pdf
complete-manual-of-multivariable-optimization.pdfcomplete-manual-of-multivariable-optimization.pdf
complete-manual-of-multivariable-optimization.pdfSantiagoGarridoBulln
 
Lecture 4.pdf
Lecture 4.pdfLecture 4.pdf
Lecture 4.pdfYesuf3
 
SAMPLE QUESTIONExercise 1 Consider the functionf (x,C).docx
SAMPLE QUESTIONExercise 1 Consider the functionf (x,C).docxSAMPLE QUESTIONExercise 1 Consider the functionf (x,C).docx
SAMPLE QUESTIONExercise 1 Consider the functionf (x,C).docxanhlodge
 
Limit & continuity
Limit & continuityLimit & continuity
Limit & continuityArun Umrao
 
Limit & Continuity of Functions - Differential Calculus by Arun Umrao
Limit & Continuity of Functions - Differential Calculus by Arun UmraoLimit & Continuity of Functions - Differential Calculus by Arun Umrao
Limit & Continuity of Functions - Differential Calculus by Arun Umraossuserd6b1fd
 
Lesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functionsLesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functionsRnold Wilson
 
Supporting Vector Machine
Supporting Vector MachineSupporting Vector Machine
Supporting Vector MachineSumit Singh
 

Ähnlich wie Beam deflections using singularity functions (20)

Finite Element Analysis of Truss Structures
Finite Element Analysis of Truss StructuresFinite Element Analysis of Truss Structures
Finite Element Analysis of Truss Structures
 
Lecture 2.pdf
Lecture 2.pdfLecture 2.pdf
Lecture 2.pdf
 
102_2_digitalSystem_Chap_2_part_1.ppt
102_2_digitalSystem_Chap_2_part_1.ppt102_2_digitalSystem_Chap_2_part_1.ppt
102_2_digitalSystem_Chap_2_part_1.ppt
 
Principle of Definite Integra - Integral Calculus - by Arun Umrao
Principle of Definite Integra - Integral Calculus - by Arun UmraoPrinciple of Definite Integra - Integral Calculus - by Arun Umrao
Principle of Definite Integra - Integral Calculus - by Arun Umrao
 
Definite Integral
Definite IntegralDefinite Integral
Definite Integral
 
Convex Optimization
Convex OptimizationConvex Optimization
Convex Optimization
 
Analysis of a building with XC
Analysis of a building with XCAnalysis of a building with XC
Analysis of a building with XC
 
Lecture 3.pdf
Lecture 3.pdfLecture 3.pdf
Lecture 3.pdf
 
Chap07
Chap07Chap07
Chap07
 
B sc cs i bo-de u-ii logic gates
B sc cs i bo-de u-ii logic gatesB sc cs i bo-de u-ii logic gates
B sc cs i bo-de u-ii logic gates
 
UNIT I_5.pdf
UNIT I_5.pdfUNIT I_5.pdf
UNIT I_5.pdf
 
Lec9 finite element_beam_structures 1
Lec9 finite element_beam_structures 1Lec9 finite element_beam_structures 1
Lec9 finite element_beam_structures 1
 
complete-manual-of-multivariable-optimization.pdf
complete-manual-of-multivariable-optimization.pdfcomplete-manual-of-multivariable-optimization.pdf
complete-manual-of-multivariable-optimization.pdf
 
Lecture 4.pdf
Lecture 4.pdfLecture 4.pdf
Lecture 4.pdf
 
SAMPLE QUESTIONExercise 1 Consider the functionf (x,C).docx
SAMPLE QUESTIONExercise 1 Consider the functionf (x,C).docxSAMPLE QUESTIONExercise 1 Consider the functionf (x,C).docx
SAMPLE QUESTIONExercise 1 Consider the functionf (x,C).docx
 
Limit & continuity
Limit & continuityLimit & continuity
Limit & continuity
 
Limit & Continuity of Functions - Differential Calculus by Arun Umrao
Limit & Continuity of Functions - Differential Calculus by Arun UmraoLimit & Continuity of Functions - Differential Calculus by Arun Umrao
Limit & Continuity of Functions - Differential Calculus by Arun Umrao
 
Ch6
Ch6Ch6
Ch6
 
Lesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functionsLesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functions
 
Supporting Vector Machine
Supporting Vector MachineSupporting Vector Machine
Supporting Vector Machine
 

Beam deflections using singularity functions

  • 1. MEEG 202 Strength of Materials 26-06-201226-06-2012 Beam Deflections Using Singularity Functions
  • 2. Admin • Preview Example Problems BEFORE Class • Homework #4 Due Thursday • Next class Thursday 1-4  Please be on Time
  • 3. Lesson Objectives 1. Understand the meaning of a singularity functions. 2. Be able to integrate singularity functions. 3. Be able to calculate the deflection of a beam by using singularity functions.beam by using singularity functions.
  • 4. Surprise Quiz Name:_____________________________ Roll #____________________ 1) The drawing below shows a simply supported beam with a center load. The cross section is triangular. a) At what point in the cross section do you expect the transverse shear stress (due to the shear load) to be the greatest? b) What is its value? Sketch: x A m2 C m1 kN50 B mm90 mm90 My bhIxx  3 36 1 2) What was the subject of the pre-class example problem for today? Ib SQ I My    
  • 5. Beam Deflection by Integration Summary F x Deflection at any point is y dx yd EI   4 4  xfy dx dy dx yd EI M dx yd EI S dxEI       2 2 3 3 4
  • 6. Review Beam Deflection by Integration ProcessF x Deflection at any point is y dx yd EI   4 4 xF S M A Fl FlFxM  2) Put M(x) into the integral:  Mdx dx dy EI    dxFlFx dx dy EI 3) Integrate to get slope function 21 CFlxFx dy EI  C A 1) Write Moment Function as a function of x  xfy dx dy dx yd EI M dx yd EI S dxEI       2 2 3 3 4 3) Integrate to get slope function 1 2 2 1 CFlxFx dx dy EI  4) Integrate again to get deflection 21 23 1 2 2 1 6 1 2 1 CxCFlxFxEIy dxCFlxFxEIy          5) Apply slope and deflection boundary conditions to get C1 and C2.     00 00   y  At y=0 0 0 2 1   C C Therefore:
  • 7. Superposition Example  mkN /10 x A m2 B kN40 mm150 mm100 F x A l EI Fl y 3 3 max  lx EI Fx 2 2   mN / x A l B EI l y 8 4  max  22 33 6 xlxl EI x     lx EI Fx y 3 6 2   22 2 46 24 xlxl EI x y  
  • 8. Singularity Functions • Know as Macaulay’s Method for finding beam deflections Unit Step FunctionUnit Step Function x 1 a   0 axxf  1 0 0 0   ax ax What does the Integral of ax ax   0 ax  Look like? dxax  0
  • 9. Singularity Functions • Unit Ramp Function 1   1 axxf  ax  1 0 ax  10 axdxax    1 axxf  x 1 a axax ax   1 0 What is the Integral of ax ax   1 ax  ? 1 2 2 1 ax dxax     22 0 2 22 2 axax ax      ax ax  
  • 10. Singularity Functions What is the Derivative of the Unit Step Function? x   0 axxf  1 a This is the Unit Impulse (Concentrated Force Function)   1  axxf 1 0 1 1     ax ax ax ax   01 axdxax   x   1  axxf  a This is the Unit Impulse (Concentrated Force Function)
  • 11. Singularity Functions x   1  axxf  a What is the Derivative of the Unit Impulse Function? The derivative of the Unit impulse is the unit doublet (or concentrated moment function)?   2  axxf     2 2 0 ax ax ax ax   12   axdxax x   2  axxf a
  • 12. Singularity Function Summary     2 2 0 ax ax ax ax   12   axdxax x   2  axxf a 1 0 1 1     ax ax ax ax   01 axdxax     1  axxf  x 1 a   0 axxf  1 0 0 0   ax ax ax ax   10 axdxax  axdxax  x a x 1 a   1 axxf  axax ax   1 1 0 ax ax   1 2 2 1 ax dxax  
  • 13. Singularity Function Process 1) Write the load function w(x) in terms of singularity functions. 2) Integrate again to get S(x) 3) Integrate twice to get M(x) 4) Integrate again to get EIθ(x) plus an dx yd EI S dx yd EI    3 3 4 4 4) Integrate again to get EIθ(x) plus an integration constant 5) One more integration gets you EIy(x) with another integration constant 6) Use boundary conditions to find integration constants.  xfy dx dy dx yd EI M dxEI     2 2 3
  • 14. Find a function that describes the deflection of the beam shown at right as a function of x. Solution: Problem Type: Find: Given: The figure of the simply supported beam at right. y(x) Beam Deflections Example 10 – Beam Deflection Using Singularity Functions First find the reactions. l Fa R FalR M C C A    0 0 Now write an equation for the loading in terms of singularity functions. Sketch: x A l C a F x A l C a F B B AR CR l Fb R FblR M A A C    0 0 b Now write an equation for the loading in terms of singularity functions. Next, Integrate w(x) to get S(x), the shear loading function No constant of integration is needed since this completely describes the shear.   111   lx l Fa axFx l Fb xw   000 lx l Fb axFx l Fa xS  Next, Integrate S(x) to get M(x), the bending moment function No constant of integration is needed again since this completely describes the moment function.   111 lx l Fa axFx l Fb xM 
  • 15. Note that the first term in the singularity function will always be evaluated as x2 since x is always greater than 0 and the last term will always be zero since x≤l. We can then simplify the last two equations. Now integrate to get EIθ(x)   1 222 222 Clx l Fa ax F x l Fb xEI  Now we need to have a constant of integration to make sure any physical boundary conditions are met. Lastly, integrate one more time to get EIy(x)   21 333 666 CxClx l Fa ax F x l Fb xEIy  We need 1 more constant of integration.   1 22 22 Cax F x l Fb xEI    21 33 66 CxCax F x l Fb xEIy  66l     0 00   ly y Now apply Boundary Conditions And      0 0000 00 6 0 6 0 66 2 2 21 33 21 33     C C CCa F l Fb EI CxCax F x l Fb xEIy          22 1 1 33 1 33 1 33 21 33 6 66 0 66 0 0 66 0 66 bl l Fb C lCb F l l Fb lCal F l l Fb ClCal F l l Fb EI CxCax F x l Fb xEIy      alb sub 
  • 16. Now substitute C1 and C2 into the deflection function and solve for y(x) This equation completely describes the displacement, if we want we can split it into two continuous functions. One for the interval 0<x≤a and one for a≤x<l              3222 2233 2233 6 6 666 1 axlblxbx EIl F xy xblbaxlbx EIl F xy xbl l Fb ax F x l Fb EI xy             222 6 blx EIl Fbx xy  For 0<x≤a For a≤x<l       axlblxbx EIl F xy 6 3222  Reflection: This result can now be used for any simply supported beam with a single load in between the supports. It can also be used in conjunction with superposition.                   lxax EIl xlFa xy laxalxaalxax EIl F xy axlallxxal EIl F xy alb EIl 2 6 23 6 6 6 22 32323 3222      
  • 17. To do for next time • Next Class on Thursday 1-4  We will practice beam deflection problems