SlideShare ist ein Scribd-Unternehmen logo
1 von 35
Operational
 Amplifier
    Electronic Circuits
        CHO, Yong Heui
Electronic Circuits
1. Ideal OP amp

 OP amp
                                       OP amp 의 어떤 terminal 도 ground
                                      에 연결되어 있지 않음 .
                                       3 signal terminals and 2 power
                                      terminals (Not displayed)


                                                   Ideal OP Amp
                                       Differential input voltage, single-
                                      ended output voltage
                                       Infinite input impedance i i = 0
                                       Zero output impedance
                                       Zero common-mode gain (v2=v1 
                                      vo=0)
                                       Infinite open-loop gain A
                                       Infinite bandwidth : A is constant at
                                      any frequencies.
                  *Differential input voltage, single-ended output voltage


                                  2                                  EM Wave Lab
Electronic Circuits
1. Ideal OP amp

 Differential and common mode
                          v Id = v 2 – v 1

                          v I cm = ½(v 1 + v 2 )

                          v 1 = v Icm - v Id /2

                          v 2 = v Icm + v Id /2



                       v 3 = mv d

                       v d = (G m v 2 – G m v 1 ) R

                       v 3 = mG m R (v 2 – v 1 )

                       Gain     A = mG m R = 100·10·10

                                    = 10     4
                                                 = 80 dB

                   3                                              EM Wave Lab
Electronic Circuits
2. Inverter

 Closed loop gain
                             i2
                                                           For ideal OP amp, finite v o means v 2 -
      i1                                                  v 1 =0
                                                          v 2 – v 1 = v o /A = 0
                           v1

                           v2                             v 2 ≒ v 1 : Virtual short circuit

                                                          if v 2 is grounded, v 1 is a virtual ground
   i 1 = (v I – v 1 ) /R 1 = v I /R 1                     terminal.

   vo = v1 – i2 R2 = v1 – i1 R2 = 0 – vI R2 / R1      ∵ infinite input impedance of ideal OP
   amp
   vo / vI = - R2 / R1

   Closed-loop gain G ≡ v o / v I = - R 2 / R 1

   R2 에 의해 negative feedback 회로로 동작
   (positive feedback if connected between 2 and 3)
   Closed-loop gain 은 외부 수동 소자에 의해 결정 
   stable and predictable, but gain loss is inevitable


                                                      4                                       EM Wave Lab
Electronic Circuits
2. Inverter

 Equivalent circuit




                      5          EM Wave Lab
Electronic Circuits
2. Inverter

 Finite open loop gain



              = vx




                     6          EM Wave Lab
Electronic Circuits
2. Inverter

 Example
 R 1 should be large as a input impedance, but large R 1 causes low voltage gain




                                              7                                EM Wave Lab
Electronic Circuits
2. Inverter

 Summer




                  Output is a weighted sum of input
                  signals
                   v o = v 1 (R a /R 1 )·(R c /R b ) + v 2 (R a /R 2 )·(R c /R b ) –
                        v 3 ·(R c /R 3 ) – v 4 ·(R c /R 4 )



                  Different summing coefficients are
                  possible


              8                                                EM Wave Lab
Electronic Circuits
3. Noninverter

 Closed loop gain




  등가회로




                    9          EM Wave Lab
Electronic Circuits
3. Noninverter

 Finite open loop gain
                   vo = A ( vI - vx )
                   i1 = - vx / R1             i 2 = ( v x – v o )/ R 2

             A
                                  1 + (R 2 / R 1 )
                   v o / v I = ---------------
                                    1 + (R 2 / R 1 )
                                               Inverting 경우
                               1 + ---------
                                            A 와 분모 부분 같
                                                     음
                  A ≫ 1 + (R 2 / R 1 ) 이면 infinite gain 의 경우와
  등가회로            같음

                      v I 와 v x 가 같은 값이 아니므로 (finite gain)

                              →     v x = R1 / (R1+ R2) · v o

                         v o = A ( v I - v x ) ∵ Op amp 동작 특
                         성
                        위 두식을 이용하면 같은 결과를 얻는다 .


                       10                                            EM Wave Lab
Electronic Circuits
3. Noninverter

 Voltage follower

                                     Non-inverting closed-loop 에서
                                      R1=∞, R2=0 인 경우와 동일함



                                      Ideal Op amp 의 infinite input
                                      impedance 를 이용하여 source
                                  inpedance 가 큰 source 에 연결할 수 있
                                     고 , ideal Op amp 의 zero output
                                 impedance 를 이용하여 load inpedance
                                       가 적은 load 에 연결할 때 사용




  Buffer Amp 가 Voltage Source
   와 Load impedance 에 연결

                                11                              EM Wave Lab
Electronic Circuits
4. Difference

 Common mode rejection ratio
                                         For practical circuits,
                                         Common-mode voltage gain A cm ≠
                                         0

                                                 v o = A d ·v Id + A cm ·v Icm



                            현재까지 두 input voltage 의 차이만 증폭된다고
                            가정하였음 . 하지만 , 실제로는 공통 부분도 A cm
                            만큼의 gain 을 가지고 증폭된다 .




                                     |Ad |
                CMRR = 20 Log
                                     | A cm |




                                12                                               EM Wave Lab
Electronic Circuits
4. Difference

 Difference amplifier
                                    지금까지는 inverting/noninverting 의 경우 input
                                    이 없는 한쪽은 GND 였지만 , difference amp 에서
                                    는 두 input 의 차이만을 증폭하고자 함 . (why don’t
                                    you use Op amp itself ?)
                                     Output port 에서 Common-mode signal 을 없애기
                                     위해선 , inverting gain 과 noninverting gain 의
                                     magnitude 는 같고 부호는 반대이어야 함 . (v I1 = v I2
                                     일때 v 0 =0 이어야 함을 생각해 보면 됨 )

  Inverting                        Noninverting

        i = 0
                          ≡


      v O1 / v I 1 = - R 2 / R 1

                                         13                            EM Wave Lab
Electronic Circuits
4. Difference

 Difference amplifier
 ᅵᅵ
  inverting gain ᅵᅵ ᅵᅵ
                   = noninverting gain ᅵᅵ
                                     R4              R2
                  R2 / R1 =
                                  R3 + R4   [1       R1
                                                          ]
                                                +
                             R4             R2                           R2         R4
                   →      R3 + R4
                                       =
                                         R1 + R2                    →    R1
                                                                               =
                                                                                    R3



                     R4              R2                   R2
     vO2 = vΙ 2
                   R3 + R4
                              [1
                                     R1
                                            ]   = vΙ 2
                                                          R1
                              +

                                                          R2                        R2
     By superposition, v O = v O1 +                             ( vI 2 - vI 1 ) =        v Id
     v O2 =                                               R1                        R1
                                                                        R2
                                                    →      Ad =
                                                                        R1

                                                               14                                      EM Wave Lab
Electronic Circuits
4. Difference

 Difference amplifier
                                  1                   R4                                    1         R3
                           i1 =
                                  R1
                                       [   v Icm -        v
                                                   R3 + R4 Icm                ]   = v Icm
                                                                                            R1     R3 + R4
                                     R4                    R4                                 R2       R3
                           vO =           v Icm – i2R2 =        v -                                        v
                                  R3 + R4                R3 + R4 Icm                          R1    R3 + R4 Icm

                                   R4                   R2          R3
                              =
                                R3 + R4
                                        1-    [         R1          R4
                                                                         ]v   Icm


                                       vO           R4                            R2     R3
   For R1 = R3 , R2 = R4
                            Acm ≡
                                       vΙcm    = R +R 1-
                                                  3    4
                                                                    [             R1     R4
                                                                                              ]
                                                             v Id
                                               R id ≡
                                                              iI
                                           v Id = R 1 i I + 0 + R 1 i I ∵ vertual short

                                              R id = 2R 1 : low input resistance for
                                              high differential gain


                                       15                                                         EM Wave Lab
Electronic Circuits
4. Difference

 Instrumentation amplifier

                                                             R2                       R2
                                                     [1
                                                          R1
                                                                  ]
                                                              ( vΙ 2 − vΙ 1 ) = 1
                                                                                      R1
                                                                                         [         ]v Ιd
                                                     +                           +
                                                           R4        R2
                                                     vΟ =
                                                           R3 +
                                                                1
                                                                     R1
                                                                       [         ]
                                                                             vΙd = Ad vΙd

                                                                  R4            R2
                                                      Ad =
                                                                  R3
                                                                       [    1
                                                                                R1
                                                                                     ]                         =
                                                                           +
                                                         High input impedance and high differential
                                                                           gain


    Issues

  A cm is equal to 1+R 2 /R 1 at the first stage.
  Issues of imperfect match at the first two Op amps.
  Two R 1 resistors should be simultaneously varied : Not easy job

                                                     16                                             EM Wave Lab
Electronic Circuits
4. Difference

 Instrumentation amplifier




                 2R1                                                    2R2
  (vO2 – vO1)            v
              2R1 + 2R2 = Ιd
                                        →          vO2 – vO1 =    [1    2R
                                                                           ]v Ιd
                                                                  +       1


         R4                   R4        R2                              vO         R4        R2
  vO =
         R3
              (vO2 – vO1) =
                              R3
                                   [1
                                        R1
                                             ]   vΙd    →        Ad ≡
                                                                        vΙd   =
                                                                                   R3
                                                                                        [1
                                                                                             R1
                                                                                                  ]
                                   +                                                    +

                                                       17                                    EM Wave Lab
Electronic Circuits
5. Nonideal OP amp

   Nonideal OP amp
   Differential open-loop gain         Noninfinite CMRR, noninfinite input
                                      resistance, nonzero output resistance :
                                      Closed-loop circuits 에서 Not critical




                                                                A0
                                                   A(jw) =
                                                             1+ jw/w b

                                       For w = 0

                                       For w ≫ w b




                                 18                                      EM Wave Lab
Electronic Circuits
5. Nonideal OP amp

   Frequency response


                                                      ←

              = vx
                                               − R2 / R 1
                     Vo(s)/Vi(s) ≈                    s
                                          1
                                          +   ωT / (1 + R2 / R1 )
                                                            For A0 ≫ 1+R2/R1
                                     ωT
                      ω3dB = −−−−−−−−
                              − + R2 /
                              1
                              R1


                            For noninverting closed-loop case,
                            only DC gain (1 + R 2 /R 1 ) is different




                       19                                           EM Wave Lab
Electronic Circuits
5. Nonideal OP amp

   Frequency response
                 Closed-loop gain       R2/R1    f3dB=ft/(1+R2/R1)
                  +1000                  999             1kHz
  1 + R2 /         +100                 99             10kHz         Constant gain-BW
                                                                         product
  R1                +10              9               100kHz
                     +1              0                1MHz
                    -1              1                0.5MHz
    − R 2 / R1     -10              10               90.9kHz
                  -100              100                9.9kHz
                 -1000              1000                0.99kHz




                          ωT = A0 · ωb

                                                20                           EM Wave Lab
Electronic Circuits
6. Large signal

 Output voltage saturation




                    21              EM Wave Lab
Electronic Circuits
6. Large signal

 Slew rate




                  22          EM Wave Lab
Electronic Circuits
6. Large signal

 Slew rate




                  23          EM Wave Lab
Electronic Circuits
6. Large signal

 Full power bandwidth
 Unity-gain voltage follower 의 input 에 sine wave 를 인가하고 출력 전압의 진폭이 최대
 가 되도록 할 경우 , slew 현상이 발생하지 않는 입력신호의 최대 주파수




                                    24                           EM Wave Lab
Electronic Circuits
7. DC effect

 Offset voltage




                  25          EM Wave Lab
Electronic Circuits
7. DC effect

 Equivalent model

                                    DC biasing issue
                                    DC signal issue




 Inverting               Noninverting




                    26                                  EM Wave Lab
Electronic Circuits
7. DC effect

 Capacitive coupling




 Only for DC                           Only for AC




               A ≠ 1 + R 2 /R 1                      STC HPF



                                  27                           EM Wave Lab
Electronic Circuits
7. DC effect

 Input bias current

                 두 전류 I B1 , I B2 는 거의 같은 값을 가지지만 OP amp 내부의
                 mismatch 로 인해 약간 차이가 남




               Only for
               DC
                                 B2




                            28                         EM Wave Lab
Electronic Circuits
7. DC effect

 Input bias current

                V O = I B1 R 2 ≈ I B R 2  limits on R 2




                      V O = -I B2 R 3 + R 2 (I B1 – I B2 R 3 /R 1 )

                                                               (for I B1 = I B2 = I B3 )




                    두 input 단자에서 본 저항 값이 같다 .



                           29                                            EM Wave Lab
Electronic Circuits
7. DC effect

 Input bias current
 For R 3 = ( R 1 ∥R 2 ) and I B1 ≠ I B2 ≠ I B3


        I B1 = I B + I OS /2      I B2 = I B - I OS /2        →

                       V O = I OS R 2 (compare with V O = I B1 R 2 in case of without R 3 )

 AC coupled inverting amp                                AC coupled non-inverting amp




                                                         30                             EM Wave Lab
Electronic Circuits
8. Integrator

 Impedance characteristics




                   31               EM Wave Lab
Electronic Circuits
8. Integrator

 Example




                32          EM Wave Lab
Electronic Circuits
8. Integrator

 Miller integrator




                     Integrator Frequency : w int = 1/RC
                     Infinite DC gain : weak at DC imperfection




                           33                               EM Wave Lab
Electronic Circuits
8. Integrator

 DC imperfection




                   34          EM Wave Lab
Electronic Circuits
8. Integrator

 Differentiator




                  HPF with infinite corner frequency.
                  Noise magnifier at High Frequency



                    35                             EM Wave Lab

Weitere ähnliche Inhalte

Was ist angesagt?

Op amp(operational amplifier)
Op amp(operational amplifier)Op amp(operational amplifier)
Op amp(operational amplifier)Kausik das
 
Unit-I Characteristics of opamp
Unit-I Characteristics of opampUnit-I Characteristics of opamp
Unit-I Characteristics of opampDr.Raja R
 
Rec101 unit iii operational amplifier
Rec101 unit iii operational amplifierRec101 unit iii operational amplifier
Rec101 unit iii operational amplifierDr Naim R Kidwai
 
Operational amplifier UA741
Operational amplifier UA741Operational amplifier UA741
Operational amplifier UA741unni krishnan
 
Op amp tutorial-1
Op amp tutorial-1Op amp tutorial-1
Op amp tutorial-1wtyru1989
 
Chapter 5 operational amplifier
Chapter 5 operational amplifierChapter 5 operational amplifier
Chapter 5 operational amplifierHattori Sidek
 
differential amplifier for electronic
differential amplifier for electronicdifferential amplifier for electronic
differential amplifier for electronicFaiz Yun
 
Ee321 lab expt 7_negative_feedback_in_ amplifiers
Ee321 lab expt 7_negative_feedback_in_ amplifiersEe321 lab expt 7_negative_feedback_in_ amplifiers
Ee321 lab expt 7_negative_feedback_in_ amplifierssagarchawla76
 
slew rate in opamp
slew rate in opampslew rate in opamp
slew rate in opampJay Patel
 
Op amps explained
Op amps explainedOp amps explained
Op amps explainedrawsonvault
 
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)Sarah Krystelle
 
Operational amplifiers
Operational amplifiersOperational amplifiers
Operational amplifiersvshalsheth
 
2.Opamp parameters
2.Opamp parameters2.Opamp parameters
2.Opamp parametersINDIAN NAVY
 
Operational amplifiers
Operational amplifiersOperational amplifiers
Operational amplifiersRahul Singh
 

Was ist angesagt? (20)

Op amp(operational amplifier)
Op amp(operational amplifier)Op amp(operational amplifier)
Op amp(operational amplifier)
 
Slide bab op amp
Slide bab op ampSlide bab op amp
Slide bab op amp
 
Unit-I Characteristics of opamp
Unit-I Characteristics of opampUnit-I Characteristics of opamp
Unit-I Characteristics of opamp
 
Rec101 unit iii operational amplifier
Rec101 unit iii operational amplifierRec101 unit iii operational amplifier
Rec101 unit iii operational amplifier
 
Tarun
TarunTarun
Tarun
 
Operational amplifier UA741
Operational amplifier UA741Operational amplifier UA741
Operational amplifier UA741
 
Op amp tutorial-1
Op amp tutorial-1Op amp tutorial-1
Op amp tutorial-1
 
Chapter 5 operational amplifier
Chapter 5 operational amplifierChapter 5 operational amplifier
Chapter 5 operational amplifier
 
2 op-amp concepts
2 op-amp concepts2 op-amp concepts
2 op-amp concepts
 
differential amplifier for electronic
differential amplifier for electronicdifferential amplifier for electronic
differential amplifier for electronic
 
opamp
opampopamp
opamp
 
Ee321 lab expt 7_negative_feedback_in_ amplifiers
Ee321 lab expt 7_negative_feedback_in_ amplifiersEe321 lab expt 7_negative_feedback_in_ amplifiers
Ee321 lab expt 7_negative_feedback_in_ amplifiers
 
slew rate in opamp
slew rate in opampslew rate in opamp
slew rate in opamp
 
Op amps explained
Op amps explainedOp amps explained
Op amps explained
 
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)
 
Operational amplifiers
Operational amplifiersOperational amplifiers
Operational amplifiers
 
Buffer op amplifier
Buffer op amplifierBuffer op amplifier
Buffer op amplifier
 
2.Opamp parameters
2.Opamp parameters2.Opamp parameters
2.Opamp parameters
 
Operational Amplifiers
Operational Amplifiers Operational Amplifiers
Operational Amplifiers
 
Operational amplifiers
Operational amplifiersOperational amplifiers
Operational amplifiers
 

Andere mochten auch

Analog and Digital I/O
Analog and Digital I/OAnalog and Digital I/O
Analog and Digital I/OYong Heui Cho
 
CPU Architecture - Advanced
CPU Architecture - AdvancedCPU Architecture - Advanced
CPU Architecture - AdvancedYong Heui Cho
 
Serial Communication
Serial CommunicationSerial Communication
Serial CommunicationYong Heui Cho
 
Bipolar Junction Transistor
Bipolar Junction TransistorBipolar Junction Transistor
Bipolar Junction TransistorYong Heui Cho
 
Android - Application Framework
Android - Application FrameworkAndroid - Application Framework
Android - Application FrameworkYong Heui Cho
 
Sequential Logic Circuit
Sequential Logic CircuitSequential Logic Circuit
Sequential Logic CircuitYong Heui Cho
 
BJT - Advanced Applications
BJT - Advanced ApplicationsBJT - Advanced Applications
BJT - Advanced ApplicationsYong Heui Cho
 
Bluetooth Layer Structure
Bluetooth Layer StructureBluetooth Layer Structure
Bluetooth Layer StructureYong Heui Cho
 
Diode - Basic Applications
Diode - Basic ApplicationsDiode - Basic Applications
Diode - Basic ApplicationsYong Heui Cho
 
Introduction to Bluetooth
Introduction to BluetoothIntroduction to Bluetooth
Introduction to BluetoothYong Heui Cho
 
Diode - Advanced Applications
Diode - Advanced ApplicationsDiode - Advanced Applications
Diode - Advanced ApplicationsYong Heui Cho
 
BJT - Analysis of Bias
BJT - Analysis of BiasBJT - Analysis of Bias
BJT - Analysis of BiasYong Heui Cho
 
Android - Phone Calls
Android - Phone CallsAndroid - Phone Calls
Android - Phone CallsYong Heui Cho
 

Andere mochten auch (20)

Semiconductor
SemiconductorSemiconductor
Semiconductor
 
Analog and Digital I/O
Analog and Digital I/OAnalog and Digital I/O
Analog and Digital I/O
 
CPU and Software
CPU and SoftwareCPU and Software
CPU and Software
 
CPU Architecture - Advanced
CPU Architecture - AdvancedCPU Architecture - Advanced
CPU Architecture - Advanced
 
Serial Communication
Serial CommunicationSerial Communication
Serial Communication
 
Role of CPU
Role of CPURole of CPU
Role of CPU
 
Bipolar Junction Transistor
Bipolar Junction TransistorBipolar Junction Transistor
Bipolar Junction Transistor
 
Android - Message
Android - MessageAndroid - Message
Android - Message
 
Android - Application Framework
Android - Application FrameworkAndroid - Application Framework
Android - Application Framework
 
Android Programming
Android ProgrammingAndroid Programming
Android Programming
 
Sequential Logic Circuit
Sequential Logic CircuitSequential Logic Circuit
Sequential Logic Circuit
 
BJT - Advanced Applications
BJT - Advanced ApplicationsBJT - Advanced Applications
BJT - Advanced Applications
 
Bluetooth Layer Structure
Bluetooth Layer StructureBluetooth Layer Structure
Bluetooth Layer Structure
 
Diode - V and I
Diode - V and IDiode - V and I
Diode - V and I
 
FET and Op-amp
FET and Op-ampFET and Op-amp
FET and Op-amp
 
Diode - Basic Applications
Diode - Basic ApplicationsDiode - Basic Applications
Diode - Basic Applications
 
Introduction to Bluetooth
Introduction to BluetoothIntroduction to Bluetooth
Introduction to Bluetooth
 
Diode - Advanced Applications
Diode - Advanced ApplicationsDiode - Advanced Applications
Diode - Advanced Applications
 
BJT - Analysis of Bias
BJT - Analysis of BiasBJT - Analysis of Bias
BJT - Analysis of Bias
 
Android - Phone Calls
Android - Phone CallsAndroid - Phone Calls
Android - Phone Calls
 

Ähnlich wie Operational Amplifier

OPERATIONAL AMPLIFIERS, DIFFERENTIAL, NON-INVERTING AND INSTRUMENTATIONAL AMP...
OPERATIONAL AMPLIFIERS, DIFFERENTIAL, NON-INVERTING AND INSTRUMENTATIONAL AMP...OPERATIONAL AMPLIFIERS, DIFFERENTIAL, NON-INVERTING AND INSTRUMENTATIONAL AMP...
OPERATIONAL AMPLIFIERS, DIFFERENTIAL, NON-INVERTING AND INSTRUMENTATIONAL AMP...Kramikauniyal
 
Operational Amplifier Part 1
Operational Amplifier Part 1Operational Amplifier Part 1
Operational Amplifier Part 1Mukesh Tekwani
 
Applied electronics-outcome-2
Applied electronics-outcome-2Applied electronics-outcome-2
Applied electronics-outcome-2doovood
 
Operational Amplifiers Basic
Operational Amplifiers BasicOperational Amplifiers Basic
Operational Amplifiers Basicsahed dewan
 
Valladolid, charles edison
Valladolid, charles edisonValladolid, charles edison
Valladolid, charles edisonSarah Krystelle
 
Operational Amplifiers
Operational AmplifiersOperational Amplifiers
Operational AmplifiersMahesh_Naidu
 
Circuit theory 1 finals
Circuit theory 1 finalsCircuit theory 1 finals
Circuit theory 1 finalsjerbor
 
Circuit theory 1 finals
Circuit theory 1 finalsCircuit theory 1 finals
Circuit theory 1 finalsjerbor
 
sp12Part4 CIRCUITS AND SYSTEMS FOR COMPUTER SCIENCE.pptx
sp12Part4 CIRCUITS AND SYSTEMS FOR COMPUTER SCIENCE.pptxsp12Part4 CIRCUITS AND SYSTEMS FOR COMPUTER SCIENCE.pptx
sp12Part4 CIRCUITS AND SYSTEMS FOR COMPUTER SCIENCE.pptxElisée Ndjabu
 
Fundamentals of oprational Amplifiers.pptx
Fundamentals of oprational Amplifiers.pptxFundamentals of oprational Amplifiers.pptx
Fundamentals of oprational Amplifiers.pptxadityaraj7711
 
Chapter 7: Operational Amplifier (Op-Amp)
Chapter 7: Operational Amplifier (Op-Amp)Chapter 7: Operational Amplifier (Op-Amp)
Chapter 7: Operational Amplifier (Op-Amp)JeremyLauKarHei
 
Electrochem group 2
Electrochem group 2Electrochem group 2
Electrochem group 2Ong Hui Jin
 
Ajal op amp
Ajal op ampAjal op amp
Ajal op ampAJAL A J
 
operational amplifiers
operational amplifiersoperational amplifiers
operational amplifiersPatel Jay
 
Chapter 2 Operational Amplifier.pptx
Chapter 2 Operational Amplifier.pptxChapter 2 Operational Amplifier.pptx
Chapter 2 Operational Amplifier.pptxssuserdee4d8
 

Ähnlich wie Operational Amplifier (20)

Ch2- OpAmps.pdf
Ch2- OpAmps.pdfCh2- OpAmps.pdf
Ch2- OpAmps.pdf
 
Op amp
Op ampOp amp
Op amp
 
OPERATIONAL AMPLIFIERS, DIFFERENTIAL, NON-INVERTING AND INSTRUMENTATIONAL AMP...
OPERATIONAL AMPLIFIERS, DIFFERENTIAL, NON-INVERTING AND INSTRUMENTATIONAL AMP...OPERATIONAL AMPLIFIERS, DIFFERENTIAL, NON-INVERTING AND INSTRUMENTATIONAL AMP...
OPERATIONAL AMPLIFIERS, DIFFERENTIAL, NON-INVERTING AND INSTRUMENTATIONAL AMP...
 
Operational amplifiers
Operational amplifiersOperational amplifiers
Operational amplifiers
 
Operational Amplifier Part 1
Operational Amplifier Part 1Operational Amplifier Part 1
Operational Amplifier Part 1
 
Applied electronics-outcome-2
Applied electronics-outcome-2Applied electronics-outcome-2
Applied electronics-outcome-2
 
Operational Amplifiers Basic
Operational Amplifiers BasicOperational Amplifiers Basic
Operational Amplifiers Basic
 
Valladolid, charles edison
Valladolid, charles edisonValladolid, charles edison
Valladolid, charles edison
 
Operational Amplifiers
Operational AmplifiersOperational Amplifiers
Operational Amplifiers
 
Circuit theory 1 finals
Circuit theory 1 finalsCircuit theory 1 finals
Circuit theory 1 finals
 
Circuit theory 1 finals
Circuit theory 1 finalsCircuit theory 1 finals
Circuit theory 1 finals
 
sp12Part4 CIRCUITS AND SYSTEMS FOR COMPUTER SCIENCE.pptx
sp12Part4 CIRCUITS AND SYSTEMS FOR COMPUTER SCIENCE.pptxsp12Part4 CIRCUITS AND SYSTEMS FOR COMPUTER SCIENCE.pptx
sp12Part4 CIRCUITS AND SYSTEMS FOR COMPUTER SCIENCE.pptx
 
Fundamentals of oprational Amplifiers.pptx
Fundamentals of oprational Amplifiers.pptxFundamentals of oprational Amplifiers.pptx
Fundamentals of oprational Amplifiers.pptx
 
Chapter 7: Operational Amplifier (Op-Amp)
Chapter 7: Operational Amplifier (Op-Amp)Chapter 7: Operational Amplifier (Op-Amp)
Chapter 7: Operational Amplifier (Op-Amp)
 
Electrochem group 2
Electrochem group 2Electrochem group 2
Electrochem group 2
 
Lica 3rd chapter slides
Lica 3rd chapter slidesLica 3rd chapter slides
Lica 3rd chapter slides
 
Op-amp.pptx
Op-amp.pptxOp-amp.pptx
Op-amp.pptx
 
Ajal op amp
Ajal op ampAjal op amp
Ajal op amp
 
operational amplifiers
operational amplifiersoperational amplifiers
operational amplifiers
 
Chapter 2 Operational Amplifier.pptx
Chapter 2 Operational Amplifier.pptxChapter 2 Operational Amplifier.pptx
Chapter 2 Operational Amplifier.pptx
 

Mehr von Yong Heui Cho

Android - Sensor Manager
Android - Sensor ManagerAndroid - Sensor Manager
Android - Sensor ManagerYong Heui Cho
 
Android - Broadcast Receiver
Android - Broadcast ReceiverAndroid - Broadcast Receiver
Android - Broadcast ReceiverYong Heui Cho
 
TestBCD2018-2(answer)
TestBCD2018-2(answer)TestBCD2018-2(answer)
TestBCD2018-2(answer)Yong Heui Cho
 
TestSDS2018-2(answer)
TestSDS2018-2(answer)TestSDS2018-2(answer)
TestSDS2018-2(answer)Yong Heui Cho
 
TestEC2018-2(answer)
TestEC2018-2(answer)TestEC2018-2(answer)
TestEC2018-2(answer)Yong Heui Cho
 
TestEC2018-1(answer)
TestEC2018-1(answer)TestEC2018-1(answer)
TestEC2018-1(answer)Yong Heui Cho
 
TestBCD2018-1(answer)
TestBCD2018-1(answer)TestBCD2018-1(answer)
TestBCD2018-1(answer)Yong Heui Cho
 
TestSDS2018-1(answer)
TestSDS2018-1(answer)TestSDS2018-1(answer)
TestSDS2018-1(answer)Yong Heui Cho
 
BJT - Analysis of Bias
BJT - Analysis of BiasBJT - Analysis of Bias
BJT - Analysis of BiasYong Heui Cho
 
TestCloud2018-2(answer)
TestCloud2018-2(answer)TestCloud2018-2(answer)
TestCloud2018-2(answer)Yong Heui Cho
 
TestECD2018-1(answer)
TestECD2018-1(answer)TestECD2018-1(answer)
TestECD2018-1(answer)Yong Heui Cho
 
Test-SDIC2018-2(answer)
Test-SDIC2018-2(answer)Test-SDIC2018-2(answer)
Test-SDIC2018-2(answer)Yong Heui Cho
 
TestCloud2018-1(answer)
TestCloud2018-1(answer)TestCloud2018-1(answer)
TestCloud2018-1(answer)Yong Heui Cho
 
Test-SDIC2018-1(Answer)
Test-SDIC2018-1(Answer)Test-SDIC2018-1(Answer)
Test-SDIC2018-1(Answer)Yong Heui Cho
 
RF 증폭기 설계(Design of RF Amplifier)-rev1
RF 증폭기 설계(Design of RF Amplifier)-rev1RF 증폭기 설계(Design of RF Amplifier)-rev1
RF 증폭기 설계(Design of RF Amplifier)-rev1Yong Heui Cho
 
Computing Paradigm - rev1
Computing Paradigm - rev1Computing Paradigm - rev1
Computing Paradigm - rev1Yong Heui Cho
 

Mehr von Yong Heui Cho (20)

Android - Sensor Manager
Android - Sensor ManagerAndroid - Sensor Manager
Android - Sensor Manager
 
Android - Broadcast Receiver
Android - Broadcast ReceiverAndroid - Broadcast Receiver
Android - Broadcast Receiver
 
Android - Message
Android - MessageAndroid - Message
Android - Message
 
Cloud Computing
Cloud ComputingCloud Computing
Cloud Computing
 
Computing Paradigm
Computing ParadigmComputing Paradigm
Computing Paradigm
 
TestBCD2018-2(answer)
TestBCD2018-2(answer)TestBCD2018-2(answer)
TestBCD2018-2(answer)
 
TestSDS2018-2(answer)
TestSDS2018-2(answer)TestSDS2018-2(answer)
TestSDS2018-2(answer)
 
TestEC2018-2(answer)
TestEC2018-2(answer)TestEC2018-2(answer)
TestEC2018-2(answer)
 
TestEC2018-1(answer)
TestEC2018-1(answer)TestEC2018-1(answer)
TestEC2018-1(answer)
 
TestBCD2018-1(answer)
TestBCD2018-1(answer)TestBCD2018-1(answer)
TestBCD2018-1(answer)
 
TestSDS2018-1(answer)
TestSDS2018-1(answer)TestSDS2018-1(answer)
TestSDS2018-1(answer)
 
BJT - Analysis of Bias
BJT - Analysis of BiasBJT - Analysis of Bias
BJT - Analysis of Bias
 
TestCloud2018-2(answer)
TestCloud2018-2(answer)TestCloud2018-2(answer)
TestCloud2018-2(answer)
 
TestECD2018-1(answer)
TestECD2018-1(answer)TestECD2018-1(answer)
TestECD2018-1(answer)
 
Test-SDIC2018-2(answer)
Test-SDIC2018-2(answer)Test-SDIC2018-2(answer)
Test-SDIC2018-2(answer)
 
TestCloud2018-1(answer)
TestCloud2018-1(answer)TestCloud2018-1(answer)
TestCloud2018-1(answer)
 
Cloud Service Model
Cloud Service ModelCloud Service Model
Cloud Service Model
 
Test-SDIC2018-1(Answer)
Test-SDIC2018-1(Answer)Test-SDIC2018-1(Answer)
Test-SDIC2018-1(Answer)
 
RF 증폭기 설계(Design of RF Amplifier)-rev1
RF 증폭기 설계(Design of RF Amplifier)-rev1RF 증폭기 설계(Design of RF Amplifier)-rev1
RF 증폭기 설계(Design of RF Amplifier)-rev1
 
Computing Paradigm - rev1
Computing Paradigm - rev1Computing Paradigm - rev1
Computing Paradigm - rev1
 

Kürzlich hochgeladen

WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfRankYa
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfPrecisely
 
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DayH2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DaySri Ambati
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 

Kürzlich hochgeladen (20)

WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdf
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
 
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DayH2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 

Operational Amplifier

  • 1. Operational Amplifier Electronic Circuits CHO, Yong Heui
  • 2. Electronic Circuits 1. Ideal OP amp OP amp  OP amp 의 어떤 terminal 도 ground 에 연결되어 있지 않음 .  3 signal terminals and 2 power terminals (Not displayed) Ideal OP Amp  Differential input voltage, single- ended output voltage  Infinite input impedance i i = 0  Zero output impedance  Zero common-mode gain (v2=v1  vo=0)  Infinite open-loop gain A  Infinite bandwidth : A is constant at any frequencies. *Differential input voltage, single-ended output voltage 2 EM Wave Lab
  • 3. Electronic Circuits 1. Ideal OP amp Differential and common mode v Id = v 2 – v 1 v I cm = ½(v 1 + v 2 ) v 1 = v Icm - v Id /2 v 2 = v Icm + v Id /2 v 3 = mv d v d = (G m v 2 – G m v 1 ) R v 3 = mG m R (v 2 – v 1 ) Gain A = mG m R = 100·10·10 = 10 4 = 80 dB 3 EM Wave Lab
  • 4. Electronic Circuits 2. Inverter Closed loop gain i2 For ideal OP amp, finite v o means v 2 - i1 v 1 =0 v 2 – v 1 = v o /A = 0 v1 v2 v 2 ≒ v 1 : Virtual short circuit if v 2 is grounded, v 1 is a virtual ground i 1 = (v I – v 1 ) /R 1 = v I /R 1 terminal. vo = v1 – i2 R2 = v1 – i1 R2 = 0 – vI R2 / R1 ∵ infinite input impedance of ideal OP amp vo / vI = - R2 / R1 Closed-loop gain G ≡ v o / v I = - R 2 / R 1 R2 에 의해 negative feedback 회로로 동작 (positive feedback if connected between 2 and 3) Closed-loop gain 은 외부 수동 소자에 의해 결정  stable and predictable, but gain loss is inevitable 4 EM Wave Lab
  • 5. Electronic Circuits 2. Inverter Equivalent circuit 5 EM Wave Lab
  • 6. Electronic Circuits 2. Inverter Finite open loop gain = vx 6 EM Wave Lab
  • 7. Electronic Circuits 2. Inverter Example R 1 should be large as a input impedance, but large R 1 causes low voltage gain 7 EM Wave Lab
  • 8. Electronic Circuits 2. Inverter Summer Output is a weighted sum of input signals v o = v 1 (R a /R 1 )·(R c /R b ) + v 2 (R a /R 2 )·(R c /R b ) – v 3 ·(R c /R 3 ) – v 4 ·(R c /R 4 ) Different summing coefficients are possible 8 EM Wave Lab
  • 9. Electronic Circuits 3. Noninverter Closed loop gain 등가회로 9 EM Wave Lab
  • 10. Electronic Circuits 3. Noninverter Finite open loop gain vo = A ( vI - vx ) i1 = - vx / R1 i 2 = ( v x – v o )/ R 2 A 1 + (R 2 / R 1 ) v o / v I = --------------- 1 + (R 2 / R 1 ) Inverting 경우 1 + --------- A 와 분모 부분 같 음 A ≫ 1 + (R 2 / R 1 ) 이면 infinite gain 의 경우와 등가회로 같음 v I 와 v x 가 같은 값이 아니므로 (finite gain) → v x = R1 / (R1+ R2) · v o v o = A ( v I - v x ) ∵ Op amp 동작 특 성 위 두식을 이용하면 같은 결과를 얻는다 . 10 EM Wave Lab
  • 11. Electronic Circuits 3. Noninverter Voltage follower Non-inverting closed-loop 에서 R1=∞, R2=0 인 경우와 동일함 Ideal Op amp 의 infinite input impedance 를 이용하여 source inpedance 가 큰 source 에 연결할 수 있 고 , ideal Op amp 의 zero output impedance 를 이용하여 load inpedance 가 적은 load 에 연결할 때 사용 Buffer Amp 가 Voltage Source 와 Load impedance 에 연결 11 EM Wave Lab
  • 12. Electronic Circuits 4. Difference Common mode rejection ratio For practical circuits, Common-mode voltage gain A cm ≠ 0 v o = A d ·v Id + A cm ·v Icm 현재까지 두 input voltage 의 차이만 증폭된다고 가정하였음 . 하지만 , 실제로는 공통 부분도 A cm 만큼의 gain 을 가지고 증폭된다 . |Ad | CMRR = 20 Log | A cm | 12 EM Wave Lab
  • 13. Electronic Circuits 4. Difference Difference amplifier 지금까지는 inverting/noninverting 의 경우 input 이 없는 한쪽은 GND 였지만 , difference amp 에서 는 두 input 의 차이만을 증폭하고자 함 . (why don’t you use Op amp itself ?) Output port 에서 Common-mode signal 을 없애기 위해선 , inverting gain 과 noninverting gain 의 magnitude 는 같고 부호는 반대이어야 함 . (v I1 = v I2 일때 v 0 =0 이어야 함을 생각해 보면 됨 ) Inverting Noninverting i = 0 ≡ v O1 / v I 1 = - R 2 / R 1 13 EM Wave Lab
  • 14. Electronic Circuits 4. Difference Difference amplifier ᅵᅵ inverting gain ᅵᅵ ᅵᅵ = noninverting gain ᅵᅵ R4 R2 R2 / R1 = R3 + R4 [1 R1 ] + R4 R2 R2 R4 → R3 + R4 = R1 + R2 → R1 = R3 R4 R2 R2 vO2 = vΙ 2 R3 + R4 [1 R1 ] = vΙ 2 R1 + R2 R2 By superposition, v O = v O1 + ( vI 2 - vI 1 ) = v Id v O2 = R1 R1 R2 → Ad = R1 14 EM Wave Lab
  • 15. Electronic Circuits 4. Difference Difference amplifier 1 R4 1 R3 i1 = R1 [ v Icm - v R3 + R4 Icm ] = v Icm R1 R3 + R4 R4 R4 R2 R3 vO = v Icm – i2R2 = v - v R3 + R4 R3 + R4 Icm R1 R3 + R4 Icm R4 R2 R3 = R3 + R4 1- [ R1 R4 ]v Icm vO R4 R2 R3 For R1 = R3 , R2 = R4 Acm ≡ vΙcm = R +R 1- 3 4 [ R1 R4 ] v Id R id ≡ iI v Id = R 1 i I + 0 + R 1 i I ∵ vertual short R id = 2R 1 : low input resistance for high differential gain 15 EM Wave Lab
  • 16. Electronic Circuits 4. Difference Instrumentation amplifier R2 R2 [1 R1 ] ( vΙ 2 − vΙ 1 ) = 1 R1 [ ]v Ιd + + R4 R2 vΟ = R3 + 1 R1 [ ] vΙd = Ad vΙd R4 R2 Ad = R3 [ 1 R1 ] = + High input impedance and high differential gain Issues  A cm is equal to 1+R 2 /R 1 at the first stage.  Issues of imperfect match at the first two Op amps.  Two R 1 resistors should be simultaneously varied : Not easy job 16 EM Wave Lab
  • 17. Electronic Circuits 4. Difference Instrumentation amplifier 2R1 2R2 (vO2 – vO1) v 2R1 + 2R2 = Ιd → vO2 – vO1 = [1 2R ]v Ιd + 1 R4 R4 R2 vO R4 R2 vO = R3 (vO2 – vO1) = R3 [1 R1 ] vΙd → Ad ≡ vΙd = R3 [1 R1 ] + + 17 EM Wave Lab
  • 18. Electronic Circuits 5. Nonideal OP amp Nonideal OP amp Differential open-loop gain  Noninfinite CMRR, noninfinite input resistance, nonzero output resistance : Closed-loop circuits 에서 Not critical A0 A(jw) = 1+ jw/w b For w = 0 For w ≫ w b 18 EM Wave Lab
  • 19. Electronic Circuits 5. Nonideal OP amp Frequency response ← = vx − R2 / R 1 Vo(s)/Vi(s) ≈ s 1 + ωT / (1 + R2 / R1 ) For A0 ≫ 1+R2/R1 ωT ω3dB = −−−−−−−− − + R2 / 1 R1 For noninverting closed-loop case, only DC gain (1 + R 2 /R 1 ) is different 19 EM Wave Lab
  • 20. Electronic Circuits 5. Nonideal OP amp Frequency response Closed-loop gain R2/R1 f3dB=ft/(1+R2/R1) +1000 999 1kHz 1 + R2 / +100 99 10kHz Constant gain-BW product R1 +10 9 100kHz +1 0 1MHz -1 1 0.5MHz − R 2 / R1 -10 10 90.9kHz -100 100 9.9kHz -1000 1000 0.99kHz ωT = A0 · ωb 20 EM Wave Lab
  • 21. Electronic Circuits 6. Large signal Output voltage saturation 21 EM Wave Lab
  • 22. Electronic Circuits 6. Large signal Slew rate 22 EM Wave Lab
  • 23. Electronic Circuits 6. Large signal Slew rate 23 EM Wave Lab
  • 24. Electronic Circuits 6. Large signal Full power bandwidth Unity-gain voltage follower 의 input 에 sine wave 를 인가하고 출력 전압의 진폭이 최대 가 되도록 할 경우 , slew 현상이 발생하지 않는 입력신호의 최대 주파수 24 EM Wave Lab
  • 25. Electronic Circuits 7. DC effect Offset voltage 25 EM Wave Lab
  • 26. Electronic Circuits 7. DC effect Equivalent model DC biasing issue DC signal issue Inverting Noninverting 26 EM Wave Lab
  • 27. Electronic Circuits 7. DC effect Capacitive coupling Only for DC Only for AC A ≠ 1 + R 2 /R 1 STC HPF 27 EM Wave Lab
  • 28. Electronic Circuits 7. DC effect Input bias current 두 전류 I B1 , I B2 는 거의 같은 값을 가지지만 OP amp 내부의 mismatch 로 인해 약간 차이가 남 Only for DC B2 28 EM Wave Lab
  • 29. Electronic Circuits 7. DC effect Input bias current V O = I B1 R 2 ≈ I B R 2  limits on R 2 V O = -I B2 R 3 + R 2 (I B1 – I B2 R 3 /R 1 ) (for I B1 = I B2 = I B3 ) 두 input 단자에서 본 저항 값이 같다 . 29 EM Wave Lab
  • 30. Electronic Circuits 7. DC effect Input bias current For R 3 = ( R 1 ∥R 2 ) and I B1 ≠ I B2 ≠ I B3 I B1 = I B + I OS /2 I B2 = I B - I OS /2 → V O = I OS R 2 (compare with V O = I B1 R 2 in case of without R 3 ) AC coupled inverting amp AC coupled non-inverting amp 30 EM Wave Lab
  • 31. Electronic Circuits 8. Integrator Impedance characteristics 31 EM Wave Lab
  • 32. Electronic Circuits 8. Integrator Example 32 EM Wave Lab
  • 33. Electronic Circuits 8. Integrator Miller integrator Integrator Frequency : w int = 1/RC Infinite DC gain : weak at DC imperfection 33 EM Wave Lab
  • 34. Electronic Circuits 8. Integrator DC imperfection 34 EM Wave Lab
  • 35. Electronic Circuits 8. Integrator Differentiator HPF with infinite corner frequency. Noise magnifier at High Frequency 35 EM Wave Lab