SlideShare ist ein Scribd-Unternehmen logo
1 von 46
Downloaden Sie, um offline zu lesen
Universiteit Antwerpen



     Electronic Structure Calculation of Single
           and Coupled Self – Assembled
                   Quantum Dots

 Kandidaat:                                             Promotor:
 Vladan Mlinar                          Prof. Dr. François Peeters

                  Theorie van de Gecondenseerde Materie,
                            Departement Fysica


vladan.mlinar@ua.ac.be                                     5. July, 2007
QUANTUM NANOSTRUCTURES:




       material 1   material 2 material 1
QUANTUM NANOSTRUCTURES:


material 1   material 2 material 1


                                                     CB


                                               G6
                                     kx   Eg   G8         kz
                                                         HH
                                          D
                                               G7
                                                    LH


                                                    SO
QUANTUM NANOSTRUCTURES:


material 1   material 2 material 1
QUANTUM NANOSTRUCTURES:


material 1   material 2 material 1




                                     • Delta-function atomic
                                       like density of states
                                     • Self-assembly
                                          • strain field
                                          • piezoelectricity
                                     • 3D confinement
                                          • band-mixing
                                          • inter-valley mixing
                                     • Coulomb interaction
                                     • External magnetic field
APPLICATIONS:
• Quantum dot laser (Kirstaedter et al. (1994))
    • (In,Ga)As/GaAs QDs used
      as an active medium
    • Low threshold current density
    • High characteristic temp.
    • greater size uniformity
    • higher QD densities

                                                          • Quantum dot infrared
                                                            photodetector
                                                             • high responsivity
                                                             • high temperature operation
                                                             • high light coupling to normal
                                                              incidence light


• Single polarized photon sources
    • Emits one and only one photon in each pulse
    • Usually InAs/GaAs QDs were investigated for
      usage as single photon sources
      Seguin et al. Appl. Phys. Lett. 95, 263109 (2006)
OUR TASKS:


• Deeper understanding of the quantum dot
  electronic structure not only on qualitative but
  also on quantitative level.


     • Modeling of the electronic and optical
       properties of quantum dots (different theoretical
       models)

     • Comparison with experiment (identification of
       the results of optical spectroscopy performed
       on QD systems, exciton complexes etc.)
OUTLINE:




• Modeling of semiconductor nanostructures


• Electronic and optical properties of QDs
   • Unstrained QDs in an external magnetic field
   • Influence of the substrate orientation
OUTLINE:




• Modeling of semiconductor nanostructures
     • What do we know from experiment ?
     • How do we approach the problem?
     • k.p model for nanostructures

• Electronic and optical properties of QDs
WHAT DO WE KNOW FROM EXPERIMENT:
• Growth conditions determine electronic and optical properties
of QDs




                                                                                                                                I. Drouzas, J. Ulloa, D. J. Mowbray
                                                   Group V – sensitive scan                                                  Group III – sensitive scan
• Measurements:




                                                                                        PL Intensity (arb. units)
                                                                                                                    9000                63593-GaAs -QDs       4K
                                                                                                                                    X
                                                                                                                    6000
                                                                                                                                                    ?
                                                                                                                                               2X
                                                                                                                    3000
                                                                                                                                                 4X ?
                                                                                                                                      3X
                                                                                                                                                  5x
                                                                                                                                     ?
                                                                                                                       0
 B. Urbaszek, et al., PRL 90, 247403 (2003)   S. Godefroo, et al. JAP 96, 2535 (2004)                                  754   755     756      757       758   759   760
                                                                                                                                   Wavelength (nm)
                                                                                                                                   A. Rastelli et al.
STEPS IN THE MODELING:
ENVELOPE FUNCTION APPROACH:

k.p theory?
                                       
Envelope function : (r )  U n r Fn r 
                              n




Hamiltonian:                                                   CB

       H = Hk + Hstrain       (Pikus-Bir
                              Hamiltonian)
                                                         G6
                                               kx   Eg   G8         kz
Magnetic field:
                                                                   HH
      H = Hk + Hstrain + HZeeman                    D
                                                         G7
                       
                  eA                                        LH
               k k 
                                                             SO
FROM BULK TO NANOSTRUCTURES:
Model is valid at the abrupt interface ?
                                                      1 
   Bulk -> nanostructures                        kj 
                                                      i x j

Conventional approach:                             Burt-Foreman approach:

   Mk x2  k x Mkk                                    Mk x2  k x Mk x
   Nk x k y 
                1
                  k x Nk y  k y Nk x               N XY  k x N  k y  k y N  k x
                                                                   '             '

                2
                                                           M. Burt, J. Phys. Condens. Matter, 6651 (1992).
G. Bastard, PRB 24, 5963 (1981).                           B. A. Foreman, PRB 56, R12748 (1998).




                    material 1             material 2 material 1

                                                                 (M, N – effective mass parameters)
FROM BULK TO NANOSTRUCTURES:
Model is valid at the abrupt interface ?
Operator ordering (nanostructure):

                              Mk x2  k x Mk x
                              N XY  k x N  k y  k y N  k x
                                           '             '



In the presence of a magnetic field:
                     ˆ k  C{k , k }  1 K [k , k ]
                    Ck xi ˆx j ˆ ˆ          ˆ ˆ
                                xi xj        xi  xj
                                       2
  Analogy:
  The k operators fail to commute with the effective-mass
  parameters, whereas in the “bulk” Hamiltonian when a magnetic
  field is included, the k operators fail to commute with each other.
Vladan Mlinar et al., PRB 71, 205305 (2005).
k.p MODEL FOR NANOSTRUCTURES:


                                               GaAs/Al0.3Ga0.7As




             0  10meV , h  6nm                             0  15meV , h  4nm
                                               Hole energy
Vladan Mlinar et al., PRB 71, 205305 (2005).
                                                  levels
k.p MODEL FOR NANOSTRUCTURES:



     0  10meV




   Hole energy
      levels




  InAs/GaAs


Vladan Mlinar et al., PRB 71, 205305 (2005).
k.p MODEL FOR NANOSTRUCTURES:
                                               B = 40T




     0  10meV




   Hole energy
      levels




  InAs/GaAs


Vladan Mlinar et al., PRB 71, 205305 (2005).
k.p MODEL FOR NANOSTRUCTURES:
                                    InAs/GaAs system
    Quantum dot:                                                Quantum well:
    E(B) dependence                                          E(kt) dependence




                                               Hole energy
                                                  levels
Vladan Mlinar et al., PRB 71, 205305 (2005).
k.p MODEL FOR NANOSTRUCTURES:
                                    InAs/GaAs system
    Quantum dot:                                                                 Quantum well:
    E(B) dependence                                                           E(kt) dependence




                                      ˆ 'ˆ             ˆ         ˆ
                                      k xi N  k x j  k x j N  k xi 
                    3 ˆ         3 ˆ
                                                                         
                                                                  3   3 ˆ ˆ
                      
            2                                    ˆ ˆ
          3    (i      kx j  i       k xi   3 k xi , k x j             [k xi , k x j ])
            2m     xi           x j                                 2


                                               Hole energy
                                                  levels
Vladan Mlinar et al., PRB 71, 205305 (2005).
NUMERICAL IMPLEMENTATION:
SUMMARY (First part):



• Experiment versus theory

• k.p model for nanostructures
   • “Correct” boundary conditions at the interface
   • Existance of non-physical solutions in the conventional k.p
     model applied to nanostructures

• 3D model for nanostructures (numerical problems)
OUTLINE:




• Modeling of semiconductor nanostructures

• Electronic and optical properties of QDs:
     • Unstrained QDs in an external magnetic field
     • Influence of the substrate orientation
     • Type II QDs
UNSTRAINED QDs: MOTIVATION
GaAs/AlGaAs QD:   (1) XSTM image of GaAs/AlGaAs QD:




                  (2) Experimental data (KU Leuven):
                                                                        E1
                                                                        E2
                                 1,655                                  E3

                                 1,650


                                 1,645
                   energy (eV)
                                 1,640


                                 1,635


                                 1,630


                                 1,625


                                 1,620

                                         0   10   20         30    40   50
                                                  magnetic field
UNSTRAINED GaAs/AlxGa1-xAs QDs:
  Collaboration with TU Berlin




                                                                          N=9




                                               Intensity (arb. units)
                                                                          N=7


                                                                          N=5


                                                                                                             N=3


                                                                                                             N=0

                                                                        1600    1620      1640        1660         1680
                                                                                       Energy (meV)
                                                                                       Position of the measured
                                                                                       PL peak
Vladan Mlinar et al., PRB 75, 205308 (2007).
UNSTRAINED GaAs/AlxGa1-xAs QDs:




                                     The wave function isosurfaces
  Electron and hole energy level
                                      plotted for 65% probability
    (with respect to the GaAs
                                                density
 conduction band) as a function of
         a magnetic field
COMPARISON WITH EXPERIMENT:
       GaAs/AlxGa1-xAs quantum dot:
SUMMARY (second part):


• Interface roughness was observed to sensitively
affect the transition energies, but hardly intraband
energies.

• For a magnetic field applied in the growth direction
and in the direction perpendicular to the growth
direction (where B ≤50T), we find good agreement
between the exciton diamagnetic shift obtained from
our calculations and the experimental data of
N. Schildermas et al. (KU Leuven)
GROWTH ON [11k] MOTIVATION:




  P. Caroff et al., APL 87, 243107 (2005)




                                            M. Schmidbauer et al., PRL 96, 66108 (2006)
INFLUENCE OF SUBSTRATE ORIENTATION:


                                    cos  cos    sin  cos     sin  
                                                                        
              xi  U ij x j   U    sin 
                                    cos  sin 
                                                     cos           0 
                                                  sin  sin    cos   




      z




          y
  x
INFLUENCE OF SUBSTRATE ORIENTATION:


                                                  cos  cos    sin  cos     sin  
                                                                                      
                            xi  U ij x j   U    sin 
                                                  cos  sin 
                                                                   cos           0 
                                                                sin  sin    cos   




       z                       - For QDs grown on [hkl] substrates:
                   z´
               θ
                                          k        h2  k 2
                                     tg  , tg 
                        y
                                          h          l
  x´
   x       Φ                   - For QDs grown on [11k] substrates:
                   y´
                                  / 4 h  1, k  1, l  2 / tg
PROBLEM:
• How are the electronic structure and transition energies
  influenced by the substrate orientation?
• What is new as compared to [001] grown QDs?
Model QD: lens and truncated pyramidal InAs/GaAs QDs grown on
[11k] substrates, where k=1,2,3.

 L1                                                    P1




 L2                                                    P2




  L3                                                  P3
[11k] GROWN QDs – strain distribution



          L3                       P1




• Isotropic strain is increased in [11k] grown flat dots.
• The isotropic strain is almost constant in the growth direction
  of the larger dots.
[11k] GROWN QDs – strain distribution



          L3                       P1




• Isotropic strain is increased in [11k] grown flat dots.
• The isotropic strain is almost constant in the growth direction
  of the larger dots.

 Biaxial component of the strain is decreased regardless of
 the dot size!
[11k] GROWN QDs – strain distribution




Simplified picture:
     Unstrained
[11k] GROWN QDs – strain distribution




Simplified picture:
    Unstrained          Electron & hole energy levels
    + isotropic         of [11k] grown flat dots will
                        lie energetically higher as
                        compared to [001] grown QDs
[11k] GROWN QDs – strain distribution




Simplified picture:
    Unstrained          Electron & hole energy levels
    + isotropic         of [11k] grown flat dots will
    + biaxial           lie energetically higher as
                        compared to [001] grown QDs
                        Increased hole band mixing!
ROLE OF PIEZOELECTRICITY:



•Piezoelectric effect:

• Shear strain leads to piezoelectric polarization P
                             P = eijkεjk
• The polarization induces a fixed charge:
                             ρP = -divP
• Piezoelectric potential VP is obtained from the Poisson equation
                              ρP = ε0εrΔVP
ROLE OF PIEZOELECTRICITY:




The asymmetric piezoelectric potential influences the
distribution of the electron & hole wavefunction.
[11k] GROWN QDs – single particle states




                         L1          L2               L3

                      • Increased hole band mixing!
                      • The maximum effective-mass
                      occurs for (111) surfaces (JAP 79, 15
                      (1996))




 P1    P2      P3
[11k] GROWN QDs:
  (i) hydrostatic component of the strain
 tensor
 (ii) biaxial component of the strain tensor
 influencing the degree of the valence band
 mixing,
 (iii) variation of the hole effective mass with
 the substrate orientation, since it can
 significantly alter the effects of the size
 quantization in QD.


 QD size in the growth direction determines the degree of the influence of the
 substrate orientation on the electronic and optical properties of [11k] grown
 QDs, whereas the influence of the shape is of secondary importance.


Vladan Mlinar and Francois M. Peeters., Appl. Phys. Lett. 89, 261910 (2006);
Vladan Mlinar and Francois M. Peeters, Appl. Phys. Lett 91 (2007).
COMPARISON WITH EXPERIMENT:
• InAs/GaAs QDs in an external magnetic field




• Experimental data taken from S. Godefroo et al., J. Appl. Phys. 96, 2535 (2004).
[11k] GROWN QDMs:
                                    Isotropic (hydrostatic) part of strain tensor for [11k] grown QDM:




     InAs/GaAs QDM

                                                                                    Piezoelectric
                                                                                    potential of QDM
                                                                                    with isosurfaces
                                                                                    at ±32meV
                                                                                    (blue –32meV,
  Model QDM:                                                                        red +32meV)
  -Eight identical lens shaped
  InAs/GaAs QDs with
  R = 7.91nm, h = 4.52nm
Vladan Mlinar and Francois M. Peeters., J. Mater. Chem (2007).
[11k] GROWN QDMs:




                                                      For [111] grown QDMs, changing the interdot
                                                      Distance varies the transition energies up to 50meV
V. Mlinar and F.M. Peeters., J. Mater. Chem (2007).
SUMMARY (third part):



• QDs grown on high index surfaces
   • Continuum elastic model for strain calculation
   • k·p model for single-particle energy levels

• QD size dependent influence of substrate orientation on
  the electronic and optical properties of QDs
   • the flatter the dot the larger the difference from the reference
     [001] case
   • Influence of the shape is of secondary importance
TYPE II QDs: InP/(In,Ga)P QDs
InP/InGaP double
quantum dot molecule:




                                                            InP/InGaP
                                                            triple QDM




                                               Comparison
                                                  with
                                               experiment
Vladan Mlinar et al., PRB 73, 235336 (2006).
CONCLUSIONS:
        Modeling:                   Substrate orientation:                  Unstrained QDs:
• Experiment versus theory         • QDs grown on high index             • Interface roughness was observed
                                     surfaces                             to sensitively affect the transition
• k.p model for nanostructures         -CM model for strain calc         energies, but hardly intraband
   -“Correct” boundary conditions      -k.p model for single-particle    energies.
      at the interface                  energy levels
   - Existance of non-physical                                           • For a magnetic field applied in
     solutions in the conventional • QD size dependent influence of      the growth direction and in the
     k.p model applied to nanostr.   substrate orientation on the        direction perpendicular to the
                                     electronic and optical properties   growth direction (where B ≤50T),
• 3D model for nanostructures        of QDs (the flatter the dot the     we find good agreement between
  (numerical problems)               larger the difference from the      the exciton diamagnetic shift
                                     reference [001] case)               obtained from our calculations
                                                                         and the experimental data of
                                                                         N. Schildermas et al. (KU Leuven)




                                                        Dank u voor uw aandacht!

Weitere ähnliche Inhalte

Ähnlich wie Vladan Mlinar Ph.D. defense (2007)

TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynami...
TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynami...TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynami...
TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynami...
Christophe Palermo
 

Ähnlich wie Vladan Mlinar Ph.D. defense (2007) (12)

TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynami...
TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynami...TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynami...
TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynami...
 
Session 29 ic2011 gereke
Session 29 ic2011 gerekeSession 29 ic2011 gereke
Session 29 ic2011 gereke
 
Fundemendals of X Ray Difraction Spectroscopy
Fundemendals of X Ray Difraction SpectroscopyFundemendals of X Ray Difraction Spectroscopy
Fundemendals of X Ray Difraction Spectroscopy
 
Crystal sizeanalysis
Crystal sizeanalysisCrystal sizeanalysis
Crystal sizeanalysis
 
About byFlow R&D
About byFlow R&DAbout byFlow R&D
About byFlow R&D
 
CIRAM X Ray Radiography Contribution Feb 2009
CIRAM  X  Ray Radiography Contribution Feb 2009CIRAM  X  Ray Radiography Contribution Feb 2009
CIRAM X Ray Radiography Contribution Feb 2009
 
Maldi
MaldiMaldi
Maldi
 
Charging Characterization of Colloidal Dispersions by a Plate-Out Cell
Charging Characterization of Colloidal Dispersions by a Plate-Out CellCharging Characterization of Colloidal Dispersions by a Plate-Out Cell
Charging Characterization of Colloidal Dispersions by a Plate-Out Cell
 
GQSAR presentation
GQSAR presentationGQSAR presentation
GQSAR presentation
 
Benchmark Calculations of Atomic Data for Modelling Applications
 Benchmark Calculations of Atomic Data for Modelling Applications Benchmark Calculations of Atomic Data for Modelling Applications
Benchmark Calculations of Atomic Data for Modelling Applications
 
SPPRA2010 Estimating a Rotation Matrix R by using higher-order Matrices R^n w...
SPPRA2010 Estimating a Rotation Matrix R by using higher-order Matrices R^n w...SPPRA2010 Estimating a Rotation Matrix R by using higher-order Matrices R^n w...
SPPRA2010 Estimating a Rotation Matrix R by using higher-order Matrices R^n w...
 
Extreme Rheology- Cardiff- 2009
Extreme Rheology- Cardiff- 2009Extreme Rheology- Cardiff- 2009
Extreme Rheology- Cardiff- 2009
 

Kürzlich hochgeladen

EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
Earley Information Science
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
Enterprise Knowledge
 

Kürzlich hochgeladen (20)

Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 

Vladan Mlinar Ph.D. defense (2007)

  • 1. Universiteit Antwerpen Electronic Structure Calculation of Single and Coupled Self – Assembled Quantum Dots Kandidaat: Promotor: Vladan Mlinar Prof. Dr. François Peeters Theorie van de Gecondenseerde Materie, Departement Fysica vladan.mlinar@ua.ac.be 5. July, 2007
  • 2. QUANTUM NANOSTRUCTURES: material 1 material 2 material 1
  • 3. QUANTUM NANOSTRUCTURES: material 1 material 2 material 1 CB G6 kx Eg G8 kz HH D G7 LH SO
  • 4. QUANTUM NANOSTRUCTURES: material 1 material 2 material 1
  • 5. QUANTUM NANOSTRUCTURES: material 1 material 2 material 1 • Delta-function atomic like density of states • Self-assembly • strain field • piezoelectricity • 3D confinement • band-mixing • inter-valley mixing • Coulomb interaction • External magnetic field
  • 6. APPLICATIONS: • Quantum dot laser (Kirstaedter et al. (1994)) • (In,Ga)As/GaAs QDs used as an active medium • Low threshold current density • High characteristic temp. • greater size uniformity • higher QD densities • Quantum dot infrared photodetector • high responsivity • high temperature operation • high light coupling to normal incidence light • Single polarized photon sources • Emits one and only one photon in each pulse • Usually InAs/GaAs QDs were investigated for usage as single photon sources Seguin et al. Appl. Phys. Lett. 95, 263109 (2006)
  • 7. OUR TASKS: • Deeper understanding of the quantum dot electronic structure not only on qualitative but also on quantitative level. • Modeling of the electronic and optical properties of quantum dots (different theoretical models) • Comparison with experiment (identification of the results of optical spectroscopy performed on QD systems, exciton complexes etc.)
  • 8. OUTLINE: • Modeling of semiconductor nanostructures • Electronic and optical properties of QDs • Unstrained QDs in an external magnetic field • Influence of the substrate orientation
  • 9. OUTLINE: • Modeling of semiconductor nanostructures • What do we know from experiment ? • How do we approach the problem? • k.p model for nanostructures • Electronic and optical properties of QDs
  • 10. WHAT DO WE KNOW FROM EXPERIMENT: • Growth conditions determine electronic and optical properties of QDs I. Drouzas, J. Ulloa, D. J. Mowbray Group V – sensitive scan Group III – sensitive scan • Measurements: PL Intensity (arb. units) 9000 63593-GaAs -QDs 4K X 6000 ? 2X 3000 4X ? 3X 5x ? 0 B. Urbaszek, et al., PRL 90, 247403 (2003) S. Godefroo, et al. JAP 96, 2535 (2004) 754 755 756 757 758 759 760 Wavelength (nm) A. Rastelli et al.
  • 11. STEPS IN THE MODELING:
  • 12. ENVELOPE FUNCTION APPROACH: k.p theory?    Envelope function : (r )  U n r Fn r  n Hamiltonian: CB H = Hk + Hstrain (Pikus-Bir Hamiltonian) G6 kx Eg G8 kz Magnetic field: HH H = Hk + Hstrain + HZeeman D G7    eA LH k k   SO
  • 13. FROM BULK TO NANOSTRUCTURES: Model is valid at the abrupt interface ? 1  Bulk -> nanostructures kj  i x j Conventional approach: Burt-Foreman approach: Mk x2  k x Mkk Mk x2  k x Mk x Nk x k y  1 k x Nk y  k y Nk x  N XY  k x N  k y  k y N  k x ' ' 2 M. Burt, J. Phys. Condens. Matter, 6651 (1992). G. Bastard, PRB 24, 5963 (1981). B. A. Foreman, PRB 56, R12748 (1998). material 1 material 2 material 1 (M, N – effective mass parameters)
  • 14. FROM BULK TO NANOSTRUCTURES: Model is valid at the abrupt interface ? Operator ordering (nanostructure): Mk x2  k x Mk x N XY  k x N  k y  k y N  k x ' ' In the presence of a magnetic field: ˆ k  C{k , k }  1 K [k , k ] Ck xi ˆx j ˆ ˆ ˆ ˆ xi xj xi xj 2 Analogy: The k operators fail to commute with the effective-mass parameters, whereas in the “bulk” Hamiltonian when a magnetic field is included, the k operators fail to commute with each other. Vladan Mlinar et al., PRB 71, 205305 (2005).
  • 15. k.p MODEL FOR NANOSTRUCTURES: GaAs/Al0.3Ga0.7As 0  10meV , h  6nm 0  15meV , h  4nm Hole energy Vladan Mlinar et al., PRB 71, 205305 (2005). levels
  • 16. k.p MODEL FOR NANOSTRUCTURES: 0  10meV Hole energy levels InAs/GaAs Vladan Mlinar et al., PRB 71, 205305 (2005).
  • 17. k.p MODEL FOR NANOSTRUCTURES: B = 40T 0  10meV Hole energy levels InAs/GaAs Vladan Mlinar et al., PRB 71, 205305 (2005).
  • 18. k.p MODEL FOR NANOSTRUCTURES: InAs/GaAs system Quantum dot: Quantum well: E(B) dependence E(kt) dependence Hole energy levels Vladan Mlinar et al., PRB 71, 205305 (2005).
  • 19. k.p MODEL FOR NANOSTRUCTURES: InAs/GaAs system Quantum dot: Quantum well: E(B) dependence E(kt) dependence ˆ 'ˆ ˆ ˆ k xi N  k x j  k x j N  k xi   3 ˆ  3 ˆ    3   3 ˆ ˆ  2 ˆ ˆ 3 (i kx j  i k xi   3 k xi , k x j  [k xi , k x j ]) 2m xi x j 2 Hole energy levels Vladan Mlinar et al., PRB 71, 205305 (2005).
  • 21. SUMMARY (First part): • Experiment versus theory • k.p model for nanostructures • “Correct” boundary conditions at the interface • Existance of non-physical solutions in the conventional k.p model applied to nanostructures • 3D model for nanostructures (numerical problems)
  • 22. OUTLINE: • Modeling of semiconductor nanostructures • Electronic and optical properties of QDs: • Unstrained QDs in an external magnetic field • Influence of the substrate orientation • Type II QDs
  • 23. UNSTRAINED QDs: MOTIVATION GaAs/AlGaAs QD: (1) XSTM image of GaAs/AlGaAs QD: (2) Experimental data (KU Leuven): E1 E2 1,655 E3 1,650 1,645 energy (eV) 1,640 1,635 1,630 1,625 1,620 0 10 20 30 40 50 magnetic field
  • 24. UNSTRAINED GaAs/AlxGa1-xAs QDs: Collaboration with TU Berlin N=9 Intensity (arb. units) N=7 N=5 N=3 N=0 1600 1620 1640 1660 1680 Energy (meV) Position of the measured PL peak Vladan Mlinar et al., PRB 75, 205308 (2007).
  • 25. UNSTRAINED GaAs/AlxGa1-xAs QDs: The wave function isosurfaces Electron and hole energy level plotted for 65% probability (with respect to the GaAs density conduction band) as a function of a magnetic field
  • 26. COMPARISON WITH EXPERIMENT: GaAs/AlxGa1-xAs quantum dot:
  • 27. SUMMARY (second part): • Interface roughness was observed to sensitively affect the transition energies, but hardly intraband energies. • For a magnetic field applied in the growth direction and in the direction perpendicular to the growth direction (where B ≤50T), we find good agreement between the exciton diamagnetic shift obtained from our calculations and the experimental data of N. Schildermas et al. (KU Leuven)
  • 28. GROWTH ON [11k] MOTIVATION: P. Caroff et al., APL 87, 243107 (2005) M. Schmidbauer et al., PRL 96, 66108 (2006)
  • 29. INFLUENCE OF SUBSTRATE ORIENTATION:  cos  cos  sin  cos   sin     xi  U ij x j U    sin   cos  sin  cos  0   sin  sin  cos    z y x
  • 30. INFLUENCE OF SUBSTRATE ORIENTATION:  cos  cos  sin  cos   sin     xi  U ij x j U    sin   cos  sin  cos  0   sin  sin  cos    z - For QDs grown on [hkl] substrates: z´ θ k h2  k 2 tg  , tg  y h l x´ x Φ - For QDs grown on [11k] substrates: y´    / 4 h  1, k  1, l  2 / tg
  • 31. PROBLEM: • How are the electronic structure and transition energies influenced by the substrate orientation? • What is new as compared to [001] grown QDs? Model QD: lens and truncated pyramidal InAs/GaAs QDs grown on [11k] substrates, where k=1,2,3. L1 P1 L2 P2 L3 P3
  • 32. [11k] GROWN QDs – strain distribution L3 P1 • Isotropic strain is increased in [11k] grown flat dots. • The isotropic strain is almost constant in the growth direction of the larger dots.
  • 33. [11k] GROWN QDs – strain distribution L3 P1 • Isotropic strain is increased in [11k] grown flat dots. • The isotropic strain is almost constant in the growth direction of the larger dots. Biaxial component of the strain is decreased regardless of the dot size!
  • 34. [11k] GROWN QDs – strain distribution Simplified picture: Unstrained
  • 35. [11k] GROWN QDs – strain distribution Simplified picture: Unstrained Electron & hole energy levels + isotropic of [11k] grown flat dots will lie energetically higher as compared to [001] grown QDs
  • 36. [11k] GROWN QDs – strain distribution Simplified picture: Unstrained Electron & hole energy levels + isotropic of [11k] grown flat dots will + biaxial lie energetically higher as compared to [001] grown QDs Increased hole band mixing!
  • 37. ROLE OF PIEZOELECTRICITY: •Piezoelectric effect: • Shear strain leads to piezoelectric polarization P P = eijkεjk • The polarization induces a fixed charge: ρP = -divP • Piezoelectric potential VP is obtained from the Poisson equation ρP = ε0εrΔVP
  • 38. ROLE OF PIEZOELECTRICITY: The asymmetric piezoelectric potential influences the distribution of the electron & hole wavefunction.
  • 39. [11k] GROWN QDs – single particle states L1 L2 L3 • Increased hole band mixing! • The maximum effective-mass occurs for (111) surfaces (JAP 79, 15 (1996)) P1 P2 P3
  • 40. [11k] GROWN QDs: (i) hydrostatic component of the strain tensor (ii) biaxial component of the strain tensor influencing the degree of the valence band mixing, (iii) variation of the hole effective mass with the substrate orientation, since it can significantly alter the effects of the size quantization in QD. QD size in the growth direction determines the degree of the influence of the substrate orientation on the electronic and optical properties of [11k] grown QDs, whereas the influence of the shape is of secondary importance. Vladan Mlinar and Francois M. Peeters., Appl. Phys. Lett. 89, 261910 (2006); Vladan Mlinar and Francois M. Peeters, Appl. Phys. Lett 91 (2007).
  • 41. COMPARISON WITH EXPERIMENT: • InAs/GaAs QDs in an external magnetic field • Experimental data taken from S. Godefroo et al., J. Appl. Phys. 96, 2535 (2004).
  • 42. [11k] GROWN QDMs: Isotropic (hydrostatic) part of strain tensor for [11k] grown QDM: InAs/GaAs QDM Piezoelectric potential of QDM with isosurfaces at ±32meV (blue –32meV, Model QDM: red +32meV) -Eight identical lens shaped InAs/GaAs QDs with R = 7.91nm, h = 4.52nm Vladan Mlinar and Francois M. Peeters., J. Mater. Chem (2007).
  • 43. [11k] GROWN QDMs: For [111] grown QDMs, changing the interdot Distance varies the transition energies up to 50meV V. Mlinar and F.M. Peeters., J. Mater. Chem (2007).
  • 44. SUMMARY (third part): • QDs grown on high index surfaces • Continuum elastic model for strain calculation • k·p model for single-particle energy levels • QD size dependent influence of substrate orientation on the electronic and optical properties of QDs • the flatter the dot the larger the difference from the reference [001] case • Influence of the shape is of secondary importance
  • 45. TYPE II QDs: InP/(In,Ga)P QDs InP/InGaP double quantum dot molecule: InP/InGaP triple QDM Comparison with experiment Vladan Mlinar et al., PRB 73, 235336 (2006).
  • 46. CONCLUSIONS: Modeling: Substrate orientation: Unstrained QDs: • Experiment versus theory • QDs grown on high index • Interface roughness was observed surfaces to sensitively affect the transition • k.p model for nanostructures -CM model for strain calc energies, but hardly intraband -“Correct” boundary conditions -k.p model for single-particle energies. at the interface energy levels - Existance of non-physical • For a magnetic field applied in solutions in the conventional • QD size dependent influence of the growth direction and in the k.p model applied to nanostr. substrate orientation on the direction perpendicular to the electronic and optical properties growth direction (where B ≤50T), • 3D model for nanostructures of QDs (the flatter the dot the we find good agreement between (numerical problems) larger the difference from the the exciton diamagnetic shift reference [001] case) obtained from our calculations and the experimental data of N. Schildermas et al. (KU Leuven) Dank u voor uw aandacht!