SlideShare ist ein Scribd-Unternehmen logo
1 von 26
Downloaden Sie, um offline zu lesen
FACULTY OF SCIENCE
                       Department : Earth and Environmental Sciences
                       Geology




           A new 3D pore shape classification using 
                         Avizo Fire




Ir. Steven Claes
Dr. A. Foubert
Prof. Dr. M. Ozkül
Prof. Dr. R. Swennen
Introduction
             Introduction               Mathematical 
                  Introduction   CT                       Conclusion
                                      shape description

Overview




1. Introduction

2. CT: Petrography in 3D

3. Mathematical shape description

4. Conclusion
Introduction
            Introduction                 Mathematical 
                 Introduction     CT                                Conclusion
                                       shape description

1.. Introduction
   A. Heterogeneity
   ‐   Carbonate reservoirs typically have a complex texture and are very 
             heterogeneous concerning porosityy measurements




                                          Choquette and Prey,1970




                       AAPG, 77
Introduction
                       Introduction               Mathematical 
                            Introduction   CT                       Conclusion
                                                shape description

1.. Introduction
     B. Different scales
     ‐       Different types of porosity  working on different scales




  Rahman, et al 2011
Introduction
            Introduction                    Mathematical 
                 Introduction     CT                             Conclusion
                                          shape description

1.. Introduction
   B. Different scales
   ‐   Working on different scales



                                  15 cm
                                                          2 cm
                         0.4 cm
           1.5 cm

                                                              10 cm
                                           4 cm
Introduction
             Introduction                  Mathematical 
                  Introduction    CT                         Conclusion
                                         shape description

2.. CT: Petrography in 3D
   A. Workflow

   Data acquisition          Reconstruction           3D information

   ‐   3D information:
           ‐ Filtering
                    ‐ Pre reconstruction
                    ‐ Post reconstruction
           ‐ Segmentation
                    ‐ Dual thresholding
           ‐ Visualization
                    ‐ Avizo
                    ‐ CT‐an / CT‐vox
           ‐ Calculations
                    ‐ Matlab
                    ‐ Avizo

                                                                   1979, Houndsfield
Introduction
            Introduction               Mathematical 
                 Introduction   CT                       Conclusion
                                     shape description

2.. CT: Petrography in 3D
   B. Principle:
Introduction
            Introduction                 Mathematical 
                 Introduction   CT                         Conclusion
                                       shape description

2.. CT: Petrography in 3D
   B. Principle:

   ‐   Advantages:
       ‐ Non‐destructive
       ‐ Full 3D information of internal structure
       ‐ Little sample preparation
       ‐ Qualitative and quantitative interpretation

   ‐   Disadvantages:
       ‐ Limited object size
       ‐ Relative high recording time
       ‐ Relative high calculation time
Introduction
            Introduction                   Mathematical 
                 Introduction     CT                         Conclusion
                                         shape description

2.. CT: Petrography in 3D
   C. Example:
 Dolomite cement       Dolomite fragment (Fe rich)




                    Late Calcite vein
Introduction
           Introduction               Mathematical 
                Introduction   CT                       Conclusion
                                    shape description

3.. Mathematical shape description
  A. Form ratio

  ‐   Pore volume  pore shape
Introduction
           Introduction                 Mathematical 
                Introduction   CT                         Conclusion
                                      shape description

3.. Mathematical shape description
  A. Form ratio

  ‐   Several parameters are defined in the last century:
          ‐ E.g. :  L  I
                     2S (Wenthworth, 1922)
          ‐ Most are calculated using L (longest dimension in a shape), I 
               (longest dimension perpendicular to L) and S (dimension 
               perpendicular to both L and I) (Krumbein, 1941)
          ‐ Above definition of L, I and S does not always provide the most 
               information about a shape e.g. cube




                                                             (Blott and Pye 2008)
Introduction
           Introduction                           Mathematical 
                Introduction        CT                              Conclusion
                                                shape description

3.. Mathematical shape description
  B. Calculation L, I and S

  ‐   Individual pores are considered as solid objects
      ‐ Calculate the mechanical moments of the pore:
                            I           I xy    I xz 
                            xx                       
                            I yx        I yy    I yz 
                                                     
                            I zx
                           
                                         I zy    I zz 
                                                      
      ‐   Using the spectral theorem for real, symmetric matrices:
                                I        0      0 
                                1                  
                                0        I2     0 
                                                   
                                0
                                         0      I3 
                                                    
      ‐   I1, I2 and I3 are the principal moments of inertia
                  solving an eigenvalue problem
Introduction
            Introduction                     Mathematical 
                 Introduction      CT                          Conclusion
                                           shape description

3.. Mathematical shape description
  B. Calculation L, I and S

  ‐   I1, I2 and I3 can be used to calculate L, I and S as the dimensions of the 
      principal axis of the approximated ellips:


                                     1
                                I 1  m(I 2  S2 )
                                     5

                                     1
                                I 2  m(L2  S2 )
                                     5


                                     1
                                I 3  m(L2  I 2 )
                                     5

  ‐   Is the fit of an approximating ellipsoid correct?
Introduction
            Introduction                 Mathematical 
                 Introduction     CT                        Conclusion
                                       shape description

3.. Mathematical shape description
  C. Goodness of fit?

  ‐   Can be evaluated using the Vs or Es parameter:

                                     en
                                Es 
                                     S
      ‐   en: the surface area of the approximating ellipsoid
      ‐   S: the surface area of the pore
                                     vn
                                Vs 
                                     V
      ‐   vn: the volumeof the approximating ellipsoid
      ‐   V: the volume area of the pore

  ‐   Es  also proofs to be an adequate parameter in order to describe the 
      sphericity of a pore 
Introduction
           Introduction                Mathematical 
                Introduction   CT                        Conclusion
                                     shape description

3.. Mathematical shape description
  C. Goodness of fit?

  ‐   Histogram of Vs:




                               Complex pores




      ‐   Mean: 1.38
      ‐   Median: 1.08

       Good fit for most pores but some exceptions
Introduction
           Introduction               Mathematical 
                Introduction   CT                       Conclusion
                                    shape description

3.. Mathematical shape description
  C. Goodness of fit?

  ‐   Complex pores:
         ‐ Define different pore bodies:
                 ‐ Watershed algorithm 
Introduction
              Introduction                    Mathematical 
                   Introduction   CT                               Conclusion
                                            shape description

3.. Mathematical shape description
   D. Defining pore shapes: based on shapes

   ‐     Based on L, I and S:
              ‐ Ratio’s: I/L and S/I
              ‐ 5 shape classes are defined              Equant shape
   Plate like shape




 Blade like shape
                                                                Cuboid shape




                           Rod like shape
Introduction
           Introduction               Mathematical 
                Introduction   CT                       Conclusion
                                    shape description

3.. Mathematical shape description
  D. Defining pore shapes

  ‐   Based on L, I and S:
Introduction
           Introduction               Mathematical 
                Introduction   CT                       Conclusion
                                    shape description

3.. Mathematical shape description
  D. Defining pore shapes

  ‐   Based on L, I and S:
Introduction
           Introduction               Mathematical 
                Introduction   CT                       Conclusion
                                    shape description

3.. Mathematical shape description
  D. Defining pore shapes

  ‐   Rod like shape:
Introduction
           Introduction                  Mathematical 
                Introduction    CT                         Conclusion
                                       shape description

3.. Mathematical shape description
  D. Defining pore shapes

  ‐   Working with an approximating ellipsoid allows to assess the 
      orientation of the pores




       Tot vol = 58578 mm3               Tot vol = 26061 mm3
Introduction
                    Introduction                   Mathematical 
                         Introduction       CT                           Conclusion
                                                 shape description

3.. Mathematical shape description
        D. Defining pore shapes

        ‐    Allows to differentiate between facies types:




 rod        blade     plate    cube     cuboid   rod     blade   plate      cube      cuboid
 0,22       0,17      0,35     0,07      0,18    0,14    0,27    0,13       0,15       0,31
Introduction
          Introduction               Mathematical 
               Introduction   CT                       Conclusion
                                   shape description

3.. Mathematical shape description
  D. Defining pore shapes: Compactness

  ‐   Compactness: 
Introduction
             Introduction                Mathematical 
                  Introduction   CT                        Conclusion
                                       shape description

3.. Mathematical shape description
  D. Defining pore shapes: clustering

  ‐   Objective way of defining clusters:

         ‐      Model based clustering:
                   ‐ Based on Probability methods
                   ‐ Clusters are ellipsoidal 
                            ‐ Centered around the mean value
                            ‐ Covariances determine the geometrics
                   ‐ Number of clusters are statistically optimized
Introduction
           Introduction               Mathematical 
                Introduction   CT                       Conclusion
                                    shape description

3.. Mathematical shape description
  D. Defining pore shapes: clustering

  ‐   Based on L, I and S:
         ‐ Ratio’s: I/L and S/I
         ‐ Compactness
Introduction
             Introduction                  Mathematical 
                  Introduction    CT                          Conclusion
                                         shape description

4.. Conclusion


   A. Computer tomography

   ‐   Visualizes porosity networks in 3D
   ‐   Allows Petrography in 3D

   B. Mathematical shape description

   ‐   Establishes a new 3D classification for pores in travertine rocks
   ‐   Classification is confirmed to be statistically relevant
   ‐   Allows to define facies types

Weitere ähnliche Inhalte

Andere mochten auch

Application of Avizo Fire image processing for substances investigation insid...
Application of Avizo Fire image processing for substances investigation insid...Application of Avizo Fire image processing for substances investigation insid...
Application of Avizo Fire image processing for substances investigation insid...VSG - Visualization Sciences Group
 
Autocorrelation and the rose diagram for analyzing structure and anisotropy i...
Autocorrelation and the rose diagram for analyzing structure and anisotropy i...Autocorrelation and the rose diagram for analyzing structure and anisotropy i...
Autocorrelation and the rose diagram for analyzing structure and anisotropy i...VSG - Visualization Sciences Group
 
Visualization of a new generation of climate simulations with Avizo Green
Visualization of a new generation of climate simulations with Avizo GreenVisualization of a new generation of climate simulations with Avizo Green
Visualization of a new generation of climate simulations with Avizo GreenVSG - Visualization Sciences Group
 
Pore-scale direct simulation of flow and transport in porous media
Pore-scale direct simulation of flow and transport in porous mediaPore-scale direct simulation of flow and transport in porous media
Pore-scale direct simulation of flow and transport in porous mediasreejithpk78
 
Inside matters - Insights to Innovate
Inside matters - Insights to InnovateInside matters - Insights to Innovate
Inside matters - Insights to InnovateLeiv Hendrickx
 
Red Inalámbrica entre Windows y Linux [Ubuntu]
Red Inalámbrica entre Windows y Linux [Ubuntu]Red Inalámbrica entre Windows y Linux [Ubuntu]
Red Inalámbrica entre Windows y Linux [Ubuntu]shack777
 
Inside Matters - 3D X-Ray Microscopy - Software - Octopus Imaging
Inside Matters - 3D X-Ray Microscopy - Software - Octopus ImagingInside Matters - 3D X-Ray Microscopy - Software - Octopus Imaging
Inside Matters - 3D X-Ray Microscopy - Software - Octopus ImagingLeiv Hendrickx
 
Inside Matters - 3D X-Ray Microscopy - Services
Inside Matters - 3D X-Ray Microscopy - ServicesInside Matters - 3D X-Ray Microscopy - Services
Inside Matters - 3D X-Ray Microscopy - ServicesLeiv Hendrickx
 
Visual Design with Data
Visual Design with DataVisual Design with Data
Visual Design with DataSeth Familian
 
3 Things Every Sales Team Needs to Be Thinking About in 2017
3 Things Every Sales Team Needs to Be Thinking About in 20173 Things Every Sales Team Needs to Be Thinking About in 2017
3 Things Every Sales Team Needs to Be Thinking About in 2017Drift
 
How to Become a Thought Leader in Your Niche
How to Become a Thought Leader in Your NicheHow to Become a Thought Leader in Your Niche
How to Become a Thought Leader in Your NicheLeslie Samuel
 

Andere mochten auch (12)

Application of Avizo Fire image processing for substances investigation insid...
Application of Avizo Fire image processing for substances investigation insid...Application of Avizo Fire image processing for substances investigation insid...
Application of Avizo Fire image processing for substances investigation insid...
 
Autocorrelation and the rose diagram for analyzing structure and anisotropy i...
Autocorrelation and the rose diagram for analyzing structure and anisotropy i...Autocorrelation and the rose diagram for analyzing structure and anisotropy i...
Autocorrelation and the rose diagram for analyzing structure and anisotropy i...
 
Visualization of a new generation of climate simulations with Avizo Green
Visualization of a new generation of climate simulations with Avizo GreenVisualization of a new generation of climate simulations with Avizo Green
Visualization of a new generation of climate simulations with Avizo Green
 
Pore-scale direct simulation of flow and transport in porous media
Pore-scale direct simulation of flow and transport in porous mediaPore-scale direct simulation of flow and transport in porous media
Pore-scale direct simulation of flow and transport in porous media
 
Inside matters - Insights to Innovate
Inside matters - Insights to InnovateInside matters - Insights to Innovate
Inside matters - Insights to Innovate
 
Red Inalámbrica entre Windows y Linux [Ubuntu]
Red Inalámbrica entre Windows y Linux [Ubuntu]Red Inalámbrica entre Windows y Linux [Ubuntu]
Red Inalámbrica entre Windows y Linux [Ubuntu]
 
PPT of X Ray
PPT of X RayPPT of X Ray
PPT of X Ray
 
Inside Matters - 3D X-Ray Microscopy - Software - Octopus Imaging
Inside Matters - 3D X-Ray Microscopy - Software - Octopus ImagingInside Matters - 3D X-Ray Microscopy - Software - Octopus Imaging
Inside Matters - 3D X-Ray Microscopy - Software - Octopus Imaging
 
Inside Matters - 3D X-Ray Microscopy - Services
Inside Matters - 3D X-Ray Microscopy - ServicesInside Matters - 3D X-Ray Microscopy - Services
Inside Matters - 3D X-Ray Microscopy - Services
 
Visual Design with Data
Visual Design with DataVisual Design with Data
Visual Design with Data
 
3 Things Every Sales Team Needs to Be Thinking About in 2017
3 Things Every Sales Team Needs to Be Thinking About in 20173 Things Every Sales Team Needs to Be Thinking About in 2017
3 Things Every Sales Team Needs to Be Thinking About in 2017
 
How to Become a Thought Leader in Your Niche
How to Become a Thought Leader in Your NicheHow to Become a Thought Leader in Your Niche
How to Become a Thought Leader in Your Niche
 

Ähnlich wie A new 3D pore shape classification using Avizo Fire

Application of image analysis and CAD techniques for detection and modeling o...
Application of image analysis and CAD techniques for detection and modeling o...Application of image analysis and CAD techniques for detection and modeling o...
Application of image analysis and CAD techniques for detection and modeling o...Raffaele de Amicis
 
Computational Liquid Crystal Physics
Computational Liquid Crystal PhysicsComputational Liquid Crystal Physics
Computational Liquid Crystal PhysicsAmit Bhattacharjee
 
Quantum Minimax Theorem in Statistical Decision Theory (RIMS2014)
Quantum Minimax Theorem in Statistical Decision Theory (RIMS2014)Quantum Minimax Theorem in Statistical Decision Theory (RIMS2014)
Quantum Minimax Theorem in Statistical Decision Theory (RIMS2014)tanafuyu
 
Master's Thesis: Closed formulae for distance functions involving ellipses.
Master's Thesis: Closed formulae for distance functions involving ellipses.Master's Thesis: Closed formulae for distance functions involving ellipses.
Master's Thesis: Closed formulae for distance functions involving ellipses.Gema R. Quintana
 
Mesh final pzn_geo1004_2015_f3_2017
Mesh final pzn_geo1004_2015_f3_2017Mesh final pzn_geo1004_2015_f3_2017
Mesh final pzn_geo1004_2015_f3_2017Pirouz Nourian
 
jurnal 9 theorem of circle
jurnal 9 theorem of circlejurnal 9 theorem of circle
jurnal 9 theorem of circleSri Sukmawati
 
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 IJCER (www.ijceronline.com) International Journal of computational Engineeri... IJCER (www.ijceronline.com) International Journal of computational Engineeri...
IJCER (www.ijceronline.com) International Journal of computational Engineeri...ijceronline
 
2012 tus lecture 2
2012 tus lecture 22012 tus lecture 2
2012 tus lecture 2AllenHermann
 
Contact Topology Argonne
Contact Topology ArgonneContact Topology Argonne
Contact Topology Argonnechrislt521
 
2D Finite Element Analysis.pptx
2D Finite Element Analysis.pptx2D Finite Element Analysis.pptx
2D Finite Element Analysis.pptxDrDineshDhande
 
Sample0 mtechcs06
Sample0 mtechcs06Sample0 mtechcs06
Sample0 mtechcs06bikram ...
 
Sample0 mtechcs06
Sample0 mtechcs06Sample0 mtechcs06
Sample0 mtechcs06bikram ...
 
Visual Odomtery(2)
Visual Odomtery(2)Visual Odomtery(2)
Visual Odomtery(2)Ian Sa
 

Ähnlich wie A new 3D pore shape classification using Avizo Fire (17)

Application of image analysis and CAD techniques for detection and modeling o...
Application of image analysis and CAD techniques for detection and modeling o...Application of image analysis and CAD techniques for detection and modeling o...
Application of image analysis and CAD techniques for detection and modeling o...
 
Computational Liquid Crystal Physics
Computational Liquid Crystal PhysicsComputational Liquid Crystal Physics
Computational Liquid Crystal Physics
 
Elhabian_curves10.pdf
Elhabian_curves10.pdfElhabian_curves10.pdf
Elhabian_curves10.pdf
 
Quantum Minimax Theorem in Statistical Decision Theory (RIMS2014)
Quantum Minimax Theorem in Statistical Decision Theory (RIMS2014)Quantum Minimax Theorem in Statistical Decision Theory (RIMS2014)
Quantum Minimax Theorem in Statistical Decision Theory (RIMS2014)
 
Master's Thesis: Closed formulae for distance functions involving ellipses.
Master's Thesis: Closed formulae for distance functions involving ellipses.Master's Thesis: Closed formulae for distance functions involving ellipses.
Master's Thesis: Closed formulae for distance functions involving ellipses.
 
Mesh final pzn_geo1004_2015_f3_2017
Mesh final pzn_geo1004_2015_f3_2017Mesh final pzn_geo1004_2015_f3_2017
Mesh final pzn_geo1004_2015_f3_2017
 
jurnal 9 theorem of circle
jurnal 9 theorem of circlejurnal 9 theorem of circle
jurnal 9 theorem of circle
 
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 IJCER (www.ijceronline.com) International Journal of computational Engineeri... IJCER (www.ijceronline.com) International Journal of computational Engineeri...
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 
Unit 1. day 6
Unit 1. day 6Unit 1. day 6
Unit 1. day 6
 
2012 tus lecture 2
2012 tus lecture 22012 tus lecture 2
2012 tus lecture 2
 
Contact Topology Argonne
Contact Topology ArgonneContact Topology Argonne
Contact Topology Argonne
 
Mtechcs2k4
Mtechcs2k4Mtechcs2k4
Mtechcs2k4
 
Mtechcs2k4
Mtechcs2k4Mtechcs2k4
Mtechcs2k4
 
2D Finite Element Analysis.pptx
2D Finite Element Analysis.pptx2D Finite Element Analysis.pptx
2D Finite Element Analysis.pptx
 
Sample0 mtechcs06
Sample0 mtechcs06Sample0 mtechcs06
Sample0 mtechcs06
 
Sample0 mtechcs06
Sample0 mtechcs06Sample0 mtechcs06
Sample0 mtechcs06
 
Visual Odomtery(2)
Visual Odomtery(2)Visual Odomtery(2)
Visual Odomtery(2)
 

Mehr von VSG - Visualization Sciences Group

Studying thermomechanical properties of thermostructural composites using X-r...
Studying thermomechanical properties of thermostructural composites using X-r...Studying thermomechanical properties of thermostructural composites using X-r...
Studying thermomechanical properties of thermostructural composites using X-r...VSG - Visualization Sciences Group
 
3D characterization of microstructure evolution of cast AlMgSi alloys by sync...
3D characterization of microstructure evolution of cast AlMgSi alloys by sync...3D characterization of microstructure evolution of cast AlMgSi alloys by sync...
3D characterization of microstructure evolution of cast AlMgSi alloys by sync...VSG - Visualization Sciences Group
 
Determination of crack-initiating defects in cast aluminium alloys by Non-des...
Determination of crack-initiating defects in cast aluminium alloys by Non-des...Determination of crack-initiating defects in cast aluminium alloys by Non-des...
Determination of crack-initiating defects in cast aluminium alloys by Non-des...VSG - Visualization Sciences Group
 
Building a pore network model from a pore space 3D image to precisely predict...
Building a pore network model from a pore space 3D image to precisely predict...Building a pore network model from a pore space 3D image to precisely predict...
Building a pore network model from a pore space 3D image to precisely predict...VSG - Visualization Sciences Group
 
3D cell lineage reconstruction of early embryogenesis in plant
3D cell lineage reconstruction of early embryogenesis in plant3D cell lineage reconstruction of early embryogenesis in plant
3D cell lineage reconstruction of early embryogenesis in plantVSG - Visualization Sciences Group
 
Lessons learned and challenges for lab-wide and campus-wide Avizo utilization...
Lessons learned and challenges for lab-wide and campus-wide Avizo utilization...Lessons learned and challenges for lab-wide and campus-wide Avizo utilization...
Lessons learned and challenges for lab-wide and campus-wide Avizo utilization...VSG - Visualization Sciences Group
 
Evaluation of rock properties and rock structures in the μ-range with sub-μ X...
Evaluation of rock properties and rock structures in the μ-range with sub-μ X...Evaluation of rock properties and rock structures in the μ-range with sub-μ X...
Evaluation of rock properties and rock structures in the μ-range with sub-μ X...VSG - Visualization Sciences Group
 
Identification of the local mechanical properties of an inorganic fiber-based...
Identification of the local mechanical properties of an inorganic fiber-based...Identification of the local mechanical properties of an inorganic fiber-based...
Identification of the local mechanical properties of an inorganic fiber-based...VSG - Visualization Sciences Group
 
Characterization of porous materials by Focused Ion Beam Nano-Tomography
Characterization of porous materials by Focused Ion Beam Nano-TomographyCharacterization of porous materials by Focused Ion Beam Nano-Tomography
Characterization of porous materials by Focused Ion Beam Nano-TomographyVSG - Visualization Sciences Group
 
Asphalt internal structure characterization with X-Ray computed tomography
Asphalt internal structure characterization with X-Ray computed tomographyAsphalt internal structure characterization with X-Ray computed tomography
Asphalt internal structure characterization with X-Ray computed tomographyVSG - Visualization Sciences Group
 

Mehr von VSG - Visualization Sciences Group (11)

Studying thermomechanical properties of thermostructural composites using X-r...
Studying thermomechanical properties of thermostructural composites using X-r...Studying thermomechanical properties of thermostructural composites using X-r...
Studying thermomechanical properties of thermostructural composites using X-r...
 
3D characterization of microstructure evolution of cast AlMgSi alloys by sync...
3D characterization of microstructure evolution of cast AlMgSi alloys by sync...3D characterization of microstructure evolution of cast AlMgSi alloys by sync...
3D characterization of microstructure evolution of cast AlMgSi alloys by sync...
 
Determination of crack-initiating defects in cast aluminium alloys by Non-des...
Determination of crack-initiating defects in cast aluminium alloys by Non-des...Determination of crack-initiating defects in cast aluminium alloys by Non-des...
Determination of crack-initiating defects in cast aluminium alloys by Non-des...
 
Building a pore network model from a pore space 3D image to precisely predict...
Building a pore network model from a pore space 3D image to precisely predict...Building a pore network model from a pore space 3D image to precisely predict...
Building a pore network model from a pore space 3D image to precisely predict...
 
3D cell lineage reconstruction of early embryogenesis in plant
3D cell lineage reconstruction of early embryogenesis in plant3D cell lineage reconstruction of early embryogenesis in plant
3D cell lineage reconstruction of early embryogenesis in plant
 
Lessons learned and challenges for lab-wide and campus-wide Avizo utilization...
Lessons learned and challenges for lab-wide and campus-wide Avizo utilization...Lessons learned and challenges for lab-wide and campus-wide Avizo utilization...
Lessons learned and challenges for lab-wide and campus-wide Avizo utilization...
 
Evaluation of rock properties and rock structures in the μ-range with sub-μ X...
Evaluation of rock properties and rock structures in the μ-range with sub-μ X...Evaluation of rock properties and rock structures in the μ-range with sub-μ X...
Evaluation of rock properties and rock structures in the μ-range with sub-μ X...
 
3D characterization of asymmetric microfiltration membranes
3D characterization of asymmetric microfiltration membranes3D characterization of asymmetric microfiltration membranes
3D characterization of asymmetric microfiltration membranes
 
Identification of the local mechanical properties of an inorganic fiber-based...
Identification of the local mechanical properties of an inorganic fiber-based...Identification of the local mechanical properties of an inorganic fiber-based...
Identification of the local mechanical properties of an inorganic fiber-based...
 
Characterization of porous materials by Focused Ion Beam Nano-Tomography
Characterization of porous materials by Focused Ion Beam Nano-TomographyCharacterization of porous materials by Focused Ion Beam Nano-Tomography
Characterization of porous materials by Focused Ion Beam Nano-Tomography
 
Asphalt internal structure characterization with X-Ray computed tomography
Asphalt internal structure characterization with X-Ray computed tomographyAsphalt internal structure characterization with X-Ray computed tomography
Asphalt internal structure characterization with X-Ray computed tomography
 

A new 3D pore shape classification using Avizo Fire

  • 1. FACULTY OF SCIENCE Department : Earth and Environmental Sciences Geology A new 3D pore shape classification using  Avizo Fire Ir. Steven Claes Dr. A. Foubert Prof. Dr. M. Ozkül Prof. Dr. R. Swennen
  • 2. Introduction Introduction Mathematical  Introduction CT Conclusion shape description Overview 1. Introduction 2. CT: Petrography in 3D 3. Mathematical shape description 4. Conclusion
  • 3. Introduction Introduction Mathematical  Introduction CT Conclusion shape description 1.. Introduction A. Heterogeneity ‐ Carbonate reservoirs typically have a complex texture and are very  heterogeneous concerning porosityy measurements Choquette and Prey,1970 AAPG, 77
  • 4. Introduction Introduction Mathematical  Introduction CT Conclusion shape description 1.. Introduction B. Different scales ‐ Different types of porosity  working on different scales Rahman, et al 2011
  • 5. Introduction Introduction Mathematical  Introduction CT Conclusion shape description 1.. Introduction B. Different scales ‐ Working on different scales 15 cm 2 cm 0.4 cm 1.5 cm 10 cm 4 cm
  • 6. Introduction Introduction Mathematical  Introduction CT Conclusion shape description 2.. CT: Petrography in 3D A. Workflow Data acquisition Reconstruction 3D information ‐ 3D information: ‐ Filtering ‐ Pre reconstruction ‐ Post reconstruction ‐ Segmentation ‐ Dual thresholding ‐ Visualization ‐ Avizo ‐ CT‐an / CT‐vox ‐ Calculations ‐ Matlab ‐ Avizo 1979, Houndsfield
  • 7. Introduction Introduction Mathematical  Introduction CT Conclusion shape description 2.. CT: Petrography in 3D B. Principle:
  • 8. Introduction Introduction Mathematical  Introduction CT Conclusion shape description 2.. CT: Petrography in 3D B. Principle: ‐ Advantages: ‐ Non‐destructive ‐ Full 3D information of internal structure ‐ Little sample preparation ‐ Qualitative and quantitative interpretation ‐ Disadvantages: ‐ Limited object size ‐ Relative high recording time ‐ Relative high calculation time
  • 9. Introduction Introduction Mathematical  Introduction CT Conclusion shape description 2.. CT: Petrography in 3D C. Example: Dolomite cement Dolomite fragment (Fe rich) Late Calcite vein
  • 10. Introduction Introduction Mathematical  Introduction CT Conclusion shape description 3.. Mathematical shape description A. Form ratio ‐ Pore volume  pore shape
  • 11. Introduction Introduction Mathematical  Introduction CT Conclusion shape description 3.. Mathematical shape description A. Form ratio ‐ Several parameters are defined in the last century: ‐ E.g. :  L  I 2S (Wenthworth, 1922) ‐ Most are calculated using L (longest dimension in a shape), I  (longest dimension perpendicular to L) and S (dimension  perpendicular to both L and I) (Krumbein, 1941) ‐ Above definition of L, I and S does not always provide the most  information about a shape e.g. cube (Blott and Pye 2008)
  • 12. Introduction Introduction Mathematical  Introduction CT Conclusion shape description 3.. Mathematical shape description B. Calculation L, I and S ‐ Individual pores are considered as solid objects ‐ Calculate the mechanical moments of the pore:  I I xy I xz   xx   I yx I yy I yz     I zx  I zy I zz   ‐ Using the spectral theorem for real, symmetric matrices:  I 0 0   1   0 I2 0     0  0 I3   ‐ I1, I2 and I3 are the principal moments of inertia  solving an eigenvalue problem
  • 13. Introduction Introduction Mathematical  Introduction CT Conclusion shape description 3.. Mathematical shape description B. Calculation L, I and S ‐ I1, I2 and I3 can be used to calculate L, I and S as the dimensions of the  principal axis of the approximated ellips: 1 I 1  m(I 2  S2 ) 5 1 I 2  m(L2  S2 ) 5 1 I 3  m(L2  I 2 ) 5 ‐ Is the fit of an approximating ellipsoid correct?
  • 14. Introduction Introduction Mathematical  Introduction CT Conclusion shape description 3.. Mathematical shape description C. Goodness of fit? ‐ Can be evaluated using the Vs or Es parameter: en Es  S ‐ en: the surface area of the approximating ellipsoid ‐ S: the surface area of the pore vn Vs  V ‐ vn: the volumeof the approximating ellipsoid ‐ V: the volume area of the pore ‐ Es  also proofs to be an adequate parameter in order to describe the  sphericity of a pore 
  • 15. Introduction Introduction Mathematical  Introduction CT Conclusion shape description 3.. Mathematical shape description C. Goodness of fit? ‐ Histogram of Vs: Complex pores ‐ Mean: 1.38 ‐ Median: 1.08  Good fit for most pores but some exceptions
  • 16. Introduction Introduction Mathematical  Introduction CT Conclusion shape description 3.. Mathematical shape description C. Goodness of fit? ‐ Complex pores: ‐ Define different pore bodies: ‐ Watershed algorithm 
  • 17. Introduction Introduction Mathematical  Introduction CT Conclusion shape description 3.. Mathematical shape description D. Defining pore shapes: based on shapes ‐ Based on L, I and S: ‐ Ratio’s: I/L and S/I ‐ 5 shape classes are defined Equant shape Plate like shape Blade like shape Cuboid shape Rod like shape
  • 18. Introduction Introduction Mathematical  Introduction CT Conclusion shape description 3.. Mathematical shape description D. Defining pore shapes ‐ Based on L, I and S:
  • 19. Introduction Introduction Mathematical  Introduction CT Conclusion shape description 3.. Mathematical shape description D. Defining pore shapes ‐ Based on L, I and S:
  • 20. Introduction Introduction Mathematical  Introduction CT Conclusion shape description 3.. Mathematical shape description D. Defining pore shapes ‐ Rod like shape:
  • 21. Introduction Introduction Mathematical  Introduction CT Conclusion shape description 3.. Mathematical shape description D. Defining pore shapes ‐ Working with an approximating ellipsoid allows to assess the  orientation of the pores Tot vol = 58578 mm3 Tot vol = 26061 mm3
  • 22. Introduction Introduction Mathematical  Introduction CT Conclusion shape description 3.. Mathematical shape description D. Defining pore shapes ‐ Allows to differentiate between facies types: rod blade plate cube cuboid rod blade plate cube cuboid 0,22 0,17 0,35 0,07 0,18 0,14 0,27 0,13 0,15 0,31
  • 23. Introduction Introduction Mathematical  Introduction CT Conclusion shape description 3.. Mathematical shape description D. Defining pore shapes: Compactness ‐ Compactness: 
  • 24. Introduction Introduction Mathematical  Introduction CT Conclusion shape description 3.. Mathematical shape description D. Defining pore shapes: clustering ‐ Objective way of defining clusters: ‐ Model based clustering: ‐ Based on Probability methods ‐ Clusters are ellipsoidal  ‐ Centered around the mean value ‐ Covariances determine the geometrics ‐ Number of clusters are statistically optimized
  • 25. Introduction Introduction Mathematical  Introduction CT Conclusion shape description 3.. Mathematical shape description D. Defining pore shapes: clustering ‐ Based on L, I and S: ‐ Ratio’s: I/L and S/I ‐ Compactness
  • 26. Introduction Introduction Mathematical  Introduction CT Conclusion shape description 4.. Conclusion A. Computer tomography ‐ Visualizes porosity networks in 3D ‐ Allows Petrography in 3D B. Mathematical shape description ‐ Establishes a new 3D classification for pores in travertine rocks ‐ Classification is confirmed to be statistically relevant ‐ Allows to define facies types