SlideShare ist ein Scribd-Unternehmen logo
1 von 53
Downloaden Sie, um offline zu lesen
スパイスモデル解説

     トランスモデル編(Part 3)




         2012年2月3日(金曜日)
        株式会社ビー・テクノロジー
        http://www.beetech.info/
         Copyright (C) Bee Technologies Inc. 2012   1
ビー・テクノロジーのサービス内容について
  「デバイスモデリングサービス」から必要なスパイスモデ                      解析に専念したいので専用の
  ルを入手する(58種類のデバイスモデリングが可能)                       回路シミュレーションの
                                                  テンプレートを提供して欲しい
スパイスモデルの配信サイト                                     →カスタム・デザインキット・サービス
「スパイス・パーク」から入手する
(3,777モデル)
                                                                  実際の設計で使用できる詳細の
          すでに自分が使用する                                              テンプレートが欲しい
          型名が決まっている                                               →デザインキット(14種類)


自分でパラメータを設定し                                                        概念設計のテンプレートが欲しい
スパイスモデルを作成したい                                                       →コンセプトキット(6種類)
→シンプルモデル(8種類)


       回路図は作成済み                                            回路シミュレーションの
       必要なスパイスモデルを入手したい                                    テンプレートを入手したい

                                      回路設計者




       問題を解決したい。相談したい。                              技術を向上させたい。学習したい。


       コンサルティング・サービス                           デバイスモデリング教材            ワークショップ
                                                  (13種類)              セミナー(オンサイト含む)
                       Copyright (C) Bee Technologies Inc. 2012                       2
Part 1及びPart 2の資料掲載先について




    http://ow.ly/8uBzn                                              http://ow.ly/8uBuD




                         Copyright (C) Bee Technologies Inc. 2012                        3
[復習]トランスのスパイスモデルの種類
巻数モデル

                                                         TX1




                         +コアモデル

巻数モデル                                            TN33_20_11_2P90

                                                        L1_TURNS = 100

                                                        L2_TURNS = 100


             Copyright (C) Bee Technologies Inc. 2012                4
[復習]トランスのスパイスモデルの種類
(1)周波数特性モデル

コイルの等価回路の考え方(周波数を考慮する)



       L1                                                                               C1
                                                       L1    R1               L1   R1

                     L1
       R1




  -3             0               3                          6             9
10          10              10                         10            10            (Hz)
                          Inductor model
                      Impedance vs. Frequency

     注意:動作周波数により、3素子モデルではなく、5素子モデル、ラダー・モデル
        が採用される事もあります。
                          Copyright (C) Bee Technologies Inc. 2012                           5
[復習]トランスのスパイスモデルの種類
(1)周波数特性モデル

        K K1
      K_Linear
            COUPLING = 1
    1          2

        L1      L2
        10uH    10uH


    2          1


  インダクタンス+結合係数                                           周波数モデル+結合係数


                                       結合係数とは、1次巻き線で発生した磁
   K K1                                束が2次巻き線に結合する割合です。デ
   K_Linear                            フォルト値は、結合係数=1です。
         COUPLING = 1                  実際には、0.99-0.9999を使用します。

                       Copyright (C) Bee Technologies Inc. 2012        6
トランスのスパイスモデルの種類
(1)周波数特性モデル
事例:周波数モデル+結合係数




             Copyright (C) Bee Technologies Inc. 2012   7
[復習]トランスのスパイスモデルの種類
(1)周波数特性モデル
事例:周波数モデル+結合係数




    Agilent 34420A   Agilent 4294A



                                                  インピーダンスの測定:Agilent 4294A
                                                  直列抵抗成分の測定:Agilent 34420A



                               Copyright (C) Bee Technologies Inc. 2012      8
[復習]トランスのスパイスモデルの種類
(2)周波数特性モデル+コアモデル(PSpice)




               Copyright (C) Bee Technologies Inc. 2012   9
コアのスパイスモデル(LTspiceとPSpice)




                 Copyright (C) Bee Technologies Inc. 2012   10
[PSpice検証&LTspice検証]
Saturable Core: NC-2H


Specification                                                  Dynamic Magnetization Curves

Material: NC-2H
Manganese Zinc Ferrite Cores with
 • BS = 500(mT)
 • Br = 140(mT)
 • HC = 15.9(A/m)

Conditions:
 • F = 10(KHz)
 • TC = 23(C)

 The data is provided in the datasheet




                                          Copyright (C) Bee Technologies Inc. 2012             11
[PSpice検証&LTspice検証]
PSpice MAGNETIC CORE MODEL: NC-2H


Evaluation Circuit                                                  Simulation Result

                                                                         600m



                                       K K1                              500m
                                 NC-2 H
                            V1       COUPLING= 0.9999
                                       L1 = L1
                                                                         400m
                                 1
                            0V
                                      L1
         I1            R1             20                                 300m
         IOFF = 0      10
         FREQ = 1
         IA MPL = 2A             2
                                                                         200m

     0
                                                                         100m



                                                                            0
                                                                                0           0.2K   0.4K       0.6K   0.8K   1.0K
                                                                                    B(K1)/10000
                                                                                                    H(K1)/0.01256




                                              Copyright (C) Bee Technologies Inc. 2012                                             12
[PSpice検証&LTspice検証]
LTSpice IV MAGNETIC CORE MODEL: NC-2H


Evaluation Circuit                         Simulation Result




                     Copyright (C) Bee Technologies Inc. 2012   13
[PSpice検証&LTspice検証] LTSpice IV 1:1 Saturable
transformer model (Example)
- Simulation Circuit and Setting




                    Copyright (C) Bee Technologies Inc. 2012   14
[PSpice検証&LTspice検証]
LTSpice IV 1:1 Saturable transformer model (Example)
- Simulation Result


   Input voltage




                                                                 Input Current




   Output voltage




                                                                Output Current




                     Copyright (C) Bee Technologies Inc. 2012                    15
[PSpice検証&LTspice検証]
PSpice 1:1 Saturable transformer model (Example)
- Simulation Circuit and Setting


   PARAMETERS:                                                     PARAMETERS:
   Vin = 50V                                                       N = 0.1
   Freq = 10k                                                      Lp = 1

                                           K K2                     K K3
                                     NC-2H                          K_Linear
                                      COUPLING= 0.9999                    COUPLING = 1
                       R1
                             Prim          L1 = L1                 L1 = Lp                Sec
                       0.1
                IN                                                 L2 = Ls                      OUT

   V1 = {-Vin}    V1
   V2 = {Vin}                0V             Ri                                            0V
                                                               1               1
   TD = 0                                   0.1
   TR = 0                                                          Lp          Ls
   TF = 0                              1                           1H          {N*N*Lp}                   RO
   PW = {0.5/Freq}                                                                                        10
   PER = {1/Freq}                           L1
                                            20
                                                               2               2


                                       2


                 0                                                                                    0

                                    Copyright (C) Bee Technologies Inc. 2012                                   16
[PSpice検証&LTspice検証]
PSpice 1:1 Saturable transformer model (Example)
- Simulation Result at R1=0.1

     100s             -499.8A
1                 2




        0s

                      -499.9A




    -100s




                      -500.0A

    -200s




                        SEL>>
    -300s             -500.1A
                                  1   V(IN)    2   I(Lp)
         10V               3.0A
    1                 2




             0V            2.0A




        -10V               1.0A




        -20V                 0A




                             >>
        -30V              -1.0A
                                0s             0.2ms          0.4ms   0.6ms     0.8ms     1.0ms     1.2ms      1.4ms     1.6ms   1.8ms   2.0ms   2.2ms   2.4ms
                                 1    V(OUT)    2    I(Sec)
                                                                                                        Time

                                                                              Copyright (C) Bee Technologies Inc. 2012                                           17
[PSpice検証&LTspice検証]
PSpice 1:1 Saturable transformer model (Example)
- Simulation Result at R1=1

     100s             -49.90A
1                 2




        0s




    -100s




                      -50.00A

    -200s




                        SEL>>
    -300s             -50.05A
                                  1   V(IN)    2   I(Lp)
         10V               3.0A
    1                 2




             0V            2.0A




        -10V               1.0A




        -20V                 0A




                             >>
        -30V              -1.0A
                                0s             0.2ms          0.4ms   0.6ms     0.8ms     1.0ms     1.2ms     1.4ms      1.6ms   1.8ms   2.0ms   2.2ms   2.4ms
                                 1    V(OUT)    2    I(Sec)
                                                                              Copyright (C) Bee Technologies Inc. 2012
                                                                                                      Time                                                       18
[PSpice検証&LTspice検証] PSpice 1:1 Saturable
transformer model (Example)
- Simulation Result at R1=10

        100s            -4.90A
1               2




          0s




    -100s




                        -5.00A

    -200s




                         SEL>>
    -300s               -5.05A
                                 1   V(IN)    2   I(Lp)
          10V             3.0A
    1               2




           0V             2.0A




         -10V             1.0A




         -20V               0A




                            >>
         -30V            -1.0A
                               0s             0.2ms          0.4ms   0.6ms    0.8ms     1.0ms     1.2ms      1.4ms      1.6ms   1.8ms   2.0ms   2.2ms   2.4ms
                                1    V(OUT)    2    I(Sec)
                                                                                                      Time
                                                                             Copyright (C) Bee Technologies Inc. 2012                                           19
シンプルモデル:トランスモデルのコンセプト




           Copyright (C) Bee Technologies Inc. 2012   20
Saturable transformer model
Simplified SPICE Behavioral Model

       Bee Technologies Inc.


            Copyright (C) Bee Technologies Inc. 2012   21
Contents
 1. Model Overview
 2. Concept of the Model
 3. Parameter Settings of Saturable Core
 4. Saturable core SUBCKT using LTspiceIV <<-- Netlist is not open(If you buy this model , you can show netlist)
 5. Saturable Core Parameter Setting (Example)
    5.1 Curve fitting: RLOSS
    5.2 Curve fitting: LM
    5.3 Curve fitting: BEXP
 6. Dynamic Magnetizing Curves Characteristics
 7. Basic Ideal Transformers and Their Parameters
     7.1 Parameter settings of 1:1 ideal transformer
     7.2 Parameter settings of 2:1 ideal transformer
     7.3 Parameter settings of 1:2 ideal transformer
 8. Saturable transformer SUBCKT Using LTspiceIV <<-- Netlist is not open(If you buy this model ,
                                                                                           you can show netlist)
 9. 1:1 Saturable transformer model (Example)
 10. 1:1 Saturable transformer model (Example) (Phase reverse)
 11. 2:1 Saturable transformer model (Example)
 12. 1:2 Saturable transformer model (Example)
 13. 1:2 Saturable transformer model (Example) (Center tap)
 14. Application Circuit Example: Flyback converter
 Library Files and Symbol Files Location
 Library Files Index
 Simulation Index

                                           Copyright (C) Bee Technologies Inc. 2012                                22
1) Model Overview

•   This Saturable Transformer Simplified SPICE Behavioral Model is for users
    who require the model of the core loss and hysteresis as a part of their
    system.

•   The model focuses on the hysteresis loop behavior in their operation area,
    which user can shape the B-H curve.
                                                        B (Teslas)

                600mV




                                  Remanent Flux                                        Saturation Flux
                                  Density Br                                           Density BS

                   0V


                                                                                 Saturation Field HS
                                                             Coercive Field HC




               -600mV                                                                         H (A-turns/m)
                   -1.0KV                               0V                        1.0KV
                        V(U1:B)
                           Figure 1, Hysteresis Loop and Magnetic Properties.
                                                  V(H)


                                     Copyright (C) Bee Technologies Inc. 2012                                 23
2) Concept of the Model




       Saturable Core                                              Ideal Transformer
       Simplified SPICE Behavioral Model                           Simplified SPICE Behavioral Model

       [Model parameters: BSAT, RLOSS, LM and BEXP]                [Model parameters: N, RP, RS and LP]




•        The Saturable core is characterized by parameters: BSAT, RLOSS, LM and BEXP, which
    represent the Flux density vs. Magnetic field characteristics of the Saturable core.

•       The Ideal transformer is characterized by parameters: N, RP, RS and LP .



                                      Copyright (C) Bee Technologies Inc. 2012                            24
3) Parameter Settings of Saturable Core
                                                                  Model Parameters:
                                                                      BSAT  The saturation flux density (in teslas).
                                                                      – e.g. 100mT, 350mT, 500mT
B-H Curve                                                             – Value = <BSAT>
test points
                                                                      RLOSS  The resistor RLOSS represents a loss
                                                                         when a voltage is applied.
                                                                      – e.g. 0.5Ω, 1Ω, 100KΩ
                                                                      – Value = <RLOSS>

                                                                      LM  Magnetizing inductance of the core inductor
                                                                          (in henry).
                                                                      – e.g. 1uH, 5uH, 50uH
                                                                      – Value = <LM>
       Figure 2, Saturable core model (Default parameters).
                                                                      BEXP  The exponent in the expression for
                                                                         coupling factor KC.
                                                                      – e.g. 2, 4, 8
                                                                      – Value = <BEXP>


•     From the Saturable Core specification, the model is characterized by setting parameter
      BSAT, then adjust the parameters RLOSS, LM and BEXP to shape the dynamic
      magnetic curve.

                                          Copyright (C) Bee Technologies Inc. 2012                                       25
4) Saturable core SUBCKT using LTspiceIV


                                                                             Information of Netlist




Figure 3, Saturable core subcircuit SPICE compatible,
the key parameters are shown in bold.




                                       Copyright (C) Bee Technologies Inc. 2012                       26
5) Saturable Core Parameter Setting (Example)

                                                            Specification

                                                              Material: NC-2H
                                                              Manganese Zinc Ferrite Cores with
                                                              •     BS = 500(mT)                  Input the
                                                              •     Br = 140(mT)                 parameter
                                                                                                BSAT=500m
                                                              •     HC = 15.9(A/m)

                                                              Conditions:
                                                              •     F = 10(KHz)
                                                              •     TC = 23(C)

                                                               The data is provided in the datasheet




      Figure 4, Dynamic Magnetization Curves.




                               Copyright (C) Bee Technologies Inc. 2012                                       27
5.1) Curve fitting: RLOSS
                                                        B (Teslas)

                                                           0.5Ω ---
                                                           1Ω    ---
                                                           100KΩ ---




                                                                           H (A-turns/m)


                                                         Figure 5, The magnetizing line difference, RLOSS.
•   Condition: F=10KHz, Vin=80VP
•   Parametric sweep: RLOSS=0.5Ω, 1Ω, 100KΩ


                           Copyright (C) Bee Technologies Inc. 2012                                    28
5.2) Curve fitting: LM
                                                         B (Teslas)

                                                            1uH        ---
                                                            5uH        ---
                                                            50uH       ---




                                                                             H (A-turns/m)


                                                            Figure 6, The magnetizing line difference, LM .
•   Condition: F=10KHz, Vin=80VP
•   Parametric sweep: LM=1uH, 5uH, 50uH


                            Copyright (C) Bee Technologies Inc. 2012                                      29
5.3) Curve fitting: BEXP
                                                          B (Teslas)

                                                             2   ---
                                                             4   ---
                                                             8   ---




                                                                             H (A-turns/m)


                                                           Figure 7, The magnetizing line difference, BEXP.
•   Condition: F=10KHz, Vin=80VP
•   Parametric sweep: BEXP=2, 4, 8


                             Copyright (C) Bee Technologies Inc. 2012                                     30
6) Dynamic Magnetizing Curves Characteristics
- Evaluation Circuit and Setting


Sine wave excitation                            Square wave excitation




Condition: F=10KHz, Vin=80VP, TC=23°C
.tran 0 200u 100u 10n
.lib score.sub


                          Copyright (C) Bee Technologies Inc. 2012       31
6) Dynamic Magnetizing Curves Characteristics
- Simulation Result




           Figure 8, Sine wave excitation                                   Figure 9, Square wave excitation



•   The saturable core model is completed with both sine and square wave (above)
    excitation as shown in these LTspiceIV simulations.


                                     Copyright (C) Bee Technologies Inc. 2012                                  32
7) Basic Ideal Transformers and Their Parameters

                                                              •     The relationship between the Voltage and
       IP                                    IS
                                                                    current are defined as equations below.

                                                                               NS
+                   NP            NS                     +                  N                          (7.1)
                                                                               NP
                                                                   N is the turns ratio of Ideal transformer (above).

VP                                                     VS

                                                                            VS  VP  N                 (7.2)


-                                                        -
                                                                            IP  IS  N                 (7.3)

                          1:N                                      VP is the primary voltage.
                                                                   VS is the secondary voltage.
     Figure 10, Symbol of basic ideal transformer with             IP is the primary current.
           The voltage to current relationships.
                                                                   IS is the secondary current.
                                                                   NP is the turns number of primary winding.
                                                                   NS is the turns number of secondary winding.


                                         Copyright (C) Bee Technologies Inc. 2012                                33
7.1) Parameter settings of 1:1 ideal transformer


                                                                  Model Parameters:
                                                                    LP  Inductance of primary winding (in henry).
                                                                    – e.g. 100uH, 250uH, 500uH
                                                                    – Value = <LP>

                                                                    N  is the turns ratio of Ideal transformer.
                                                                    – e.g. 0.1, 0.5, 1
 Figure 11, 1:1 Ideal transformer (Default parameters).             – Value = <N>

                                                                    RP  A series resistance of primary winding (in ohm).
                                                                    – e.g. 1mΩ, 10mΩ, 100mΩ
                                                                    – Value = <RP>

                                                                    RS  A series resistance of secondary winding (in ohm).
                                                                    – e.g. 1mΩ, 10mΩ, 100mΩ
                                                                    – Value = <RS>



 Figure 12, 1:1 Phase reverse ideal transformer
              (Default parameters).




                                       Copyright (C) Bee Technologies Inc. 2012                                             34
7.2) Parameter settings of 2:1 ideal transformer


                                                                  Model Parameters:
                                                                    LP  Inductance of primary winding (in henry).
                                                                    – e.g. 100uH, 250uH, 500uH
                                                                    – Value = <LP>

                                                                    N  is the turns ratio of Ideal transformer.
                                                                    – e.g. 0.1, 0.5, 1
                                                                    – Value = <N>

                                                                    RP1  A series resistance of primary winding 1 (in ohm).
                                                                    – e.g. 1mΩ, 10mΩ, 100mΩ
                                                                    – Value = <RP1>

                                                                    RP2  A series resistance of primary winding 2 (in ohm).
 Figure 13, 2:1 Ideal transformer (Default parameters).             – e.g. 1mΩ, 10mΩ, 100mΩ
                                                                    – Value = <RP2>

                                                                    RS  A series resistance of secondary winding (in ohm).
                                                                    – e.g. 1mΩ, 10mΩ, 100mΩ
                                                                    – Value = <RS>




                                       Copyright (C) Bee Technologies Inc. 2012                                          35
7.3) Parameter settings of 1:2 ideal transformer


                                                                  Model Parameters:
                                                                    LP  Inductance of primary winding (in henry).
                                                                    – e.g. 100uH, 250uH, 500uH
                                                                    – Value = <LP>

                                                                    N  is the turns ratio of Ideal transformer.
                                                                    – e.g. 0.1, 0.5, 1
 Figure 14, 1:2 Ideal transformer (Default parameters).             – Value = <N>

                                                                    RP  A series resistance of primary winding (in ohm).
                                                                    – e.g. 1mΩ, 10mΩ, 100mΩ
                                                                    – Value = <RP>

                                                                    RS1  A series resistance of secondary winding 1 (in ohm).
                                                                    – e.g. 1mΩ, 10mΩ, 100mΩ
                                                                    – Value = <RS1>

                                                                    RS2  A series resistance of secondary winding 2 (in ohm).
                                                                    – e.g. 1mΩ, 10mΩ, 100mΩ
                                                                    – Value = <RS2>
 Figure 15, 1:2 Center tap ideal transformer
           (Default parameters).


                                       Copyright (C) Bee Technologies Inc. 2012                                             36
8) Saturable transformer SUBCKT Using LTspiceIV


                                                                             Information of Netlist



     Figure 16, Saturable transformer symbol,
     the key parameters are shown in bold.




  Figure 17, Saturable transformer equivalent circuit.



                                       Copyright (C) Bee Technologies Inc. 2012                       37
9) 1:1 Saturable transformer model (Example)
- Simulation Circuit and Setting

                                                           Secondary current                Output Voltage
                         Primary current




                                                              Saturable transformer model




                                           1 : {N}




•   Condition: F=10KHz, VIN=50VP, VOUT=5VP, ROUT=10Ω
•   .tran 0 2500u 0 50n
•   .lib tfmr1.sub

                              Copyright (C) Bee Technologies Inc. 2012                                 38
9) 1:1 Saturable transformer model (Example)
- Simulation Result


   Input voltage




                                                                                                 Input Current




   Output voltage




                                                                                                Output Current




                    Figure 18, The Input–Output Characteristics of 1:1 Saturable transformer.



                                           Copyright (C) Bee Technologies Inc. 2012                              39
10) 1:1 Saturable transformer model (Example)
- Simulation Circuit and Setting (Phase reverse)




                                         1 : {N}




•   Condition: F=10KHz, VIN=50VP, VOUT=5VP, ROUT=10Ω
•   .tran 0 2500u 0 50n
•   .lib tfmr1_rev.sub

                             Copyright (C) Bee Technologies Inc. 2012   40
10) 1:1 Saturable transformer model (Example)
- Simulation Result (Phase reverse)


   Input voltage




                                                                                           Input Current




   Output voltage




                                                                                          Output Current




         Figure 19, The Input–Output Characteristics of 1:1 Saturable transformer (Phase reverse).



                                      Copyright (C) Bee Technologies Inc. 2012                             41
11) 2:1 Saturable transformer model (Example)
- Simulation Circuit and Setting




                                                      1 : {N}




•   Condition: F=10KHz, VIN=25VP, VOUT=5VP, ROUT=10Ω
•   .tran 0 2500u 0 50n
•   .lib tfmr2prim.sub

                             Copyright (C) Bee Technologies Inc. 2012   42
11) 2:1 Saturable transformer model (Example)
- Simulation Result


    Input voltage 1

                                                                                             Input Current 1




    Input voltage 2

                                                                                             Input Current 2




    Output voltage

                                                                                             Output Current




                 Figure 20, The Input–Output Characteristics of 2:1 Saturable transformer.



                                        Copyright (C) Bee Technologies Inc. 2012                               43
12) 1:2 Saturable transformer model (Example)
- Simulation Circuit and Setting



                                                          1 : {N}




•   Condition: F=10KHz, VIN=50VP, VOUT1=VOUT2=5VP, ROUT=10Ω
•   .tran 0 2500u 0 50n
•   .lib tfmr2.sub

                             Copyright (C) Bee Technologies Inc. 2012   44
12) 1:2 Saturable transformer model (Example)
- Simulation Result


   Input voltage

                                                                                                  Input Current




   Output voltage 1


                                                                                               Output Current 1




   Output voltage 2


                                                                                               Output Current 2




                   Figure 21, The Input–Output Characteristics of 1:2 Saturable transformer.



                                          Copyright (C) Bee Technologies Inc. 2012                                45
13) 1:2 Saturable transformer model (Example)
- Simulation Circuit and Setting (Center tap)



                                                        1 : {N}




•   Condition: F=10KHz, VIN=50VP, VOUT1=VOUT2=5VP, ROUT=10Ω
•   .tran 0 2500u 0 50n
•   .lib tfmr2_ct.sub

                             Copyright (C) Bee Technologies Inc. 2012   46
13) 1:2 Saturable transformer model (Example)
- Simulation Result (Center tap)


   Input voltage

                                                                                              Input Current




   Output voltage 1

                                                                                           Output Current 1




   Output voltage 2


                                                                                           Output Current 2




           Figure 22, The Input–Output Characteristics of 1:2 Saturable transformer (Center tap).



                                      Copyright (C) Bee Technologies Inc. 2012                                47
14) Application Circuit Example: Flyback converter
- Simulation Circuit and Setting




                             1 : {N}




•   Condition: F=40KHz, VIN=24V, VOUT=5V, RL=5Ω, CL=200uF, LP=500uH
•   .tran 0 10m 0 100n startup
•   .lib tfmr1_rev.sub

                             Copyright (C) Bee Technologies Inc. 2012   48
14) Application Circuit Example: Flyback converter
- Simulation Result


     Secondary voltage of transformer




     Input voltage= 24Vdc




     Output voltage= 5Vdc



     Output ripple voltage

                                        VRIPPLE



                                                                                   Secondary current of transformer




                        Figure 23, Flyback converter with Saturable transformer model.


                                        Copyright (C) Bee Technologies Inc. 2012                                      49
Library Files and Symbol Files Location
…¥Simulations




                                                     Copy/
                                                     Paste
                                                      into                             C:¥Program Files¥LTC¥LTspiceIV¥lib¥sub




                                                     Copy/
                                                     Paste
                                                      into                             C:¥Program Files¥LTC¥LTspiceIV¥lib¥sym




1. Copy the library files (.lib) from the folder …¥Simulations ¥.lib¥, then paste into the folder
  C:¥Program Files¥LTC¥LTspiceIV¥lib¥sub
2. Copy the symbol files(.asy) from the folder …¥Simulations ¥.asy¥, then paste into the folder
  C:¥Program Files¥LTC¥LTspiceIV¥lib¥sym

                                            Copyright (C) Bee Technologies Inc. 2012                                       50
Library Files Index

 Model                                                                               Library         Symbol

 1. Saturable Core…….......................................................          score.sub       SCORE.asy
 2. 1:1 Saturable transformer model…………………..........                                 tfmr1.sub       TFMR1.asy
 3. 1:1 Saturable transformer model (Phase reverse)…….                               tfmr1_rev.sub   TFMR1_REV.asy
 4. 2:1 Saturable transformer model..…………….…………                                      tfmr2prim.sub   TFMR2PRIM.asy
 5. 1:2 Saturable transformer model..…….…………………                                      tfmr2.sub       TFMR2.asy
 6. 1:2 Saturable transformer model (Center tap)…….......                            tfmr2_ct.sub    TFMR2_CT.asy




                                          Copyright (C) Bee Technologies Inc. 2012                               51
Simulation Index

 Simulations                                                                 Folder name

 1. Curve fitting: RLOSS…………………………………………........                             Curve fitting
 2. Curve fitting: LM………………………………………………........                              Curve fitting
 3. Curve fitting: BEXP…………………………………………………                                   Curve fitting
 4. Dynamic Magnetizing Curves Characteristics……....................         Sat_Core
 5. 1:1 Saturable transformer model (Example)……………………..                      Sat_Trans1
 6. 1:1 Saturable transformer model (Example) (Phase reverse)…               Sat_Trans2
 7. 2:1 Saturable transformer model (Example)..…………….……..                    Sat_Trans3
 8. 1:2 Saturable transformer model (Example)..…….……………..                    Sat_Trans4
 9. 1:2 Saturable transformer model (Example) (Center tap)……...              Sat_Trans5
 10. Application Circuit Example: Flyback converter………………....                Appl




                                  Copyright (C) Bee Technologies Inc. 2012                   52
Bee Technologies Group




【本社】                                                         本ドキュメントは予告なき変更をする場合がございます。
                                                             ご了承下さい。また、本文中に登場する製品及びサービス
株式会社ビー・テクノロジー                                                の名称は全て関係各社または個人の各国における商標
〒105-0012 東京都港区芝大門二丁目2番7号 7セントラルビル4階                         または登録商標です。本原稿に関するお問い合わせは、
代表電話: 03-5401-3851                                           当社にご連絡下さい。
設立日:2002年9月10日
資本金:8,830万円
【子会社】                                                         お問合わせ先)
Siam Bee Technologies Co.,Ltd. (タイランド)
                                                              info@bee-tech.com
                        Copyright (C) Bee Technologies Inc. 2012                          53

Weitere ähnliche Inhalte

Was ist angesagt?

SPICE MODEL of 1SR139-400 , TC=80degree (Standard Model) in SPICE PARK
SPICE MODEL of 1SR139-400 , TC=80degree (Standard Model) in SPICE PARKSPICE MODEL of 1SR139-400 , TC=80degree (Standard Model) in SPICE PARK
SPICE MODEL of 1SR139-400 , TC=80degree (Standard Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of SLP-WB89A-51 , White ,TA=-40degree (Standard Model) in SPICE PARK
SPICE MODEL of SLP-WB89A-51 , White ,TA=-40degree (Standard Model) in SPICE PARKSPICE MODEL of SLP-WB89A-51 , White ,TA=-40degree (Standard Model) in SPICE PARK
SPICE MODEL of SLP-WB89A-51 , White ,TA=-40degree (Standard Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 1SR139-400 , TC=110degree (Professional Model) in SPICE PARK
SPICE MODEL of 1SR139-400 , TC=110degree (Professional Model) in SPICE PARKSPICE MODEL of 1SR139-400 , TC=110degree (Professional Model) in SPICE PARK
SPICE MODEL of 1SR139-400 , TC=110degree (Professional Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 1SR139-400 , TC=150degree (Professional Model) in SPICE PARK
SPICE MODEL of 1SR139-400 , TC=150degree (Professional Model) in SPICE PARKSPICE MODEL of 1SR139-400 , TC=150degree (Professional Model) in SPICE PARK
SPICE MODEL of 1SR139-400 , TC=150degree (Professional Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of XBS203V17R (Standard Model) in SPICE PARK
SPICE MODEL of XBS203V17R (Standard Model) in SPICE PARKSPICE MODEL of XBS203V17R (Standard Model) in SPICE PARK
SPICE MODEL of XBS203V17R (Standard Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of OSWT5161A , White ,TA=0degree (Standard Model) in SPICE PARK
SPICE MODEL of OSWT5161A , White ,TA=0degree (Standard Model) in SPICE PARKSPICE MODEL of OSWT5161A , White ,TA=0degree (Standard Model) in SPICE PARK
SPICE MODEL of OSWT5161A , White ,TA=0degree (Standard Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of SLP-WB89A-51 , White ,TA=0degree (Standard Model) in SPICE PARK
SPICE MODEL of SLP-WB89A-51 , White ,TA=0degree (Standard Model) in SPICE PARKSPICE MODEL of SLP-WB89A-51 , White ,TA=0degree (Standard Model) in SPICE PARK
SPICE MODEL of SLP-WB89A-51 , White ,TA=0degree (Standard Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 1SR156-400 , TC=110degree (Professional Model) in SPICE PARK
SPICE MODEL of 1SR156-400 , TC=110degree (Professional Model) in SPICE PARKSPICE MODEL of 1SR156-400 , TC=110degree (Professional Model) in SPICE PARK
SPICE MODEL of 1SR156-400 , TC=110degree (Professional Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of XBS304S17R (Standard Model) in SPICE PARK
SPICE MODEL of XBS304S17R (Standard Model) in SPICE PARKSPICE MODEL of XBS304S17R (Standard Model) in SPICE PARK
SPICE MODEL of XBS304S17R (Standard Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of TVR2G (Standard Model) in SPICE PARK
SPICE MODEL of TVR2G (Standard Model) in SPICE PARKSPICE MODEL of TVR2G (Standard Model) in SPICE PARK
SPICE MODEL of TVR2G (Standard Model) in SPICE PARKTsuyoshi Horigome
 
Simple Model of DC Motor using PSpice
Simple Model of DC Motor using PSpiceSimple Model of DC Motor using PSpice
Simple Model of DC Motor using PSpiceTsuyoshi Horigome
 
SPICE MODEL of 1N5408 (Standard Model) in SPICE PARK
SPICE MODEL of 1N5408 (Standard Model) in SPICE PARKSPICE MODEL of 1N5408 (Standard Model) in SPICE PARK
SPICE MODEL of 1N5408 (Standard Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of XBS104S14R (Standard Model) in SPICE PARK
SPICE MODEL of XBS104S14R (Standard Model) in SPICE PARKSPICE MODEL of XBS104S14R (Standard Model) in SPICE PARK
SPICE MODEL of XBS104S14R (Standard Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 1N5408 (Professional Model) in SPICE PARK
SPICE MODEL of 1N5408 (Professional Model) in SPICE PARKSPICE MODEL of 1N5408 (Professional Model) in SPICE PARK
SPICE MODEL of 1N5408 (Professional Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of S5566G (Standard Model) in SPICE PARK
SPICE MODEL of S5566G (Standard Model) in SPICE PARKSPICE MODEL of S5566G (Standard Model) in SPICE PARK
SPICE MODEL of S5566G (Standard Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 5GLZ47A , TC=80degree (Standard Model) in SPICE PARK
SPICE MODEL of 5GLZ47A , TC=80degree (Standard Model) in SPICE PARKSPICE MODEL of 5GLZ47A , TC=80degree (Standard Model) in SPICE PARK
SPICE MODEL of 5GLZ47A , TC=80degree (Standard Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 1SR156-400 , TC=80degree (Standard Model) in SPICE PARK
SPICE MODEL of 1SR156-400 , TC=80degree (Standard Model) in SPICE PARKSPICE MODEL of 1SR156-400 , TC=80degree (Standard Model) in SPICE PARK
SPICE MODEL of 1SR156-400 , TC=80degree (Standard Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of OSWT5161A , White ,TA=-40degree (Professional Model) in SPICE ...
SPICE MODEL of OSWT5161A , White ,TA=-40degree (Professional Model) in SPICE ...SPICE MODEL of OSWT5161A , White ,TA=-40degree (Professional Model) in SPICE ...
SPICE MODEL of OSWT5161A , White ,TA=-40degree (Professional Model) in SPICE ...Tsuyoshi Horigome
 
SPICE MODEL of XBS303V17R (Standard Model) in SPICE PARK
SPICE MODEL of XBS303V17R (Standard Model) in SPICE PARKSPICE MODEL of XBS303V17R (Standard Model) in SPICE PARK
SPICE MODEL of XBS303V17R (Standard Model) in SPICE PARKTsuyoshi Horigome
 

Was ist angesagt? (20)

SPICE MODEL of 1SR139-400 , TC=80degree (Standard Model) in SPICE PARK
SPICE MODEL of 1SR139-400 , TC=80degree (Standard Model) in SPICE PARKSPICE MODEL of 1SR139-400 , TC=80degree (Standard Model) in SPICE PARK
SPICE MODEL of 1SR139-400 , TC=80degree (Standard Model) in SPICE PARK
 
SPICE MODEL of SLP-WB89A-51 , White ,TA=-40degree (Standard Model) in SPICE PARK
SPICE MODEL of SLP-WB89A-51 , White ,TA=-40degree (Standard Model) in SPICE PARKSPICE MODEL of SLP-WB89A-51 , White ,TA=-40degree (Standard Model) in SPICE PARK
SPICE MODEL of SLP-WB89A-51 , White ,TA=-40degree (Standard Model) in SPICE PARK
 
SPICE MODEL of 1SR139-400 , TC=110degree (Professional Model) in SPICE PARK
SPICE MODEL of 1SR139-400 , TC=110degree (Professional Model) in SPICE PARKSPICE MODEL of 1SR139-400 , TC=110degree (Professional Model) in SPICE PARK
SPICE MODEL of 1SR139-400 , TC=110degree (Professional Model) in SPICE PARK
 
SPICE MODEL of 1SR139-400 , TC=150degree (Professional Model) in SPICE PARK
SPICE MODEL of 1SR139-400 , TC=150degree (Professional Model) in SPICE PARKSPICE MODEL of 1SR139-400 , TC=150degree (Professional Model) in SPICE PARK
SPICE MODEL of 1SR139-400 , TC=150degree (Professional Model) in SPICE PARK
 
SPICE MODEL of XBS203V17R (Standard Model) in SPICE PARK
SPICE MODEL of XBS203V17R (Standard Model) in SPICE PARKSPICE MODEL of XBS203V17R (Standard Model) in SPICE PARK
SPICE MODEL of XBS203V17R (Standard Model) in SPICE PARK
 
SPICE MODEL of OSWT5161A , White ,TA=0degree (Standard Model) in SPICE PARK
SPICE MODEL of OSWT5161A , White ,TA=0degree (Standard Model) in SPICE PARKSPICE MODEL of OSWT5161A , White ,TA=0degree (Standard Model) in SPICE PARK
SPICE MODEL of OSWT5161A , White ,TA=0degree (Standard Model) in SPICE PARK
 
SPICE MODEL of SLP-WB89A-51 , White ,TA=0degree (Standard Model) in SPICE PARK
SPICE MODEL of SLP-WB89A-51 , White ,TA=0degree (Standard Model) in SPICE PARKSPICE MODEL of SLP-WB89A-51 , White ,TA=0degree (Standard Model) in SPICE PARK
SPICE MODEL of SLP-WB89A-51 , White ,TA=0degree (Standard Model) in SPICE PARK
 
SPICE Model of Fuse
SPICE Model of FuseSPICE Model of Fuse
SPICE Model of Fuse
 
SPICE MODEL of 1SR156-400 , TC=110degree (Professional Model) in SPICE PARK
SPICE MODEL of 1SR156-400 , TC=110degree (Professional Model) in SPICE PARKSPICE MODEL of 1SR156-400 , TC=110degree (Professional Model) in SPICE PARK
SPICE MODEL of 1SR156-400 , TC=110degree (Professional Model) in SPICE PARK
 
SPICE MODEL of XBS304S17R (Standard Model) in SPICE PARK
SPICE MODEL of XBS304S17R (Standard Model) in SPICE PARKSPICE MODEL of XBS304S17R (Standard Model) in SPICE PARK
SPICE MODEL of XBS304S17R (Standard Model) in SPICE PARK
 
SPICE MODEL of TVR2G (Standard Model) in SPICE PARK
SPICE MODEL of TVR2G (Standard Model) in SPICE PARKSPICE MODEL of TVR2G (Standard Model) in SPICE PARK
SPICE MODEL of TVR2G (Standard Model) in SPICE PARK
 
Simple Model of DC Motor using PSpice
Simple Model of DC Motor using PSpiceSimple Model of DC Motor using PSpice
Simple Model of DC Motor using PSpice
 
SPICE MODEL of 1N5408 (Standard Model) in SPICE PARK
SPICE MODEL of 1N5408 (Standard Model) in SPICE PARKSPICE MODEL of 1N5408 (Standard Model) in SPICE PARK
SPICE MODEL of 1N5408 (Standard Model) in SPICE PARK
 
SPICE MODEL of XBS104S14R (Standard Model) in SPICE PARK
SPICE MODEL of XBS104S14R (Standard Model) in SPICE PARKSPICE MODEL of XBS104S14R (Standard Model) in SPICE PARK
SPICE MODEL of XBS104S14R (Standard Model) in SPICE PARK
 
SPICE MODEL of 1N5408 (Professional Model) in SPICE PARK
SPICE MODEL of 1N5408 (Professional Model) in SPICE PARKSPICE MODEL of 1N5408 (Professional Model) in SPICE PARK
SPICE MODEL of 1N5408 (Professional Model) in SPICE PARK
 
SPICE MODEL of S5566G (Standard Model) in SPICE PARK
SPICE MODEL of S5566G (Standard Model) in SPICE PARKSPICE MODEL of S5566G (Standard Model) in SPICE PARK
SPICE MODEL of S5566G (Standard Model) in SPICE PARK
 
SPICE MODEL of 5GLZ47A , TC=80degree (Standard Model) in SPICE PARK
SPICE MODEL of 5GLZ47A , TC=80degree (Standard Model) in SPICE PARKSPICE MODEL of 5GLZ47A , TC=80degree (Standard Model) in SPICE PARK
SPICE MODEL of 5GLZ47A , TC=80degree (Standard Model) in SPICE PARK
 
SPICE MODEL of 1SR156-400 , TC=80degree (Standard Model) in SPICE PARK
SPICE MODEL of 1SR156-400 , TC=80degree (Standard Model) in SPICE PARKSPICE MODEL of 1SR156-400 , TC=80degree (Standard Model) in SPICE PARK
SPICE MODEL of 1SR156-400 , TC=80degree (Standard Model) in SPICE PARK
 
SPICE MODEL of OSWT5161A , White ,TA=-40degree (Professional Model) in SPICE ...
SPICE MODEL of OSWT5161A , White ,TA=-40degree (Professional Model) in SPICE ...SPICE MODEL of OSWT5161A , White ,TA=-40degree (Professional Model) in SPICE ...
SPICE MODEL of OSWT5161A , White ,TA=-40degree (Professional Model) in SPICE ...
 
SPICE MODEL of XBS303V17R (Standard Model) in SPICE PARK
SPICE MODEL of XBS303V17R (Standard Model) in SPICE PARKSPICE MODEL of XBS303V17R (Standard Model) in SPICE PARK
SPICE MODEL of XBS303V17R (Standard Model) in SPICE PARK
 

Ähnlich wie トランスのスパイスモデル(PART3)

SPICE MODEL of CCDC50V220P (Ta=25 degree) in SPICE PARK
SPICE MODEL of CCDC50V220P (Ta=25 degree) in SPICE PARKSPICE MODEL of CCDC50V220P (Ta=25 degree) in SPICE PARK
SPICE MODEL of CCDC50V220P (Ta=25 degree) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of CCDC50V15P (Ta=25 degree) in SPICE PARK
SPICE MODEL of CCDC50V15P (Ta=25 degree) in SPICE PARKSPICE MODEL of CCDC50V15P (Ta=25 degree) in SPICE PARK
SPICE MODEL of CCDC50V15P (Ta=25 degree) in SPICE PARKTsuyoshi Horigome
 
PSpiceアプリケーションセミナー(20OCT2011)
PSpiceアプリケーションセミナー(20OCT2011)PSpiceアプリケーションセミナー(20OCT2011)
PSpiceアプリケーションセミナー(20OCT2011)Tsuyoshi Horigome
 
SPICE MODEL of CCDC50V22P (Ta=25 degree) in SPICE PARK
SPICE MODEL of CCDC50V22P (Ta=25 degree) in SPICE PARKSPICE MODEL of CCDC50V22P (Ta=25 degree) in SPICE PARK
SPICE MODEL of CCDC50V22P (Ta=25 degree) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of TLP628 SAMPLE B in SPICE PARK
SPICE MODEL of TLP628 SAMPLE B in SPICE PARKSPICE MODEL of TLP628 SAMPLE B in SPICE PARK
SPICE MODEL of TLP628 SAMPLE B in SPICE PARKTsuyoshi Horigome
 
水晶振動子のスパイスモデル
水晶振動子のスパイスモデル水晶振動子のスパイスモデル
水晶振動子のスパイスモデルTsuyoshi Horigome
 
水晶振動子のスパイスモデル
水晶振動子のスパイスモデル水晶振動子のスパイスモデル
水晶振動子のスパイスモデルTsuyoshi Horigome
 
SPICE MODEL of TLP628 SAMPLE A in SPICE PARK
SPICE MODEL of TLP628 SAMPLE A in SPICE PARKSPICE MODEL of TLP628 SAMPLE A in SPICE PARK
SPICE MODEL of TLP628 SAMPLE A in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of PS2501L-1 in SPICE PARK
SPICE MODEL of PS2501L-1 in SPICE PARKSPICE MODEL of PS2501L-1 in SPICE PARK
SPICE MODEL of PS2501L-1 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of TLP624 in SPICE PARK
SPICE MODEL of TLP624 in SPICE PARKSPICE MODEL of TLP624 in SPICE PARK
SPICE MODEL of TLP624 in SPICE PARKTsuyoshi Horigome
 
カーボン皮膜抵抗のスパイスモデル
カーボン皮膜抵抗のスパイスモデルカーボン皮膜抵抗のスパイスモデル
カーボン皮膜抵抗のスパイスモデルTsuyoshi Horigome
 
SPICE MODEL of HL6714G (Standard Model) in SPICE PARK
SPICE MODEL of HL6714G (Standard Model) in SPICE PARKSPICE MODEL of HL6714G (Standard Model) in SPICE PARK
SPICE MODEL of HL6714G (Standard Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of BYW29E (Professional Model) in SPICE PARK
SPICE MODEL of BYW29E (Professional Model) in SPICE PARKSPICE MODEL of BYW29E (Professional Model) in SPICE PARK
SPICE MODEL of BYW29E (Professional Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of XBS104V14R (Standard Model) in SPICE PARK
SPICE MODEL of XBS104V14R (Standard Model) in SPICE PARKSPICE MODEL of XBS104V14R (Standard Model) in SPICE PARK
SPICE MODEL of XBS104V14R (Standard Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of TLP629 in SPICE PARK
SPICE MODEL of TLP629 in SPICE PARKSPICE MODEL of TLP629 in SPICE PARK
SPICE MODEL of TLP629 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of CRH01 (Standard Model) in SPICE PARK
SPICE MODEL of CRH01 (Standard Model) in SPICE PARKSPICE MODEL of CRH01 (Standard Model) in SPICE PARK
SPICE MODEL of CRH01 (Standard Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of TLP621 SAMPLE A in SPICE PARK
SPICE MODEL of TLP621 SAMPLE A in SPICE PARKSPICE MODEL of TLP621 SAMPLE A in SPICE PARK
SPICE MODEL of TLP621 SAMPLE A in SPICE PARKTsuyoshi Horigome
 

Ähnlich wie トランスのスパイスモデル(PART3) (20)

SPICE MODEL of CCDC50V220P (Ta=25 degree) in SPICE PARK
SPICE MODEL of CCDC50V220P (Ta=25 degree) in SPICE PARKSPICE MODEL of CCDC50V220P (Ta=25 degree) in SPICE PARK
SPICE MODEL of CCDC50V220P (Ta=25 degree) in SPICE PARK
 
SPICE MODEL of CCDC50V15P (Ta=25 degree) in SPICE PARK
SPICE MODEL of CCDC50V15P (Ta=25 degree) in SPICE PARKSPICE MODEL of CCDC50V15P (Ta=25 degree) in SPICE PARK
SPICE MODEL of CCDC50V15P (Ta=25 degree) in SPICE PARK
 
PSpiceアプリケーションセミナー(20OCT2011)
PSpiceアプリケーションセミナー(20OCT2011)PSpiceアプリケーションセミナー(20OCT2011)
PSpiceアプリケーションセミナー(20OCT2011)
 
SPICE MODEL of CCDC50V22P (Ta=25 degree) in SPICE PARK
SPICE MODEL of CCDC50V22P (Ta=25 degree) in SPICE PARKSPICE MODEL of CCDC50V22P (Ta=25 degree) in SPICE PARK
SPICE MODEL of CCDC50V22P (Ta=25 degree) in SPICE PARK
 
Sfl90 rt-c l-tspice
Sfl90 rt-c l-tspiceSfl90 rt-c l-tspice
Sfl90 rt-c l-tspice
 
SPICE MODEL of TLP628 SAMPLE B in SPICE PARK
SPICE MODEL of TLP628 SAMPLE B in SPICE PARKSPICE MODEL of TLP628 SAMPLE B in SPICE PARK
SPICE MODEL of TLP628 SAMPLE B in SPICE PARK
 
水晶振動子のスパイスモデル
水晶振動子のスパイスモデル水晶振動子のスパイスモデル
水晶振動子のスパイスモデル
 
水晶振動子のスパイスモデル
水晶振動子のスパイスモデル水晶振動子のスパイスモデル
水晶振動子のスパイスモデル
 
SPICE MODEL of TLP628 SAMPLE A in SPICE PARK
SPICE MODEL of TLP628 SAMPLE A in SPICE PARKSPICE MODEL of TLP628 SAMPLE A in SPICE PARK
SPICE MODEL of TLP628 SAMPLE A in SPICE PARK
 
SPICE MODEL of PS2501L-1 in SPICE PARK
SPICE MODEL of PS2501L-1 in SPICE PARKSPICE MODEL of PS2501L-1 in SPICE PARK
SPICE MODEL of PS2501L-1 in SPICE PARK
 
SPICE MODEL of TLP624 in SPICE PARK
SPICE MODEL of TLP624 in SPICE PARKSPICE MODEL of TLP624 in SPICE PARK
SPICE MODEL of TLP624 in SPICE PARK
 
カーボン皮膜抵抗のスパイスモデル
カーボン皮膜抵抗のスパイスモデルカーボン皮膜抵抗のスパイスモデル
カーボン皮膜抵抗のスパイスモデル
 
SPICE MODEL of HL6714G (Standard Model) in SPICE PARK
SPICE MODEL of HL6714G (Standard Model) in SPICE PARKSPICE MODEL of HL6714G (Standard Model) in SPICE PARK
SPICE MODEL of HL6714G (Standard Model) in SPICE PARK
 
SPICE MODEL of BYW29E (Professional Model) in SPICE PARK
SPICE MODEL of BYW29E (Professional Model) in SPICE PARKSPICE MODEL of BYW29E (Professional Model) in SPICE PARK
SPICE MODEL of BYW29E (Professional Model) in SPICE PARK
 
Sfl90 c l-tspice
Sfl90 c l-tspiceSfl90 c l-tspice
Sfl90 c l-tspice
 
SPICE MODEL of XBS104V14R (Standard Model) in SPICE PARK
SPICE MODEL of XBS104V14R (Standard Model) in SPICE PARKSPICE MODEL of XBS104V14R (Standard Model) in SPICE PARK
SPICE MODEL of XBS104V14R (Standard Model) in SPICE PARK
 
SPICE MODEL of TLP629 in SPICE PARK
SPICE MODEL of TLP629 in SPICE PARKSPICE MODEL of TLP629 in SPICE PARK
SPICE MODEL of TLP629 in SPICE PARK
 
Sfl95 c l-tspice
Sfl95 c l-tspiceSfl95 c l-tspice
Sfl95 c l-tspice
 
SPICE MODEL of CRH01 (Standard Model) in SPICE PARK
SPICE MODEL of CRH01 (Standard Model) in SPICE PARKSPICE MODEL of CRH01 (Standard Model) in SPICE PARK
SPICE MODEL of CRH01 (Standard Model) in SPICE PARK
 
SPICE MODEL of TLP621 SAMPLE A in SPICE PARK
SPICE MODEL of TLP621 SAMPLE A in SPICE PARKSPICE MODEL of TLP621 SAMPLE A in SPICE PARK
SPICE MODEL of TLP621 SAMPLE A in SPICE PARK
 

Mehr von Tsuyoshi Horigome

Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )Tsuyoshi Horigome
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Tsuyoshi Horigome
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )Tsuyoshi Horigome
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Tsuyoshi Horigome
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )Tsuyoshi Horigome
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Tsuyoshi Horigome
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Tsuyoshi Horigome
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspiceTsuyoshi Horigome
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is ErrorTsuyoshi Horigome
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintTsuyoshi Horigome
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsTsuyoshi Horigome
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hiresTsuyoshi Horigome
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Tsuyoshi Horigome
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Tsuyoshi Horigome
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)Tsuyoshi Horigome
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモTsuyoshi Horigome
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?Tsuyoshi Horigome
 
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)Tsuyoshi Horigome
 
SPICE PARK JAN2024 (6,665 SPICE Models)
SPICE PARK JAN2024 (6,665 SPICE Models)SPICE PARK JAN2024 (6,665 SPICE Models)
SPICE PARK JAN2024 (6,665 SPICE Models)Tsuyoshi Horigome
 

Mehr von Tsuyoshi Horigome (20)

Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?
 
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
 
SPICE PARK JAN2024 (6,665 SPICE Models)
SPICE PARK JAN2024 (6,665 SPICE Models)SPICE PARK JAN2024 (6,665 SPICE Models)
SPICE PARK JAN2024 (6,665 SPICE Models)
 

Kürzlich hochgeladen

Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfPrecisely
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clashcharlottematthew16
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfRankYa
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxhariprasad279825
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 

Kürzlich hochgeladen (20)

Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clash
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdf
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptx
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 

トランスのスパイスモデル(PART3)

  • 1. スパイスモデル解説 トランスモデル編(Part 3) 2012年2月3日(金曜日) 株式会社ビー・テクノロジー http://www.beetech.info/ Copyright (C) Bee Technologies Inc. 2012 1
  • 2. ビー・テクノロジーのサービス内容について 「デバイスモデリングサービス」から必要なスパイスモデ 解析に専念したいので専用の ルを入手する(58種類のデバイスモデリングが可能) 回路シミュレーションの テンプレートを提供して欲しい スパイスモデルの配信サイト →カスタム・デザインキット・サービス 「スパイス・パーク」から入手する (3,777モデル) 実際の設計で使用できる詳細の すでに自分が使用する テンプレートが欲しい 型名が決まっている →デザインキット(14種類) 自分でパラメータを設定し 概念設計のテンプレートが欲しい スパイスモデルを作成したい →コンセプトキット(6種類) →シンプルモデル(8種類) 回路図は作成済み 回路シミュレーションの 必要なスパイスモデルを入手したい テンプレートを入手したい 回路設計者 問題を解決したい。相談したい。 技術を向上させたい。学習したい。 コンサルティング・サービス デバイスモデリング教材 ワークショップ (13種類) セミナー(オンサイト含む) Copyright (C) Bee Technologies Inc. 2012 2
  • 3. Part 1及びPart 2の資料掲載先について http://ow.ly/8uBzn http://ow.ly/8uBuD Copyright (C) Bee Technologies Inc. 2012 3
  • 4. [復習]トランスのスパイスモデルの種類 巻数モデル TX1 +コアモデル 巻数モデル TN33_20_11_2P90 L1_TURNS = 100 L2_TURNS = 100 Copyright (C) Bee Technologies Inc. 2012 4
  • 5. [復習]トランスのスパイスモデルの種類 (1)周波数特性モデル コイルの等価回路の考え方(周波数を考慮する) L1 C1 L1 R1 L1 R1 L1 R1 -3 0 3 6 9 10 10 10 10 10 (Hz) Inductor model Impedance vs. Frequency 注意:動作周波数により、3素子モデルではなく、5素子モデル、ラダー・モデル が採用される事もあります。 Copyright (C) Bee Technologies Inc. 2012 5
  • 6. [復習]トランスのスパイスモデルの種類 (1)周波数特性モデル K K1 K_Linear COUPLING = 1 1 2 L1 L2 10uH 10uH 2 1 インダクタンス+結合係数 周波数モデル+結合係数 結合係数とは、1次巻き線で発生した磁 K K1 束が2次巻き線に結合する割合です。デ K_Linear フォルト値は、結合係数=1です。 COUPLING = 1 実際には、0.99-0.9999を使用します。 Copyright (C) Bee Technologies Inc. 2012 6
  • 8. [復習]トランスのスパイスモデルの種類 (1)周波数特性モデル 事例:周波数モデル+結合係数 Agilent 34420A Agilent 4294A インピーダンスの測定:Agilent 4294A 直列抵抗成分の測定:Agilent 34420A Copyright (C) Bee Technologies Inc. 2012 8
  • 10. コアのスパイスモデル(LTspiceとPSpice) Copyright (C) Bee Technologies Inc. 2012 10
  • 11. [PSpice検証&LTspice検証] Saturable Core: NC-2H Specification Dynamic Magnetization Curves Material: NC-2H Manganese Zinc Ferrite Cores with • BS = 500(mT) • Br = 140(mT) • HC = 15.9(A/m) Conditions: • F = 10(KHz) • TC = 23(C)  The data is provided in the datasheet Copyright (C) Bee Technologies Inc. 2012 11
  • 12. [PSpice検証&LTspice検証] PSpice MAGNETIC CORE MODEL: NC-2H Evaluation Circuit Simulation Result 600m K K1 500m NC-2 H V1 COUPLING= 0.9999 L1 = L1 400m 1 0V L1 I1 R1 20 300m IOFF = 0 10 FREQ = 1 IA MPL = 2A 2 200m 0 100m 0 0 0.2K 0.4K 0.6K 0.8K 1.0K B(K1)/10000 H(K1)/0.01256 Copyright (C) Bee Technologies Inc. 2012 12
  • 13. [PSpice検証&LTspice検証] LTSpice IV MAGNETIC CORE MODEL: NC-2H Evaluation Circuit Simulation Result Copyright (C) Bee Technologies Inc. 2012 13
  • 14. [PSpice検証&LTspice検証] LTSpice IV 1:1 Saturable transformer model (Example) - Simulation Circuit and Setting Copyright (C) Bee Technologies Inc. 2012 14
  • 15. [PSpice検証&LTspice検証] LTSpice IV 1:1 Saturable transformer model (Example) - Simulation Result Input voltage Input Current Output voltage Output Current Copyright (C) Bee Technologies Inc. 2012 15
  • 16. [PSpice検証&LTspice検証] PSpice 1:1 Saturable transformer model (Example) - Simulation Circuit and Setting PARAMETERS: PARAMETERS: Vin = 50V N = 0.1 Freq = 10k Lp = 1 K K2 K K3 NC-2H K_Linear COUPLING= 0.9999 COUPLING = 1 R1 Prim L1 = L1 L1 = Lp Sec 0.1 IN L2 = Ls OUT V1 = {-Vin} V1 V2 = {Vin} 0V Ri 0V 1 1 TD = 0 0.1 TR = 0 Lp Ls TF = 0 1 1H {N*N*Lp} RO PW = {0.5/Freq} 10 PER = {1/Freq} L1 20 2 2 2 0 0 Copyright (C) Bee Technologies Inc. 2012 16
  • 17. [PSpice検証&LTspice検証] PSpice 1:1 Saturable transformer model (Example) - Simulation Result at R1=0.1 100s -499.8A 1 2 0s -499.9A -100s -500.0A -200s SEL>> -300s -500.1A 1 V(IN) 2 I(Lp) 10V 3.0A 1 2 0V 2.0A -10V 1.0A -20V 0A >> -30V -1.0A 0s 0.2ms 0.4ms 0.6ms 0.8ms 1.0ms 1.2ms 1.4ms 1.6ms 1.8ms 2.0ms 2.2ms 2.4ms 1 V(OUT) 2 I(Sec) Time Copyright (C) Bee Technologies Inc. 2012 17
  • 18. [PSpice検証&LTspice検証] PSpice 1:1 Saturable transformer model (Example) - Simulation Result at R1=1 100s -49.90A 1 2 0s -100s -50.00A -200s SEL>> -300s -50.05A 1 V(IN) 2 I(Lp) 10V 3.0A 1 2 0V 2.0A -10V 1.0A -20V 0A >> -30V -1.0A 0s 0.2ms 0.4ms 0.6ms 0.8ms 1.0ms 1.2ms 1.4ms 1.6ms 1.8ms 2.0ms 2.2ms 2.4ms 1 V(OUT) 2 I(Sec) Copyright (C) Bee Technologies Inc. 2012 Time 18
  • 19. [PSpice検証&LTspice検証] PSpice 1:1 Saturable transformer model (Example) - Simulation Result at R1=10 100s -4.90A 1 2 0s -100s -5.00A -200s SEL>> -300s -5.05A 1 V(IN) 2 I(Lp) 10V 3.0A 1 2 0V 2.0A -10V 1.0A -20V 0A >> -30V -1.0A 0s 0.2ms 0.4ms 0.6ms 0.8ms 1.0ms 1.2ms 1.4ms 1.6ms 1.8ms 2.0ms 2.2ms 2.4ms 1 V(OUT) 2 I(Sec) Time Copyright (C) Bee Technologies Inc. 2012 19
  • 20. シンプルモデル:トランスモデルのコンセプト Copyright (C) Bee Technologies Inc. 2012 20
  • 21. Saturable transformer model Simplified SPICE Behavioral Model Bee Technologies Inc. Copyright (C) Bee Technologies Inc. 2012 21
  • 22. Contents 1. Model Overview 2. Concept of the Model 3. Parameter Settings of Saturable Core 4. Saturable core SUBCKT using LTspiceIV <<-- Netlist is not open(If you buy this model , you can show netlist) 5. Saturable Core Parameter Setting (Example) 5.1 Curve fitting: RLOSS 5.2 Curve fitting: LM 5.3 Curve fitting: BEXP 6. Dynamic Magnetizing Curves Characteristics 7. Basic Ideal Transformers and Their Parameters 7.1 Parameter settings of 1:1 ideal transformer 7.2 Parameter settings of 2:1 ideal transformer 7.3 Parameter settings of 1:2 ideal transformer 8. Saturable transformer SUBCKT Using LTspiceIV <<-- Netlist is not open(If you buy this model , you can show netlist) 9. 1:1 Saturable transformer model (Example) 10. 1:1 Saturable transformer model (Example) (Phase reverse) 11. 2:1 Saturable transformer model (Example) 12. 1:2 Saturable transformer model (Example) 13. 1:2 Saturable transformer model (Example) (Center tap) 14. Application Circuit Example: Flyback converter Library Files and Symbol Files Location Library Files Index Simulation Index Copyright (C) Bee Technologies Inc. 2012 22
  • 23. 1) Model Overview • This Saturable Transformer Simplified SPICE Behavioral Model is for users who require the model of the core loss and hysteresis as a part of their system. • The model focuses on the hysteresis loop behavior in their operation area, which user can shape the B-H curve. B (Teslas) 600mV Remanent Flux Saturation Flux Density Br Density BS 0V Saturation Field HS Coercive Field HC -600mV H (A-turns/m) -1.0KV 0V 1.0KV V(U1:B) Figure 1, Hysteresis Loop and Magnetic Properties. V(H) Copyright (C) Bee Technologies Inc. 2012 23
  • 24. 2) Concept of the Model Saturable Core Ideal Transformer Simplified SPICE Behavioral Model Simplified SPICE Behavioral Model [Model parameters: BSAT, RLOSS, LM and BEXP] [Model parameters: N, RP, RS and LP] • The Saturable core is characterized by parameters: BSAT, RLOSS, LM and BEXP, which represent the Flux density vs. Magnetic field characteristics of the Saturable core. • The Ideal transformer is characterized by parameters: N, RP, RS and LP . Copyright (C) Bee Technologies Inc. 2012 24
  • 25. 3) Parameter Settings of Saturable Core Model Parameters: BSAT  The saturation flux density (in teslas). – e.g. 100mT, 350mT, 500mT B-H Curve – Value = <BSAT> test points RLOSS  The resistor RLOSS represents a loss when a voltage is applied. – e.g. 0.5Ω, 1Ω, 100KΩ – Value = <RLOSS> LM  Magnetizing inductance of the core inductor (in henry). – e.g. 1uH, 5uH, 50uH – Value = <LM> Figure 2, Saturable core model (Default parameters). BEXP  The exponent in the expression for coupling factor KC. – e.g. 2, 4, 8 – Value = <BEXP> • From the Saturable Core specification, the model is characterized by setting parameter BSAT, then adjust the parameters RLOSS, LM and BEXP to shape the dynamic magnetic curve. Copyright (C) Bee Technologies Inc. 2012 25
  • 26. 4) Saturable core SUBCKT using LTspiceIV Information of Netlist Figure 3, Saturable core subcircuit SPICE compatible, the key parameters are shown in bold. Copyright (C) Bee Technologies Inc. 2012 26
  • 27. 5) Saturable Core Parameter Setting (Example) Specification Material: NC-2H Manganese Zinc Ferrite Cores with • BS = 500(mT) Input the • Br = 140(mT) parameter BSAT=500m • HC = 15.9(A/m) Conditions: • F = 10(KHz) • TC = 23(C)  The data is provided in the datasheet Figure 4, Dynamic Magnetization Curves. Copyright (C) Bee Technologies Inc. 2012 27
  • 28. 5.1) Curve fitting: RLOSS B (Teslas) 0.5Ω --- 1Ω --- 100KΩ --- H (A-turns/m) Figure 5, The magnetizing line difference, RLOSS. • Condition: F=10KHz, Vin=80VP • Parametric sweep: RLOSS=0.5Ω, 1Ω, 100KΩ Copyright (C) Bee Technologies Inc. 2012 28
  • 29. 5.2) Curve fitting: LM B (Teslas) 1uH --- 5uH --- 50uH --- H (A-turns/m) Figure 6, The magnetizing line difference, LM . • Condition: F=10KHz, Vin=80VP • Parametric sweep: LM=1uH, 5uH, 50uH Copyright (C) Bee Technologies Inc. 2012 29
  • 30. 5.3) Curve fitting: BEXP B (Teslas) 2 --- 4 --- 8 --- H (A-turns/m) Figure 7, The magnetizing line difference, BEXP. • Condition: F=10KHz, Vin=80VP • Parametric sweep: BEXP=2, 4, 8 Copyright (C) Bee Technologies Inc. 2012 30
  • 31. 6) Dynamic Magnetizing Curves Characteristics - Evaluation Circuit and Setting Sine wave excitation Square wave excitation Condition: F=10KHz, Vin=80VP, TC=23°C .tran 0 200u 100u 10n .lib score.sub Copyright (C) Bee Technologies Inc. 2012 31
  • 32. 6) Dynamic Magnetizing Curves Characteristics - Simulation Result Figure 8, Sine wave excitation Figure 9, Square wave excitation • The saturable core model is completed with both sine and square wave (above) excitation as shown in these LTspiceIV simulations. Copyright (C) Bee Technologies Inc. 2012 32
  • 33. 7) Basic Ideal Transformers and Their Parameters • The relationship between the Voltage and IP IS current are defined as equations below. NS + NP NS + N (7.1) NP N is the turns ratio of Ideal transformer (above). VP VS VS  VP  N (7.2) - - IP  IS  N (7.3) 1:N VP is the primary voltage. VS is the secondary voltage. Figure 10, Symbol of basic ideal transformer with IP is the primary current. The voltage to current relationships. IS is the secondary current. NP is the turns number of primary winding. NS is the turns number of secondary winding. Copyright (C) Bee Technologies Inc. 2012 33
  • 34. 7.1) Parameter settings of 1:1 ideal transformer Model Parameters: LP  Inductance of primary winding (in henry). – e.g. 100uH, 250uH, 500uH – Value = <LP> N  is the turns ratio of Ideal transformer. – e.g. 0.1, 0.5, 1 Figure 11, 1:1 Ideal transformer (Default parameters). – Value = <N> RP  A series resistance of primary winding (in ohm). – e.g. 1mΩ, 10mΩ, 100mΩ – Value = <RP> RS  A series resistance of secondary winding (in ohm). – e.g. 1mΩ, 10mΩ, 100mΩ – Value = <RS> Figure 12, 1:1 Phase reverse ideal transformer (Default parameters). Copyright (C) Bee Technologies Inc. 2012 34
  • 35. 7.2) Parameter settings of 2:1 ideal transformer Model Parameters: LP  Inductance of primary winding (in henry). – e.g. 100uH, 250uH, 500uH – Value = <LP> N  is the turns ratio of Ideal transformer. – e.g. 0.1, 0.5, 1 – Value = <N> RP1  A series resistance of primary winding 1 (in ohm). – e.g. 1mΩ, 10mΩ, 100mΩ – Value = <RP1> RP2  A series resistance of primary winding 2 (in ohm). Figure 13, 2:1 Ideal transformer (Default parameters). – e.g. 1mΩ, 10mΩ, 100mΩ – Value = <RP2> RS  A series resistance of secondary winding (in ohm). – e.g. 1mΩ, 10mΩ, 100mΩ – Value = <RS> Copyright (C) Bee Technologies Inc. 2012 35
  • 36. 7.3) Parameter settings of 1:2 ideal transformer Model Parameters: LP  Inductance of primary winding (in henry). – e.g. 100uH, 250uH, 500uH – Value = <LP> N  is the turns ratio of Ideal transformer. – e.g. 0.1, 0.5, 1 Figure 14, 1:2 Ideal transformer (Default parameters). – Value = <N> RP  A series resistance of primary winding (in ohm). – e.g. 1mΩ, 10mΩ, 100mΩ – Value = <RP> RS1  A series resistance of secondary winding 1 (in ohm). – e.g. 1mΩ, 10mΩ, 100mΩ – Value = <RS1> RS2  A series resistance of secondary winding 2 (in ohm). – e.g. 1mΩ, 10mΩ, 100mΩ – Value = <RS2> Figure 15, 1:2 Center tap ideal transformer (Default parameters). Copyright (C) Bee Technologies Inc. 2012 36
  • 37. 8) Saturable transformer SUBCKT Using LTspiceIV Information of Netlist Figure 16, Saturable transformer symbol, the key parameters are shown in bold. Figure 17, Saturable transformer equivalent circuit. Copyright (C) Bee Technologies Inc. 2012 37
  • 38. 9) 1:1 Saturable transformer model (Example) - Simulation Circuit and Setting Secondary current Output Voltage Primary current Saturable transformer model 1 : {N} • Condition: F=10KHz, VIN=50VP, VOUT=5VP, ROUT=10Ω • .tran 0 2500u 0 50n • .lib tfmr1.sub Copyright (C) Bee Technologies Inc. 2012 38
  • 39. 9) 1:1 Saturable transformer model (Example) - Simulation Result Input voltage Input Current Output voltage Output Current Figure 18, The Input–Output Characteristics of 1:1 Saturable transformer. Copyright (C) Bee Technologies Inc. 2012 39
  • 40. 10) 1:1 Saturable transformer model (Example) - Simulation Circuit and Setting (Phase reverse) 1 : {N} • Condition: F=10KHz, VIN=50VP, VOUT=5VP, ROUT=10Ω • .tran 0 2500u 0 50n • .lib tfmr1_rev.sub Copyright (C) Bee Technologies Inc. 2012 40
  • 41. 10) 1:1 Saturable transformer model (Example) - Simulation Result (Phase reverse) Input voltage Input Current Output voltage Output Current Figure 19, The Input–Output Characteristics of 1:1 Saturable transformer (Phase reverse). Copyright (C) Bee Technologies Inc. 2012 41
  • 42. 11) 2:1 Saturable transformer model (Example) - Simulation Circuit and Setting 1 : {N} • Condition: F=10KHz, VIN=25VP, VOUT=5VP, ROUT=10Ω • .tran 0 2500u 0 50n • .lib tfmr2prim.sub Copyright (C) Bee Technologies Inc. 2012 42
  • 43. 11) 2:1 Saturable transformer model (Example) - Simulation Result Input voltage 1 Input Current 1 Input voltage 2 Input Current 2 Output voltage Output Current Figure 20, The Input–Output Characteristics of 2:1 Saturable transformer. Copyright (C) Bee Technologies Inc. 2012 43
  • 44. 12) 1:2 Saturable transformer model (Example) - Simulation Circuit and Setting 1 : {N} • Condition: F=10KHz, VIN=50VP, VOUT1=VOUT2=5VP, ROUT=10Ω • .tran 0 2500u 0 50n • .lib tfmr2.sub Copyright (C) Bee Technologies Inc. 2012 44
  • 45. 12) 1:2 Saturable transformer model (Example) - Simulation Result Input voltage Input Current Output voltage 1 Output Current 1 Output voltage 2 Output Current 2 Figure 21, The Input–Output Characteristics of 1:2 Saturable transformer. Copyright (C) Bee Technologies Inc. 2012 45
  • 46. 13) 1:2 Saturable transformer model (Example) - Simulation Circuit and Setting (Center tap) 1 : {N} • Condition: F=10KHz, VIN=50VP, VOUT1=VOUT2=5VP, ROUT=10Ω • .tran 0 2500u 0 50n • .lib tfmr2_ct.sub Copyright (C) Bee Technologies Inc. 2012 46
  • 47. 13) 1:2 Saturable transformer model (Example) - Simulation Result (Center tap) Input voltage Input Current Output voltage 1 Output Current 1 Output voltage 2 Output Current 2 Figure 22, The Input–Output Characteristics of 1:2 Saturable transformer (Center tap). Copyright (C) Bee Technologies Inc. 2012 47
  • 48. 14) Application Circuit Example: Flyback converter - Simulation Circuit and Setting 1 : {N} • Condition: F=40KHz, VIN=24V, VOUT=5V, RL=5Ω, CL=200uF, LP=500uH • .tran 0 10m 0 100n startup • .lib tfmr1_rev.sub Copyright (C) Bee Technologies Inc. 2012 48
  • 49. 14) Application Circuit Example: Flyback converter - Simulation Result Secondary voltage of transformer Input voltage= 24Vdc Output voltage= 5Vdc Output ripple voltage VRIPPLE Secondary current of transformer Figure 23, Flyback converter with Saturable transformer model. Copyright (C) Bee Technologies Inc. 2012 49
  • 50. Library Files and Symbol Files Location …¥Simulations Copy/ Paste into C:¥Program Files¥LTC¥LTspiceIV¥lib¥sub Copy/ Paste into C:¥Program Files¥LTC¥LTspiceIV¥lib¥sym 1. Copy the library files (.lib) from the folder …¥Simulations ¥.lib¥, then paste into the folder C:¥Program Files¥LTC¥LTspiceIV¥lib¥sub 2. Copy the symbol files(.asy) from the folder …¥Simulations ¥.asy¥, then paste into the folder C:¥Program Files¥LTC¥LTspiceIV¥lib¥sym Copyright (C) Bee Technologies Inc. 2012 50
  • 51. Library Files Index Model Library Symbol 1. Saturable Core……....................................................... score.sub SCORE.asy 2. 1:1 Saturable transformer model………………….......... tfmr1.sub TFMR1.asy 3. 1:1 Saturable transformer model (Phase reverse)……. tfmr1_rev.sub TFMR1_REV.asy 4. 2:1 Saturable transformer model..…………….………… tfmr2prim.sub TFMR2PRIM.asy 5. 1:2 Saturable transformer model..…….………………… tfmr2.sub TFMR2.asy 6. 1:2 Saturable transformer model (Center tap)……....... tfmr2_ct.sub TFMR2_CT.asy Copyright (C) Bee Technologies Inc. 2012 51
  • 52. Simulation Index Simulations Folder name 1. Curve fitting: RLOSS…………………………………………........ Curve fitting 2. Curve fitting: LM………………………………………………........ Curve fitting 3. Curve fitting: BEXP………………………………………………… Curve fitting 4. Dynamic Magnetizing Curves Characteristics…….................... Sat_Core 5. 1:1 Saturable transformer model (Example)…………………….. Sat_Trans1 6. 1:1 Saturable transformer model (Example) (Phase reverse)… Sat_Trans2 7. 2:1 Saturable transformer model (Example)..…………….…….. Sat_Trans3 8. 1:2 Saturable transformer model (Example)..…….…………….. Sat_Trans4 9. 1:2 Saturable transformer model (Example) (Center tap)……... Sat_Trans5 10. Application Circuit Example: Flyback converter……………….... Appl Copyright (C) Bee Technologies Inc. 2012 52
  • 53. Bee Technologies Group 【本社】 本ドキュメントは予告なき変更をする場合がございます。 ご了承下さい。また、本文中に登場する製品及びサービス 株式会社ビー・テクノロジー の名称は全て関係各社または個人の各国における商標 〒105-0012 東京都港区芝大門二丁目2番7号 7セントラルビル4階 または登録商標です。本原稿に関するお問い合わせは、 代表電話: 03-5401-3851 当社にご連絡下さい。 設立日:2002年9月10日 資本金:8,830万円 【子会社】 お問合わせ先) Siam Bee Technologies Co.,Ltd. (タイランド) info@bee-tech.com Copyright (C) Bee Technologies Inc. 2012 53