SlideShare ist ein Scribd-Unternehmen logo
1 von 33
PSpiceによるバッテリー回路アプリケーション 株式会社ビー・テクノロジーhttp://www.bee-tech.com/horigome@bee-tech.com 1 Copyright (C) Bee Technologies Inc. 2010
2 Copyright (C) Bee Technologies Inc. 2010
モデル デザインキット回路方式のテンプレート 回路解析シミュレータPSpice (ABMライブラリーが豊富) 3 Copyright (C) Bee Technologies Inc. 2010 ABM=Analog Behavior Model
Copyright (C) Bee Technologies Inc. 2010 4 http://www.bee-tech.com/
スパイス・パーク http://www.spicepark.com/55種類のデバイス、3,328モデル(2010年7月29日現在)をご提供中。現在、グローバル版スパイス・パークを準備中。 5 Copyright (C) Bee Technologies Inc. 2010
Copyright (C) Bee Technologies Inc. 2010 6 Bee Style: http://www.spicepark.com/スパイス・パークのログイン後トップページにて、PDFでバックナンバーも含めPDF形式で参照及びダウンロード出来ます。
バッテリーのスパイスモデルの推移 7 Copyright (C) Bee Technologies Inc. 2010 リチウムイオン電池ニッケル水素電池 鉛蓄電池
8 Copyright (C) Bee Technologies Inc. 2010
Design Kit PV Li-Ion Battery System 9 Copyright (C) Bee Technologies Inc. 2010
BAYSUN’s Lithium-Ion Batteries Pack : Power Battery Plus (PBT-BAT-0001)  ,[object Object]
Rated Current....................3[A]
Input Voltage.......................20.5 [Vdc]
Output Voltage....................12.8 ~ 16.4 [Vdc] ( 4 cells )
Charging time......................5[hours] (Approximately)1.1 Lithium-Ion Batteries Pack Specification 10 Copyright (C) Bee Technologies Inc. 2010
1.2 Discharge Time Characteristics 0.2C ( 880 mA ) 0.5C ( 2200 mA ) 1C ( 4400 mA ) TSCALE=3600 means time Scale (Simulation time : Real time) is 1:3600 Batteries Pack Model Parameters NS (number of batteries in series) = 4 cells C (capacity) = 4400 mA SOC1 (initial state of charge) = 100% TSCALE (time scale) , 	simulation : real time 		1 : 3600s or  		1s : 1h Discharge Rate : 0.2C(880mA), 0.5C(2200mA), and 1C(4400mA) 11 Copyright (C) Bee Technologies Inc. 2010
1.3 Single Cell Discharge Characteristics Single cell discharge characteristics are compared between measurement data and simulation data. Single cell Measurement Simulation 12 Copyright (C) Bee Technologies Inc. 2010
1.4 Charge Time Characteristics SOC [%] Vbatt [V] ICharge [A] Batteries Pack Model Parameters NS (number of batteries in series) = 4 cells C (capacity) = 4400 mA SOC1 (initial state of charge) = 100% TSCALE (time scale) , 	simulation : real time 		1 : 3600s or  		1s : 1h Charger Adaptor  Input Voltage = 20.5 Vdc Input Current = 880 mA(max.) 13 Copyright (C) Bee Technologies Inc. 2010
BP Solar’s photovoltaic module : SX330  ,[object Object]
Voltage at Pmax (Vmp).............16.8[V]
Current at Pmax (Imp)...............1.78[A]
Short-circuit current (Isc)...........1.94[A]
Open-circuit voltage(Voc)...........21.0[V]2.1 Solar Cells Specification 502mm 595mm 14 Copyright (C) Bee Technologies Inc. 2010
2.2 Output Characteristics vs. Incident Solar Radiation SX330 Output Characteristics vs. Incident Solar Radiation SOL=1 Current (A) SOL=0.5 SOL=0.16 SOL=1 Power (W) Parameter, SOL is added as normalized incident radiation, where SOL=1 for AM1.5 conditions SOL=0.5 SOL=0.16 Voltage (V) 15 Copyright (C) Bee Technologies Inc. 2010
3. Solar Cell Battery Charger Solar Cell charges the Li-ion batteries pack (PBT-BAT-001) with direct connect technique. Choose the solar cell that is able to provide current at charging rate or more with the maximum power voltage (Vmp) nears the batteries pack charging voltage. PBT-BAT-0001 (Li-ion batteries pack) Charging time is approximately 5 hours with charging rate 0.2C or 880mA Voltage during charging with 0.2C is between 14.7 to 16.9 V 16.9 V 14.7 V 0.2C or 880mA 16 Copyright (C) Bee Technologies Inc. 2010
3.1 Concept of Simulation PV Li-Ion Battery Charger Circuit Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL 16.8V Clamp Circuit Lithium-Ion Batteries Pack Photovoltaic Module PBT-BAT-0001 (BAYSUN) DC12.8~16.4V (4 cells) 4400mAh SX 330 (BP Solar) Vmp=16.8V Pmax=30W 17 Copyright (C) Bee Technologies Inc. 2010
3.2 PV Li-Ion Battery Charger Circuit Input value between 0-1 in the “PARAMETERS:  sol = ” to set the normalized incident radiation, where SOL=1 for AM1.5 conditions. 18 Copyright (C) Bee Technologies Inc. 2010
3.3 Charging Time Characteristics vs. Weather Condition Simulation result shows the charging time for  sol = 1, 0.5, and 0.16.  	sol = 1.00  	sol = 0.50 	sol = 0.16  19 Copyright (C) Bee Technologies Inc. 2010
3.4 Concept of Simulation PV Li-Ion Battery Charger Circuit + Constant Current Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL 16.8V Clamp Circuit Lithium-Ion Batteries Pack Photovoltaic Module Constant Current Control Circuit PBT-BAT-0001 (BAYSUN) DC12.8~16.4V (4 cells) 4400mAh SX 330 (BP Solar) Vmp=16.8V Pmax=30W Icharge=0.2C (880mA) 20 Copyright (C) Bee Technologies Inc. 2010
3.5 Constant Current PV Li-Ion Battery Charger Circuit Input the battery capacity (Ah) and charging current rate (e.g. 0.2*CAh)  in the  “PARAMETERS: CAh = 4400m and rate = 0.2 ” to set the charging current. 21 Copyright (C) Bee Technologies Inc. 2010
3.6 Charging Time Characteristics vs. Weather Condition(Constant Current) Simulation result shows the charging time for  sol = 1, 0.5, and 0.16. If PV can generate current more than the constant charge rate (0.2A), battery can be fully charged in about 5 hour. 	sol = 1.00  	sol = 0.50 	sol = 0.16  22 Copyright (C) Bee Technologies Inc. 2010
4.1 Concept of Simulation PV Li-Ion Battery System in 24hr. Over Voltage Protection Circuit The model contains 24hr. solar power data (example). 16.8V Clamp Circuit Photovoltaic Module Lithium-Ion Batteries Pack Low-Voltage Shutdown Circuit PBT-BAT-0001 (BAYSUN) DC12.8~16.4V (4 cells) 4400mAh SX 330 (BP Solar) Vmp=16.8V Pmax=30W Vopen= (V) Vclose= (V) DC/DC Converter DC Load VIN = 5V IIN = 1.5A VIN=10~18V VOUT=5V 23 Copyright (C) Bee Technologies Inc. 2010
4.2 Short-Circuit Current vs. Time (24hr.) Short-circuit current vs. time characteristics of photovoltaic module SX330 for 24hours as the solar power profile (example) is included to the model. The model contains 24hr. solar power data (example). 24 Copyright (C) Bee Technologies Inc. 2010
4.3 PV-Battery System Simulation Circuit Solar cell model with 24hr. solar power data. Set initial battery voltage, IC=16.4, for convergence aid. SOC1 value is initial State Of Charge of the battery, is set as 70% of full voltage. Lopen value is load shutdown voltage. Lclose value is load reconnect voltage 7.5W Load (5Vx1.5A).  Simulation at 15W load, change I1 from 1.5A to 3A 25 Copyright (C) Bee Technologies Inc. 2010 DCDCコンバータの簡易モデル DCACコンバータの簡易モデルもあります。

Weitere ähnliche Inhalte

Was ist angesagt?

Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelTsuyoshi Horigome
 
Simple model of Lithium Ion Battery (PSpice)
Simple model of Lithium Ion Battery (PSpice)Simple model of Lithium Ion Battery (PSpice)
Simple model of Lithium Ion Battery (PSpice)Tsuyoshi Horigome
 
リチウムイオン電池のスパイスモデル
リチウムイオン電池のスパイスモデルリチウムイオン電池のスパイスモデル
リチウムイオン電池のスパイスモデルTsuyoshi Horigome
 
鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)spicepark
 
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using P...
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using P...How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using P...
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using P...Tsuyoshi Horigome
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABTsuyoshi Horigome
 
How to Design of Power Management of Hybrid Circuit(Li-Ion Battery and Li-Ion...
How to Design of Power Management of Hybrid Circuit(Li-Ion Battery and Li-Ion...How to Design of Power Management of Hybrid Circuit(Li-Ion Battery and Li-Ion...
How to Design of Power Management of Hybrid Circuit(Li-Ion Battery and Li-Ion...Tsuyoshi Horigome
 
Lithium Ion Capacitor Simplified Simulink Model using MATLAB
Lithium Ion Capacitor Simplified Simulink Model using MATLABLithium Ion Capacitor Simplified Simulink Model using MATLAB
Lithium Ion Capacitor Simplified Simulink Model using MATLABTsuyoshi Horigome
 
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelTsuyoshi Horigome
 
Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...
Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...
Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...Tsuyoshi Horigome
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABTsuyoshi Horigome
 
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)Tsuyoshi Horigome
 
How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...
How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...
How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...Tsuyoshi Horigome
 
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)Tsuyoshi Horigome
 
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...Tsuyoshi Horigome
 
リチウムイオンキャパシタのシンプルモデル(PSpice)
リチウムイオンキャパシタのシンプルモデル(PSpice)リチウムイオンキャパシタのシンプルモデル(PSpice)
リチウムイオンキャパシタのシンプルモデル(PSpice)Tsuyoshi Horigome
 
ニッケル水素電池のシンプルモデル(PSpice)
ニッケル水素電池のシンプルモデル(PSpice) ニッケル水素電池のシンプルモデル(PSpice)
ニッケル水素電池のシンプルモデル(PSpice) Tsuyoshi Horigome
 
Photovoltaic By-Pass Diodes Simulation
Photovoltaic By-Pass Diodes SimulationPhotovoltaic By-Pass Diodes Simulation
Photovoltaic By-Pass Diodes SimulationTsuyoshi Horigome
 

Was ist angesagt? (20)

Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink Model
 
Simple model of Lithium Ion Battery (PSpice)
Simple model of Lithium Ion Battery (PSpice)Simple model of Lithium Ion Battery (PSpice)
Simple model of Lithium Ion Battery (PSpice)
 
リチウムイオン電池のスパイスモデル
リチウムイオン電池のスパイスモデルリチウムイオン電池のスパイスモデル
リチウムイオン電池のスパイスモデル
 
鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)
 
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using P...
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using P...How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using P...
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using P...
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLAB
 
SPICE Model of MEC201-10P
SPICE Model of MEC201-10PSPICE Model of MEC201-10P
SPICE Model of MEC201-10P
 
How to Design of Power Management of Hybrid Circuit(Li-Ion Battery and Li-Ion...
How to Design of Power Management of Hybrid Circuit(Li-Ion Battery and Li-Ion...How to Design of Power Management of Hybrid Circuit(Li-Ion Battery and Li-Ion...
How to Design of Power Management of Hybrid Circuit(Li-Ion Battery and Li-Ion...
 
Lithium Ion Capacitor Simplified Simulink Model using MATLAB
Lithium Ion Capacitor Simplified Simulink Model using MATLABLithium Ion Capacitor Simplified Simulink Model using MATLAB
Lithium Ion Capacitor Simplified Simulink Model using MATLAB
 
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink Model
 
Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...
Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...
Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLAB
 
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)
 
How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...
How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...
How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...
 
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)
 
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...
 
リチウムイオンキャパシタのシンプルモデル(PSpice)
リチウムイオンキャパシタのシンプルモデル(PSpice)リチウムイオンキャパシタのシンプルモデル(PSpice)
リチウムイオンキャパシタのシンプルモデル(PSpice)
 
ニッケル水素電池のシンプルモデル(PSpice)
ニッケル水素電池のシンプルモデル(PSpice) ニッケル水素電池のシンプルモデル(PSpice)
ニッケル水素電池のシンプルモデル(PSpice)
 
Photovoltaic By-Pass Diodes Simulation
Photovoltaic By-Pass Diodes SimulationPhotovoltaic By-Pass Diodes Simulation
Photovoltaic By-Pass Diodes Simulation
 
SPICE Model of Fuse
SPICE Model of FuseSPICE Model of Fuse
SPICE Model of Fuse
 

Ähnlich wie PSpiceによるバッテリー回路アプリケーション

3.リチウムイオン電池のスパイスモデル
3.リチウムイオン電池のスパイスモデル3.リチウムイオン電池のスパイスモデル
3.リチウムイオン電池のスパイスモデルTsuyoshi Horigome
 
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料spicepark
 
SPICE活用入門 (02AUG2013)
SPICE活用入門 (02AUG2013)SPICE活用入門 (02AUG2013)
SPICE活用入門 (02AUG2013)Tsuyoshi Horigome
 
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)
LiFePO4 BatterySimplified SPICE Behavioral Model(PSpice Version)LiFePO4 BatterySimplified SPICE Behavioral Model(PSpice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)Tsuyoshi Horigome
 
4.ニッケル水素電池のスパイスモデル
4.ニッケル水素電池のスパイスモデル4.ニッケル水素電池のスパイスモデル
4.ニッケル水素電池のスパイスモデルTsuyoshi Horigome
 
DC/AC 3-Phase Inverter (LTspice Model)
DC/AC 3-Phase Inverter (LTspice Model) DC/AC 3-Phase Inverter (LTspice Model)
DC/AC 3-Phase Inverter (LTspice Model) Tsuyoshi Horigome
 
DC/AC 3-Phase Inverter (PSpice Model)
DC/AC 3-Phase Inverter (PSpice Model) DC/AC 3-Phase Inverter (PSpice Model)
DC/AC 3-Phase Inverter (PSpice Model) Tsuyoshi Horigome
 
PSpiceアプリケーションセミナー(モータアプリケーション回路)
PSpiceアプリケーションセミナー(モータアプリケーション回路)PSpiceアプリケーションセミナー(モータアプリケーション回路)
PSpiceアプリケーションセミナー(モータアプリケーション回路)Tsuyoshi Horigome
 
Simple model of DC Power Supply(LTspice)
Simple model of DC Power Supply(LTspice)Simple model of DC Power Supply(LTspice)
Simple model of DC Power Supply(LTspice)Tsuyoshi Horigome
 
Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)Tsuyoshi Horigome
 
Device Modeling of Lithium ion batteries 2009
Device Modeling of Lithium ion batteries 2009Device Modeling of Lithium ion batteries 2009
Device Modeling of Lithium ion batteries 2009Tsuyoshi Horigome
 
LTspiceのDCモーターシミュレーション事例
LTspiceのDCモーターシミュレーション事例LTspiceのDCモーターシミュレーション事例
LTspiceのDCモーターシミュレーション事例Tsuyoshi Horigome
 
1.DC電源モデルのシンプルモデル
1.DC電源モデルのシンプルモデル1.DC電源モデルのシンプルモデル
1.DC電源モデルのシンプルモデルTsuyoshi Horigome
 
Simple model of DC Power Supply(PSpice)
Simple model of DC Power Supply(PSpice)Simple model of DC Power Supply(PSpice)
Simple model of DC Power Supply(PSpice)Tsuyoshi Horigome
 
Ni-MH battery (LTspice simplified Model)
Ni-MH battery (LTspice simplified Model)Ni-MH battery (LTspice simplified Model)
Ni-MH battery (LTspice simplified Model)Tsuyoshi Horigome
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書spicepark
 
Li-ion Capacitor Model (Simplified Model) PSpice Version
Li-ion Capacitor Model (Simplified Model) PSpice VersionLi-ion Capacitor Model (Simplified Model) PSpice Version
Li-ion Capacitor Model (Simplified Model) PSpice VersionTsuyoshi Horigome
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitTsuyoshi Horigome
 

Ähnlich wie PSpiceによるバッテリー回路アプリケーション (20)

3.リチウムイオン電池のスパイスモデル
3.リチウムイオン電池のスパイスモデル3.リチウムイオン電池のスパイスモデル
3.リチウムイオン電池のスパイスモデル
 
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
 
SPICE活用入門 (02AUG2013)
SPICE活用入門 (02AUG2013)SPICE活用入門 (02AUG2013)
SPICE活用入門 (02AUG2013)
 
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)
LiFePO4 BatterySimplified SPICE Behavioral Model(PSpice Version)LiFePO4 BatterySimplified SPICE Behavioral Model(PSpice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)
 
4.ニッケル水素電池のスパイスモデル
4.ニッケル水素電池のスパイスモデル4.ニッケル水素電池のスパイスモデル
4.ニッケル水素電池のスパイスモデル
 
DC/AC 3-Phase Inverter (LTspice Model)
DC/AC 3-Phase Inverter (LTspice Model) DC/AC 3-Phase Inverter (LTspice Model)
DC/AC 3-Phase Inverter (LTspice Model)
 
DC/AC 3-Phase Inverter (PSpice Model)
DC/AC 3-Phase Inverter (PSpice Model) DC/AC 3-Phase Inverter (PSpice Model)
DC/AC 3-Phase Inverter (PSpice Model)
 
PSpiceアプリケーションセミナー(モータアプリケーション回路)
PSpiceアプリケーションセミナー(モータアプリケーション回路)PSpiceアプリケーションセミナー(モータアプリケーション回路)
PSpiceアプリケーションセミナー(モータアプリケーション回路)
 
Simple model of DC Power Supply(LTspice)
Simple model of DC Power Supply(LTspice)Simple model of DC Power Supply(LTspice)
Simple model of DC Power Supply(LTspice)
 
Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)
 
Device Modeling of Lithium ion batteries 2009
Device Modeling of Lithium ion batteries 2009Device Modeling of Lithium ion batteries 2009
Device Modeling of Lithium ion batteries 2009
 
MEC201-10P SPICE Model
MEC201-10P SPICE ModelMEC201-10P SPICE Model
MEC201-10P SPICE Model
 
D1113 hitachi ignition
D1113 hitachi  ignitionD1113 hitachi  ignition
D1113 hitachi ignition
 
LTspiceのDCモーターシミュレーション事例
LTspiceのDCモーターシミュレーション事例LTspiceのDCモーターシミュレーション事例
LTspiceのDCモーターシミュレーション事例
 
1.DC電源モデルのシンプルモデル
1.DC電源モデルのシンプルモデル1.DC電源モデルのシンプルモデル
1.DC電源モデルのシンプルモデル
 
Simple model of DC Power Supply(PSpice)
Simple model of DC Power Supply(PSpice)Simple model of DC Power Supply(PSpice)
Simple model of DC Power Supply(PSpice)
 
Ni-MH battery (LTspice simplified Model)
Ni-MH battery (LTspice simplified Model)Ni-MH battery (LTspice simplified Model)
Ni-MH battery (LTspice simplified Model)
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
 
Li-ion Capacitor Model (Simplified Model) PSpice Version
Li-ion Capacitor Model (Simplified Model) PSpice VersionLi-ion Capacitor Model (Simplified Model) PSpice Version
Li-ion Capacitor Model (Simplified Model) PSpice Version
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC Circuit
 

Mehr von Tsuyoshi Horigome

Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )Tsuyoshi Horigome
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Tsuyoshi Horigome
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )Tsuyoshi Horigome
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Tsuyoshi Horigome
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )Tsuyoshi Horigome
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Tsuyoshi Horigome
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Tsuyoshi Horigome
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspiceTsuyoshi Horigome
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is ErrorTsuyoshi Horigome
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintTsuyoshi Horigome
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsTsuyoshi Horigome
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hiresTsuyoshi Horigome
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Tsuyoshi Horigome
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Tsuyoshi Horigome
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)Tsuyoshi Horigome
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモTsuyoshi Horigome
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?Tsuyoshi Horigome
 
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)Tsuyoshi Horigome
 
SPICE PARK JAN2024 (6,665 SPICE Models)
SPICE PARK JAN2024 (6,665 SPICE Models)SPICE PARK JAN2024 (6,665 SPICE Models)
SPICE PARK JAN2024 (6,665 SPICE Models)Tsuyoshi Horigome
 

Mehr von Tsuyoshi Horigome (20)

Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?
 
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
 
SPICE PARK JAN2024 (6,665 SPICE Models)
SPICE PARK JAN2024 (6,665 SPICE Models)SPICE PARK JAN2024 (6,665 SPICE Models)
SPICE PARK JAN2024 (6,665 SPICE Models)
 

Kürzlich hochgeladen

Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clashcharlottematthew16
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxhariprasad279825
 

Kürzlich hochgeladen (20)

Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clash
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptx
 

PSpiceによるバッテリー回路アプリケーション

  • 2. 2 Copyright (C) Bee Technologies Inc. 2010
  • 3. モデル デザインキット回路方式のテンプレート 回路解析シミュレータPSpice (ABMライブラリーが豊富) 3 Copyright (C) Bee Technologies Inc. 2010 ABM=Analog Behavior Model
  • 4. Copyright (C) Bee Technologies Inc. 2010 4 http://www.bee-tech.com/
  • 6. Copyright (C) Bee Technologies Inc. 2010 6 Bee Style: http://www.spicepark.com/スパイス・パークのログイン後トップページにて、PDFでバックナンバーも含めPDF形式で参照及びダウンロード出来ます。
  • 7. バッテリーのスパイスモデルの推移 7 Copyright (C) Bee Technologies Inc. 2010 リチウムイオン電池ニッケル水素電池 鉛蓄電池
  • 8. 8 Copyright (C) Bee Technologies Inc. 2010
  • 9. Design Kit PV Li-Ion Battery System 9 Copyright (C) Bee Technologies Inc. 2010
  • 10.
  • 14. Charging time......................5[hours] (Approximately)1.1 Lithium-Ion Batteries Pack Specification 10 Copyright (C) Bee Technologies Inc. 2010
  • 15. 1.2 Discharge Time Characteristics 0.2C ( 880 mA ) 0.5C ( 2200 mA ) 1C ( 4400 mA ) TSCALE=3600 means time Scale (Simulation time : Real time) is 1:3600 Batteries Pack Model Parameters NS (number of batteries in series) = 4 cells C (capacity) = 4400 mA SOC1 (initial state of charge) = 100% TSCALE (time scale) , simulation : real time 1 : 3600s or 1s : 1h Discharge Rate : 0.2C(880mA), 0.5C(2200mA), and 1C(4400mA) 11 Copyright (C) Bee Technologies Inc. 2010
  • 16. 1.3 Single Cell Discharge Characteristics Single cell discharge characteristics are compared between measurement data and simulation data. Single cell Measurement Simulation 12 Copyright (C) Bee Technologies Inc. 2010
  • 17. 1.4 Charge Time Characteristics SOC [%] Vbatt [V] ICharge [A] Batteries Pack Model Parameters NS (number of batteries in series) = 4 cells C (capacity) = 4400 mA SOC1 (initial state of charge) = 100% TSCALE (time scale) , simulation : real time 1 : 3600s or 1s : 1h Charger Adaptor Input Voltage = 20.5 Vdc Input Current = 880 mA(max.) 13 Copyright (C) Bee Technologies Inc. 2010
  • 18.
  • 19. Voltage at Pmax (Vmp).............16.8[V]
  • 20. Current at Pmax (Imp)...............1.78[A]
  • 22. Open-circuit voltage(Voc)...........21.0[V]2.1 Solar Cells Specification 502mm 595mm 14 Copyright (C) Bee Technologies Inc. 2010
  • 23. 2.2 Output Characteristics vs. Incident Solar Radiation SX330 Output Characteristics vs. Incident Solar Radiation SOL=1 Current (A) SOL=0.5 SOL=0.16 SOL=1 Power (W) Parameter, SOL is added as normalized incident radiation, where SOL=1 for AM1.5 conditions SOL=0.5 SOL=0.16 Voltage (V) 15 Copyright (C) Bee Technologies Inc. 2010
  • 24. 3. Solar Cell Battery Charger Solar Cell charges the Li-ion batteries pack (PBT-BAT-001) with direct connect technique. Choose the solar cell that is able to provide current at charging rate or more with the maximum power voltage (Vmp) nears the batteries pack charging voltage. PBT-BAT-0001 (Li-ion batteries pack) Charging time is approximately 5 hours with charging rate 0.2C or 880mA Voltage during charging with 0.2C is between 14.7 to 16.9 V 16.9 V 14.7 V 0.2C or 880mA 16 Copyright (C) Bee Technologies Inc. 2010
  • 25. 3.1 Concept of Simulation PV Li-Ion Battery Charger Circuit Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL 16.8V Clamp Circuit Lithium-Ion Batteries Pack Photovoltaic Module PBT-BAT-0001 (BAYSUN) DC12.8~16.4V (4 cells) 4400mAh SX 330 (BP Solar) Vmp=16.8V Pmax=30W 17 Copyright (C) Bee Technologies Inc. 2010
  • 26. 3.2 PV Li-Ion Battery Charger Circuit Input value between 0-1 in the “PARAMETERS: sol = ” to set the normalized incident radiation, where SOL=1 for AM1.5 conditions. 18 Copyright (C) Bee Technologies Inc. 2010
  • 27. 3.3 Charging Time Characteristics vs. Weather Condition Simulation result shows the charging time for sol = 1, 0.5, and 0.16. sol = 1.00 sol = 0.50 sol = 0.16 19 Copyright (C) Bee Technologies Inc. 2010
  • 28. 3.4 Concept of Simulation PV Li-Ion Battery Charger Circuit + Constant Current Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL 16.8V Clamp Circuit Lithium-Ion Batteries Pack Photovoltaic Module Constant Current Control Circuit PBT-BAT-0001 (BAYSUN) DC12.8~16.4V (4 cells) 4400mAh SX 330 (BP Solar) Vmp=16.8V Pmax=30W Icharge=0.2C (880mA) 20 Copyright (C) Bee Technologies Inc. 2010
  • 29. 3.5 Constant Current PV Li-Ion Battery Charger Circuit Input the battery capacity (Ah) and charging current rate (e.g. 0.2*CAh) in the “PARAMETERS: CAh = 4400m and rate = 0.2 ” to set the charging current. 21 Copyright (C) Bee Technologies Inc. 2010
  • 30. 3.6 Charging Time Characteristics vs. Weather Condition(Constant Current) Simulation result shows the charging time for sol = 1, 0.5, and 0.16. If PV can generate current more than the constant charge rate (0.2A), battery can be fully charged in about 5 hour. sol = 1.00 sol = 0.50 sol = 0.16 22 Copyright (C) Bee Technologies Inc. 2010
  • 31. 4.1 Concept of Simulation PV Li-Ion Battery System in 24hr. Over Voltage Protection Circuit The model contains 24hr. solar power data (example). 16.8V Clamp Circuit Photovoltaic Module Lithium-Ion Batteries Pack Low-Voltage Shutdown Circuit PBT-BAT-0001 (BAYSUN) DC12.8~16.4V (4 cells) 4400mAh SX 330 (BP Solar) Vmp=16.8V Pmax=30W Vopen= (V) Vclose= (V) DC/DC Converter DC Load VIN = 5V IIN = 1.5A VIN=10~18V VOUT=5V 23 Copyright (C) Bee Technologies Inc. 2010
  • 32. 4.2 Short-Circuit Current vs. Time (24hr.) Short-circuit current vs. time characteristics of photovoltaic module SX330 for 24hours as the solar power profile (example) is included to the model. The model contains 24hr. solar power data (example). 24 Copyright (C) Bee Technologies Inc. 2010
  • 33. 4.3 PV-Battery System Simulation Circuit Solar cell model with 24hr. solar power data. Set initial battery voltage, IC=16.4, for convergence aid. SOC1 value is initial State Of Charge of the battery, is set as 70% of full voltage. Lopen value is load shutdown voltage. Lclose value is load reconnect voltage 7.5W Load (5Vx1.5A).  Simulation at 15W load, change I1 from 1.5A to 3A 25 Copyright (C) Bee Technologies Inc. 2010 DCDCコンバータの簡易モデル DCACコンバータの簡易モデルもあります。
  • 34.
  • 35.
  • 36.
  • 37.
  • 38. .Options ITL4=100029 Copyright (C) Bee Technologies Inc. 2010
  • 39.
  • 40. 4.3.4 Simulation Result (Example of Conclusion) If initial SOC is 100%, this system will never shutdown. If initial SOC is 70%, this system will shutdown after 5.185 hours (about 5:11AM.). system load will reconnect again at 7:40AM (Morning). If initial SOC is 30%, this system will shutdown after 1.633 hours (about 1:38AM.). system load will reconnect again at 7:37AM (Morning). If initial SOC is 10%, this system will start shutdown. this system will reconnect again at 7:37AM (Morning). With the PV generated current profile, battery will fully charged in about 4.25 hours. 31 Copyright (C) Bee Technologies Inc. 2010 The simulation start from midnight(time=0). The system supplies DC load 7.5W.
  • 41. 4.3.4 Simulation Result (Example of Conclusion) If initial SOC is 100%, this system will shutdown after 3.897 hours (about 3:54AM.). system load will reconnect again at 7:37AM (Morning). this system will shutdown again at 8:28 PM (Night). With the PV generated current profile, battery will fully charged in about 5.5 hours. 32 Copyright (C) Bee Technologies Inc. 2010 The simulation start from midnight(time=0). The system supplies DC load 15W.
  • 42. Bee Technologies Group デバイスモデリング スパイス・パーク(スパイスモデル・ライブラリー)  デザインキット デバイスモデリング教材 【本社】 株式会社ビー・テクノロジー 〒105-0012 東京都港区芝大門二丁目2番7号 7セントラルビル4階 代表電話: 03-5401-3851 設立日:2002年9月10日 資本金:8,830万円 【子会社】 Bee Technologies Corporation (アメリカ) Siam Bee Technologies Co.,Ltd. (タイランド) お問合わせ先) info@bee-tech.com 33 Copyright (C) Bee Technologies Inc. 2010 本ドキュメントは予告なき変更をする場合がございます。 ご了承下さい。また、本文中に登場する製品及びサービスの名称は全て関係各社または個人の各国における商標または登録商標です。本原稿に関するお問い合わせは、当社にご連絡下さい。