SlideShare ist ein Scribd-Unternehmen logo
1 von 70
Copyright (C) Bee Technologies Inc. 2011 1 SPICEの活用方法 「コンセプトキット」でパラメータベース・シミュレーション 1.PWM Buck Converter Average Model←[DEMO] フィードバック制御におけるアベレージモデルを活用した 位相余裕度のシミュレーションの活用方法を解説していきます。2.ステッピングモータのコンセプトキット [事例紹介]2.1 ユニポーラ・ステッピングモーター制御回路2.2 バイポーラ・ステッピングモーター制御回路 2011年1月28日(金曜日) 株式会社ビー・テクノロジーhttp://www.bee-tech.com/horigome@bee-tech.com
コンセプトキットの位置付け Copyright (C) Bee Technologies Inc. 2011 2 [スパイスモデル]デバイスモデリングサービス(58種類のデバイスモデリング) スパイス・パーク www.spicepark.com シンプルモデル(NEW)←ブロックベースのスパイスモデル [デザインキット]回路方式のテンプレート コンセプトキット(NEW)←(概念設計のテンプレート) デザインキット(各回路方式のテンプレート) 回路解析シミュレータSpice 系回路解析シミュレータPSpice,LTspice,MultiSim,MicroCap,HSPICE,SmartSPICE,Simplorer, and so on
コンセプトキットとは Copyright (C) Bee Technologies Inc. 2011 3
デザインキット Copyright (C) Bee Technologies Inc. 2011 4 要望が多いインバータ回路方式を中心に20種類の新製品を開発中。
Concept Kit:PWM Buck Converter Average Model Copyright (C) Bee Technologies Inc. 2011 5
Contents Concept of Simulation Buck Converter Circuit Averaged Buck Switch Model Buck Regulator Design Workflow Setting PWM Controller’s Parameters. Programming Output Voltage: Rupper, Rlower Inductor Selection: L Capacitor Selection: C, ESR Stabilizing the Converter (Example) Load Transient Response Simulation (Example) Appendix Type 2 Compensation Calculation using Excel Feedback Loop Compensators Simulation Index Copyright (C) Bee Technologies Inc. 2011 6
Copyright (C) Bee Technologies Inc. 2011 7 Concept of Simulation Block Diagram: Power Switches Averaged Buck Switch Model Filter & Load Parameter: ,[object Object]
C
ESR
RloadPWM Controller  (Voltage Mode Control) Parameter: ,[object Object]
VREFVOUT VREF Models:
Buck Converter Circuit Copyright (C) Bee Technologies Inc. 2011 8 Power Switches Filter & Load PWM Controller
Averaged Buck Switch Model ,[object Object]
Transfer function of the model is vout = d  vin ,[object Object],iin = d  iout Copyright (C) Bee Technologies Inc. 2011 9
Buck Regulator Design Workflow  Copyright (C) Bee Technologies Inc. 2011 10 Setting PWM Controller’s Parameters: VREF, VP 1 Setting Output Voltage: Rupper, Rlower 2 Inductor Selection: L 3 Capacitor Selection: C, ESR 4 Stabilizing the Converter: R2, C1, C2 ,[object Object]
Step2: Set C1=1kF, C2=1fF, (always keep the default value) and R2= calculated value (Rupper//Rlower) as the initial values.
Step3: Select a crossover frequency (about 10kHz or fc < fosc/4). Then complete the table.
Step4: Read the Gain and Phase value at the crossover frequency (10kHz) from the Bode plot, Then put the values to the table
Step5: Select the phase margin at the fc ( > 45 ). Then change the K value until it gives the satisfied phase margin, for this example K=6 is chosen for Phase margin = 46.
Remark: If K-factor fail to gives the satisfied phase margin, Increase the output capacitor C then try Step1 to Step5 again.5 Load Transient Response Simulation 6
Buck Regulator Design Workflow  Copyright (C) Bee Technologies Inc. 2011 11 3 4 5 2 1
[object Object]
VP=  (Error Amp. Gain  vFB ) / d
vFB = vFBH – vFBL
d = dMAX – dMIN
Error Amp. Gain is 100 (approximated)	where VP is the sawtooth peak voltage. vFBH is maximum FB voltage where d = 0 vFBL is minimum FB voltage where d =1(100%) dMAX is maximum duty cycle, e.g. d = 0(0%) dMIN is minimum duty cycle, e.g. d =1(100%) Setting PWM Controller’s Parameters Copyright (C) Bee Technologies Inc. 2011 12 1 The PWM block is used to transfer the error voltage (between FB and REF) to be the duty cycle.  If vFBH and vFBLare not provided, the default value, VP=2.5 could be used.
Copyright (C) Bee Technologies Inc. 2011 13 Setting PWM Controller’s Parameters (Example) 1  If the VP ( sawtooth signal amplitude ) does not informed by the datasheet, It can be approximated from the characteristics below. from VP=  (Error Amp. Gain  vFB )/d Error Amp. Gain = 100 (approximated) from the graph on the left, vFB= 25mV (15m - (-10m)) d = 1 – 0 = 1 VP	≈  ( 100  25mV )/1 	     	≈  2.5V vFBH vFB = 25mV vFBL d = 1 (100%) dMIN dMAX LM2575: Feedback Voltage vs. Duty Cycle  If vFBH and vFBLare not provided, the default value, VP=2.5 could be used.
Use the following formula to select the resistor values. ,[object Object],Example Given: 	VOUT = 5V 		VREF = 1.23 Rlower = 1k then:	Rupper = 3.065k Setting Output Voltage: Rupper, Rlower Copyright (C) Bee Technologies Inc. 2011 14 2
Inductor Selection: L Copyright (C) Bee Technologies Inc. 2011 15 Inductor Value The output inductor value is selected to set the converter to work in CCM (Continuous Current Mode) or DCM (Discontinuous Current Mode). Calculated by Where ,[object Object]
VI,max is input maximum voltage
RL,min is load resistance at the minimum output current ( IOUT,min )
fosc is switching frequency3
Inductor Selection: L (Example) Copyright (C) Bee Technologies Inc. 2011 16 Inductor Value from Given:  VI,max = 40V, VOUT = 5V IOUT,min = 0.2A RL,min = (VOUT /IOUT,min ) = 25 fosc = 52kHz Then: LCCM 210(uH),  L = 330(uH) is selected 3
Capacitor Selection: C, ESR Copyright (C) Bee Technologies Inc. 2011 17 Capacitor Value The minimum allowable output capacitor value should be determined by Where VI, max is the maximum input voltage. L (H) is the inductance calculated from previous step (       ). ,[object Object],4 3
Capacitor Selection: C, ESR (Example) Copyright (C) Bee Technologies Inc. 2011 18 Capacitor Value From and Given: VI, max = 40 V VOUT = 5 V L (H)  = 330 Then: C 188 (F) In addition: ESR 100m 4
Copyright (C) Bee Technologies Inc. 2011 19 Stabilizing the Converter 5 H(s) G(s) ,[object Object],GPWM The purpose of the compensator G(s)is to tailor the converter loop gain (frequency response) to make it stable when operated in closed-loop conditions.
Stabilizing the Converter  (Example) Copyright (C) Bee Technologies Inc. 2011 20 5 Specification: VOUT = 5V VIN = 7 ~ 40V ILOAD = 0.2 ~ 1A PWM Controller: VREF = 1.23V VP = 2.5V fOSC = 52kHz Rlower = 1k, Rupper = 3.1k, L = 330uH,  C = 330uF (ESR = 100m) Task: ,[object Object],G(s) 1 e.g. Given values from National Semiconductor Corp. IC: LM2575  2 3 4
Copyright (C) Bee Technologies Inc. 2011 21 Stabilizing the Converter  (Example) 5 The element of the Type 2 compensator ( R2, C1, and C2 ), that stabilize the converter, can be extracted by using Type 2 Compensator Calculator (Excel sheet) and open-loop simulation with the Average Switch Models (ac models). Step2 Set C1=1kF, C2=1fF, and R2=calculated value (Rupper//Rlower) as the initial values. Step1 Open the loop with LoL=1kH and CoL=1kF then inject an AC signal to generate Bode plot.  C1=1kF is AC shorted, and C2 1fF is AC opened (or Error-Amp without compensator).
Stabilizing the Converter  (Example) Copyright (C) Bee Technologies Inc. 2011 22 5 Step3 Select a crossover frequency (about 10kHz or fc < fosc/4 ), for this example, 10kHz is selected. Then complete the table. values from  2 Calculated value of the Rupper//Rlower values from  1
Copyright (C) Bee Technologies Inc. 2011 23 Stabilizing the Converter  (Example) 5 Gain: T(s) = H(s)GPWM Step4 Read the Gain and Phase value at the crossover frequency(10kHz) from the Bode plot, Then put the values to the table. Phase  atfc Tip: To bring cursor to the fc = 10kHz  type “ sfxv(10k) ” in Search Command. Cursor Search
Stabilizing the Converter  (Example) Copyright (C) Bee Technologies Inc. 2011 24 5 Step5 Select the phase margin  at fc (> 45 ). Then change the K value (start from K=2) until it gives the satisfied phase margin, for this example K=6 is chosen for Phase margin = 46. As the result; R2, C1, and C2 are calculated. Remark: If K-factor fail to gives the satisfied phase margin, Increase the output capacitor C then try Step1 to Step5 again.  K Factor enable the circuit designer to choose a loop cross-over frequency and phase margin, and then determine the necessary component values to achieve these results. A very big K value (e.g. K > 100) acts like no compensator (C1 is shorted and C2 is opened).
Stabilizing the Converter  (Example) Copyright (C) Bee Technologies Inc. 2011 25 5 The element of the Type 2 compensator ( R2, C1, and C2 ) extraction can be completed by  Type 2 Compensator Calculator (Excel sheet) with the converter average models (ac models) and open-loop simulation. The calculated values of the type 2 elements are, R2=122.780k, C1=0.778nF, and C2=21.6pF. *Analysis directives:  .AC DEC 100 0.1 10MEG
Copyright (C) Bee Technologies Inc. 2011 26 Stabilizing the Converter  (Example) 5 Gain and Phase responses after stabilizing Gain: T(s) = H(s) G(s)GPWM Phase  atfc Phase margin = 45.930 at the cross-over frequency - fc = 9.778kHz. Tip: To bring cursor to the cross-over point (gain = 0dB)  type “ sfle(0) ” in Search Command. Cursor Search
Load Transient Response Simulation (Example) Copyright (C) Bee Technologies Inc. 2011 27 The converter, that have been stabilized, are connected with step-load to perform load transient response simulation. 5V/2.5 = 0.2A step to 0.2+0.8=1.0A load *Analysis directives:  .TRAN  0 20ms 0 1u
Simulation Measurement Copyright (C) Bee Technologies Inc. 2011 28 Load Transient Response Simulation (Example) Output Voltage Change Load Current ,[object Object],[object Object]
Copyright (C) Bee Technologies Inc. 2011 30 B. Feedback Loop Compensators Type1 Compensator Type2 Compensator Type2a Compensator Type2b Compensator Type3 Compensator
Copyright (C) Bee Technologies Inc. 2011 31 C. Simulation Index Libraries : ..ucksw.lib ..wm_ctr.lib Tool : ,[object Object],[object Object]
Copyright (C) Bee Technologies Inc. 2011 33 Unipolar Stepping Motor Drive Circuit
Copyright (C) Bee Technologies Inc. 2011 34 1.Concept of Simulation Block Diagram: Driver Unit: (e.g. Hysteresis-Based Controller) Parameter: ,[object Object]
HYSSwitches (e.g. FET, Diode) Parameter: ,[object Object],Control Unit  (e.g. Microcontroller) Sequence: ,[object Object]
Two-Phase
Half-StepStepping Motor Parameter: ,[object Object]
RModels:
2.Unipolar Stepping Motor Drive Circuit Copyright (C) Bee Technologies Inc. 2011 35 Signal generator Hysteresis Based Current Controller Switches Supply Voltage Unipolar Stepping Motor
3.Unipolar Stepping Motor  Copyright (C) Bee Technologies Inc. 2011 36 The electrical equivalent circuit of each phase consists of an inductance of the phase winding series with resistance. The inductance is ideal (without saturation characteristics and the mutual inductance between phases) The motor back EMF is set as zero to simplified the model parameters extraction. Input the inductance and resistance values (parameter: L, R) of the stepping motor, that are usually provided by the manufacturer datasheet, to generally model the phase winding.
4.Switches  Copyright (C) Bee Technologies Inc. 2011 37 A near-ideal DIODE can be modeled by using spice primitive model (D), which parameter: N=0.01 RS=0. A near-ideal MOSFET can be modeled by using PSpice VSWITCH that is voltage controlled switch.  The parameter RON represents Rds(on) characteristics of MOSFET, that are usually provide by the manufacturer datasheet. The value could be about 10m to 10 ohm.
5.Signal Generator The signal generators are used as a microcontroller capable of generating step pulses and direction signals for the driver. There are 3 useful stepping sequences to control unipolar stepping motor Copyright (C) Bee Technologies Inc. 2011 38 One-Phase (Wave Drive) ,[object Object]
Assures the accuracy regardless of the winding imbalance.Two-Phase (Hi-Torque) ,[object Object]
Offers an improved torque-speed result and greater holding torque.Input PPS (Pulse Per Second) as a clock pulse speed(frequency). Half-Step ,[object Object]
Reduces motor resonance which could cause a motor to stall at a resonant frequency.
Please note that this sequence is 8 steps.,[object Object]
5.2 Two-Phase Sequence Copyright (C) Bee Technologies Inc. 2011 40 Clock Phase A ON Phase /A ON Phase B ON Phase /B ON ON 1 Sequence
5.3 Half-Step Sequence Copyright (C) Bee Technologies Inc. 2011 41 Clock Phase A ON Phase /A ON Phase B ON Phase /B ON 1 Sequence
6.Hysteresis-Based Current Controller Copyright (C) Bee Technologies Inc. 2011 42 Controlled by the signal from the microcontroller. Generate the switch (MOSFET) drive signal by comparing the measured phase current with their references. Input the reference value at the I_SET (e.g. I_SET=0.5A) to set the regulated current level. The hysteresis current value is set at the VHYS (e.g. VHYS=0.1A).
7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies Inc. 2011 43 One-Phase Step Sequence Generator (100 pps)  *Analysisdirectives:  .TRAN  0 40ms 0 10u
7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies Inc. 2011 44 Clock Phase A Current I_HYS=0.1A I_SET=0.5A Phase /A Current Phase B Current Phase /B Current
7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies Inc. 2011 45 Two-Phase Step Sequence Generator (100 pps)  *Analysisdirectives:  .TRAN  0 40ms 0 10u SKIPBP  .OPTIONS ITL4= 40
7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies Inc. 2011 46 Clock Phase A Current I_HYS=0.1A I_SET=0.5A Phase /A Current Phase B Current Phase /B Current
7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies Inc. 2011 47 Half-Phase Step Sequence Generator (100 pps)  *Analysisdirectives:  .TRAN  0 80ms 0 10u SKIPBP  .OPTIONS ITL4= 40
7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies Inc. 2011 48 Clock Phase A Current I_HYS=0.1A I_SET=0.5A Phase /A Current Phase B Current Phase /B Current

Weitere ähnliche Inhalte

Was ist angesagt?

RM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_FinalRM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_Final
imranbashir
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)
aicdesign
 
Lect2 up210 (100327)
Lect2 up210 (100327)Lect2 up210 (100327)
Lect2 up210 (100327)
aicdesign
 
EC 8395 - Communication Engineering - Unit 3 m - ary signaling
EC 8395 - Communication Engineering - Unit 3   m - ary signalingEC 8395 - Communication Engineering - Unit 3   m - ary signaling
EC 8395 - Communication Engineering - Unit 3 m - ary signaling
KannanKrishnana
 
D Belver FEE for Trasgos
D Belver  FEE for TrasgosD Belver  FEE for Trasgos
D Belver FEE for Trasgos
Miguel Morales
 
Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料
spicepark
 

Was ist angesagt? (20)

FinalReport
FinalReportFinalReport
FinalReport
 
All Digital Phase Lock Loop 03 12 09
All Digital Phase Lock Loop 03 12 09All Digital Phase Lock Loop 03 12 09
All Digital Phase Lock Loop 03 12 09
 
RM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_FinalRM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_Final
 
DPLL PRESENTATION
DPLL PRESENTATIONDPLL PRESENTATION
DPLL PRESENTATION
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)
 
Lect2 up210 (100327)
Lect2 up210 (100327)Lect2 up210 (100327)
Lect2 up210 (100327)
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1]
 
AM - Modulator and Demodulator
AM - Modulator and DemodulatorAM - Modulator and Demodulator
AM - Modulator and Demodulator
 
Lec4 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- CMOS
Lec4 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- CMOSLec4 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- CMOS
Lec4 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- CMOS
 
Virtual machines - how they work
Virtual machines - how they workVirtual machines - how they work
Virtual machines - how they work
 
EC 8395 - Communication Engineering - Unit 3 m - ary signaling
EC 8395 - Communication Engineering - Unit 3   m - ary signalingEC 8395 - Communication Engineering - Unit 3   m - ary signaling
EC 8395 - Communication Engineering - Unit 3 m - ary signaling
 
D Belver FEE for Trasgos
D Belver  FEE for TrasgosD Belver  FEE for Trasgos
D Belver FEE for Trasgos
 
Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料
 
Pll Basic
Pll BasicPll Basic
Pll Basic
 
Data converter modelingの参考資料1
Data converter modelingの参考資料1Data converter modelingの参考資料1
Data converter modelingの参考資料1
 
PMS Motor of Simple Model using LTspice
PMS Motor of Simple Model using LTspicePMS Motor of Simple Model using LTspice
PMS Motor of Simple Model using LTspice
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power Amplifier
 
RF_Amplifier_Design
RF_Amplifier_DesignRF_Amplifier_Design
RF_Amplifier_Design
 

Ähnlich wie 「SPICEの活用方法」セミナー資料(28JAN2011) PPT

Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)
Tsuyoshi Horigome
 
EE452_Flyback Convert
EE452_Flyback ConvertEE452_Flyback Convert
EE452_Flyback Convert
ki hei chan
 
Small signal analysis based closed loop control of buck converter
Small signal analysis based closed loop control of buck converterSmall signal analysis based closed loop control of buck converter
Small signal analysis based closed loop control of buck converter
Ramaraochowdary Kantipudi
 
Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applications
cuashok07
 
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)
Sarah Krystelle
 
Pulse amplitude modulation
Pulse amplitude modulationPulse amplitude modulation
Pulse amplitude modulation
Vishal kakade
 

Ähnlich wie 「SPICEの活用方法」セミナー資料(28JAN2011) PPT (20)

PWM Buck Converter using Average Model
PWM Buck Converter using Average ModelPWM Buck Converter using Average Model
PWM Buck Converter using Average Model
 
PWM Step-down Converter(NJM2309)
PWM Step-down Converter(NJM2309)PWM Step-down Converter(NJM2309)
PWM Step-down Converter(NJM2309)
 
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
 
ACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docxACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docx
 
ADC LAB MANUAL.docx
ADC LAB MANUAL.docxADC LAB MANUAL.docx
ADC LAB MANUAL.docx
 
Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)
 
Time response of first order systems and second order systems
Time response of first order systems and second order systemsTime response of first order systems and second order systems
Time response of first order systems and second order systems
 
EE452_Flyback Convert
EE452_Flyback ConvertEE452_Flyback Convert
EE452_Flyback Convert
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC Circuit
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
 
Small signal analysis based closed loop control of buck converter
Small signal analysis based closed loop control of buck converterSmall signal analysis based closed loop control of buck converter
Small signal analysis based closed loop control of buck converter
 
Chapter two Part two.pptx
Chapter two Part two.pptxChapter two Part two.pptx
Chapter two Part two.pptx
 
Ece 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op ampEce 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op amp
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC Circuit
 
Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applications
 
Chapter 09
Chapter 09Chapter 09
Chapter 09
 
ECE 626 project report Switched Capacitor
ECE 626 project report Switched CapacitorECE 626 project report Switched Capacitor
ECE 626 project report Switched Capacitor
 
Power amplifier.ppt
Power amplifier.pptPower amplifier.ppt
Power amplifier.ppt
 
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)
 
Pulse amplitude modulation
Pulse amplitude modulationPulse amplitude modulation
Pulse amplitude modulation
 

Mehr von Tsuyoshi Horigome

Mehr von Tsuyoshi Horigome (20)

FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
 
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 

Kürzlich hochgeladen

+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 

Kürzlich hochgeladen (20)

Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 

「SPICEの活用方法」セミナー資料(28JAN2011) PPT

  • 1. Copyright (C) Bee Technologies Inc. 2011 1 SPICEの活用方法 「コンセプトキット」でパラメータベース・シミュレーション 1.PWM Buck Converter Average Model←[DEMO] フィードバック制御におけるアベレージモデルを活用した 位相余裕度のシミュレーションの活用方法を解説していきます。2.ステッピングモータのコンセプトキット [事例紹介]2.1 ユニポーラ・ステッピングモーター制御回路2.2 バイポーラ・ステッピングモーター制御回路 2011年1月28日(金曜日) 株式会社ビー・テクノロジーhttp://www.bee-tech.com/horigome@bee-tech.com
  • 2. コンセプトキットの位置付け Copyright (C) Bee Technologies Inc. 2011 2 [スパイスモデル]デバイスモデリングサービス(58種類のデバイスモデリング) スパイス・パーク www.spicepark.com シンプルモデル(NEW)←ブロックベースのスパイスモデル [デザインキット]回路方式のテンプレート コンセプトキット(NEW)←(概念設計のテンプレート) デザインキット(各回路方式のテンプレート) 回路解析シミュレータSpice 系回路解析シミュレータPSpice,LTspice,MultiSim,MicroCap,HSPICE,SmartSPICE,Simplorer, and so on
  • 3. コンセプトキットとは Copyright (C) Bee Technologies Inc. 2011 3
  • 4. デザインキット Copyright (C) Bee Technologies Inc. 2011 4 要望が多いインバータ回路方式を中心に20種類の新製品を開発中。
  • 5. Concept Kit:PWM Buck Converter Average Model Copyright (C) Bee Technologies Inc. 2011 5
  • 6. Contents Concept of Simulation Buck Converter Circuit Averaged Buck Switch Model Buck Regulator Design Workflow Setting PWM Controller’s Parameters. Programming Output Voltage: Rupper, Rlower Inductor Selection: L Capacitor Selection: C, ESR Stabilizing the Converter (Example) Load Transient Response Simulation (Example) Appendix Type 2 Compensation Calculation using Excel Feedback Loop Compensators Simulation Index Copyright (C) Bee Technologies Inc. 2011 6
  • 7.
  • 8. C
  • 9. ESR
  • 10.
  • 12. Buck Converter Circuit Copyright (C) Bee Technologies Inc. 2011 8 Power Switches Filter & Load PWM Controller
  • 13.
  • 14.
  • 15.
  • 16. Step2: Set C1=1kF, C2=1fF, (always keep the default value) and R2= calculated value (Rupper//Rlower) as the initial values.
  • 17. Step3: Select a crossover frequency (about 10kHz or fc < fosc/4). Then complete the table.
  • 18. Step4: Read the Gain and Phase value at the crossover frequency (10kHz) from the Bode plot, Then put the values to the table
  • 19. Step5: Select the phase margin at the fc ( > 45 ). Then change the K value until it gives the satisfied phase margin, for this example K=6 is chosen for Phase margin = 46.
  • 20. Remark: If K-factor fail to gives the satisfied phase margin, Increase the output capacitor C then try Step1 to Step5 again.5 Load Transient Response Simulation 6
  • 21. Buck Regulator Design Workflow Copyright (C) Bee Technologies Inc. 2011 11 3 4 5 2 1
  • 22.
  • 23. VP= (Error Amp. Gain  vFB ) / d
  • 24. vFB = vFBH – vFBL
  • 25. d = dMAX – dMIN
  • 26. Error Amp. Gain is 100 (approximated) where VP is the sawtooth peak voltage. vFBH is maximum FB voltage where d = 0 vFBL is minimum FB voltage where d =1(100%) dMAX is maximum duty cycle, e.g. d = 0(0%) dMIN is minimum duty cycle, e.g. d =1(100%) Setting PWM Controller’s Parameters Copyright (C) Bee Technologies Inc. 2011 12 1 The PWM block is used to transfer the error voltage (between FB and REF) to be the duty cycle.  If vFBH and vFBLare not provided, the default value, VP=2.5 could be used.
  • 27. Copyright (C) Bee Technologies Inc. 2011 13 Setting PWM Controller’s Parameters (Example) 1  If the VP ( sawtooth signal amplitude ) does not informed by the datasheet, It can be approximated from the characteristics below. from VP= (Error Amp. Gain  vFB )/d Error Amp. Gain = 100 (approximated) from the graph on the left, vFB= 25mV (15m - (-10m)) d = 1 – 0 = 1 VP ≈ ( 100  25mV )/1 ≈ 2.5V vFBH vFB = 25mV vFBL d = 1 (100%) dMIN dMAX LM2575: Feedback Voltage vs. Duty Cycle  If vFBH and vFBLare not provided, the default value, VP=2.5 could be used.
  • 28.
  • 29.
  • 30. VI,max is input maximum voltage
  • 31. RL,min is load resistance at the minimum output current ( IOUT,min )
  • 32. fosc is switching frequency3
  • 33. Inductor Selection: L (Example) Copyright (C) Bee Technologies Inc. 2011 16 Inductor Value from Given: VI,max = 40V, VOUT = 5V IOUT,min = 0.2A RL,min = (VOUT /IOUT,min ) = 25 fosc = 52kHz Then: LCCM 210(uH), L = 330(uH) is selected 3
  • 34.
  • 35. Capacitor Selection: C, ESR (Example) Copyright (C) Bee Technologies Inc. 2011 18 Capacitor Value From and Given: VI, max = 40 V VOUT = 5 V L (H) = 330 Then: C 188 (F) In addition: ESR 100m 4
  • 36.
  • 37.
  • 38. Copyright (C) Bee Technologies Inc. 2011 21 Stabilizing the Converter (Example) 5 The element of the Type 2 compensator ( R2, C1, and C2 ), that stabilize the converter, can be extracted by using Type 2 Compensator Calculator (Excel sheet) and open-loop simulation with the Average Switch Models (ac models). Step2 Set C1=1kF, C2=1fF, and R2=calculated value (Rupper//Rlower) as the initial values. Step1 Open the loop with LoL=1kH and CoL=1kF then inject an AC signal to generate Bode plot.  C1=1kF is AC shorted, and C2 1fF is AC opened (or Error-Amp without compensator).
  • 39. Stabilizing the Converter (Example) Copyright (C) Bee Technologies Inc. 2011 22 5 Step3 Select a crossover frequency (about 10kHz or fc < fosc/4 ), for this example, 10kHz is selected. Then complete the table. values from 2 Calculated value of the Rupper//Rlower values from 1
  • 40. Copyright (C) Bee Technologies Inc. 2011 23 Stabilizing the Converter (Example) 5 Gain: T(s) = H(s)GPWM Step4 Read the Gain and Phase value at the crossover frequency(10kHz) from the Bode plot, Then put the values to the table. Phase  atfc Tip: To bring cursor to the fc = 10kHz type “ sfxv(10k) ” in Search Command. Cursor Search
  • 41. Stabilizing the Converter (Example) Copyright (C) Bee Technologies Inc. 2011 24 5 Step5 Select the phase margin at fc (> 45 ). Then change the K value (start from K=2) until it gives the satisfied phase margin, for this example K=6 is chosen for Phase margin = 46. As the result; R2, C1, and C2 are calculated. Remark: If K-factor fail to gives the satisfied phase margin, Increase the output capacitor C then try Step1 to Step5 again.  K Factor enable the circuit designer to choose a loop cross-over frequency and phase margin, and then determine the necessary component values to achieve these results. A very big K value (e.g. K > 100) acts like no compensator (C1 is shorted and C2 is opened).
  • 42. Stabilizing the Converter (Example) Copyright (C) Bee Technologies Inc. 2011 25 5 The element of the Type 2 compensator ( R2, C1, and C2 ) extraction can be completed by Type 2 Compensator Calculator (Excel sheet) with the converter average models (ac models) and open-loop simulation. The calculated values of the type 2 elements are, R2=122.780k, C1=0.778nF, and C2=21.6pF. *Analysis directives: .AC DEC 100 0.1 10MEG
  • 43. Copyright (C) Bee Technologies Inc. 2011 26 Stabilizing the Converter (Example) 5 Gain and Phase responses after stabilizing Gain: T(s) = H(s) G(s)GPWM Phase  atfc Phase margin = 45.930 at the cross-over frequency - fc = 9.778kHz. Tip: To bring cursor to the cross-over point (gain = 0dB) type “ sfle(0) ” in Search Command. Cursor Search
  • 44. Load Transient Response Simulation (Example) Copyright (C) Bee Technologies Inc. 2011 27 The converter, that have been stabilized, are connected with step-load to perform load transient response simulation. 5V/2.5 = 0.2A step to 0.2+0.8=1.0A load *Analysis directives: .TRAN 0 20ms 0 1u
  • 45.
  • 46. Copyright (C) Bee Technologies Inc. 2011 30 B. Feedback Loop Compensators Type1 Compensator Type2 Compensator Type2a Compensator Type2b Compensator Type3 Compensator
  • 47.
  • 48. Copyright (C) Bee Technologies Inc. 2011 33 Unipolar Stepping Motor Drive Circuit
  • 49.
  • 50.
  • 52.
  • 54. 2.Unipolar Stepping Motor Drive Circuit Copyright (C) Bee Technologies Inc. 2011 35 Signal generator Hysteresis Based Current Controller Switches Supply Voltage Unipolar Stepping Motor
  • 55. 3.Unipolar Stepping Motor Copyright (C) Bee Technologies Inc. 2011 36 The electrical equivalent circuit of each phase consists of an inductance of the phase winding series with resistance. The inductance is ideal (without saturation characteristics and the mutual inductance between phases) The motor back EMF is set as zero to simplified the model parameters extraction. Input the inductance and resistance values (parameter: L, R) of the stepping motor, that are usually provided by the manufacturer datasheet, to generally model the phase winding.
  • 56. 4.Switches Copyright (C) Bee Technologies Inc. 2011 37 A near-ideal DIODE can be modeled by using spice primitive model (D), which parameter: N=0.01 RS=0. A near-ideal MOSFET can be modeled by using PSpice VSWITCH that is voltage controlled switch. The parameter RON represents Rds(on) characteristics of MOSFET, that are usually provide by the manufacturer datasheet. The value could be about 10m to 10 ohm.
  • 57.
  • 58.
  • 59.
  • 60. Reduces motor resonance which could cause a motor to stall at a resonant frequency.
  • 61.
  • 62. 5.2 Two-Phase Sequence Copyright (C) Bee Technologies Inc. 2011 40 Clock Phase A ON Phase /A ON Phase B ON Phase /B ON ON 1 Sequence
  • 63. 5.3 Half-Step Sequence Copyright (C) Bee Technologies Inc. 2011 41 Clock Phase A ON Phase /A ON Phase B ON Phase /B ON 1 Sequence
  • 64. 6.Hysteresis-Based Current Controller Copyright (C) Bee Technologies Inc. 2011 42 Controlled by the signal from the microcontroller. Generate the switch (MOSFET) drive signal by comparing the measured phase current with their references. Input the reference value at the I_SET (e.g. I_SET=0.5A) to set the regulated current level. The hysteresis current value is set at the VHYS (e.g. VHYS=0.1A).
  • 65. 7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies Inc. 2011 43 One-Phase Step Sequence Generator (100 pps) *Analysisdirectives: .TRAN 0 40ms 0 10u
  • 66. 7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies Inc. 2011 44 Clock Phase A Current I_HYS=0.1A I_SET=0.5A Phase /A Current Phase B Current Phase /B Current
  • 67. 7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies Inc. 2011 45 Two-Phase Step Sequence Generator (100 pps) *Analysisdirectives: .TRAN 0 40ms 0 10u SKIPBP .OPTIONS ITL4= 40
  • 68. 7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies Inc. 2011 46 Clock Phase A Current I_HYS=0.1A I_SET=0.5A Phase /A Current Phase B Current Phase /B Current
  • 69. 7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies Inc. 2011 47 Half-Phase Step Sequence Generator (100 pps) *Analysisdirectives: .TRAN 0 80ms 0 10u SKIPBP .OPTIONS ITL4= 40
  • 70. 7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies Inc. 2011 48 Clock Phase A Current I_HYS=0.1A I_SET=0.5A Phase /A Current Phase B Current Phase /B Current
  • 71. 8.Drive Circuit Efficiency (%) Copyright (C) Bee Technologies Inc. 2011 49 Half-Phase Step Sequence Generator (100 pps) *Analysisdirectives: .TRAN 0 40ms 0ms 10u SKIPBP .STEP PARAM RON LIST 10m, 100m, 1 .OPTIONS ITL4= 40
  • 72. 8.Drive Circuit Efficiency (%) Copyright (C) Bee Technologies Inc. 2011 50 at switches Ron = 10m, (99.6%) at switches Ron = 100m, (99.3%) at switches Ron = 1,(95.9%) Note: Add trace 100*AVG(W(U1))/(-AVG(W(Vcc))) for the Efficiency.
  • 73. Copyright (C) Bee Technologies Inc. 2011 51 Bipolar Stepping Motor Drive Circuit
  • 74. Bipolar Stepping Motor Drive Circuit Contents Concept of Simulation Unipolar Stepping Motor Drive Circuit Unipolar Stepping Motor Switches Signal Generator Hysteresis-Based Current Controller Unipolar Stepping Motor Drive Circuit (Example) 7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A 7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A 7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Drive Circuit Efficiency Copyright (C) Bee Technologies Inc. 2011 52
  • 75.
  • 76.
  • 78.
  • 80. Signal generator Hysteresis Based Current Controller 2.Unipolar Stepping Motor Drive Circuit Copyright (C) Bee Technologies Inc. 2011 54 Bipolar Stepping Motor H-Bridge Switches (Driver) Supply Voltage
  • 81. 3.Bipolar Stepping Motor Copyright (C) Bee Technologies Inc. 2011 55 The electrical equivalent circuit of each phase consists of an inductance of the phase winding series with resistance. The inductance is ideal (without saturation characteristics and the mutual inductance between phases) The motor back EMF is set as zero to simplified the model parameters extraction. Input the inductance and resistance values (parameter: L, R) of the stepping motor, that are usually provided by the manufacturer datasheet, to generally model the phase winding.
  • 82. 4.Switches Copyright (C) Bee Technologies Inc. 2011 56 A near-ideal DIODE can be modeled by using spice primitive model (D), which parameter: N=0.01 RS=0. A near-ideal MOSFET can be modeled by using PSpice VSWITCH that is voltage controlled switch. MOSFETs are used as a H-Bridge. The parameter RON represents Rds(on) characteristics of MOSFET, that are usually provide by the manufacturer datasheet. The value could be about 10m to 10 ohm.
  • 83.
  • 84.
  • 85.
  • 86. Reduces motor resonance which could cause a motor to stall at a resonant frequency.
  • 87.
  • 88. 5.2 Two-Phase Sequence Copyright (C) Bee Technologies Inc. 2011 59 Clock Phase A ON Phase /A ON Phase B ON Phase /B ON ON 1 Sequence
  • 89. 5.3 Half-Step Sequence Copyright (C) Bee Technologies Inc. 2011 60 Clock Phase A ON Phase /A ON Phase B ON Phase /B ON 1 Sequence
  • 90. 6.Hysteresis-Based Current Controller Copyright (C) Bee Technologies Inc. 2011 61 Controlled by the signal from the microcontroller. Generate the switch (MOSFET) drive signal by comparing the measured phase current with their references. Input the reference value at the I_SET (e.g. I_SET=0.5A) to set the regulated current level. The hysteresis current value is set at the VHYS (e.g. VHYS=0.1A).
  • 91. 7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies Inc. 2011 62 One-Phase Step Sequence Generator (100 pps) *Analysisdirectives: .TRAN 0 80ms 0 10u SKIPBP .OPTIONS ITL4= 40
  • 92. 7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies Inc. 2011 63 Clock Phase A Current I_HYS=0.1A I_SET=0.5A Phase /A Current Phase B Current Phase /B Current
  • 93. 7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies Inc. 2011 64 One-Phase Step Sequence Generator (100 pps) *Analysisdirectives: .TRAN 0 80ms 0 10u SKIPBP .OPTIONS ITL4= 40
  • 94. 7.2 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies Inc. 2011 65 Clock Phase A Current I_HYS=0.1A I_SET=0.5A Phase /A Current Phase B Current Phase /B Current
  • 95. 7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies Inc. 2011 66 One-Phase Step Sequence Generator (100 pps) *Analysisdirectives: .TRAN 0 160ms 0 10u SKIPBP .OPTIONS ITL4= 40
  • 96. 7.3 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies Inc. 2011 67 Clock Phase A Current I_HYS=0.1A I_SET=0.5A Phase /A Current Phase B Current Phase /B Current
  • 97. 8.Drive Circuit Efficiency (%) Copyright (C) Bee Technologies Inc. 2011 68 One-Phase Step Sequence Generator (100 pps) *Analysisdirectives: .TRAN 0 80ms 0 10u SKIPBP .STEP PARAM RON LIST 10m, 100m, 1 .OPTIONS ITL4= 40
  • 98. 8.Drive Circuit Efficiency (%) Copyright (C) Bee Technologies Inc. 2011 69 at switches Ron = 10m, (99.7%) at switches Ron = 100m, (99.8%) at switches Ron = 1, (86%) Note: Add trace 100*AVG(W(U1))/(-AVG(W(Vcc))) for the Efficiency.
  • 99. Bee Technologies Group デバイスモデリング スパイス・パーク(スパイスモデル・ライブラリー) シンプルモデル(準備中) デザインキット コンセプトキット(準備中) デバイスモデリング教材 【本社】 株式会社ビー・テクノロジー 〒105-0012 東京都港区芝大門二丁目2番7号 7セントラルビル4階 代表電話: 03-5401-3851 設立日:2002年9月10日 資本金:8,830万円 【子会社】 Bee Technologies Corporation (アメリカ) Siam Bee Technologies Co.,Ltd. (タイランド) 本ドキュメントは予告なき変更をする場合がございます。 ご了承下さい。また、本文中に登場する製品及びサービスの名称は全て関係各社または個人の各国における商標または登録商標です。本原稿に関するお問い合わせは、当社にご連絡下さい。 お問合わせ先) info@bee-tech.com 70 Copyright (C) Bee Technologies Inc. 2011