SlideShare ist ein Scribd-Unternehmen logo
1 von 60
Downloaden Sie, um offline zu lesen
Structural Integrity Evaluation of Offshore Wind Turbines
Luisa Giuliani Franco Bontempi
luisa.giuliani@uniroma1.it franco.bontempi@uniroma1.it
Structural and Geotechnical Engineering Department
University of Rome ā€œLa Sapienzaā€
Presentation outlineEARTH&SPACE 2010
STRUCTURAL INTEGRITY OF OFFSHORE WIND TURBINES
What is it and why to care about it
STRATEGIES AND MEASURE OF ACHIEVEMENT
Robustness and vulnerability
A CASE STUDY
Investigation of an offshore turbine response to a ship collision
CONCLUSIONS
Conclusive evaluations on application and methodology
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 2/26
A CASE STUDY
Investigation of an offshore turbine response to a ship collision
STRATEGIES AND MEASURE OF ACHIEVEMENT
Robustness and vulnerability
CONCLUSIONS
Conclusive evaluations on application and methodology
STRUCTURAL INTEGRITY OF OFFSHORE WIND TURBINES
What is it and why to care about it
Why care about structural integrity?EARTH&SPACE 2010
MIDDELGRUNDENS VINDMƘLLELAUG
Offshore wind farm in Ƙresund, outside Copenhagen harbor, 2000)
Operator: Dong Energy
Owner: 50% investor cooperative
50% municipality
Official website: http://www.middelgrunden.dk
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 3/26
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines
Why care about structural integrity?
4/26
EARTH&SPACE 2010
RUNAWAY EVENT
(Jutland, 2008)
1. High wind and breaking system failure 2. Blades spin out of control and fail
3. Blade debris collided with the tower4. Turbine tower collapses to the ground.
Why care about structural integrity?EARTH&SPACE 2010
RUNAWAY EVENT
(Jutland, 2008)
1. High wind and breaking system failure 2. Blades spin out of control and fail
3. Blade debris collided with the tower4. Turbine tower collapses to the ground.
DISPROPORTION BETWEEN
CAUSE AND EFFECT
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 4/26
Disproportionate collapse in standardsEARTH&SPACE 2010
ASCE 7ASCE 7--02, 200202, 2002
The structural system shall be able to
sustain local damage or failure with the
overall structure remaining stable and not
be damaged to an extend disproportionate
to the original local damage
GSA guidelines, 2003GSA guidelines, 2003
the building must withstand as a minimum,
the loss of one primary vertical load-bearing
member without causing progressive
collapse
Unified facilities criteriaUnified facilities criteria
UFC 4UFC 4--023023--03, DoD 200503, DoD 2005
All new and existing buildings with three
stories or more in height must be designed
to avoid progressive collapse
Model code 1990Model code 1990
Structures should withstand accidental
circumstance without damage disproportionate
to the original events (insensitivity requirement)
ISO/FDIS 2394, 1998ISO/FDIS 2394, 1998
Structures and structural elements should
satisfy, with proper levels of reliability:
-exercise ultimate state requirements
- load ultimate state requirements
- structural integrity state requirements
EN 1991EN 1991--11--7:20067:2006
Structures should be able to withstand
accidental actions (fires, explosions, impacts) or
consequences of human errors, without
suffering damages disproportionate to the
triggering causes
CODESAMERICAN EUROPEAN
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 5/26
Structural integrityEARTH&SPACE 2010
STIFFNESS
Service limit
states (SLS)
RESISTANCE
STRUCTURALSAFETY
Ultimate limit
states (ULS)
SECTIONSSECTIONS
OR ELEMENTSOR ELEMENTS
?
R > S
f < ff < fadmadm
RESISTANCE
TO
EXCEPTIONAL
ACTION
Structural
integrity limit
state (SILS)
STRUCTURAL
SYSTEM
verification on
FAILURE IS PREVENTED
FAILURE IS PRESUMED
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 6/26
OFFSHORE STANDARD, DNVOFFSHORE STANDARD, DNV--OSOS--J101, 2004J101, 2004
The structural system shall be able to resists accidental loads and
maintain integrity and performance of the structure due to local damage
or flooding.
CONSIDERED LIMIT STATESCONSIDERED LIMIT STATES
ACCIDENTAL ACTIONSACCIDENTAL ACTIONS
Structural integrity for OWTEARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 7/26
ULS
Ultimate Limit
States
ALS
Accidental Limit
States
FLS
Fatigue Limit
States
SLS
Serviceability
Limit States
maximum load
carrying resistance
failure due to the
effect of cyclic
loading
damage to
components due to
an accidental event
tolerance criteria
applicable to normal
use
Presentation outlineEARTH&SPACE 2010
STRUCTURAL INTEGRITY OF WIND TURBINE
What is it and why to care about it
STRATEGIES AND MEASURE OF ACHIEVMENT
Robustness and vulnerability
A CASE STUDY
Investigation of an offshore turbine response to a ship collision
CONCLUSIONS
Conclusive evaluations on application and methodology
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 8/26
STRUCTURAL INTEGRITY OF WIND TURBINE
What is it and why to care about it
STRATEGIES AND MEASURE OF ACHIEVMENT
Robustness and vulnerability
Different factors affecting structural integrityEARTH&SPACE 2010
P(F) = P(D|H) P(F|DH)P(H) x x
occurrence
of collapse
VULNERABILITY ROBUSTNESSEXPOSURE VULNERABILITY ROBUSTNESSEXPOSURE
[Faber,2006]
[Ellingwood,1983]
STRUCTURALNON STRUCTURAL
MEASURES
avoid dispropor. collapselimit initial damageevent control
2) reduce
the effects of the
action
3) reduce
the effects of a
failure
1) reduce
the action
damage is caused in
the structure
critical event occurs
near the structure
damage spreads in
the structure
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 9/26
EVENT CONTROL
Non structural measuresEARTH&SPACE 2010
Malfunctioning and fire
Natural actions
Ship collision
Malevolent attack
System control
Protective barriers
Sacrificial structures
Surveillance
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 10/26
a. Difficult to prevent every possible accidental event
b. Difficult to protect WT (exposed to natural action)
c. Difficult to surveille WT (wide and isolated area)
reduce the occurrence
of the action
reduce the exposure
of the structure
1)1) REDUCE THE ACTIONREDUCE THE ACTION
Structural measuresEARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 11/26
T
O
P
D
O
W
N
Identification of failures at meso-level
(intermediate components)
Identification of failures at micro level
(basic components)
B
O
T
T
O
M
U
P
Deductive (top-down):
critical event is modeled
Inductive (bottom-up):
critical event is irrelevant
ROBUSTNESS
2) REDUCE THE EFFECTS2) REDUCE THE EFFECTS
OF THE ACTIONOF THE ACTION
3) REDUCE THE EFFECTS3) REDUCE THE EFFECTS
OF A FAILUREOF A FAILURE
VULNERABILITY
SHIP COLLISION DAMAGED COMPONENTS
d
)d(R
I
āˆ†
āˆ†
=
Structural robustnessEARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 12/26
structure B
d
P
s
STRUCTURE B:
P
s
ROBUSTNESS CURVES
P (performance)
structure A
STRUCTURE A
damaged
integer
āˆ†P
damaged
more performant, less resistant
integer
(damage level)
āˆ†Pāˆ†P
more performant, less robust less performant, more robust
PERFORMANCE
ultimate resistance
DAMAGE LEVEL
# removed elements
STRUCTURAL ROBUSTNESS: Insensitivity to local failure
(ASCE/SEI-PCSGC, 2007 ā€“ Betonkalender, 2008)
Proposed robustness measure:
decrement of resistance that corresponds
to an increment of damage in the structure
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 13/26
28
0 1 2 --- 8 d
Ī»
Exact maxima and minima curves
EXHAUSTIVE INVESTIGATIONEXHAUSTIVE INVESTIGATION
1
Cd
EX.
81
Exhaustive combinations
Cd =
E!
d! Ɨ (E-d)!
Ctot = Ī£d Cd = 2E
0
for D = E
D
a structure of 8 elements is considered as example
Robustness curves
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 13/26
0 1 2 --- 8 d
Approximated maxima and minima curves
HEURISTIC OPTIMIZATIONHEURISTIC OPTIMIZATION
ERROR!
(non cons.)
14 2
Reduced combinations
= 1
d>1
Cd =
= 2 Ɨ[E-(d-1)]
= E
d=1
d=0
0
D
Ctot = Ī£d Cd = E2 + 1
for D = E
1
28
Exhaustive combinations
Cd =
E!
d! Ɨ (E-d)!
Ctot = Ī£d Cd = 2E
0
for D = E
D
exponentialexponential
polynomialpolynomial
8
Cd
EX.
Cd
RED.
a structure of 8 elements is considered as example
Robustness curves
8/31
11/31
Stiffbeams(flex.behaviour)Stiffcolumns(shear-type)
STRUCTURALBEHAVIOUR
16 17 18
13 14 15
9 10 121
1
5 6 87
1 2 43
19 20 21
Ī»Ī»Ī»Ī»Ī»Ī»Ī»Ī»gg
16 17 18
13 14 15
9 10 121
1
5 6 87
1 2 43
19 20 21
Ī»Ī»Ī»Ī»Ī»Ī»Ī»Ī»gg
SHEAR-TYPE FRAME ROBUSTNESS
00,51
17 1 2 3 4 5 6 7 8 9 10
Damage Level
PU[ad]
MAX MIN
FLEX-TYPE FRAME ROBUSTNESS
00,250,50,751
0 1 2 3 4 5 6 7 8 9 10
Damage Level
PU[ad]
MAX MIN
Ī»g
5 6 87
9 10 12
13 14 15
16 17 18
19 20 21
41 2 3
11
Ī»g
14
17
1513
18
19
5 6 87
1211
41 2 3
9 10
16
20 21
1 2 43
5 6 87
9 10 1211
13 14 15
16 17 18
19 20 21
Ī»g
Ī»g
14
17
20
1513
1816
2119
5 6 87
41 2 3
9 10 1211
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 14/26
Comparison between different design solutions
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 15/26
Robustness applied to OWT
OWT ROBUSTNESS COMPARISON
between two jacket structures between two support types
Presentation outlineEARTH&SPACE 2010
STRUCTURAL INTEGRITY OF WIND TURBINE
What is it and why to care about it
STRATEGIES AND MEASURE OF ACHIEVMENT
Robustness and vulnerability
A CASE STUDY
Investigation of an offshore turbine response to a ship collision
CONCLUSIONS
Conclusive evaluations on application and methodology
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 16/26
STRUCTURAL INTEGRITY OF WIND TURBINE
What is it and why to care about it
A CASE STUDY
Investigation of an offshore turbine response to a ship collision
STRATEGIES AND MEASURE OF ACHIEVMENT
Robustness and vulnerability
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 17/26
OWT ship collision investigation
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 18/26
OWT ship collision investigation
OWTSTRUCTURE MODELING
Pointed mass for
modeling rotor and
nacelle.
One-dimensional elements
for leg and tower with
elastic-plastic behavior
(spread plasticity).
Soil interaction
accounted with 3D
finite elements,
which behave
elastically. Zone
extension calibrated
in order to minimize
boundary effects.
Typical OWT:
5-6 MW power
36 m water depth.
S355 steel monopile with
hollow circular section;
diameter and thickness
vary along the tower.
4 diagonal legs
connected to 4
45 m long
foundation piles,
40 m deepened
into the ground.
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 19/26
OWT ship collision investigation
OWTLOAD SCENARIOS SHIP IMPACT MODELING
Only self-weight is assumed to act on
the turbine at the moment of impact.
Three different scenarios are
considered for ship collision point:
A. Impact on one
diagonal leg under
the seabed (model
node #17);
700 ton700 ton
AA
700 ton700 ton
AA
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 19/26
OWT ship collision investigation
OWTLOAD SCENARIOS SHIP IMPACT MODELING
Only self-weight is assumed to act on
the turbine at the moment of impact.
Three different scenarios are
considered for ship collision point:
A. Impact on one
diagonal leg under
the seabed (model
node #17);
B. Impact at the
seabed (model
node #38);
700 ton700 ton
BB
700 ton700 ton
BB
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 19/26
OWT ship collision investigation
OWTLOAD SCENARIOS SHIP IMPACT MODELING
Only self-weight is assumed to act on
the turbine at the moment of impact.
Three different scenarios are
considered for ship collision point:
A. Impact on one
diagonal leg under
the seabed (model
node #17);
B. Impact at the
seabed (model
node #38);
C. Impact on the
tower above the
seabed (model
node #548).
t [s]
F [MN]
0.5 1.5 2.00.0
7
Ship impact is modeled by means
of an impulsive force acting on
the collision point.
The value of the force is 7 MN (ca.
700 ton) and the total length of
the impulsive function is 2 s.
Nonlinear dynamics analyses are
carried on the structure.
700 ton700 ton
CC
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 20/26
Nonlinear dynamic investigations
SCENARIO A
time: 0.025 s
time: 0.0 s
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 20/26
Nonlinear dynamic investigations
SCENARIO A
time: 0.3 s
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 20/26
Nonlinear dynamic investigations
SCENARIO A
time: 0.3 stime: 0.5 s
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 20/26
Nonlinear dynamic investigations
SCENARIO A
time: 0.5 stime: 0.8 s
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 20/26
Nonlinear dynamic investigations
SCENARIO A
time: 0.8 stime: 1.5 s
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 20/26
Nonlinear dynamic investigations
SCENARIO A
time: 1.5 stime: 3.0 s
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 21/26
Nonlinear dynamic investigations
SCENARIO B
time: 0.0 s
time: 0.0 s
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 21/26
Nonlinear dynamic investigations
SCENARIO B
time: 1.0 s
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 21/26
Nonlinear dynamic investigations
SCENARIO B
time: 1.0 stime: 3.0 s
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 22/26
Nonlinear dynamic investigations
SCENARIO C
time: 0.0 s
time: 0.0 s
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 22/26
Nonlinear dynamic investigations
SCENARIO C
time: 1.0 s
time: 1.0 s
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 22/26
Nonlinear dynamic investigations
SCENARIO C
time: 3.0 s
CONCLUSIONS
Conclusive evaluations on application and methodology
CONCLUSIONS
Conclusive evaluations on application and methodology
Presentation outlineEARTH&SPACE 2010
STRUCTURAL INTEGRITY OF WIND TURBINE
What is it and why to care about it
STRATEGIES AND MEASURE OF ACHIEVMENT
Robustness and vulnerability
A CASE STUDY
Investigation of an offshore turbine response to a ship collision
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 23/26
STRUCTURAL INTEGRITY OF WIND TURBINE
What is it and why to care about it
A CASE STUDY
Investigation of an offshore turbine response to a ship collision
STRATEGIES AND MEASURE OF ACHIEVMENT
Robustness and vulnerability
SCENARIO EFFECT OF ACTION EFFECT OF DAMAGE
A
Irreversible direct damage of
impacted leg:
VULNERABLE TO ACTION
(not disproportionate, local
resistance may be increased)
Overloading of adjacent legs
and part of monopile,
but no damage propagation:
ROBUST BEHAVIOR
(other damages to be
studied)
B
Elastic deformation:
NOT VULNERABLE TO
CONSIDERED ACTION
---
C
Elastic deformation:
NOT VULNERABLE TO
CONSIDERED ACTION
---
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 24/26
Nonlinear dynamic investigation results
700 ton700 ton
700 ton700 ton
700 ton700 ton
700 ton700 ton
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 25/26
FAILURECAUSES TYPES
ACCIDENTAL
ACTIONS
HUMAN ERRORS
Ā§ DESIGN
Ā§ EXECUTION
Ā§ MAINTENANCE
Ā§ IMPACTS
Ā§ COLLISIONS
Ā§ FIRES
UNFAVORABLE
COMBINATIONS
of usual load values or
circumstances:
SWISS CHEESE THEORY
BLADES
Ā§ OVER SPEED
Ā§ FATIGUE FAILURE
Ā§ LOCAL BUCKLING
Handling exceptions of OWT
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 25/26
FAILURECAUSES TYPES
ACCIDENTAL
ACTIONS
HUMAN ERRORS
Ā§ DESIGN
Ā§ EXECUTION
Ā§ MAINTENANCE
Ā§ IMPACTS
Ā§ COLLISIONS
Ā§ FIRES
UNFAVORABLE
COMBINATIONS
of usual load values or
circumstances:
SWISS CHEESE THEORY
BLADES
Ā§ OVER SPEED
Ā§ FATIGUE FAILURE
Ā§ LOCAL BUCKLING
TOWER
Ā§ SHAFT CRACKS
Ā§ WELDING FAILURE
(FATIGUE OR
FAULTY DESIGN)
Handling exceptions of OWT
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 25/26
FAILURECAUSES TYPES
ACCIDENTAL
ACTIONS
HUMAN ERRORS
Ā§ DESIGN
Ā§ EXECUTION
Ā§ MAINTENANCE
Ā§ IMPACTS
Ā§ COLLISIONS
Ā§ FIRES
UNFAVORABLE
COMBINATIONS
of usual load values or
circumstances:
SWISS CHEESE THEORY
BLADES
Ā§ OVER SPEED
Ā§ FATIGUE FAILURE
Ā§ LOCAL BUCKLING
TOWER
Ā§ SHAFT CRACKS
Ā§ WELDING FAILURE
(FATIGUE OR
FAULTY DESIGN)
FOUNDATION
Ā§ MOSTLY FOR OWT
IN CONSTRUCTION
Handling exceptions of OWT
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 26/26
PreventionPrevention
Indirect design Direct design
Top-down
methods
Bottom-up
methods
Collapse
resistance
Structural
robustness
PresumptionPresumption
Event control
SpecificSpecific
analysesanalyses
StructuralStructural
measuresmeasures performedavoided
CriticalCritical
eventevent modeled
no yes
Invulnerability
Unaccounted
may happen!
No hazards
can occur
Hazards donā€™t
cause failure
Progressive
collapse
susceptibility
?
Effects areEffects are
uncertainuncertain
?
Behavior followingBehavior following
other hazardsother hazards
remains unknown!remains unknown!
irrelevant
FAULTFAULTFAILUREFAILURE
SECURITYSECURITY INVULNERABILITYINVULNERABILITY
Handling exceptions of OWT
Structural Integrity Evaluation of Offshore Wind Turbines
Luisa Giuliani Franco Bontempi
luisa.giuliani@uniroma1.it franco.bontempi@uniroma1.it
Structural and Geotechnical Engineering Department
University of Rome ā€œLa Sapienzaā€
10/31
1 2
S14
32 4
S1
S124
3 4
S2
3
S124
4
S3
2
1
3
4
1
2
3
4
1
4
1
3
1
2
42
3
2
4
3
42
3
2
1 1 1
4
3
42
3
d=0
d=2
d=1
d=3
2
1
3
4d=4
3
4
S123
S1234
4
S134
S13
4
S134
S23
4
S134
S12
4
S4
S0
Computational tree of a
non-deterministic Turing
machine:
all possible configurations
are computed in
polynomial time
(# computational steps s =
# system elements E).
State of acceptance:
damaged
configuration
Initial state:
nominal
configuration
Damaged configurationsEARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 13/26
DI1Di1,
D/d
r1
maxI a
i
i
a <<ā†’<<āˆ€
ļ£¾
ļ£½
ļ£¼
ļ£³
ļ£²
ļ£± āˆ’
=
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21
Additional slides
0 1 2 3 4 5 6
d
Ī»
0 1 2 3 4 5 6
d
Ī»a. Maximum inclination of all the secant lines
that connect the first point of the curves
with the points pertaining to greater
damage levels.
DI1Di1,
D/d
r1
maxI a
i
i
a <<ā†’<<āˆ€
ļ£¾
ļ£½
ļ£¼
ļ£³
ļ£²
ļ£± āˆ’
=
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21
Additional slides
0 1 2 3 4 5 6
d
Ī»
0 1 2 3 4 5 6
d
Ī»a. Maximum inclination of all the secant lines
that connect the first point of the curves
with the points pertaining to greater
damage levels
b. Highest variation of secant lines between
two subsequent points (critical elements
are most relevant)
( ) ( ) Di
2
rrrr
maxI 1iii1i
b <āˆ€
ļ£¾
ļ£½
ļ£¼
ļ£³
ļ£²
ļ£± āˆ’āˆ’āˆ’
= +āˆ’
)isostatic(5.0I0)linear( b ā‰¤ā‰¤ā†
DI1Di1,
D/d
r1
maxI a
i
i
a <<ā†’<<āˆ€
ļ£¾
ļ£½
ļ£¼
ļ£³
ļ£²
ļ£± āˆ’
=
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21
Additional slides
c. Area subtended by the curve of minima weighted by the difference between that area and
the area subtended from the curve of maxima (representing the scattering)
a. Maximum inclination of all the secant lines
that connect the first point of the curves
with the points pertaining to greater
damage levels
b. Highest variation of secant lines between
two subsequent points (critical elements
are most relevant)
[ ] [ ]
ļ£¾
ļ£½
ļ£¼
ļ£³
ļ£²
ļ£±
āˆ’ā‹…+= āˆ‘āˆ‘
==
D
0d
LOWUP
D
0d
LOW
c )d(r)d(rk)d(rDI ( ) 1k0for,1D2I5.0 c <<āˆ’ā‹…<ā‰¤ā†’
0 1 2 3 4 5 6
d
Ī»
0 1 2 3 4 5 6
d
Ī»
( ) ( ) Di
2
rrrr
maxI 1iii1i
b <āˆ€
ļ£¾
ļ£½
ļ£¼
ļ£³
ļ£²
ļ£± āˆ’āˆ’āˆ’
= +āˆ’
)isostatic(5.0I0)linear( b ā‰¤ā‰¤ā†
( ) ( ) Di
2
rrrr
maxI 1iii1i
b <āˆ€
ļ£¾
ļ£½
ļ£¼
ļ£³
ļ£²
ļ£± āˆ’āˆ’āˆ’
= +āˆ’
)isostatic(5.0I0)linear( b ā‰¤ā‰¤ā†
DI1Di1,
D/d
r1
maxI a
i
i
a <<ā†’<<āˆ€
ļ£¾
ļ£½
ļ£¼
ļ£³
ļ£²
ļ£± āˆ’
=
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21
Additional slides
0 1 2 3 4 5 6
d
Ī»
0 1 2 3 4 5 6
d
Ī»
c. Area subtended by the curve of minima weighted by the difference between that area and
the area subtended from the curve of maxima (representing the scattering)
a. Maximum inclination of all the secant lines
that connect the first point of the curves
with the points pertaining to greater
damage levels
b. Highest variation of secant lines between
two subsequent points (critical elements
are most relevant)
d. Scattering from linear trend, calculated as the area subtended between the curves and the
straight line that connect the point of the integer structure with that one of the null one.
[ ] [ ] 2
D
)1k()d(rk)d(rI
D
0d
UP
D
0d
LOW
d āˆ‘āˆ‘
==
+āˆ’+= EDand1k0for,1I1 d =<<<ā‰¤āˆ’ā†’
( ) 1k0for,1D2I5.0 c <<āˆ’ā‹…<ā‰¤ā†’[ ] [ ]ļ£¾
ļ£½
ļ£¼
ļ£³
ļ£²
ļ£±
āˆ’ā‹…+= āˆ‘āˆ‘
==
D
0d
LOWUP
D
0d
LOW
c )d(r)d(rk)d(rDI
( ) ( ) Di
2
rrrr
maxI 1iii1i
b <āˆ€
ļ£¾
ļ£½
ļ£¼
ļ£³
ļ£²
ļ£± āˆ’āˆ’āˆ’
= +āˆ’
)isostatic(5.0I0)linear( b ā‰¤ā‰¤ā†
[ ] [ ]
ļ£¾
ļ£½
ļ£¼
ļ£³
ļ£²
ļ£±
āˆ’ā‹…+= āˆ‘āˆ‘
==
D
0d
LOWUP
D
0d
LOW
c )d(r)d(rk)d(rDI ( ) 1k0for,1D2I5.0 c <<āˆ’ā‹…<ā‰¤ā†’
[ ] [ ] 2
D
)1k()d(rk)d(rI
D
0d
UP
D
0d
LOW
d āˆ‘āˆ‘
==
+āˆ’+= EDand1k0for,1I1 d =<<<ā‰¤āˆ’ā†’
DI1Di1,
D/d
r1
maxI a
i
i
a <<ā†’<<āˆ€
ļ£¾
ļ£½
ļ£¼
ļ£³
ļ£²
ļ£± āˆ’
=
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21
Additional slides
c. Area subtended by the curve of minima weighted by the difference between that area and
the area subtended from the curve of maxima (representing the scattering)
a. Maximum inclination of all the secant lines
that connect the first point of the curves
with the points pertaining to greater
damage levels
b. Highest variation of secant lines between
two subsequent points (critical elements
are most relevant)
e. Upper and lower bound for maximal damage that makes the structure unstable
UPLOW
e DkDI ā‹…+= E2I0and1k0andDDD1 c
UPLOW
ā‰¤ā‰¤<<ā‰¤ā‰¤ā‰¤ā†
d. Scattering from linear trend, calculated as the area subtended between the curves and the
straight line that connect the point of the integer structure with that one of the null one.
0 1 2 3 4 5 6
d
Ī»
0 1 2 3 4 5 6
d
Ī»
DLOW DUP
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21
Additional slides
START
d := 0
for e =1 to E
d := 1
NL static analysis Ī»u
0
Ī»u,e
1
Remove element e
Pushover analysis
Restore element e
for d = 2 to D
Ī»u
1
MAX, e1
MAX
Ī»u
1
MIN, e1
MIN
Remove element e(d-1)
MIN
for e =1 to E
Ī»u,e
d
Remove element e
Pushover analysis
Restore element e
CALLCALL ā€œā€œCURVE MAXCURVE MAXā€ā€
CALLCALL ā€œā€œCURVE MINCURVE MINā€ā€
Robustness quantification
if e <> ed
MIN
Ī»u
d
MIN,
ed
MIN
ā€œā€œCURVE MINCURVE MINā€œā€œ MACROMACRO
Curve of minima
END
Restore integer structure
Calculate area or derivativesExtrapolate equations
Calculate corresponding āˆ†RFix an admitted āˆ†d
Identify critical elementsSpot abrupt decrement
ROBUSTNESS QUANTIFICATIONROBUSTNESS QUANTIFICATION
ALGORITHM FOR HEURISTIC OPTIMIZATIONALGORITHM FOR HEURISTIC OPTIMIZATION
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21
Additional slides
Pushover on integer structure
Resulting robustness histogram
Plastic strain development Axial stress development
Meshed elements Plastic moment development
Response curve
Max and min robustness histogramsPlasticization development
ALGORITHM FOR REDUCED ANALYSESALGORITHM FOR REDUCED ANALYSESMax resistance
STAR STRUCTURE ROBUSTNESS
00,51
0 1 2 3 4 5 6 7 8
Damage Level
PU[ad]
MAX MIN
t
d
R
R
Dd
cos25.0max
,...,1
ā†=
ļ£¾
ļ£½
ļ£¼
ļ£³
ļ£²
ļ£±
āˆ‚
āˆ‚
=ā€²
=
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21
Additional slides
# of elements: E = 8
static indetermin. level: i = 21
lower max. damage: Dmin = 8
upper max. damage: Dmax = 8
fixed max. damage: D = 8
reduced combination: Cred = 65
exhaust. combination: Cex= 256
Ī»Ī»gg
1 2
4
3
5
8
6
7
STATIC INDETERMINANCY:
high restrain grade
Damage
d El. ID Pumin El. ID Pumax
0 0 1 0 1
1 1 0,831745 3 0,896185
2 5 0,648331 7 0,832096
3 4 0,523591 2 0,684849
4 8 0,376882 8 0,580928
5 2 0,269581 6 0,429733
6 6 0,16434 4 0,320632
7 7 0,042504 1 0,261956
8 3 0 5 0
MIN CFG MAX CFG
Ib ā‰ˆ 0
Ia ā‰ˆ 1
ROBUSTNESS INDICATOR:
( ) ( ) Di
2
rrrr
maxI 1iii1i
b <āˆ€
ļ£¾
ļ£½
ļ£¼
ļ£³
ļ£²
ļ£± āˆ’āˆ’āˆ’
= +āˆ’ )isostatic(5.0I0)linear( b ā‰¤ā‰¤ā†’
Ed0
Ed
)d(r
maxIa ā‰¤ā‰¤āˆ€
ļ£¾
ļ£½
ļ£¼
ļ£³
ļ£²
ļ£±
= )isostatic(EI1 b ā‰¤ā‰¤ā†’
Ib maximum slope pt. tangent (measure the abrupt decrement
due to the removal of critical element)
Ia maximum secant starting from the 1st pt. (account for the
lateness of an abrupt decrement)
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21
Additional slides
# of elements: E = 21
static indetermin. level: i = 4
lower max. damage: Dmin = 2
upper max. damage: Dmax = 9
fixed max. damage: D = 9
reduced combination: Cred = 286
exhaust. combination: Cex= 695860
Ī»
15 16 1417
11 9 1210
18 20 1921
13
7 5 3 1 2 4 6 8
TRUSS STRUCTURE ROBUSTNESS
00.250.50.751
0 1 2 3 4 5 6 7 8 9
Damage Level
PU [ad] MAX MIN
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21
Additional slides
# of elements: E = 21
static indetermin. level: i = 4
lower max. damage: Dmin = 2
upper max. damage: Dmax = 9
fixed max. damage: D = 9
reduced combination: Cred = 286
exhaust. combination: Cex= 695860
Damage
d El. ID Pumin El. ID Pumax
0 0 1 0 1
1 9 0,471351 1 0,888941
2 3 0 2 0,888941
3 10 0 11 0,628625
4 17 0 12 0,628625
5 16 0 5 0,628625
6 1 0 6 0,628625
7 5 0 13 0,628625
8 11 0 14 0,628625
9 6 0 17 0
MIN CFG MAX CFG
12
1 2
11 5 6 13 14
17
9
3
Ī»
15 16 1417
11 9 1210
18 20 1921
13
7 5 3 1 2 4 6 8
MAX
1
15 16 14
11 9 1210
18 20 1921
13
7 5 3 2 6 84
17
0,26 > Ib > 0,13
MIN
15 16 1417
11 9 1210
18 20 1921
13
7 5 3 1 2 4 6 8
4,76 > Ia > 1,11
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21
Additional slides
# of elements: E = 13
static indetermin. level: i = 12
lower max. damage: Dmin = 2
upper max. damage: Dmax = 10
fixed max. damage: D = 10
reduced combination: Cred = 158
exhaust. combination: Cex= 8100
5
8 6 97
12 10 1311
4 2 31
Ī»
VIERENDEEL STRUCTUREROBUSTNESS
00,250,50,751
0 1 2 3 4 5 6 7 8 9 10
Damage Level
PU [ad]
MAX MIN
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21
Additional slides
# of elements: E = 13
static indetermin. level: i = 12
lower max. damage: Dmin = 2
upper max. damage: Dmax = 10
fixed max. damage: D = 10
reduced combination: Cred = 158
exhaust. combination: Cex= 8100
Damage
d El. ID Pumin El. ID Pumax
0 0 1 0 1
1 6 0,187621 1 0,938097
2 10 0 2 0,625317
3 1 0 3 0,375242
4 2 0 6 0,187621
5 3 0 7 0,187621
6 4 0 8 0,187621
7 5 0 9 0,187621
8 7 0 4 0,187621
9 8 0 5 0,187621
10 9 0 10 0
MIN CFG MAX CFG
6
1
2
3
7 8 9 4 5 10
6
10
5
8 6 97
12 10 1311
4 2 31
Ī»
MIN
5
8 6 97
12 1311
4 2 31
10
0,31 > Icr > 0,09
MAX
Ī»
5
8 6 97
12 1311
4 2 31
10
8,12 > Ia > 2,03
TRUSS STRUCTURE ROBUSTNESS
00,250,50,751
0 1 2 3 4 5 6 7 8 9
Damage Level
PU [ad] MAX MIN
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21
Additional slides
5
8 6 97
12 10 1311
4 2 31
Ī»
VIERENDEEL STRUCTURE ROBUSTNESS
00,51
0 1 2 3 4 5 6 7 8 9 10
Damage Level
PU [ad] MAX MIN
6
6
1
2
3
7 8 9 4 5 1010
High element connectionHigh element number
14
5 3 1 2 4 6 8
Ī»
7 5 3 1 2 4 6 8
14
11 9 1210
18 20 1921
13 15 1617
Ī»
STATIC INDETERMINANCY
i = 4 i = 12
0,26 > Ib > 0,13 0,31 > Ib > 0,09
9
3
12
1 2
11 5 6 13 14
17
8,12 > Ia > 2,034,76 > Ia > 1,11
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21
Additional slides
3
1
4 2
5 Ī»Ī»gg
STATICINDETERMINANCY
restraint
I3V STRUCTURE ROBUSTNESS
00,51
0 1 2 3 4 5
Damage Level
PU[kN]
MAX MIN
I3C STRUCTURE ROBUSTNESS
00,250,50,751
0 1 2 3 4
Damage LevelPU[kN]
MAX MIN
3
1
2 4
Ī»Ī»gg
connection
14
13 15
16
10
12 11
9
6 5
1 2
7
8
4
3
Ī»Ī»gg
I3E STRUCTURE ROBUSTNESS
00,250,50,751
0 1 2 3 4 5
Damage Level
PU[kN]
MAX MIN
element
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21
Additional slides
HIGH CONNECTION
Continuity
Compartmentalization
Isolation
Element
number
Element
connection
LOCAL REDUCTION
OF CONTINUITY
LOCAL MECHANISM
DEVELOPMENT
Redundancy
Fragility
LOW CONNECTION
LOCAL REDUCTION OF
DUCTILITY
(inhomogeneous stiffening
of predetermined sections)
EARLY RUPTURE AND
DETACHMENT
Element
ductility
Ductility
External
(restraints)
STRESS IS NOT TRANSMITTED
COLLAPSE
STANDSTILL
STRESS REDISTRIBUTION
HIGH STRESS TRANSMISSION
on adjoining elements after a localized failure
TRIGGERING OF CHAIN
RUPTURE
PROGRESSIVE COLLAPSE
DISPROPORTIONATE COLLAPSE SUSCEPTIBILITY
SUDDEN/EARLY
COLLAPSE
Internal
(constraints)
*
Starossek &
Wolff, 2005*
FEASIBLE ALTERNATE LOAD
PATH
ROBUSTNESS
EARTH&SPACE 2010
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 14/26
L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines
Why caring for structural integrity?
2
EARTH&SPACE 2010
LILLEGRUND offshore wind farm
(Ƙresund between Malmƶ and KĆøbenhavn, Siemens, June 2008)

Weitere Ƥhnliche Inhalte

Ƅhnlich wie 3 - Structural Integrity Evaluation of Offshore Wind Turbines - Giuliani

DESIGN OF RC STRUCTURES.pdf
DESIGN OF RC STRUCTURES.pdfDESIGN OF RC STRUCTURES.pdf
DESIGN OF RC STRUCTURES.pdfPagolchala
Ā 
Structural Integrity Evaluation of Offshore Wind Turbines
Structural Integrity Evaluation of Offshore Wind TurbinesStructural Integrity Evaluation of Offshore Wind Turbines
Structural Integrity Evaluation of Offshore Wind TurbinesFranco Bontempi
Ā 
IRJET- Seismic Evaluation of Reinforced Concrete Structure with Friction ...
IRJET-  	  Seismic Evaluation of Reinforced Concrete Structure with Friction ...IRJET-  	  Seismic Evaluation of Reinforced Concrete Structure with Friction ...
IRJET- Seismic Evaluation of Reinforced Concrete Structure with Friction ...IRJET Journal
Ā 
state-method.ppt
state-method.pptstate-method.ppt
state-method.pptSagnikBiswas25
Ā 
SEISMIC RESPONSE STUDY OF MULTI-STORIED REINFORCED CONCRETE BUILDING WITH FLU...
SEISMIC RESPONSE STUDY OF MULTI-STORIED REINFORCED CONCRETE BUILDING WITH FLU...SEISMIC RESPONSE STUDY OF MULTI-STORIED REINFORCED CONCRETE BUILDING WITH FLU...
SEISMIC RESPONSE STUDY OF MULTI-STORIED REINFORCED CONCRETE BUILDING WITH FLU...IRJET Journal
Ā 
Comparison of Seismic Resistance of Moment Resisting RC Building using Shear ...
Comparison of Seismic Resistance of Moment Resisting RC Building using Shear ...Comparison of Seismic Resistance of Moment Resisting RC Building using Shear ...
Comparison of Seismic Resistance of Moment Resisting RC Building using Shear ...IRJET Journal
Ā 
IRJET- Seismic Analysis of Offshore Wind Turbine Foundations
IRJET- Seismic Analysis of Offshore Wind Turbine FoundationsIRJET- Seismic Analysis of Offshore Wind Turbine Foundations
IRJET- Seismic Analysis of Offshore Wind Turbine FoundationsIRJET Journal
Ā 
SNAME Offshore Symposium - Morandi - Robustness
SNAME Offshore Symposium - Morandi - RobustnessSNAME Offshore Symposium - Morandi - Robustness
SNAME Offshore Symposium - Morandi - RobustnessAlberto Morandi
Ā 
A Review on Offshore Wind Turbine Foundations
A Review on Offshore Wind Turbine FoundationsA Review on Offshore Wind Turbine Foundations
A Review on Offshore Wind Turbine FoundationsIRJET Journal
Ā 
STUDY OF HARPS PERIPHERAL AND PERIMETRAL BRACINGS PATTERN SHAPE IN PRE ENGINE...
STUDY OF HARPS PERIPHERAL AND PERIMETRAL BRACINGS PATTERN SHAPE IN PRE ENGINE...STUDY OF HARPS PERIPHERAL AND PERIMETRAL BRACINGS PATTERN SHAPE IN PRE ENGINE...
STUDY OF HARPS PERIPHERAL AND PERIMETRAL BRACINGS PATTERN SHAPE IN PRE ENGINE...IRJET Journal
Ā 
Experimental investigation of the crashworthiness performance of laminated co...
Experimental investigation of the crashworthiness performance of laminated co...Experimental investigation of the crashworthiness performance of laminated co...
Experimental investigation of the crashworthiness performance of laminated co...IRJET Journal
Ā 
Landing gear Failure analysis of an aircraft
Landing gear Failure analysis of an aircraftLanding gear Failure analysis of an aircraft
Landing gear Failure analysis of an aircraftRohit Katarya
Ā 
Optimization of Placing Viscous Dampers on 3D RC Frame Subjected to Seismic L...
Optimization of Placing Viscous Dampers on 3D RC Frame Subjected to Seismic L...Optimization of Placing Viscous Dampers on 3D RC Frame Subjected to Seismic L...
Optimization of Placing Viscous Dampers on 3D RC Frame Subjected to Seismic L...IRJET Journal
Ā 
IRJET- Experimental and Numerical Study of Impact Energy Absorption of Sa...
IRJET-  	  Experimental and Numerical Study of Impact Energy Absorption of Sa...IRJET-  	  Experimental and Numerical Study of Impact Energy Absorption of Sa...
IRJET- Experimental and Numerical Study of Impact Energy Absorption of Sa...IRJET Journal
Ā 
SEISMIC ANALYSIS OF HYBRID STRUCTURAL CONTROL SYSTEM IN RC BUILDING
SEISMIC ANALYSIS OF HYBRID STRUCTURAL CONTROL SYSTEM IN RC BUILDINGSEISMIC ANALYSIS OF HYBRID STRUCTURAL CONTROL SYSTEM IN RC BUILDING
SEISMIC ANALYSIS OF HYBRID STRUCTURAL CONTROL SYSTEM IN RC BUILDINGIRJET Journal
Ā 
IRJET- Effect of Viscous Dampers on Response Reduction Factor for RCC Frame u...
IRJET- Effect of Viscous Dampers on Response Reduction Factor for RCC Frame u...IRJET- Effect of Viscous Dampers on Response Reduction Factor for RCC Frame u...
IRJET- Effect of Viscous Dampers on Response Reduction Factor for RCC Frame u...IRJET Journal
Ā 
IRJET- Experimental Investigation on RCC Long Hollow Circular Columns with FR...
IRJET- Experimental Investigation on RCC Long Hollow Circular Columns with FR...IRJET- Experimental Investigation on RCC Long Hollow Circular Columns with FR...
IRJET- Experimental Investigation on RCC Long Hollow Circular Columns with FR...IRJET Journal
Ā 
Dynamic Response and Failure Analysis of INTZE Storage Tanks under External B...
Dynamic Response and Failure Analysis of INTZE Storage Tanks under External B...Dynamic Response and Failure Analysis of INTZE Storage Tanks under External B...
Dynamic Response and Failure Analysis of INTZE Storage Tanks under External B...IRJET Journal
Ā 
DYNAMIC ANALYSIS AND GEOMETRY DESIGN OF FLOATING OFFSHORE WIND TURBINE (FOWTS)
DYNAMIC ANALYSIS AND GEOMETRY DESIGN OF FLOATING OFFSHORE WIND TURBINE (FOWTS)DYNAMIC ANALYSIS AND GEOMETRY DESIGN OF FLOATING OFFSHORE WIND TURBINE (FOWTS)
DYNAMIC ANALYSIS AND GEOMETRY DESIGN OF FLOATING OFFSHORE WIND TURBINE (FOWTS)IRJET Journal
Ā 

Ƅhnlich wie 3 - Structural Integrity Evaluation of Offshore Wind Turbines - Giuliani (20)

DESIGN OF RC STRUCTURES.pdf
DESIGN OF RC STRUCTURES.pdfDESIGN OF RC STRUCTURES.pdf
DESIGN OF RC STRUCTURES.pdf
Ā 
Structural Integrity Evaluation of Offshore Wind Turbines
Structural Integrity Evaluation of Offshore Wind TurbinesStructural Integrity Evaluation of Offshore Wind Turbines
Structural Integrity Evaluation of Offshore Wind Turbines
Ā 
IRJET- Seismic Evaluation of Reinforced Concrete Structure with Friction ...
IRJET-  	  Seismic Evaluation of Reinforced Concrete Structure with Friction ...IRJET-  	  Seismic Evaluation of Reinforced Concrete Structure with Friction ...
IRJET- Seismic Evaluation of Reinforced Concrete Structure with Friction ...
Ā 
state-method.ppt
state-method.pptstate-method.ppt
state-method.ppt
Ā 
Limit state method
Limit state methodLimit state method
Limit state method
Ā 
SEISMIC RESPONSE STUDY OF MULTI-STORIED REINFORCED CONCRETE BUILDING WITH FLU...
SEISMIC RESPONSE STUDY OF MULTI-STORIED REINFORCED CONCRETE BUILDING WITH FLU...SEISMIC RESPONSE STUDY OF MULTI-STORIED REINFORCED CONCRETE BUILDING WITH FLU...
SEISMIC RESPONSE STUDY OF MULTI-STORIED REINFORCED CONCRETE BUILDING WITH FLU...
Ā 
Comparison of Seismic Resistance of Moment Resisting RC Building using Shear ...
Comparison of Seismic Resistance of Moment Resisting RC Building using Shear ...Comparison of Seismic Resistance of Moment Resisting RC Building using Shear ...
Comparison of Seismic Resistance of Moment Resisting RC Building using Shear ...
Ā 
IRJET- Seismic Analysis of Offshore Wind Turbine Foundations
IRJET- Seismic Analysis of Offshore Wind Turbine FoundationsIRJET- Seismic Analysis of Offshore Wind Turbine Foundations
IRJET- Seismic Analysis of Offshore Wind Turbine Foundations
Ā 
SNAME Offshore Symposium - Morandi - Robustness
SNAME Offshore Symposium - Morandi - RobustnessSNAME Offshore Symposium - Morandi - Robustness
SNAME Offshore Symposium - Morandi - Robustness
Ā 
A Review on Offshore Wind Turbine Foundations
A Review on Offshore Wind Turbine FoundationsA Review on Offshore Wind Turbine Foundations
A Review on Offshore Wind Turbine Foundations
Ā 
STUDY OF HARPS PERIPHERAL AND PERIMETRAL BRACINGS PATTERN SHAPE IN PRE ENGINE...
STUDY OF HARPS PERIPHERAL AND PERIMETRAL BRACINGS PATTERN SHAPE IN PRE ENGINE...STUDY OF HARPS PERIPHERAL AND PERIMETRAL BRACINGS PATTERN SHAPE IN PRE ENGINE...
STUDY OF HARPS PERIPHERAL AND PERIMETRAL BRACINGS PATTERN SHAPE IN PRE ENGINE...
Ā 
Experimental investigation of the crashworthiness performance of laminated co...
Experimental investigation of the crashworthiness performance of laminated co...Experimental investigation of the crashworthiness performance of laminated co...
Experimental investigation of the crashworthiness performance of laminated co...
Ā 
Landing gear Failure analysis of an aircraft
Landing gear Failure analysis of an aircraftLanding gear Failure analysis of an aircraft
Landing gear Failure analysis of an aircraft
Ā 
Optimization of Placing Viscous Dampers on 3D RC Frame Subjected to Seismic L...
Optimization of Placing Viscous Dampers on 3D RC Frame Subjected to Seismic L...Optimization of Placing Viscous Dampers on 3D RC Frame Subjected to Seismic L...
Optimization of Placing Viscous Dampers on 3D RC Frame Subjected to Seismic L...
Ā 
IRJET- Experimental and Numerical Study of Impact Energy Absorption of Sa...
IRJET-  	  Experimental and Numerical Study of Impact Energy Absorption of Sa...IRJET-  	  Experimental and Numerical Study of Impact Energy Absorption of Sa...
IRJET- Experimental and Numerical Study of Impact Energy Absorption of Sa...
Ā 
SEISMIC ANALYSIS OF HYBRID STRUCTURAL CONTROL SYSTEM IN RC BUILDING
SEISMIC ANALYSIS OF HYBRID STRUCTURAL CONTROL SYSTEM IN RC BUILDINGSEISMIC ANALYSIS OF HYBRID STRUCTURAL CONTROL SYSTEM IN RC BUILDING
SEISMIC ANALYSIS OF HYBRID STRUCTURAL CONTROL SYSTEM IN RC BUILDING
Ā 
IRJET- Effect of Viscous Dampers on Response Reduction Factor for RCC Frame u...
IRJET- Effect of Viscous Dampers on Response Reduction Factor for RCC Frame u...IRJET- Effect of Viscous Dampers on Response Reduction Factor for RCC Frame u...
IRJET- Effect of Viscous Dampers on Response Reduction Factor for RCC Frame u...
Ā 
IRJET- Experimental Investigation on RCC Long Hollow Circular Columns with FR...
IRJET- Experimental Investigation on RCC Long Hollow Circular Columns with FR...IRJET- Experimental Investigation on RCC Long Hollow Circular Columns with FR...
IRJET- Experimental Investigation on RCC Long Hollow Circular Columns with FR...
Ā 
Dynamic Response and Failure Analysis of INTZE Storage Tanks under External B...
Dynamic Response and Failure Analysis of INTZE Storage Tanks under External B...Dynamic Response and Failure Analysis of INTZE Storage Tanks under External B...
Dynamic Response and Failure Analysis of INTZE Storage Tanks under External B...
Ā 
DYNAMIC ANALYSIS AND GEOMETRY DESIGN OF FLOATING OFFSHORE WIND TURBINE (FOWTS)
DYNAMIC ANALYSIS AND GEOMETRY DESIGN OF FLOATING OFFSHORE WIND TURBINE (FOWTS)DYNAMIC ANALYSIS AND GEOMETRY DESIGN OF FLOATING OFFSHORE WIND TURBINE (FOWTS)
DYNAMIC ANALYSIS AND GEOMETRY DESIGN OF FLOATING OFFSHORE WIND TURBINE (FOWTS)
Ā 

Mehr von StroNGER2012

Corso di dottorato & Corso di formazione
Corso di dottorato & Corso di formazione Corso di dottorato & Corso di formazione
Corso di dottorato & Corso di formazione StroNGER2012
Ā 
I Restauri e la CittĆ : lā€™esempio del Colosseo e della Casa di Augusto
I Restauri e la CittĆ : lā€™esempio del Colosseo e della Casa di AugustoI Restauri e la CittĆ : lā€™esempio del Colosseo e della Casa di Augusto
I Restauri e la CittĆ : lā€™esempio del Colosseo e della Casa di AugustoStroNGER2012
Ā 
SISTEMILA RETE STRADALE URBANA:UNā€™EMERGENZA DEL QUOTIDIANO O UNā€™OPPORTUNITAā€™ ...
SISTEMILA RETE STRADALE URBANA:UNā€™EMERGENZA DEL QUOTIDIANO O UNā€™OPPORTUNITAā€™ ...SISTEMILA RETE STRADALE URBANA:UNā€™EMERGENZA DEL QUOTIDIANO O UNā€™OPPORTUNITAā€™ ...
SISTEMILA RETE STRADALE URBANA:UNā€™EMERGENZA DEL QUOTIDIANO O UNā€™OPPORTUNITAā€™ ...StroNGER2012
Ā 
INFRASTRUTTURE IN AMBITO URBANO: COMPLESSITAā€™ DI PROGETTO E DURABILITAā€™
INFRASTRUTTURE IN AMBITO URBANO: COMPLESSITAā€™ DI PROGETTO E DURABILITAā€™INFRASTRUTTURE IN AMBITO URBANO: COMPLESSITAā€™ DI PROGETTO E DURABILITAā€™
INFRASTRUTTURE IN AMBITO URBANO: COMPLESSITAā€™ DI PROGETTO E DURABILITAā€™StroNGER2012
Ā 
61Resilienza dei centri urbani e rilievo delle costruzioni: un binomio indivi...
61Resilienza dei centri urbani e rilievo delle costruzioni: un binomio indivi...61Resilienza dei centri urbani e rilievo delle costruzioni: un binomio indivi...
61Resilienza dei centri urbani e rilievo delle costruzioni: un binomio indivi...StroNGER2012
Ā 
Roma e le sue acque:il punto di vista della Protezione Civile
Roma e le sue acque:il punto di vista della Protezione CivileRoma e le sue acque:il punto di vista della Protezione Civile
Roma e le sue acque:il punto di vista della Protezione CivileStroNGER2012
Ā 
Una visione ampia dei sistemi: robustezza e resilienza.
Una visione ampia dei sistemi: robustezza e resilienza.Una visione ampia dei sistemi: robustezza e resilienza.
Una visione ampia dei sistemi: robustezza e resilienza.StroNGER2012
Ā 
Lā€™investigazione antincendio sugli aspetti strutturali: una proposta di codifica
Lā€™investigazione antincendio sugli aspetti strutturali: una proposta di codificaLā€™investigazione antincendio sugli aspetti strutturali: una proposta di codifica
Lā€™investigazione antincendio sugli aspetti strutturali: una proposta di codificaStroNGER2012
Ā 
Progetto e analisi di ospedali come costruzioni strategiche: visione di siste...
Progetto e analisi di ospedali come costruzioni strategiche: visione di siste...Progetto e analisi di ospedali come costruzioni strategiche: visione di siste...
Progetto e analisi di ospedali come costruzioni strategiche: visione di siste...StroNGER2012
Ā 
norme tecniche di prevenzione incendi
norme tecniche di prevenzione incendinorme tecniche di prevenzione incendi
norme tecniche di prevenzione incendiStroNGER2012
Ā 
Arangio sapienza-may2015
Arangio sapienza-may2015Arangio sapienza-may2015
Arangio sapienza-may2015StroNGER2012
Ā 
Petrini sapienza-may2015
Petrini sapienza-may2015Petrini sapienza-may2015
Petrini sapienza-may2015StroNGER2012
Ā 
Erdogmus sapienza-may2015
Erdogmus sapienza-may2015Erdogmus sapienza-may2015
Erdogmus sapienza-may2015StroNGER2012
Ā 
Avila sapienza-may2015
Avila sapienza-may2015Avila sapienza-may2015
Avila sapienza-may2015StroNGER2012
Ā 
Uso delle fibre di basalto nel risanamento degli edifici storici
Uso delle fibre di basalto nel risanamento degli edifici storiciUso delle fibre di basalto nel risanamento degli edifici storici
Uso delle fibre di basalto nel risanamento degli edifici storiciStroNGER2012
Ā 
Programma IF CRASC 15
Programma IF CRASC 15Programma IF CRASC 15
Programma IF CRASC 15StroNGER2012
Ā 
IDENTIFICAZIONE STRUTTURALE DEL COMPORTAMENTO SPERIMENTALE DI CENTINE INNOVAT...
IDENTIFICAZIONE STRUTTURALE DEL COMPORTAMENTO SPERIMENTALE DI CENTINE INNOVAT...IDENTIFICAZIONE STRUTTURALE DEL COMPORTAMENTO SPERIMENTALE DI CENTINE INNOVAT...
IDENTIFICAZIONE STRUTTURALE DEL COMPORTAMENTO SPERIMENTALE DI CENTINE INNOVAT...StroNGER2012
Ā 
IF CRASC'15 summary
IF CRASC'15 summaryIF CRASC'15 summary
IF CRASC'15 summaryStroNGER2012
Ā 
Corso Ottimizzazione Strutturale Sapienza 2015
Corso Ottimizzazione Strutturale Sapienza 2015Corso Ottimizzazione Strutturale Sapienza 2015
Corso Ottimizzazione Strutturale Sapienza 2015StroNGER2012
Ā 
MIGLIORAMENTO ED ADEGUAMENTO SISMICO DI STRUTTURE ESISTENTI ATTRAVERSO Lā€™UTIL...
MIGLIORAMENTO ED ADEGUAMENTO SISMICO DI STRUTTURE ESISTENTI ATTRAVERSO Lā€™UTIL...MIGLIORAMENTO ED ADEGUAMENTO SISMICO DI STRUTTURE ESISTENTI ATTRAVERSO Lā€™UTIL...
MIGLIORAMENTO ED ADEGUAMENTO SISMICO DI STRUTTURE ESISTENTI ATTRAVERSO Lā€™UTIL...StroNGER2012
Ā 

Mehr von StroNGER2012 (20)

Corso di dottorato & Corso di formazione
Corso di dottorato & Corso di formazione Corso di dottorato & Corso di formazione
Corso di dottorato & Corso di formazione
Ā 
I Restauri e la CittĆ : lā€™esempio del Colosseo e della Casa di Augusto
I Restauri e la CittĆ : lā€™esempio del Colosseo e della Casa di AugustoI Restauri e la CittĆ : lā€™esempio del Colosseo e della Casa di Augusto
I Restauri e la CittĆ : lā€™esempio del Colosseo e della Casa di Augusto
Ā 
SISTEMILA RETE STRADALE URBANA:UNā€™EMERGENZA DEL QUOTIDIANO O UNā€™OPPORTUNITAā€™ ...
SISTEMILA RETE STRADALE URBANA:UNā€™EMERGENZA DEL QUOTIDIANO O UNā€™OPPORTUNITAā€™ ...SISTEMILA RETE STRADALE URBANA:UNā€™EMERGENZA DEL QUOTIDIANO O UNā€™OPPORTUNITAā€™ ...
SISTEMILA RETE STRADALE URBANA:UNā€™EMERGENZA DEL QUOTIDIANO O UNā€™OPPORTUNITAā€™ ...
Ā 
INFRASTRUTTURE IN AMBITO URBANO: COMPLESSITAā€™ DI PROGETTO E DURABILITAā€™
INFRASTRUTTURE IN AMBITO URBANO: COMPLESSITAā€™ DI PROGETTO E DURABILITAā€™INFRASTRUTTURE IN AMBITO URBANO: COMPLESSITAā€™ DI PROGETTO E DURABILITAā€™
INFRASTRUTTURE IN AMBITO URBANO: COMPLESSITAā€™ DI PROGETTO E DURABILITAā€™
Ā 
61Resilienza dei centri urbani e rilievo delle costruzioni: un binomio indivi...
61Resilienza dei centri urbani e rilievo delle costruzioni: un binomio indivi...61Resilienza dei centri urbani e rilievo delle costruzioni: un binomio indivi...
61Resilienza dei centri urbani e rilievo delle costruzioni: un binomio indivi...
Ā 
Roma e le sue acque:il punto di vista della Protezione Civile
Roma e le sue acque:il punto di vista della Protezione CivileRoma e le sue acque:il punto di vista della Protezione Civile
Roma e le sue acque:il punto di vista della Protezione Civile
Ā 
Una visione ampia dei sistemi: robustezza e resilienza.
Una visione ampia dei sistemi: robustezza e resilienza.Una visione ampia dei sistemi: robustezza e resilienza.
Una visione ampia dei sistemi: robustezza e resilienza.
Ā 
Lā€™investigazione antincendio sugli aspetti strutturali: una proposta di codifica
Lā€™investigazione antincendio sugli aspetti strutturali: una proposta di codificaLā€™investigazione antincendio sugli aspetti strutturali: una proposta di codifica
Lā€™investigazione antincendio sugli aspetti strutturali: una proposta di codifica
Ā 
Progetto e analisi di ospedali come costruzioni strategiche: visione di siste...
Progetto e analisi di ospedali come costruzioni strategiche: visione di siste...Progetto e analisi di ospedali come costruzioni strategiche: visione di siste...
Progetto e analisi di ospedali come costruzioni strategiche: visione di siste...
Ā 
norme tecniche di prevenzione incendi
norme tecniche di prevenzione incendinorme tecniche di prevenzione incendi
norme tecniche di prevenzione incendi
Ā 
Arangio sapienza-may2015
Arangio sapienza-may2015Arangio sapienza-may2015
Arangio sapienza-may2015
Ā 
Petrini sapienza-may2015
Petrini sapienza-may2015Petrini sapienza-may2015
Petrini sapienza-may2015
Ā 
Erdogmus sapienza-may2015
Erdogmus sapienza-may2015Erdogmus sapienza-may2015
Erdogmus sapienza-may2015
Ā 
Avila sapienza-may2015
Avila sapienza-may2015Avila sapienza-may2015
Avila sapienza-may2015
Ā 
Uso delle fibre di basalto nel risanamento degli edifici storici
Uso delle fibre di basalto nel risanamento degli edifici storiciUso delle fibre di basalto nel risanamento degli edifici storici
Uso delle fibre di basalto nel risanamento degli edifici storici
Ā 
Programma IF CRASC 15
Programma IF CRASC 15Programma IF CRASC 15
Programma IF CRASC 15
Ā 
IDENTIFICAZIONE STRUTTURALE DEL COMPORTAMENTO SPERIMENTALE DI CENTINE INNOVAT...
IDENTIFICAZIONE STRUTTURALE DEL COMPORTAMENTO SPERIMENTALE DI CENTINE INNOVAT...IDENTIFICAZIONE STRUTTURALE DEL COMPORTAMENTO SPERIMENTALE DI CENTINE INNOVAT...
IDENTIFICAZIONE STRUTTURALE DEL COMPORTAMENTO SPERIMENTALE DI CENTINE INNOVAT...
Ā 
IF CRASC'15 summary
IF CRASC'15 summaryIF CRASC'15 summary
IF CRASC'15 summary
Ā 
Corso Ottimizzazione Strutturale Sapienza 2015
Corso Ottimizzazione Strutturale Sapienza 2015Corso Ottimizzazione Strutturale Sapienza 2015
Corso Ottimizzazione Strutturale Sapienza 2015
Ā 
MIGLIORAMENTO ED ADEGUAMENTO SISMICO DI STRUTTURE ESISTENTI ATTRAVERSO Lā€™UTIL...
MIGLIORAMENTO ED ADEGUAMENTO SISMICO DI STRUTTURE ESISTENTI ATTRAVERSO Lā€™UTIL...MIGLIORAMENTO ED ADEGUAMENTO SISMICO DI STRUTTURE ESISTENTI ATTRAVERSO Lā€™UTIL...
MIGLIORAMENTO ED ADEGUAMENTO SISMICO DI STRUTTURE ESISTENTI ATTRAVERSO Lā€™UTIL...
Ā 

KĆ¼rzlich hochgeladen

(办ē†å­¦ä½čƁ)埃čæŖę–Æē§‘ę–‡å¤§å­¦ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€
(办ē†å­¦ä½čƁ)埃čæŖę–Æē§‘ę–‡å¤§å­¦ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€(办ē†å­¦ä½čƁ)埃čæŖę–Æē§‘ę–‡å¤§å­¦ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€
(办ē†å­¦ä½čƁ)埃čæŖę–Æē§‘ę–‡å¤§å­¦ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€Fi sss
Ā 
ę˜†å£«å…°å¤§å­¦ęƕäøščƁļ¼ˆUQęƕäøščƁļ¼‰#ę–‡å‡­ęˆē»©å•#ēœŸå®žē•™äæ”å­¦åŽ†č®¤čƁę°øä¹…å­˜ę”£
ę˜†å£«å…°å¤§å­¦ęƕäøščƁļ¼ˆUQęƕäøščƁļ¼‰#ę–‡å‡­ęˆē»©å•#ēœŸå®žē•™äæ”å­¦åŽ†č®¤čƁę°øä¹…å­˜ę”£ę˜†å£«å…°å¤§å­¦ęƕäøščƁļ¼ˆUQęƕäøščƁļ¼‰#ę–‡å‡­ęˆē»©å•#ēœŸå®žē•™äæ”å­¦åŽ†č®¤čƁę°øä¹…å­˜ę”£
ę˜†å£«å…°å¤§å­¦ęƕäøščƁļ¼ˆUQęƕäøščƁļ¼‰#ę–‡å‡­ęˆē»©å•#ēœŸå®žē•™äæ”å­¦åŽ†č®¤čƁę°øä¹…å­˜ę”£208367051
Ā 
办ē†(宾州州ē«‹ęƕäøščƁ书)ē¾Žå›½å®¾å¤•ę³•å°¼äŗšå·žē«‹å¤§å­¦ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€
办ē†(宾州州ē«‹ęƕäøščƁ书)ē¾Žå›½å®¾å¤•ę³•å°¼äŗšå·žē«‹å¤§å­¦ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€åŠžē†(宾州州ē«‹ęƕäøščƁ书)ē¾Žå›½å®¾å¤•ę³•å°¼äŗšå·žē«‹å¤§å­¦ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€
办ē†(宾州州ē«‹ęƕäøščƁ书)ē¾Žå›½å®¾å¤•ę³•å°¼äŗšå·žē«‹å¤§å­¦ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€F La
Ā 
办ē†å­¦ä½čƁ(NTUčƁ书)ę–°åŠ å”å—ę“‹ē†å·„大学ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€
办ē†å­¦ä½čƁ(NTUčƁ书)ę–°åŠ å”å—ę“‹ē†å·„大学ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€åŠžē†å­¦ä½čƁ(NTUčƁ书)ę–°åŠ å”å—ę“‹ē†å·„大学ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€
办ē†å­¦ä½čƁ(NTUčƁ书)ę–°åŠ å”å—ę“‹ē†å·„大学ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€A SSS
Ā 
Untitled presedddddddddddddddddntation (1).pptx
Untitled presedddddddddddddddddntation (1).pptxUntitled presedddddddddddddddddntation (1).pptx
Untitled presedddddddddddddddddntation (1).pptxmapanig881
Ā 
Mookuthi is an artisanal nose ornament brand based in Madras.
Mookuthi is an artisanal nose ornament brand based in Madras.Mookuthi is an artisanal nose ornament brand based in Madras.
Mookuthi is an artisanal nose ornament brand based in Madras.Mookuthi
Ā 
韩国SKKU学位čƁ,ęˆå‡é¦†å¤§å­¦ęƕäøščƁ书1:1制作
韩国SKKU学位čƁ,ęˆå‡é¦†å¤§å­¦ęƕäøščƁ书1:1制作韩国SKKU学位čƁ,ęˆå‡é¦†å¤§å­¦ęƕäøščƁ书1:1制作
韩国SKKU学位čƁ,ęˆå‡é¦†å¤§å­¦ęƕäøščƁ书1:1制作7tz4rjpd
Ā 
'CASE STUDY OF INDIRA PARYAVARAN BHAVAN DELHI ,
'CASE STUDY OF INDIRA PARYAVARAN BHAVAN DELHI ,'CASE STUDY OF INDIRA PARYAVARAN BHAVAN DELHI ,
'CASE STUDY OF INDIRA PARYAVARAN BHAVAN DELHI ,Aginakm1
Ā 
cda.pptx critical discourse analysis ppt
cda.pptx critical discourse analysis pptcda.pptx critical discourse analysis ppt
cda.pptx critical discourse analysis pptMaryamAfzal41
Ā 
原ē‰ˆē¾Žå›½äŗšåˆ©ę”‘那州ē«‹å¤§å­¦ęƕäøščÆęˆē»©å•pdfē”µå­ē‰ˆåˆ¶ä½œäæ®ę”¹#ęƕäøšę–‡å‡­åˆ¶ä½œ#å›žå›½å…„čŒ#diploma#degree
原ē‰ˆē¾Žå›½äŗšåˆ©ę”‘那州ē«‹å¤§å­¦ęƕäøščÆęˆē»©å•pdfē”µå­ē‰ˆåˆ¶ä½œäæ®ę”¹#ęƕäøšę–‡å‡­åˆ¶ä½œ#å›žå›½å…„čŒ#diploma#degree原ē‰ˆē¾Žå›½äŗšåˆ©ę”‘那州ē«‹å¤§å­¦ęƕäøščÆęˆē»©å•pdfē”µå­ē‰ˆåˆ¶ä½œäæ®ę”¹#ęƕäøšę–‡å‡­åˆ¶ä½œ#å›žå›½å…„čŒ#diploma#degree
原ē‰ˆē¾Žå›½äŗšåˆ©ę”‘那州ē«‹å¤§å­¦ęƕäøščÆęˆē»©å•pdfē”µå­ē‰ˆåˆ¶ä½œäæ®ę”¹#ęƕäøšę–‡å‡­åˆ¶ä½œ#å›žå›½å…„čŒ#diploma#degreeyuu sss
Ā 
办ē†(UCęƕäøščƁ书)ęŸ„å°”ę–Æé”æ大学ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€
办ē†(UCęƕäøščƁ书)ęŸ„å°”ę–Æé”æ大学ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€åŠžē†(UCęƕäøščƁ书)ęŸ„å°”ę–Æé”æ大学ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€
办ē†(UCęƕäøščƁ书)ęŸ„å°”ę–Æé”æ大学ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€z xss
Ā 
Call Girls in Ashok Nagar Delhi āœ”ļø9711147426āœ”ļø Escorts Service
Call Girls in Ashok Nagar Delhi āœ”ļø9711147426āœ”ļø Escorts ServiceCall Girls in Ashok Nagar Delhi āœ”ļø9711147426āœ”ļø Escorts Service
Call Girls in Ashok Nagar Delhi āœ”ļø9711147426āœ”ļø Escorts Servicejennyeacort
Ā 
1ęƔ1办ē†ē¾Žå›½åŒ—協ē½—莱ēŗ³å·žē«‹å¤§å­¦ęƕäøščÆęˆē»©å•pdfē”µå­ē‰ˆåˆ¶ä½œäæ®ę”¹
1ęƔ1办ē†ē¾Žå›½åŒ—協ē½—莱ēŗ³å·žē«‹å¤§å­¦ęƕäøščÆęˆē»©å•pdfē”µå­ē‰ˆåˆ¶ä½œäæ®ę”¹1ęƔ1办ē†ē¾Žå›½åŒ—協ē½—莱ēŗ³å·žē«‹å¤§å­¦ęƕäøščÆęˆē»©å•pdfē”µå­ē‰ˆåˆ¶ä½œäæ®ę”¹
1ęƔ1办ē†ē¾Žå›½åŒ—協ē½—莱ēŗ³å·žē«‹å¤§å­¦ęƕäøščÆęˆē»©å•pdfē”µå­ē‰ˆåˆ¶ä½œäæ®ę”¹yuu sss
Ā 
group_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdfgroup_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdfneelspinoy
Ā 
Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Rndexperts
Ā 
办ē†å­¦ä½čƁ(TheAucklandčƁ书)ꖰč„æ兰億克兰大学ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€
办ē†å­¦ä½čƁ(TheAucklandčƁ书)ꖰč„æ兰億克兰大学ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€åŠžē†å­¦ä½čƁ(TheAucklandčƁ书)ꖰč„æ兰億克兰大学ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€
办ē†å­¦ä½čƁ(TheAucklandčƁ书)ꖰč„æ兰億克兰大学ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€Fi L
Ā 
FiveHypotheses_UIDMasterclass_18April2024.pdf
FiveHypotheses_UIDMasterclass_18April2024.pdfFiveHypotheses_UIDMasterclass_18April2024.pdf
FiveHypotheses_UIDMasterclass_18April2024.pdfShivakumar Viswanathan
Ā 
CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10
CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10
CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10uasjlagroup
Ā 
MT. Marseille an Archipelago. Strategies for Integrating Residential Communit...
MT. Marseille an Archipelago. Strategies for Integrating Residential Communit...MT. Marseille an Archipelago. Strategies for Integrating Residential Communit...
MT. Marseille an Archipelago. Strategies for Integrating Residential Communit...katerynaivanenko1
Ā 

KĆ¼rzlich hochgeladen (20)

(办ē†å­¦ä½čƁ)埃čæŖę–Æē§‘ę–‡å¤§å­¦ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€
(办ē†å­¦ä½čƁ)埃čæŖę–Æē§‘ę–‡å¤§å­¦ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€(办ē†å­¦ä½čƁ)埃čæŖę–Æē§‘ę–‡å¤§å­¦ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€
(办ē†å­¦ä½čƁ)埃čæŖę–Æē§‘ę–‡å¤§å­¦ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€
Ā 
ę˜†å£«å…°å¤§å­¦ęƕäøščƁļ¼ˆUQęƕäøščƁļ¼‰#ę–‡å‡­ęˆē»©å•#ēœŸå®žē•™äæ”å­¦åŽ†č®¤čƁę°øä¹…å­˜ę”£
ę˜†å£«å…°å¤§å­¦ęƕäøščƁļ¼ˆUQęƕäøščƁļ¼‰#ę–‡å‡­ęˆē»©å•#ēœŸå®žē•™äæ”å­¦åŽ†č®¤čƁę°øä¹…å­˜ę”£ę˜†å£«å…°å¤§å­¦ęƕäøščƁļ¼ˆUQęƕäøščƁļ¼‰#ę–‡å‡­ęˆē»©å•#ēœŸå®žē•™äæ”å­¦åŽ†č®¤čƁę°øä¹…å­˜ę”£
ę˜†å£«å…°å¤§å­¦ęƕäøščƁļ¼ˆUQęƕäøščƁļ¼‰#ę–‡å‡­ęˆē»©å•#ēœŸå®žē•™äæ”å­¦åŽ†č®¤čƁę°øä¹…å­˜ę”£
Ā 
办ē†(宾州州ē«‹ęƕäøščƁ书)ē¾Žå›½å®¾å¤•ę³•å°¼äŗšå·žē«‹å¤§å­¦ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€
办ē†(宾州州ē«‹ęƕäøščƁ书)ē¾Žå›½å®¾å¤•ę³•å°¼äŗšå·žē«‹å¤§å­¦ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€åŠžē†(宾州州ē«‹ęƕäøščƁ书)ē¾Žå›½å®¾å¤•ę³•å°¼äŗšå·žē«‹å¤§å­¦ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€
办ē†(宾州州ē«‹ęƕäøščƁ书)ē¾Žå›½å®¾å¤•ę³•å°¼äŗšå·žē«‹å¤§å­¦ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€
Ā 
办ē†å­¦ä½čƁ(NTUčƁ书)ę–°åŠ å”å—ę“‹ē†å·„大学ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€
办ē†å­¦ä½čƁ(NTUčƁ书)ę–°åŠ å”å—ę“‹ē†å·„大学ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€åŠžē†å­¦ä½čƁ(NTUčƁ书)ę–°åŠ å”å—ę“‹ē†å·„大学ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€
办ē†å­¦ä½čƁ(NTUčƁ书)ę–°åŠ å”å—ę“‹ē†å·„大学ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€
Ā 
Untitled presedddddddddddddddddntation (1).pptx
Untitled presedddddddddddddddddntation (1).pptxUntitled presedddddddddddddddddntation (1).pptx
Untitled presedddddddddddddddddntation (1).pptx
Ā 
Mookuthi is an artisanal nose ornament brand based in Madras.
Mookuthi is an artisanal nose ornament brand based in Madras.Mookuthi is an artisanal nose ornament brand based in Madras.
Mookuthi is an artisanal nose ornament brand based in Madras.
Ā 
韩国SKKU学位čƁ,ęˆå‡é¦†å¤§å­¦ęƕäøščƁ书1:1制作
韩国SKKU学位čƁ,ęˆå‡é¦†å¤§å­¦ęƕäøščƁ书1:1制作韩国SKKU学位čƁ,ęˆå‡é¦†å¤§å­¦ęƕäøščƁ书1:1制作
韩国SKKU学位čƁ,ęˆå‡é¦†å¤§å­¦ęƕäøščƁ书1:1制作
Ā 
'CASE STUDY OF INDIRA PARYAVARAN BHAVAN DELHI ,
'CASE STUDY OF INDIRA PARYAVARAN BHAVAN DELHI ,'CASE STUDY OF INDIRA PARYAVARAN BHAVAN DELHI ,
'CASE STUDY OF INDIRA PARYAVARAN BHAVAN DELHI ,
Ā 
cda.pptx critical discourse analysis ppt
cda.pptx critical discourse analysis pptcda.pptx critical discourse analysis ppt
cda.pptx critical discourse analysis ppt
Ā 
原ē‰ˆē¾Žå›½äŗšåˆ©ę”‘那州ē«‹å¤§å­¦ęƕäøščÆęˆē»©å•pdfē”µå­ē‰ˆåˆ¶ä½œäæ®ę”¹#ęƕäøšę–‡å‡­åˆ¶ä½œ#å›žå›½å…„čŒ#diploma#degree
原ē‰ˆē¾Žå›½äŗšåˆ©ę”‘那州ē«‹å¤§å­¦ęƕäøščÆęˆē»©å•pdfē”µå­ē‰ˆåˆ¶ä½œäæ®ę”¹#ęƕäøšę–‡å‡­åˆ¶ä½œ#å›žå›½å…„čŒ#diploma#degree原ē‰ˆē¾Žå›½äŗšåˆ©ę”‘那州ē«‹å¤§å­¦ęƕäøščÆęˆē»©å•pdfē”µå­ē‰ˆåˆ¶ä½œäæ®ę”¹#ęƕäøšę–‡å‡­åˆ¶ä½œ#å›žå›½å…„čŒ#diploma#degree
原ē‰ˆē¾Žå›½äŗšåˆ©ę”‘那州ē«‹å¤§å­¦ęƕäøščÆęˆē»©å•pdfē”µå­ē‰ˆåˆ¶ä½œäæ®ę”¹#ęƕäøšę–‡å‡­åˆ¶ä½œ#å›žå›½å…„čŒ#diploma#degree
Ā 
Call Girls in Pratap Nagar, 9953056974 Escort Service
Call Girls in Pratap Nagar,  9953056974 Escort ServiceCall Girls in Pratap Nagar,  9953056974 Escort Service
Call Girls in Pratap Nagar, 9953056974 Escort Service
Ā 
办ē†(UCęƕäøščƁ书)ęŸ„å°”ę–Æé”æ大学ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€
办ē†(UCęƕäøščƁ书)ęŸ„å°”ę–Æé”æ大学ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€åŠžē†(UCęƕäøščƁ书)ęŸ„å°”ę–Æé”æ大学ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€
办ē†(UCęƕäøščƁ书)ęŸ„å°”ę–Æé”æ大学ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€
Ā 
Call Girls in Ashok Nagar Delhi āœ”ļø9711147426āœ”ļø Escorts Service
Call Girls in Ashok Nagar Delhi āœ”ļø9711147426āœ”ļø Escorts ServiceCall Girls in Ashok Nagar Delhi āœ”ļø9711147426āœ”ļø Escorts Service
Call Girls in Ashok Nagar Delhi āœ”ļø9711147426āœ”ļø Escorts Service
Ā 
1ęƔ1办ē†ē¾Žå›½åŒ—協ē½—莱ēŗ³å·žē«‹å¤§å­¦ęƕäøščÆęˆē»©å•pdfē”µå­ē‰ˆåˆ¶ä½œäæ®ę”¹
1ęƔ1办ē†ē¾Žå›½åŒ—協ē½—莱ēŗ³å·žē«‹å¤§å­¦ęƕäøščÆęˆē»©å•pdfē”µå­ē‰ˆåˆ¶ä½œäæ®ę”¹1ęƔ1办ē†ē¾Žå›½åŒ—協ē½—莱ēŗ³å·žē«‹å¤§å­¦ęƕäøščÆęˆē»©å•pdfē”µå­ē‰ˆåˆ¶ä½œäæ®ę”¹
1ęƔ1办ē†ē¾Žå›½åŒ—協ē½—莱ēŗ³å·žē«‹å¤§å­¦ęƕäøščÆęˆē»©å•pdfē”µå­ē‰ˆåˆ¶ä½œäæ®ę”¹
Ā 
group_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdfgroup_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdf
Ā 
Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025
Ā 
办ē†å­¦ä½čƁ(TheAucklandčƁ书)ꖰč„æ兰億克兰大学ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€
办ē†å­¦ä½čƁ(TheAucklandčƁ书)ꖰč„æ兰億克兰大学ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€åŠžē†å­¦ä½čƁ(TheAucklandčƁ书)ꖰč„æ兰億克兰大学ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€
办ē†å­¦ä½čƁ(TheAucklandčƁ书)ꖰč„æ兰億克兰大学ęƕäøščÆęˆē»©å•åŽŸē‰ˆäø€ęƔäø€
Ā 
FiveHypotheses_UIDMasterclass_18April2024.pdf
FiveHypotheses_UIDMasterclass_18April2024.pdfFiveHypotheses_UIDMasterclass_18April2024.pdf
FiveHypotheses_UIDMasterclass_18April2024.pdf
Ā 
CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10
CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10
CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10
Ā 
MT. Marseille an Archipelago. Strategies for Integrating Residential Communit...
MT. Marseille an Archipelago. Strategies for Integrating Residential Communit...MT. Marseille an Archipelago. Strategies for Integrating Residential Communit...
MT. Marseille an Archipelago. Strategies for Integrating Residential Communit...
Ā 

3 - Structural Integrity Evaluation of Offshore Wind Turbines - Giuliani

  • 1. Structural Integrity Evaluation of Offshore Wind Turbines Luisa Giuliani Franco Bontempi luisa.giuliani@uniroma1.it franco.bontempi@uniroma1.it Structural and Geotechnical Engineering Department University of Rome ā€œLa Sapienzaā€
  • 2. Presentation outlineEARTH&SPACE 2010 STRUCTURAL INTEGRITY OF OFFSHORE WIND TURBINES What is it and why to care about it STRATEGIES AND MEASURE OF ACHIEVEMENT Robustness and vulnerability A CASE STUDY Investigation of an offshore turbine response to a ship collision CONCLUSIONS Conclusive evaluations on application and methodology L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 2/26 A CASE STUDY Investigation of an offshore turbine response to a ship collision STRATEGIES AND MEASURE OF ACHIEVEMENT Robustness and vulnerability CONCLUSIONS Conclusive evaluations on application and methodology STRUCTURAL INTEGRITY OF OFFSHORE WIND TURBINES What is it and why to care about it
  • 3. Why care about structural integrity?EARTH&SPACE 2010 MIDDELGRUNDENS VINDMƘLLELAUG Offshore wind farm in Ƙresund, outside Copenhagen harbor, 2000) Operator: Dong Energy Owner: 50% investor cooperative 50% municipality Official website: http://www.middelgrunden.dk L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 3/26
  • 4. L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines Why care about structural integrity? 4/26 EARTH&SPACE 2010 RUNAWAY EVENT (Jutland, 2008) 1. High wind and breaking system failure 2. Blades spin out of control and fail 3. Blade debris collided with the tower4. Turbine tower collapses to the ground.
  • 5. Why care about structural integrity?EARTH&SPACE 2010 RUNAWAY EVENT (Jutland, 2008) 1. High wind and breaking system failure 2. Blades spin out of control and fail 3. Blade debris collided with the tower4. Turbine tower collapses to the ground. DISPROPORTION BETWEEN CAUSE AND EFFECT L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 4/26
  • 6. Disproportionate collapse in standardsEARTH&SPACE 2010 ASCE 7ASCE 7--02, 200202, 2002 The structural system shall be able to sustain local damage or failure with the overall structure remaining stable and not be damaged to an extend disproportionate to the original local damage GSA guidelines, 2003GSA guidelines, 2003 the building must withstand as a minimum, the loss of one primary vertical load-bearing member without causing progressive collapse Unified facilities criteriaUnified facilities criteria UFC 4UFC 4--023023--03, DoD 200503, DoD 2005 All new and existing buildings with three stories or more in height must be designed to avoid progressive collapse Model code 1990Model code 1990 Structures should withstand accidental circumstance without damage disproportionate to the original events (insensitivity requirement) ISO/FDIS 2394, 1998ISO/FDIS 2394, 1998 Structures and structural elements should satisfy, with proper levels of reliability: -exercise ultimate state requirements - load ultimate state requirements - structural integrity state requirements EN 1991EN 1991--11--7:20067:2006 Structures should be able to withstand accidental actions (fires, explosions, impacts) or consequences of human errors, without suffering damages disproportionate to the triggering causes CODESAMERICAN EUROPEAN L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 5/26
  • 7. Structural integrityEARTH&SPACE 2010 STIFFNESS Service limit states (SLS) RESISTANCE STRUCTURALSAFETY Ultimate limit states (ULS) SECTIONSSECTIONS OR ELEMENTSOR ELEMENTS ? R > S f < ff < fadmadm RESISTANCE TO EXCEPTIONAL ACTION Structural integrity limit state (SILS) STRUCTURAL SYSTEM verification on FAILURE IS PREVENTED FAILURE IS PRESUMED L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 6/26
  • 8. OFFSHORE STANDARD, DNVOFFSHORE STANDARD, DNV--OSOS--J101, 2004J101, 2004 The structural system shall be able to resists accidental loads and maintain integrity and performance of the structure due to local damage or flooding. CONSIDERED LIMIT STATESCONSIDERED LIMIT STATES ACCIDENTAL ACTIONSACCIDENTAL ACTIONS Structural integrity for OWTEARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 7/26 ULS Ultimate Limit States ALS Accidental Limit States FLS Fatigue Limit States SLS Serviceability Limit States maximum load carrying resistance failure due to the effect of cyclic loading damage to components due to an accidental event tolerance criteria applicable to normal use
  • 9. Presentation outlineEARTH&SPACE 2010 STRUCTURAL INTEGRITY OF WIND TURBINE What is it and why to care about it STRATEGIES AND MEASURE OF ACHIEVMENT Robustness and vulnerability A CASE STUDY Investigation of an offshore turbine response to a ship collision CONCLUSIONS Conclusive evaluations on application and methodology L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 8/26 STRUCTURAL INTEGRITY OF WIND TURBINE What is it and why to care about it STRATEGIES AND MEASURE OF ACHIEVMENT Robustness and vulnerability
  • 10. Different factors affecting structural integrityEARTH&SPACE 2010 P(F) = P(D|H) P(F|DH)P(H) x x occurrence of collapse VULNERABILITY ROBUSTNESSEXPOSURE VULNERABILITY ROBUSTNESSEXPOSURE [Faber,2006] [Ellingwood,1983] STRUCTURALNON STRUCTURAL MEASURES avoid dispropor. collapselimit initial damageevent control 2) reduce the effects of the action 3) reduce the effects of a failure 1) reduce the action damage is caused in the structure critical event occurs near the structure damage spreads in the structure L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 9/26
  • 11. EVENT CONTROL Non structural measuresEARTH&SPACE 2010 Malfunctioning and fire Natural actions Ship collision Malevolent attack System control Protective barriers Sacrificial structures Surveillance L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 10/26 a. Difficult to prevent every possible accidental event b. Difficult to protect WT (exposed to natural action) c. Difficult to surveille WT (wide and isolated area) reduce the occurrence of the action reduce the exposure of the structure 1)1) REDUCE THE ACTIONREDUCE THE ACTION
  • 12. Structural measuresEARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 11/26 T O P D O W N Identification of failures at meso-level (intermediate components) Identification of failures at micro level (basic components) B O T T O M U P Deductive (top-down): critical event is modeled Inductive (bottom-up): critical event is irrelevant ROBUSTNESS 2) REDUCE THE EFFECTS2) REDUCE THE EFFECTS OF THE ACTIONOF THE ACTION 3) REDUCE THE EFFECTS3) REDUCE THE EFFECTS OF A FAILUREOF A FAILURE VULNERABILITY SHIP COLLISION DAMAGED COMPONENTS
  • 13. d )d(R I āˆ† āˆ† = Structural robustnessEARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 12/26 structure B d P s STRUCTURE B: P s ROBUSTNESS CURVES P (performance) structure A STRUCTURE A damaged integer āˆ†P damaged more performant, less resistant integer (damage level) āˆ†Pāˆ†P more performant, less robust less performant, more robust PERFORMANCE ultimate resistance DAMAGE LEVEL # removed elements STRUCTURAL ROBUSTNESS: Insensitivity to local failure (ASCE/SEI-PCSGC, 2007 ā€“ Betonkalender, 2008) Proposed robustness measure: decrement of resistance that corresponds to an increment of damage in the structure
  • 14. EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 13/26 28 0 1 2 --- 8 d Ī» Exact maxima and minima curves EXHAUSTIVE INVESTIGATIONEXHAUSTIVE INVESTIGATION 1 Cd EX. 81 Exhaustive combinations Cd = E! d! Ɨ (E-d)! Ctot = Ī£d Cd = 2E 0 for D = E D a structure of 8 elements is considered as example Robustness curves
  • 15. EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 13/26 0 1 2 --- 8 d Approximated maxima and minima curves HEURISTIC OPTIMIZATIONHEURISTIC OPTIMIZATION ERROR! (non cons.) 14 2 Reduced combinations = 1 d>1 Cd = = 2 Ɨ[E-(d-1)] = E d=1 d=0 0 D Ctot = Ī£d Cd = E2 + 1 for D = E 1 28 Exhaustive combinations Cd = E! d! Ɨ (E-d)! Ctot = Ī£d Cd = 2E 0 for D = E D exponentialexponential polynomialpolynomial 8 Cd EX. Cd RED. a structure of 8 elements is considered as example Robustness curves
  • 16. 8/31 11/31 Stiffbeams(flex.behaviour)Stiffcolumns(shear-type) STRUCTURALBEHAVIOUR 16 17 18 13 14 15 9 10 121 1 5 6 87 1 2 43 19 20 21 Ī»Ī»Ī»Ī»Ī»Ī»Ī»Ī»gg 16 17 18 13 14 15 9 10 121 1 5 6 87 1 2 43 19 20 21 Ī»Ī»Ī»Ī»Ī»Ī»Ī»Ī»gg SHEAR-TYPE FRAME ROBUSTNESS 00,51 17 1 2 3 4 5 6 7 8 9 10 Damage Level PU[ad] MAX MIN FLEX-TYPE FRAME ROBUSTNESS 00,250,50,751 0 1 2 3 4 5 6 7 8 9 10 Damage Level PU[ad] MAX MIN Ī»g 5 6 87 9 10 12 13 14 15 16 17 18 19 20 21 41 2 3 11 Ī»g 14 17 1513 18 19 5 6 87 1211 41 2 3 9 10 16 20 21 1 2 43 5 6 87 9 10 1211 13 14 15 16 17 18 19 20 21 Ī»g Ī»g 14 17 20 1513 1816 2119 5 6 87 41 2 3 9 10 1211 EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 14/26 Comparison between different design solutions
  • 17. EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 15/26 Robustness applied to OWT OWT ROBUSTNESS COMPARISON between two jacket structures between two support types
  • 18. Presentation outlineEARTH&SPACE 2010 STRUCTURAL INTEGRITY OF WIND TURBINE What is it and why to care about it STRATEGIES AND MEASURE OF ACHIEVMENT Robustness and vulnerability A CASE STUDY Investigation of an offshore turbine response to a ship collision CONCLUSIONS Conclusive evaluations on application and methodology L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 16/26 STRUCTURAL INTEGRITY OF WIND TURBINE What is it and why to care about it A CASE STUDY Investigation of an offshore turbine response to a ship collision STRATEGIES AND MEASURE OF ACHIEVMENT Robustness and vulnerability
  • 19. EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 17/26 OWT ship collision investigation
  • 20. EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 18/26 OWT ship collision investigation OWTSTRUCTURE MODELING Pointed mass for modeling rotor and nacelle. One-dimensional elements for leg and tower with elastic-plastic behavior (spread plasticity). Soil interaction accounted with 3D finite elements, which behave elastically. Zone extension calibrated in order to minimize boundary effects. Typical OWT: 5-6 MW power 36 m water depth. S355 steel monopile with hollow circular section; diameter and thickness vary along the tower. 4 diagonal legs connected to 4 45 m long foundation piles, 40 m deepened into the ground.
  • 21. EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 19/26 OWT ship collision investigation OWTLOAD SCENARIOS SHIP IMPACT MODELING Only self-weight is assumed to act on the turbine at the moment of impact. Three different scenarios are considered for ship collision point: A. Impact on one diagonal leg under the seabed (model node #17); 700 ton700 ton AA
  • 22. 700 ton700 ton AA EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 19/26 OWT ship collision investigation OWTLOAD SCENARIOS SHIP IMPACT MODELING Only self-weight is assumed to act on the turbine at the moment of impact. Three different scenarios are considered for ship collision point: A. Impact on one diagonal leg under the seabed (model node #17); B. Impact at the seabed (model node #38); 700 ton700 ton BB
  • 23. 700 ton700 ton BB EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 19/26 OWT ship collision investigation OWTLOAD SCENARIOS SHIP IMPACT MODELING Only self-weight is assumed to act on the turbine at the moment of impact. Three different scenarios are considered for ship collision point: A. Impact on one diagonal leg under the seabed (model node #17); B. Impact at the seabed (model node #38); C. Impact on the tower above the seabed (model node #548). t [s] F [MN] 0.5 1.5 2.00.0 7 Ship impact is modeled by means of an impulsive force acting on the collision point. The value of the force is 7 MN (ca. 700 ton) and the total length of the impulsive function is 2 s. Nonlinear dynamics analyses are carried on the structure. 700 ton700 ton CC
  • 24. EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 20/26 Nonlinear dynamic investigations SCENARIO A time: 0.025 s
  • 25. time: 0.0 s EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 20/26 Nonlinear dynamic investigations SCENARIO A time: 0.3 s
  • 26. EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 20/26 Nonlinear dynamic investigations SCENARIO A time: 0.3 stime: 0.5 s
  • 27. EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 20/26 Nonlinear dynamic investigations SCENARIO A time: 0.5 stime: 0.8 s
  • 28. EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 20/26 Nonlinear dynamic investigations SCENARIO A time: 0.8 stime: 1.5 s
  • 29. EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 20/26 Nonlinear dynamic investigations SCENARIO A time: 1.5 stime: 3.0 s
  • 30. EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 21/26 Nonlinear dynamic investigations SCENARIO B time: 0.0 s
  • 31. time: 0.0 s EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 21/26 Nonlinear dynamic investigations SCENARIO B time: 1.0 s
  • 32. EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 21/26 Nonlinear dynamic investigations SCENARIO B time: 1.0 stime: 3.0 s
  • 33. EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 22/26 Nonlinear dynamic investigations SCENARIO C time: 0.0 s
  • 34. time: 0.0 s EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 22/26 Nonlinear dynamic investigations SCENARIO C time: 1.0 s
  • 35. time: 1.0 s EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 22/26 Nonlinear dynamic investigations SCENARIO C time: 3.0 s
  • 36. CONCLUSIONS Conclusive evaluations on application and methodology CONCLUSIONS Conclusive evaluations on application and methodology Presentation outlineEARTH&SPACE 2010 STRUCTURAL INTEGRITY OF WIND TURBINE What is it and why to care about it STRATEGIES AND MEASURE OF ACHIEVMENT Robustness and vulnerability A CASE STUDY Investigation of an offshore turbine response to a ship collision L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 23/26 STRUCTURAL INTEGRITY OF WIND TURBINE What is it and why to care about it A CASE STUDY Investigation of an offshore turbine response to a ship collision STRATEGIES AND MEASURE OF ACHIEVMENT Robustness and vulnerability
  • 37. SCENARIO EFFECT OF ACTION EFFECT OF DAMAGE A Irreversible direct damage of impacted leg: VULNERABLE TO ACTION (not disproportionate, local resistance may be increased) Overloading of adjacent legs and part of monopile, but no damage propagation: ROBUST BEHAVIOR (other damages to be studied) B Elastic deformation: NOT VULNERABLE TO CONSIDERED ACTION --- C Elastic deformation: NOT VULNERABLE TO CONSIDERED ACTION --- EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 24/26 Nonlinear dynamic investigation results 700 ton700 ton 700 ton700 ton 700 ton700 ton 700 ton700 ton
  • 38. EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 25/26 FAILURECAUSES TYPES ACCIDENTAL ACTIONS HUMAN ERRORS Ā§ DESIGN Ā§ EXECUTION Ā§ MAINTENANCE Ā§ IMPACTS Ā§ COLLISIONS Ā§ FIRES UNFAVORABLE COMBINATIONS of usual load values or circumstances: SWISS CHEESE THEORY BLADES Ā§ OVER SPEED Ā§ FATIGUE FAILURE Ā§ LOCAL BUCKLING Handling exceptions of OWT
  • 39. EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 25/26 FAILURECAUSES TYPES ACCIDENTAL ACTIONS HUMAN ERRORS Ā§ DESIGN Ā§ EXECUTION Ā§ MAINTENANCE Ā§ IMPACTS Ā§ COLLISIONS Ā§ FIRES UNFAVORABLE COMBINATIONS of usual load values or circumstances: SWISS CHEESE THEORY BLADES Ā§ OVER SPEED Ā§ FATIGUE FAILURE Ā§ LOCAL BUCKLING TOWER Ā§ SHAFT CRACKS Ā§ WELDING FAILURE (FATIGUE OR FAULTY DESIGN) Handling exceptions of OWT
  • 40. EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 25/26 FAILURECAUSES TYPES ACCIDENTAL ACTIONS HUMAN ERRORS Ā§ DESIGN Ā§ EXECUTION Ā§ MAINTENANCE Ā§ IMPACTS Ā§ COLLISIONS Ā§ FIRES UNFAVORABLE COMBINATIONS of usual load values or circumstances: SWISS CHEESE THEORY BLADES Ā§ OVER SPEED Ā§ FATIGUE FAILURE Ā§ LOCAL BUCKLING TOWER Ā§ SHAFT CRACKS Ā§ WELDING FAILURE (FATIGUE OR FAULTY DESIGN) FOUNDATION Ā§ MOSTLY FOR OWT IN CONSTRUCTION Handling exceptions of OWT
  • 41. EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 26/26 PreventionPrevention Indirect design Direct design Top-down methods Bottom-up methods Collapse resistance Structural robustness PresumptionPresumption Event control SpecificSpecific analysesanalyses StructuralStructural measuresmeasures performedavoided CriticalCritical eventevent modeled no yes Invulnerability Unaccounted may happen! No hazards can occur Hazards donā€™t cause failure Progressive collapse susceptibility ? Effects areEffects are uncertainuncertain ? Behavior followingBehavior following other hazardsother hazards remains unknown!remains unknown! irrelevant FAULTFAULTFAILUREFAILURE SECURITYSECURITY INVULNERABILITYINVULNERABILITY Handling exceptions of OWT
  • 42. Structural Integrity Evaluation of Offshore Wind Turbines Luisa Giuliani Franco Bontempi luisa.giuliani@uniroma1.it franco.bontempi@uniroma1.it Structural and Geotechnical Engineering Department University of Rome ā€œLa Sapienzaā€
  • 43. 10/31 1 2 S14 32 4 S1 S124 3 4 S2 3 S124 4 S3 2 1 3 4 1 2 3 4 1 4 1 3 1 2 42 3 2 4 3 42 3 2 1 1 1 4 3 42 3 d=0 d=2 d=1 d=3 2 1 3 4d=4 3 4 S123 S1234 4 S134 S13 4 S134 S23 4 S134 S12 4 S4 S0 Computational tree of a non-deterministic Turing machine: all possible configurations are computed in polynomial time (# computational steps s = # system elements E). State of acceptance: damaged configuration Initial state: nominal configuration Damaged configurationsEARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 13/26
  • 44. DI1Di1, D/d r1 maxI a i i a <<ā†’<<āˆ€ ļ£¾ ļ£½ ļ£¼ ļ£³ ļ£² ļ£± āˆ’ = EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21 Additional slides 0 1 2 3 4 5 6 d Ī» 0 1 2 3 4 5 6 d Ī»a. Maximum inclination of all the secant lines that connect the first point of the curves with the points pertaining to greater damage levels.
  • 45. DI1Di1, D/d r1 maxI a i i a <<ā†’<<āˆ€ ļ£¾ ļ£½ ļ£¼ ļ£³ ļ£² ļ£± āˆ’ = EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21 Additional slides 0 1 2 3 4 5 6 d Ī» 0 1 2 3 4 5 6 d Ī»a. Maximum inclination of all the secant lines that connect the first point of the curves with the points pertaining to greater damage levels b. Highest variation of secant lines between two subsequent points (critical elements are most relevant) ( ) ( ) Di 2 rrrr maxI 1iii1i b <āˆ€ ļ£¾ ļ£½ ļ£¼ ļ£³ ļ£² ļ£± āˆ’āˆ’āˆ’ = +āˆ’ )isostatic(5.0I0)linear( b ā‰¤ā‰¤ā†
  • 46. DI1Di1, D/d r1 maxI a i i a <<ā†’<<āˆ€ ļ£¾ ļ£½ ļ£¼ ļ£³ ļ£² ļ£± āˆ’ = EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21 Additional slides c. Area subtended by the curve of minima weighted by the difference between that area and the area subtended from the curve of maxima (representing the scattering) a. Maximum inclination of all the secant lines that connect the first point of the curves with the points pertaining to greater damage levels b. Highest variation of secant lines between two subsequent points (critical elements are most relevant) [ ] [ ] ļ£¾ ļ£½ ļ£¼ ļ£³ ļ£² ļ£± āˆ’ā‹…+= āˆ‘āˆ‘ == D 0d LOWUP D 0d LOW c )d(r)d(rk)d(rDI ( ) 1k0for,1D2I5.0 c <<āˆ’ā‹…<ā‰¤ā†’ 0 1 2 3 4 5 6 d Ī» 0 1 2 3 4 5 6 d Ī» ( ) ( ) Di 2 rrrr maxI 1iii1i b <āˆ€ ļ£¾ ļ£½ ļ£¼ ļ£³ ļ£² ļ£± āˆ’āˆ’āˆ’ = +āˆ’ )isostatic(5.0I0)linear( b ā‰¤ā‰¤ā†
  • 47. ( ) ( ) Di 2 rrrr maxI 1iii1i b <āˆ€ ļ£¾ ļ£½ ļ£¼ ļ£³ ļ£² ļ£± āˆ’āˆ’āˆ’ = +āˆ’ )isostatic(5.0I0)linear( b ā‰¤ā‰¤ā† DI1Di1, D/d r1 maxI a i i a <<ā†’<<āˆ€ ļ£¾ ļ£½ ļ£¼ ļ£³ ļ£² ļ£± āˆ’ = EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21 Additional slides 0 1 2 3 4 5 6 d Ī» 0 1 2 3 4 5 6 d Ī» c. Area subtended by the curve of minima weighted by the difference between that area and the area subtended from the curve of maxima (representing the scattering) a. Maximum inclination of all the secant lines that connect the first point of the curves with the points pertaining to greater damage levels b. Highest variation of secant lines between two subsequent points (critical elements are most relevant) d. Scattering from linear trend, calculated as the area subtended between the curves and the straight line that connect the point of the integer structure with that one of the null one. [ ] [ ] 2 D )1k()d(rk)d(rI D 0d UP D 0d LOW d āˆ‘āˆ‘ == +āˆ’+= EDand1k0for,1I1 d =<<<ā‰¤āˆ’ā†’ ( ) 1k0for,1D2I5.0 c <<āˆ’ā‹…<ā‰¤ā†’[ ] [ ]ļ£¾ ļ£½ ļ£¼ ļ£³ ļ£² ļ£± āˆ’ā‹…+= āˆ‘āˆ‘ == D 0d LOWUP D 0d LOW c )d(r)d(rk)d(rDI
  • 48. ( ) ( ) Di 2 rrrr maxI 1iii1i b <āˆ€ ļ£¾ ļ£½ ļ£¼ ļ£³ ļ£² ļ£± āˆ’āˆ’āˆ’ = +āˆ’ )isostatic(5.0I0)linear( b ā‰¤ā‰¤ā† [ ] [ ] ļ£¾ ļ£½ ļ£¼ ļ£³ ļ£² ļ£± āˆ’ā‹…+= āˆ‘āˆ‘ == D 0d LOWUP D 0d LOW c )d(r)d(rk)d(rDI ( ) 1k0for,1D2I5.0 c <<āˆ’ā‹…<ā‰¤ā†’ [ ] [ ] 2 D )1k()d(rk)d(rI D 0d UP D 0d LOW d āˆ‘āˆ‘ == +āˆ’+= EDand1k0for,1I1 d =<<<ā‰¤āˆ’ā†’ DI1Di1, D/d r1 maxI a i i a <<ā†’<<āˆ€ ļ£¾ ļ£½ ļ£¼ ļ£³ ļ£² ļ£± āˆ’ = EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21 Additional slides c. Area subtended by the curve of minima weighted by the difference between that area and the area subtended from the curve of maxima (representing the scattering) a. Maximum inclination of all the secant lines that connect the first point of the curves with the points pertaining to greater damage levels b. Highest variation of secant lines between two subsequent points (critical elements are most relevant) e. Upper and lower bound for maximal damage that makes the structure unstable UPLOW e DkDI ā‹…+= E2I0and1k0andDDD1 c UPLOW ā‰¤ā‰¤<<ā‰¤ā‰¤ā‰¤ā† d. Scattering from linear trend, calculated as the area subtended between the curves and the straight line that connect the point of the integer structure with that one of the null one. 0 1 2 3 4 5 6 d Ī» 0 1 2 3 4 5 6 d Ī» DLOW DUP
  • 49. EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21 Additional slides START d := 0 for e =1 to E d := 1 NL static analysis Ī»u 0 Ī»u,e 1 Remove element e Pushover analysis Restore element e for d = 2 to D Ī»u 1 MAX, e1 MAX Ī»u 1 MIN, e1 MIN Remove element e(d-1) MIN for e =1 to E Ī»u,e d Remove element e Pushover analysis Restore element e CALLCALL ā€œā€œCURVE MAXCURVE MAXā€ā€ CALLCALL ā€œā€œCURVE MINCURVE MINā€ā€ Robustness quantification if e <> ed MIN Ī»u d MIN, ed MIN ā€œā€œCURVE MINCURVE MINā€œā€œ MACROMACRO Curve of minima END Restore integer structure Calculate area or derivativesExtrapolate equations Calculate corresponding āˆ†RFix an admitted āˆ†d Identify critical elementsSpot abrupt decrement ROBUSTNESS QUANTIFICATIONROBUSTNESS QUANTIFICATION ALGORITHM FOR HEURISTIC OPTIMIZATIONALGORITHM FOR HEURISTIC OPTIMIZATION
  • 50. EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21 Additional slides Pushover on integer structure Resulting robustness histogram Plastic strain development Axial stress development Meshed elements Plastic moment development Response curve Max and min robustness histogramsPlasticization development ALGORITHM FOR REDUCED ANALYSESALGORITHM FOR REDUCED ANALYSESMax resistance
  • 51. STAR STRUCTURE ROBUSTNESS 00,51 0 1 2 3 4 5 6 7 8 Damage Level PU[ad] MAX MIN t d R R Dd cos25.0max ,...,1 ā†= ļ£¾ ļ£½ ļ£¼ ļ£³ ļ£² ļ£± āˆ‚ āˆ‚ =ā€² = EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21 Additional slides # of elements: E = 8 static indetermin. level: i = 21 lower max. damage: Dmin = 8 upper max. damage: Dmax = 8 fixed max. damage: D = 8 reduced combination: Cred = 65 exhaust. combination: Cex= 256 Ī»Ī»gg 1 2 4 3 5 8 6 7 STATIC INDETERMINANCY: high restrain grade Damage d El. ID Pumin El. ID Pumax 0 0 1 0 1 1 1 0,831745 3 0,896185 2 5 0,648331 7 0,832096 3 4 0,523591 2 0,684849 4 8 0,376882 8 0,580928 5 2 0,269581 6 0,429733 6 6 0,16434 4 0,320632 7 7 0,042504 1 0,261956 8 3 0 5 0 MIN CFG MAX CFG Ib ā‰ˆ 0 Ia ā‰ˆ 1 ROBUSTNESS INDICATOR: ( ) ( ) Di 2 rrrr maxI 1iii1i b <āˆ€ ļ£¾ ļ£½ ļ£¼ ļ£³ ļ£² ļ£± āˆ’āˆ’āˆ’ = +āˆ’ )isostatic(5.0I0)linear( b ā‰¤ā‰¤ā†’ Ed0 Ed )d(r maxIa ā‰¤ā‰¤āˆ€ ļ£¾ ļ£½ ļ£¼ ļ£³ ļ£² ļ£± = )isostatic(EI1 b ā‰¤ā‰¤ā†’ Ib maximum slope pt. tangent (measure the abrupt decrement due to the removal of critical element) Ia maximum secant starting from the 1st pt. (account for the lateness of an abrupt decrement)
  • 52. EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21 Additional slides # of elements: E = 21 static indetermin. level: i = 4 lower max. damage: Dmin = 2 upper max. damage: Dmax = 9 fixed max. damage: D = 9 reduced combination: Cred = 286 exhaust. combination: Cex= 695860 Ī» 15 16 1417 11 9 1210 18 20 1921 13 7 5 3 1 2 4 6 8
  • 53. TRUSS STRUCTURE ROBUSTNESS 00.250.50.751 0 1 2 3 4 5 6 7 8 9 Damage Level PU [ad] MAX MIN EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21 Additional slides # of elements: E = 21 static indetermin. level: i = 4 lower max. damage: Dmin = 2 upper max. damage: Dmax = 9 fixed max. damage: D = 9 reduced combination: Cred = 286 exhaust. combination: Cex= 695860 Damage d El. ID Pumin El. ID Pumax 0 0 1 0 1 1 9 0,471351 1 0,888941 2 3 0 2 0,888941 3 10 0 11 0,628625 4 17 0 12 0,628625 5 16 0 5 0,628625 6 1 0 6 0,628625 7 5 0 13 0,628625 8 11 0 14 0,628625 9 6 0 17 0 MIN CFG MAX CFG 12 1 2 11 5 6 13 14 17 9 3 Ī» 15 16 1417 11 9 1210 18 20 1921 13 7 5 3 1 2 4 6 8 MAX 1 15 16 14 11 9 1210 18 20 1921 13 7 5 3 2 6 84 17 0,26 > Ib > 0,13 MIN 15 16 1417 11 9 1210 18 20 1921 13 7 5 3 1 2 4 6 8 4,76 > Ia > 1,11
  • 54. EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21 Additional slides # of elements: E = 13 static indetermin. level: i = 12 lower max. damage: Dmin = 2 upper max. damage: Dmax = 10 fixed max. damage: D = 10 reduced combination: Cred = 158 exhaust. combination: Cex= 8100 5 8 6 97 12 10 1311 4 2 31 Ī»
  • 55. VIERENDEEL STRUCTUREROBUSTNESS 00,250,50,751 0 1 2 3 4 5 6 7 8 9 10 Damage Level PU [ad] MAX MIN EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21 Additional slides # of elements: E = 13 static indetermin. level: i = 12 lower max. damage: Dmin = 2 upper max. damage: Dmax = 10 fixed max. damage: D = 10 reduced combination: Cred = 158 exhaust. combination: Cex= 8100 Damage d El. ID Pumin El. ID Pumax 0 0 1 0 1 1 6 0,187621 1 0,938097 2 10 0 2 0,625317 3 1 0 3 0,375242 4 2 0 6 0,187621 5 3 0 7 0,187621 6 4 0 8 0,187621 7 5 0 9 0,187621 8 7 0 4 0,187621 9 8 0 5 0,187621 10 9 0 10 0 MIN CFG MAX CFG 6 1 2 3 7 8 9 4 5 10 6 10 5 8 6 97 12 10 1311 4 2 31 Ī» MIN 5 8 6 97 12 1311 4 2 31 10 0,31 > Icr > 0,09 MAX Ī» 5 8 6 97 12 1311 4 2 31 10 8,12 > Ia > 2,03
  • 56. TRUSS STRUCTURE ROBUSTNESS 00,250,50,751 0 1 2 3 4 5 6 7 8 9 Damage Level PU [ad] MAX MIN EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21 Additional slides 5 8 6 97 12 10 1311 4 2 31 Ī» VIERENDEEL STRUCTURE ROBUSTNESS 00,51 0 1 2 3 4 5 6 7 8 9 10 Damage Level PU [ad] MAX MIN 6 6 1 2 3 7 8 9 4 5 1010 High element connectionHigh element number 14 5 3 1 2 4 6 8 Ī» 7 5 3 1 2 4 6 8 14 11 9 1210 18 20 1921 13 15 1617 Ī» STATIC INDETERMINANCY i = 4 i = 12 0,26 > Ib > 0,13 0,31 > Ib > 0,09 9 3 12 1 2 11 5 6 13 14 17 8,12 > Ia > 2,034,76 > Ia > 1,11
  • 57. EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21 Additional slides 3 1 4 2 5 Ī»Ī»gg STATICINDETERMINANCY restraint I3V STRUCTURE ROBUSTNESS 00,51 0 1 2 3 4 5 Damage Level PU[kN] MAX MIN I3C STRUCTURE ROBUSTNESS 00,250,50,751 0 1 2 3 4 Damage LevelPU[kN] MAX MIN 3 1 2 4 Ī»Ī»gg connection 14 13 15 16 10 12 11 9 6 5 1 2 7 8 4 3 Ī»Ī»gg I3E STRUCTURE ROBUSTNESS 00,250,50,751 0 1 2 3 4 5 Damage Level PU[kN] MAX MIN element
  • 58. EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 27/21 Additional slides HIGH CONNECTION Continuity Compartmentalization Isolation Element number Element connection LOCAL REDUCTION OF CONTINUITY LOCAL MECHANISM DEVELOPMENT Redundancy Fragility LOW CONNECTION LOCAL REDUCTION OF DUCTILITY (inhomogeneous stiffening of predetermined sections) EARLY RUPTURE AND DETACHMENT Element ductility Ductility External (restraints) STRESS IS NOT TRANSMITTED COLLAPSE STANDSTILL STRESS REDISTRIBUTION HIGH STRESS TRANSMISSION on adjoining elements after a localized failure TRIGGERING OF CHAIN RUPTURE PROGRESSIVE COLLAPSE DISPROPORTIONATE COLLAPSE SUSCEPTIBILITY SUDDEN/EARLY COLLAPSE Internal (constraints) * Starossek & Wolff, 2005* FEASIBLE ALTERNATE LOAD PATH ROBUSTNESS
  • 59. EARTH&SPACE 2010 L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines 14/26
  • 60. L. Giuliani, F. Bontempi - Structural Integrity Evaluation of Offshore Wind Turbines Why caring for structural integrity? 2 EARTH&SPACE 2010 LILLEGRUND offshore wind farm (Ƙresund between Malmƶ and KĆøbenhavn, Siemens, June 2008)