Das Magazin der Stiftung Rechnen | Jahresauftakt 2015
SUMMA
IMPRESSUM
Herausgeber Stiftung Rechnen | Pascalkehre 15 | 25451 Quickborn | www.stiftungrechnen.de
Chefredaktion Jörg Sadr...
- Stiftung Rechnen -
3 SUMMA
LIEBE LESERINNEN,
LIEBE LESER,
ob in der Natur, in der Kultur, im Sport, in der
Politik oder ...
4
- Stiftung Rechnen -
Inhaltsverzeichnis
1186
INHALT:
34 36 38 40
2420
MEHR VOM LEBEN
DURCH
FREUDE AM RECHNEN
22
Molekül-...
Inhaltsverzeichnis5
12 14 16 19
42 48 50 51
28 30 32
Höher, schneller, weiter:
Mathematik im Sport
WER RECHNEN KANN
IST KL...
- Stiftung Rechnen -
6Mehr vom Leben durch Freude am Rechnen
Sie haben Ihr Ziel erreicht
Die Liebesformel
Höher, schneller...
- Stiftung Rechnen -
7 Mehr vom Leben durch Freude am Rechnen
Christian Rach über die Zahl Fünf:
Man denke sich eine Zahl
...
- Stiftung Rechnen -
8Triple-Porträt
Grüne Punkte wuseln auf Angelika Kneidls Bild-
schirm, knapp 7.000. Ein Strom von ihn...
- Stiftung Rechnen -
9 Triple-Porträt
Iva Pejsarovás Traum begann mit einer Strichliste.
„Nur wenn man ganz genau analysie...
- Stiftung Rechnen -
10Triple-Porträt
Es ist ein fehlendes Quadrat, das die acht-
zig Menschen im Münchner Table-Ma-
gic-T...
- Stiftung Rechnen -
11 Partnervermittlung
Sie überschlägt ihre Beine,
scheint zu flüstern ch arte
nicht gerne.“ Ihr Name ...
12Mathematik und Sport
HÖHER,SCHNELLER,WEITER
Text: Magdalena Schmude
Illustration: Annemarie Otten
- Stiftung Rechnen -
N...
- Stiftung Rechnen -
13 Mathematik und Sport
Mathematik ist ein Multitalent. Nirgendwo wird das
so deutlich wie im Sport. ...
- Stiftung Rechnen -
14Wer rechnen kann, ist klar im Vorteil
Rechenreise durch die Geschichte
Kleine gemeinsame Vielfache
...
- Stiftung Rechnen -
15 Wer rechnen kann, ist klar im Vorteil
Dr. Dr. Gert Mittring über die Zahl Fünf:
Die Fünf ist das f...
- Stiftung Rechnen -
16Mathe-Kulturen & -Geschichte
Menschen rechneten in allen Kulturen und Jahrhunderten und mit sehr un...
- Stiftung Rechnen -
17 Mathe-Kulturen & -Geschichte
15. bis 16. Jh.
n. Chr.
17. Jh. n. Chr.ca. 1200 n. Chr.
Pythagoreer
S...
- Stiftung Rechnen -
18Mathe-Kulturen & -Geschichte
20. Jh.
n. Chr. - heute
1965
n. Chr. - heute
19. Jh.
n. Chr. - heute
c...
- Stiftung Rechnen -
19 Mathe in der Sprache
Berlin im Februar 1883: Im Moabiter Gefängnis wird
der Insasse Albert aus sei...
- Stiftung Rechnen -
20Rechnen-können heißt Durchblick-haben
Molekül-Mathematik
Zähl Dich selbst
Mathematik hat kein Gesch...
- Stiftung Rechnen -
21 Rechnen-können heißt Durchblick-haben
Prof. Günter M. Ziegler
über die Zahl Fünf:
Ich bin am Stadt...
22Mathe und Kunst
- Stiftung Rechnen -
Jan-PeterKasper/FSUJena
- Stiftung Rechnen -
23 Rechnen mit Zucker
Eine durchsichtige Plastikplatte mit 384 runden Vertie-
fungen – das ist das He...
- Stiftung Rechnen -
24a tifie e
REDAKTION: Der Gedanke, sich
ständig selbst zu überwachen, mag
den ein oder anderen ersch...
- Stiftung Rechnen -
25 a tifie e
REDAKTION: Herr Elgeti, wie wichtig ist
es für Sie, Zahlen über den eigenen Kör-
per zu ...
- Stiftung Rechnen -
26a tifie e
was ablesen. Also hab ich gemessen: fünf
bis sieben Mal am Tag. Mit Becher und ei-
nem Aq...
S S
S M
M
27 a tifie e
ti t g e h e
- Stiftung Rechnen -
28Mädchen und Mathe
Um ein Haar wäre auch Anina Mischaus
gutes Verhältnis zur Mathematik sehr
früh zu...
Dazu sind nicht nur entsprechende Vorbilder nö-
tig, sondern auch eine Bestätigung durch die eige-
nen Eltern im frühen Ki...
- Stiftung Rechnen -
30Gute Rechner braucht das Land
Damit jedes Kreuzchen gleich viel zählt
Die Entdeckung der Unendlichk...
- Stiftung Rechnen -
31 Gute Rechner braucht das Land
Vince Ebert über die Zahl Fünf:
Wenn Menschen gesagt be-
kommen, ein...
- Stiftung Rechnen -
32Mathematik der Macht
REDAKTION: Herr Pukelsheim, ist unser Wahlsys-
tem gerecht?
PUKELSHEIM: Um das...
- Stiftung Rechnen -
33 Mathematik der Macht
die dann irgend ie nicht eiter integriert urden, sondern ste-
hen blieben. Je...
34Genie, Wahnsinn & die Unendlichkeit
- Stiftung Rechnen -
Die Entdeckung der Unendlichkeit be-
gann so klein, abgeschloss...
35 Genie, Wahnsinn und die Unendlichkeit
- Stiftung Rechnen -
Was das Unendliche betraf, hielt man es im 19. Jahr-
hundert...
- Stiftung Rechnen -
36Wieso Mathematik?
LAURA
MUNDT
25, studiert Mathematik
und Physik in Freiburg
1: Der Klassiker. Ich ...
- Stiftung Rechnen -
37 Wieso Mathematik?
DANIEL
PAVLICEK
32 Jahre, promoviert
in Mathematik in Berlin
1: An Mathe hat mir...
- Stiftung Rechnen -
38Rechnen ist überall
Chaosbändiger
Die Mathematik der Natur
Malen nach Zahlen
40
42
48
RECHNEN IST Ü...
- Stiftung Rechnen -
39 Rechnen ist überall
Prof. Albrecht Beutels-
pacher über die Zahl Fünf:
Die Fünf zeigt sich in der
...
Regen statt Sonne, Wind statt Schnee.
Was der Wetterbericht voraussagt, muss nicht immer stimmen.
Warum, das hat auch math...
- Stiftung Rechnen -
dräder oder hängen dicke Messgeräte
mit nervösen Nadeln. Das Werkzeug
des Meteorologen ist der Comput...
42Mathematik in der Natur
Ausgeklügelt: Die Samen und Blüten von Gänseblümchen sind nach der
Fibonacci-Reihe aufgebaut.
GL...
Gänseblümchen können zu Säften, Sala-
ten und Suppen verarbeitet werden. Doch
auch mathematisch ist das Wiesenkraut
intere...
Die Samen eines Ahornbaumes, die Fell-
musterung von Großkatzen und Zacken
eines Schneekristalls: Das alles sind Bei-
spie...
Clever: Ahornsamen sind so aufgebaut, dass sie lange in
der Luft bleiben und sich weit verbreiten.
SYMMETRISCHE
AHORNSAMEN...
Harmonisch: Schneckenhäuser, Muscheln
und ganze Galaxien entsprechen dem Ver-
lauf der Goldenen Spirale. Sie ist die grund...
Die Goldene Spirale – in der Schöpfung
kommt sie au allend oft or. as
menschliche Ohr, die Hörner eines Wid-
ders, Muschel...
- Stiftung Rechnen -
48Mathe und Kunst
Von ganz nah wimmelt das Bild, dass einem schlecht wird:
Quadrate in blau und rot, ...
SUMMA
SUMMA
SUMMA
SUMMA
Nächste SlideShare
Wird geladen in …5
×

SUMMA

2.660 Aufrufe

Veröffentlicht am

Das Magazin der Stiftung Rechnen

Veröffentlicht in: Bildung
0 Kommentare
0 Gefällt mir
Statistik
Notizen
  • Als Erste(r) kommentieren

  • Gehören Sie zu den Ersten, denen das gefällt!

Keine Downloads
Aufrufe
Aufrufe insgesamt
2.660
Auf SlideShare
0
Aus Einbettungen
0
Anzahl an Einbettungen
1.164
Aktionen
Geteilt
0
Downloads
5
Kommentare
0
Gefällt mir
0
Einbettungen 0
Keine Einbettungen

Keine Notizen für die Folie

SUMMA

  1. 1. Das Magazin der Stiftung Rechnen | Jahresauftakt 2015 SUMMA
  2. 2. IMPRESSUM Herausgeber Stiftung Rechnen | Pascalkehre 15 | 25451 Quickborn | www.stiftungrechnen.de Chefredaktion Jörg Sadrozinski Redaktion Sophie Anfang | Lisa Boettinger | Florian Falzeder | Magdalena Schmude Art Direktion K.design | Jennifer Kalisch | www.kalischdesign.de Lithografie Günte von Dulong | www.dulis-art.strikingly.com Illustration Annemarie Otten | www.annemarieotten.de Druck OrtmannTeam GmbH | Gewerbestraße 9 | 83404 Ainring
  3. 3. - Stiftung Rechnen - 3 SUMMA LIEBE LESERINNEN, LIEBE LESER, ob in der Natur, in der Kultur, im Sport, in der Politik oder in der Gesellschaft: Rechnen ist überall. Das illustriert Annemarie Otten mit dem Titelbild von SUMMA – einem Magazin, das unser Gruß ist an Sie zum Jahresauftakt. Wir haben junge Absolventinnen und Absolventen der Deutschen Journalistenschule und ihre Do- zentin für Grafik und Layout Jennifer Kalisch anlässlich des fünften Geburtstages gebeten, Ihnen die Botschaften und die Botschafter der Stiftung mit Worten, Bildern, Grafiken und Ge- schichten näher zu bringen. Schreiben, Lesen und Rechnen sind die grund- legenden Kulturtechniken, die eine Gesell- schaft weiterbringen: Wer rechnen kann, ist deshalb klar im Vorteil. Karriere, Gesundheit, aber auch das Finden eines Partners lässt sich mit Mathematik beeinflussen. Gut rechnen zu können, heisst Durchblick zu haben, die Welt besser zu verstehen. Dafür setzt sich die Stif- tung Rechnen ein. Wir sind überzeugt davon, dass das Land gute Rechner braucht. Denn jeder Einzelne – und die Gesellschaft im Ganzen – hat mehr vom Leben durch Freude am Rechnen. In diesem Sinne: viel Vergnügen beim Lesen! Ihr Johannes Friedemann, Geschäftsführer Stiftung Rechnen
  4. 4. 4 - Stiftung Rechnen - Inhaltsverzeichnis 1186 INHALT: 34 36 38 40 2420 MEHR VOM LEBEN DURCH FREUDE AM RECHNEN 22 Molekül-Mathematik: Mit Zucker rechnen Ziel erreicht: Karriere mit Mathe Die Liebesformel: 1+1= die große Liebe? Georg Cantor: Entdecker des Unendlichen Wieso Mathe? Was Studenten fasziniert Zähl Dich selbst: Das Leben vermessen RECHNEN IST ÜBERALL Wetterbericht: Die Chaosbändiger RECHEN-KÖNNEN HEISST DURCHBLICK-HABEN 3 Editorial
  5. 5. Inhaltsverzeichnis5 12 14 16 19 42 48 50 51 28 30 32 Höher, schneller, weiter: Mathematik im Sport WER RECHNEN KANN IST KLAR IM VORTEIL GUTE RECHNER BRAUCHT DAS LAND Historische Rechenreise: Wie sich Mathematik entwickelte Im Dreieck springen: Mathematik in der Sprache Mädchen und Mathe: Abrechnung mit Vorurteilen Ode an die Null: Wichtig, aber unterschätzt Jedes Kreuzchen zählt: Rechnen für Demokratie Mathe in der Natur: Formvolle Ästhetik Malen nach Zahlen: Mathematik in der Kunst - Stiftung Rechnen - Auf ein Wort:
  6. 6. - Stiftung Rechnen - 6Mehr vom Leben durch Freude am Rechnen Sie haben Ihr Ziel erreicht Die Liebesformel Höher, schneller, weiter 8 11 12 MEHR VOM LEBEN DURCH FREUDE AM RECHNEN. Das eigene Café, der erste Platz im Wettkampf oder die Firmengründung: Vielerorts im Leben hilft die Mathematik, Träume zu verwirklichen – und vielleicht sogar den Traumpartner zu finden.
  7. 7. - Stiftung Rechnen - 7 Mehr vom Leben durch Freude am Rechnen Christian Rach über die Zahl Fünf: Man denke sich eine Zahl zwischen eins und 50, verdoppele die Zahl, addiere zehn dazu, halbiere die Summe und subtrahiere die gedachte Zahl. Das Ergebnis ist immer fünf, egal welche Zahl man sich ausdenkt. Mathe-Botschafter Christian Rach: Er ist Unternehmer, Moderator und Sternekoch. Ob an der Supermarktkasse, beim Kochen oder bei Kalkulationen – Verständ- nis für Zahlen hilft im praktischen Leben, sagt Rach. ©byThomasPritschet
  8. 8. - Stiftung Rechnen - 8Triple-Porträt Grüne Punkte wuseln auf Angelika Kneidls Bild- schirm, knapp 7.000. Ein Strom von ihnen zieht nach rechts, andere drängen sich an grauen Flä- chen vorbei nach oben. Jeder von ihnen steht für einen Menschen. Alle haben ein Ziel: raus aus dem Gelände, das auf den Bildschirm gezeichnet ist. Die Informatikerin verfolgt die Simulation aufmerk- sam. „Hier bildet sich eine Traube“, sagt die Infor- matikerin und deutet auf eine Engstelle, vor der sich besonders viele Punkte tummeln. „Das heißt, die Leute kommen hier nicht so gut raus, sie müssen sich anstellen und warten.“ Eine heikle Situation für jeden Sicherheitsfachplaner. Wenn es bei einem Volksfest oder Konzert heißt, schnell das Gelände zu evakuieren, kann es gefährlich werden. Mit ihrem Start-Up accu:rate simuliert Kneidl genau solche Situationen. Wie bewegen sich Fußgänger, wie ist es um das Sicherheitskonzept bestellt, funk- tionieren die Fluchtwege? Jahrelang hat sie zu dem Thema geforscht, 2013 eine preisgekrönte Disser- tation vorgelegt, ein Gründungsstipendium bekom- men und ihre eigene Firma gegründet. Für ihre Arbeit setzt die 34-Jährige auf ein neues, in München entwickeltes Modell, bislang als einzige in ihrer Branche. Im Gegensatz zu anderen Modellen können die simulierten Fußgänger ortskundig sein, alt oder jung, schnell oder langsam – und sie haben sogar ein Stück weit einen eigenen Willen. „Den Menschen an sich kann man nicht berech- nen“, sagt Kneidl. Es gebe aber Verhaltensmuster, vor allem in großen Menschenmengen; dass man zum Beispiel lieber hintereinander läuft, als gegen den Strom zu kämpfen. Das könne man auch einem Computer beibringen. Es ist dieser Spagat zwi- schen Anwendung und abstrakter Mathematik wie Algorithmik, der Kneidl reizt und ihr Spaß macht. ● SIE HABEN IHR ZIEL ERREICHT Drei Porträts von Menschen, die ihren Lebensweg gefunden haben – durch mathematische Finesse, rechnerische Leistung und ein klein wenig Zauberei ■ Informatikerin Angelika Kneidl analysiert, wie Menschenmassen sich auf dem Volksfest verhalten. Magier Alexander Krist begeistert sein Publikum mit einem ma- thematischen Paradoxon. Und die Wirtschaftsdoktorandin Iva Pejsarová hat dank pr ziser lanung ihr eigenes a er net. Text: Lisa Böttinger & Florian Falzeder MENSCHEN BERECHNEN (ANGELIKA KNEIDL) Die Talentierte: Angelika Kneidl, 34 Jahre alt, hat ihr eigenes Start-Up gegründet und berechnet menschliches Verhalten.
  9. 9. - Stiftung Rechnen - 9 Triple-Porträt Iva Pejsarovás Traum begann mit einer Strichliste. „Nur wenn man ganz genau analysiert, was man will, kann man es auch erreichen“, sagt Pejsarová, die in Prag in angewandter Wirtschaft promoviert. Stundenlang zählte sie heimlich mit, wie viele Kaf- fees ein rager Ka eehaus morgens, nachmittags und nach Feierabend verkaufte. Cappuccino, Latte, Espresso – jeder von ihnen kam auf eine Liste. Dar- aus erstellte sie Verlaufskurven und schließlich: den Businessplan für ihr eigenes Café. Wenn Pejsarová für ihren Doktor bis spät abends Formeln und Wahrscheinlichkeiten berechnete, saß sie meistens in Cafés von Franchise-Unternehmen, während um sie herum geplaudert wurde. Sie wünschte sich einen Ort, der beides verbindet: Die lockere Atmosphäre eines Cafés und das konzent- rierte Arbeiten im Team. Dass sie ihren Traum vom eigenen Café verwirkli- chen würde, glaubte am Anfang niemand. „Ich habe gelernt, mich auf mein analytisches Denken zu ver- lassen – und auf meine Begeisterung“, sagt Pejsaro- vá. Sie verglich Miet- und Strompreise, verhandelte mit Architekten, berechnete Fixkosten und zeichne- te Prognosen, wieviel ihr Café umsetzen könnte. „Um jemanden zu überzeugen, brauchte ich nicht nur Worte, sondern Zahlen, Fakten und Risikobereit- schaft“, sagt Pejsarova. Schließlich konnte sie einen Investor für Start-Ups für sich gewinnen. m Juli hat sie afedu er net ein helles Bis- tro mit airtrade Ka ee im rager Stadtzentrum. Ein ganzes Stockwerk bildet die „Studovna“, deutsch „Studierzimmer“ – ein Lern- und Rück- zugsraum für Studenten, der Stunden ge net ist. „Der ruhige Studienraum ist wie ein kleines Nest, hier kann man in Ruhe lernen – für sich selbst, mit und von anderen“, sagt Pejsarová. Deshalb sind im Cafedu viele Tische besonders groß, es gibt überall Steckdosen und Gratis-Internet. Auch den Standort hat Pejsarová strategisch gut gewählt: Eine Tram hält direkt vor dem Cafedu. Heute will die 26-Jährige andere Studenten der Pra- ger Wirtschaftshochschule dazu ermutigen, eigene Start-Ups zu gründen. „Wenn ihr scheitert, lasst euch nicht abbringen. Ein gut kalkuliertes Konzept wird irgendwann Erfolg haben“, erklärt sie den Stu- denten. An einem Wochenende im November sind zum ersten Mal nicht nur alle Tische des Cafés, son- dern auch des Studienraums besetzt. Pejsarová strahlt. Wirtschaftliches Denken gehört für sie zum Alltag. „Mathematik ist das Werkzeug, mit dem ich die Dinge anpacke“, sagt Pejsarová. Wie die Rech- nung mit den Ka eetassen aufgehen ürde, usste sie lange nicht. „Wir sind rentabel“, sagt Pejsarová im Winter 2014, „wenn es so weitergeht, wollen wir vergrößern“. ● GUT KALKULIERT (IVA PEJSAROVÁ) Zielstrebig: Iva Pejsarová hat ihren Traum vom eigenen Café in Prag verwirklicht. „MATHEMATIK IST DAS WERKZEUG, MIT DEM ICH DIE DINGE ANPACKE“ IVA PEJSAROVA
  10. 10. - Stiftung Rechnen - 10Triple-Porträt Es ist ein fehlendes Quadrat, das die acht- zig Menschen im Münchner Table-Ma- gic-Theater verrückt macht. Alexander Krist zeigt das mathematische Paradoxon dort jeden Abend: Ein zersägtes Holzquadrat mit sieben mal sieben Kästchen hat, dreht man alle seine Teile um und setzt sie wieder aneinander, plötzlich eine Lücke in seiner Mitte. Und immer noch sieben mal sieben Kästchen. „Das ist der Grund, warum ich angefangen habe, über das Leben noch einmal nachzudenken“, sagt Alexander Krist und lacht. Denn das Paradoxon ist kein Zaubertrick – sondern das Ergebnis genauer mathematischer Planung. Krist bekam es zur r nung seines au- MUT ZUR LÜCKE (ALEXANDER KRIST) Magisch: Mit einem rätselhaften Quadrat begeis- tert Alexander Krist seine Gäste. bertheaters in der Münchner Innenstadt von sei- nem ehemaligen Statistik-Lehrer geschenkt – ebenfalls ein Zauberer, der Krist jahrelang unterrichtete. Er hat das magische Quadrat selbst gebaut – vermutlich nach dem Vorbild des New Yorker Magiers Paul Curry, der das geometrische Kunststück in den Fünfzigern mit einem Dreieck vorführte. Er zerlegte es in ver- meintlich gleiche Teile und schob diese, nun an- ders angeordnet, wieder zusammen. Dabei blieb beim wieder zusammengefügten Dreieck eine kleine quadratische Lücke. Tatsächlich wa- ren die Schnitte zwischen den Einzelteilen nicht ganz gerade. Für den Zuschauer kaum sichtba- re Knicke und Winkel der Schnittgeraden mach- ten im neuen Dreieck – wie durch Zauberei – Platz für eine Leerstelle. Über das fehlende Quadrat staunt Alexander Krist dennoch genauso wie sein Publikum. „Man muss im Leben nicht alles erklären können. Es reicht, wenn man es genießen kann“, so be- schreibt er das rätselhafte Paradoxon. Das Zau- bern bedeutet für Krist vor allem eines: Leiden- schaft. Menschen zu berühren, die später mit Tränen in den Augen sein Table Magic Theater verlassen. Krist kennt dieses Gefühl der Über- wältigung. „Zauberei ist Mathematik, das Leben ist Mathematik – aber Zauberei lässt sich mit Ma- thematik leichter beschreiben“, sagt Krist. Heute basieren seine Illusionen, wie er die Zaubertricks nennt, vor allem auf Menschenkenntnis, Finger- fertigkeit und geschickter Ablenkung des Publi- kums. Mathematik gehört für ihn zum Hand- werkszeug. Zum Beispiel, wenn er jedem seiner Gäste in der ersten Reihe ein perfektes Po- ker-Blatt austeilt. Ein Full-House, eine Straße, drei Asse – kann das Zufall sein? „Den ganz gro- ßen Zufall gibt es nicht. Er ist immer eine Folge von Ereignissen“, sagt Krist, der beim Kartenmi- schen genau mitzählt, wo er abhebt und sich merkt, wo gerade, ungerade, rote und schwarze Karten liegen. Dieses System erlaubt ihm, sich nicht jede Karte merken zu müssen. Die Ge- dächtnislücken sind aber genau geplant: „Zau- berei braucht wie die Mathematik eine bestimm- te Ordnung, eine Klarheit der Linien, ein Muster“, erklärt der Zauberkünstler. Wie genau sein ehemaliger Lehrer das quadrati- sche Paradoxon gebaut hat, weiß Krist nicht. Für ihn steht das fehlende Kästchen für das Uner- wartete, für die Botschaft, wegen der er nicht mehr Versicherungskaufmann, sondern Zauber- künstler ist: Alles ist möglich. Das erlebt er selbst jeden Abend, wenn er die strahlenden Augen sei- nes Publikums sieht. ●
  11. 11. - Stiftung Rechnen - 11 Partnervermittlung Sie überschlägt ihre Beine, scheint zu flüstern ch arte nicht gerne.“ Ihr Name bleibt ihr Geheimnis. Egal. Hübsch ist sie allemal. Blond, Seiden- bluse mit tiefem Ausschnitt und den Mund laszi ge - net. Daneben ein Mann, Mitte Dreißig: „Ich will nicht irgend- wen.“ Wuschelfrisur, Dreitage- bart, stahlblaue Augen. Man stellt sie sich vor, die beiden, wie sie in einer Bar aufeinan- dertre en. Sie sitzt auf einem Barhocker, ielleicht mit einem Martiniglas in der Hand. Er tritt durch die Tür. Zwei kurze Blicke. Sie fährt sich durch die Haare. Er lächelt. Zwei Singles weniger auf dieser Welt. Wuschelkopf und Blondine sehen nicht gerade aus, als hätten sie im realen Leben Sch ierigkeiten, einen artner zu finden und sind doch Werbefiguren für den nbieter einer ating Web- site. Also auch diese Mustersingles nutzen Dating-Websites, denkt man sich. Vielleicht wartet ja im Internet so eine Blondi- ne, so ein Wuschelkopf auch auf mich? Alle elf Minuten verliebt sich bei uns ein Single, lockt etwa der Anbieter Paarship. Der Konkurrent Elitepartner spricht von ei- ner Erfolgsquote von 42 Prozent. Friendscout24 verzeichnet nach eigenen Angaben gar 70 Millionen Online-Rendezvous in einem Jahr. Bei gut 80 Millionen Einwohnern in Deutschland? Wohl reine efinitionssache. gal seit ann ist Liebe ratio- nal? Die große Liebe scheint auf diesen Plattformen nur ein paar Klicks entfernt. Dort bekommt der suchende Single Zu- gri auf s ezielle Matching lgorithmen, die in Sekunden- schnelle den Partner fürs Leben – oder zumindest für das n chste ate in der Martini Bar finden. Einblick, wie so ein Matching-Algorithmus aufgebaut ist, ge- ben die Unternehmen ungerne. Von den größeren Anbietern ist allein Elitepartner bereit, über die Liebesformel am Telefon zu sprechen: „Wir sagen ja immer, das ist so ein bisschen wie die Coca-Cola-Formel. Es ist das bestgehütete Geheimnis unse- res Unternehmens.“ Trotzdem könne man gerne ein bisschen darüber plau- dern. Tendenzen natürlich, keine Details. Zum Verstehen, wie so ein Matching-Algorith- mus funktioniert, sollte das aber reichen. Im Prinzip funk- tioniert die Liebesformel von Elitepartner – und so ähnlich auch viele Algorithmen ande- rer Dating-Plattformen – nach folgendem Prinzip: Daten über den suchenden Single erhe- ben, in einer mathematischen Formel gewichten und schließ- lich mit den rofilen anderer Mitglieder abgleichen. m nde spuckt der Algorithmus vielleicht die große Liebe aus. Der Nutzer muss zunächst einen Persönlichkeitstest ausfüllen – und somit den Algorithmus mit Informationen füttern. Abge- fragt werden Persönlichkeitsmerkmale in Bereichen wie Kom- munikations erm gen, Konflikt erhalten oder Stress erarbei- tung. Dann wertet der Algorithmus die Antworten aus. „Die Übereinstimmung wird ausgedrückt in Matchingpunkten“, er- klärt die Dame von Elitepartner. „Je mehr Matchingpunkte ich mit jemanden habe, desto besser passe ich mit dem anderen zusammen.“ Der Algorithmus gewichtet dabei unterschiedlich. Manchmal ist eine möglichst hohe Übereinstimmung wichtig. Manchmal ist es besser, wenn sich die Eigenschaften potentieller Partner ergänzen und nicht gleichen. „Das wäre der Fall im Bereich Nähe und Distanz. Es ist nicht förderlich, wenn zwei Menschen zusammenfinden, die ein ganz hohes hebedürfnis haben, ebenso wie zwei Menschen, die ein ganz hohes Freiheitsemp- finden haben. Ziel des Algorithmus ist, zwei Menschen zusammenzubringen, deren Merkmale sehr wahrscheinlich darauf hindeuten, dass sie eine erfüllte Beziehung führen können. Ob dann aber am Ende wirklich die hübsche Blonde oder der Wuschelkopf raus- kommen? Der Algorithmus macht Vorschläge. Dann liegt es wieder in der Hand der Menschen, ob die Liebesformel Erfolg haben kann. DIE LIEBESFORMEL en artner r s eben findet man heute immer weniger durch Zu all sondern durch Mathematik: Internet-Paarbörsen rechnen aus, wer (vermeintlich) zu einem passt. ■ Partneragenturen im Netz arbeiten erfolgreich mit Algorithmen. Text: Martin Moser Illustration: Annemarie Otten
  12. 12. 12Mathematik und Sport HÖHER,SCHNELLER,WEITER Text: Magdalena Schmude Illustration: Annemarie Otten - Stiftung Rechnen - Nicht nur, wenn es um Punkte und Zeiten geht – Sport wäre ohne Mathematik kaum vorstellbar. Die Anwendungsmöglichkeiten sind so vielfältig wie der Sport selbst.
  13. 13. - Stiftung Rechnen - 13 Mathematik und Sport Mathematik ist ein Multitalent. Nirgendwo wird das so deutlich wie im Sport. So unterschiedlich wie die verschiedenen Sportarten sind, so vielfältig sind auch die mathematischen Anwendungsmöglichkei- ten. Auch wenn das auf den ersten Blick nicht im- mer zu erkennen ist. Wer genau hinschaut, findet sie. Denn wo Bewegung ist, da herrschen Kräfte, die sich messen und berechnen lassen. Zum Bei- spiel im Spitzensport, wo Mathematik hilft, die Leis- tung der Athelten zu verbessern und es ihnen er- möglicht, mit dem besten Material an den Start zu gehen. Gleichzeitig helfen mathematische Modelle, die theoretischen Grundlagen des Sports besser zu verstehen. Wann ist ein Wettkampf fair und welcher Weg führt am schnellsten zum Ziel? Auch das kann Mathematik beantworten. ● ■ Mathematik spielt im Sport eine wichtige Rolle. Egal ob beim Fußball, Tennis oder Wandern, im Spitzensport oder in der Freizeit. POKAL: m m glichst e ekti zu trainieren, müssen Spitzensportler ihren Körper genau kennen. Dabei bekommen sie Unterstützung von Sportmedizinern und Leistungsdiagnostikern, die auf Grundlager physiologischer Messwerte wie der Herzfrequenz oder bestimmter Blutwerte die optimale Trainingsintensität berechnen und die Leistungsentwicklung steuern. FAHRRÄDER: Im Spitzensport liegen oft nur Bruchteile einer Sekunde zwischen Sieg und Niederlage. Neben der physischen Leistungsfähigkeit eines Athleten spielt bei der Jagd nach den entscheidenden Hundertsteln auch die Ausrüstung eine entscheidende Rolle. Fahrrad, Bob oder Boot sollen möglichst leicht, stabil oder aerodynamisch sein und perfekt zu den individuellen körperlichen Voraussetzungen eines Sportlers passen. Deshalb tüfteln Ingenieure an neuen, schnelleren Formen für Sportgeräte und entwickeln Materialien mit optimierten Eigenschaften. Biomecha- niker beobachten jede Bewegung des Sportlers, korrigieren seine Bewegungsab- läufe oder berechnen die beste Position und Körperhaltung des Sportlers auf dem Rad oder dem Schlitten. Dabei helfen häu- fig auch ausgefeilte om utersimulationen. FUSSBALL: Der Ball ist rund. Das denkt man zumindest. Tatsächlich ist das Sportgerät, das aus zwölf Fünfecken und zwanzig Sechsecken besteht, keine Kugel sondern ein abgeflachter kosaeder. Wie die einzelnen Teile bei der Produktion aneinandergefügt werden, hat influss auf die orm des Balles und damit auf sein lug und Sprungverhalten. Das zeigte sich zum Beispiel bei der Fuß- ball WM . achdem der ersteller des o ziellen WM Balles die Produktionsweise verändert hatte, mussten sich viele Spieler zu Beginn des Turniers erst an das neue Spielgerät gewöhnen. BERGSCHUHE: Wer hoch hinaus will, muss mit seinen Kräften haushalten. Da kann es helfen, den energie- sparendsten Weg zum Gipfel zu kennen, und das ist nicht immer der direkteste. Ist der An- stieg besonders steil, ist der gerade Weg berg- auf zwar kürzer, kostet aber deutlich mehr Energie. Deutlich schonender ist es, im Zick- zack zu gehen. Um je nach Steigung eines Berges den besten Weg zu bestimmen, haben ein Anthropologe und ein Mathematiker ein mathematisches Modell entwickelt, mit dem sich die optimale Route berechnen lässt. Ba- sierend auf einer Formel für den menschlichen Sto echsel gibt das Modell an, ab elcher Steigung der Zickzackkurs von Vorteil ist. Für den Aufstieg errechneten sie, dass das Gehen im Zickzack ab einer Steigung von 16 Grad Energie spart. Bergab schont es dagegen schon ab einem Gefälle 12,4 Grad die Kräfte. TENNIS: Tennis ist fair. Das ist mathematisch bewiesen. Betrachtet man ein Tennismatch als stochastisches Problem, berechnet also die Wahrscheinlichkeit, dass ein bestimmtes Ereignis eintritt, lässt sich zeigen, dass bei einem Kräfteverhältnis von 60:40 der stärkere Spieler fast immer gewinnt, wenn drei Gewinnsätze gespielt werden. Gibt es dagegen nur zwei Sätze, kann es vorkommen, dass der schwächere Spieler mit Glück gewinnt.
  14. 14. - Stiftung Rechnen - 14Wer rechnen kann, ist klar im Vorteil Rechenreise durch die Geschichte Kleine gemeinsame Vielfache 16 19 WER RECHNEN KANN, IST KLAR IM VORTEIL. Rechnen ist eine grundlegende Kulturtechnik. Erst liefen die beiden noch im Kreis, dann fanden sie einen gemeinsamen Nenner. Mathematik ist Teil unserer Sprache – und als Kulturtechnik durchlief sie eine abwechslungsreiche Geschichte.
  15. 15. - Stiftung Rechnen - 15 Wer rechnen kann, ist klar im Vorteil Dr. Dr. Gert Mittring über die Zahl Fünf: Die Fünf ist das fünfte Glied der Fibonacci- Reihe (1, 1, 2, 3, 5, 8, 13, 21, 34, ...), einer unendlichen Folge von Zahlen, bei der die jeweils zwei vorangegangenen Zahlen addiert die nächste Zahl ergeben. Das Ver- hältnis zweier aufeinanderfolgender Zahlen in dieser Reihe geht mit jedem weiteren Folgen-Glied in Richtung eins zu etwa 1,61. Dieses Verhältnis steht für den goldenen Schnitt, den man in vielen Dingen der Natur wiederfindet. Mathe-Botschafter Dr. Dr. Gert Mittring: Für den „Großmeister im Kopfrechen“ ist Mathe- matik kein Hexenwerk. Man muss sich nur dar- auf einlassen, sagt der Informatiker, Pädagoge und Psychologe.
  16. 16. - Stiftung Rechnen - 16Mathe-Kulturen & -Geschichte Menschen rechneten in allen Kulturen und Jahrhunderten und mit sehr unterschiedlichen Vorstellungen. Bis zur heutigen Mathematik war es ein weiter Weg. Text: Florian Falzeder & Tatjana Kerschbaumer Illustration: Jennifer Kalisch RECHENREISE DURCH DIE GESCHICHTE Mathematik in der Steinzeit Ein Mammutzahn, zwei Mammutzähne, viele Mammutzähne: Diese Zählstufen beherrschten unsere Vorfahren vor etwa 30 000 Jahren. Da- mals entwickelte der Mensch zum ersten Mal das Bedürfnis, seinen Besitz mit einem Zahlen- system zu erfassen. Forscher gehen heute davon aus, dass Stein- zeitmenschen eine sehr niedrige Zählgrenze hatten. Statt „echter“ Mathematik beherrsch- ten sie nur die Fähigkeit, genau zu schätzen. Wirklich unterschieden wurde wohl nur zwi- schen den Zahlen eins bis vier; jede Anzahl da- rüber war „viel“. Um beim „Zählen bis vier“ nicht durcheinander zu kommen, nutzten die Steinzeitmenschen improvisierte Rechentafeln: Archäologen fanden in Tschechien einen 30.000 Jahre alten Wolfsknochen mit Einker- bungen, die i ern symbolisieren. Mathematik in Ägypten Den Ägyptern verdanken wir eines der ältesten Mathebücher der Welt: den Papyrus Rhind. Das rund 3500 Jahre alte Dokument wird heute im Britischen Museum in London auf- bewahrt. Archäologen gehen davon aus, dass die ägyptische Mathe- matik Verwaltung und Wirtschaft dokumentierte. Fast zeitgleich mit den Hieroglyphen erfanden die Ägypter Zeichen für Zahlen. Sie konnten bereits Gleichungen mit einer Variable sowie Brüche lösen. Besonders begabt waren die Ägyp- ter in der Geometrie, was den Bau der Pyramiden ermöglichte. Russische Bauernmultiplikation Wer hat’s erfunden? Nein, nicht die Schweizer. Vermutlich eher die Ägyp- ter. Bekannt wurde die Rechenme- thode trotzdem als „Russische Bau- ernmultiplikation“. Sie war zwar schon im Altertum bekannt, fand aber ihren Weg auch nach Russland – da- her der Name. Konkret ist das Verfah- ren ein Trick zur Multiplikation zweier natürlicher Zahlen. Anstatt das kleine Einmaleins zu beherrschen, muss man lediglich halbieren, verdoppeln und addieren können. Allerdings ist die Bauernmultiplikation fast nur auf Papier durchführbar, weil man eine Tabelle für sie benötigt. ca. 30 000 v. Chr. 3500 – 2600 v. Chr. ca. 3500 v. Chr. – heute
  17. 17. - Stiftung Rechnen - 17 Mathe-Kulturen & -Geschichte 15. bis 16. Jh. n. Chr. 17. Jh. n. Chr.ca. 1200 n. Chr. Pythagoreer Sie glaubten an eine Welt aus Gegensätzen, die von den Göttern nach Zahlen geordnet wurde, und die durch harmonische Verhältnisse jener Zahlen zu einem Kosmos vereint wird. Mit ihrer Naturreligion gelten die Pythagoreer manchem Historiker als Hippie-Sekte der griechischen An- tike. Deren Schule geht auf den Mathematiker Pythagoras von Samos zurück; wobei unklar ist, welche Erkenntnisse tatsächlich von ihm und welche von seinen Schüler stammen. Sie syste- matisierten die Lehre von den Parallelen vom Dreieck oder von den Winkeln und in der Akustik rechneten sie mit den Längen von Saiten oder Flöten. Die Pythagoreer waren Mystiker wie The- oretiker gleichermaßen. Sie betrieben als erste so etwas wie reine Mathematik in großem Stil. 6. - 5. Jh. v. Chr. ca. 600 n. Chr. ca. 800 n. Chr. Arabische Mathematik Der Mittelpunkt der arabischen Gelehrtensze- ne war lange Zeit Bagdad. Auch in der Mathe- matik wurden dort bedeutende Fortschritte gemacht, die den Arabern zugeschrieben wer- den. Die Wissenschaftler konnten sich dabei auf einen soliden Grundstock verlassen. So übernahmen sie von den Indern oder Griechen etwa die Sinuskurvenberechnung, die Trigono- metrie und die Arithmetik. Die Begründung der Algebra gilt bis heute als bedeutendste mathe- matische Leistung der Araber. Besonders der Gelehrte al-Chwarizmi soll im achten Jahrhun- dert der Mathematik seinen Stempel aufge- drückt haben. Angeblich stammt das Wort „Al- gorithmus“ von seinem Namen ab und bedeutet „Rechnen nach Art des Algorismi“. Die Rechenmeister 1559 minus 1492, das macht nach Adam Riese 67... Richtig und gleichzeitig falsch! Richtig ist das Ergebnis der Sub- traktion. Falsch ist der Name des Herrn, auf den der bekannte Ausspruch ver- weist. Adam Ries hieß er korrekt und war Rechenmeister – heute zweifelsohne der bekannteste. Sein Berufsstand erlangte vor allem in der Renaissance große Be- deutung. Die Meister rechneten, lehrten an Schulen und schrieben pädagogisch meisterhafte Bücher zu einer Zeit, in der Handel und Wirtschaft wuchsen, Mathe- matikunterricht aber noch rar war. Und das alles nicht in Latein, sondern in der jeweiligen Landessprache. Leonardo von Pisa, genannt Fibonacci Fibonaccis Kaninchen sind unsterblich. Für sein Gedankenexperi- ment stellte sich der italienische Mathematiker die Frage, wie sich die Population von Kaninchen entwickelt. Das sogenannte Kaninchen- problem führte Fibonacci zu der nach ihm benannten Zahlen-Reihe, die sich aus der Lösung der Rekursionsgleichung xn+2=xn+1+xn ergibt: 1, 1, 2, 3, 5, 8, 13, … Sein Liber abaci gilt als Markstein für die weitere Entwicklung der Mathematik. Mathematik in Indien Die indische Mathematik ist eine große Nullnummer. Denn in Indi- en tauchte im 6. Jahrhundert nach hristus erstmals die i er Null auf, wie wir sie heute ken- nen. Die Inder erkannten das Po- tential der Null und verwendeten sie erstmals als i er im so ge- nannten Positionssystem: Je nachdem, wo die Null steht, wer- tet sie die anderen i ern um sie herum auf - oder ab. Über etliche Umwege gelangte die Null nach Europa und löste dort das bis da- hin lateinische Zahlensystem ab. Unser heutiges Dezimalsystem war erfunden. René Descartes & die analytische Geometrie Ein Baum, der für das gesamte Wissen der Menschheit steht. Philosophie, Mathematik oder Naturwissenschaften entspringen nach Descartes der forschenden Vernunft. In der Geometrie wies er Stre- cken Zahlen zu und konnte so mit ihnen rechnen. Er verband Geo- metrie mit Algebra und schuf Grundlagen für die weitere Entwicklung der Mathematik, nicht zuletzt für die nfinitesimalrechnung.
  18. 18. - Stiftung Rechnen - 18Mathe-Kulturen & -Geschichte 20. Jh. n. Chr. - heute 1965 n. Chr. - heute 19. Jh. n. Chr. - heute ca. 1800 n. Chr. - heute Leonhard Euler Er ist der Stammvater der Analysis: Leon- hard Euler, einer der produktivsten Mathe- matiker aller Zeiten. Der gebürtige Schwei- zer schrieb im Schnitt 800 Seiten pro Jahr. Viele Symbole und Ausdrücke unserer heu- tigen Mathematik gehen auf ihn zurück: un- ter anderem die Buchstaben e, und i in ih- rer heutigen Bedeutung und die Bezeichnung f(x) für eine Funktion. In der nalysis ging er ziemlich salo mit i e- rentialen und mit divergenten Reihen um. Dabei zog er Schlüsse, die so manchem modernen Mathematiker die Haare zu Ber- ge stehen lassen – aber fast immer mit dem richtigen Ergebnis. 18. Jh. n. Chr. Weltmathematik Der Siegeszug der „reinen“ Mathematik setzte ein, und das weltweit. Die Mathe- matik wurde zur Geisteswissenschaft schlechthin. Ihr Aufschwung wurde in Frankreich durch die drei „großen L“ – Lagrange, Laplace und Legendre – einge- leitet, sowie in Deutschland durch Gauß. Technische Hochschulen wurden ge- gründet, die einzelnen mathematischen Disziplinen wurden immer komplexer und erforderten Spezialisten. Aber auch in ihrer Anwendung bahnte sich die Ma- thematik immer neue Wege; von der Physik bis hin zur Algorithmik. Computer 1 plus 1 ergibt 10. So rechnet ein Computer, dessen Name vom lateini- schen computare herrührt, dem Wort für „rechnen“. Elektronische Schalt- kreise machen es seit dem 20. Jahr- hundert möglich: Zwei Informations- zustände, an und aus, 0 und 1, auf deren Basis bis heute Computer rechnen. Im binären Zahlensystem ergibt die obige Rechnung dann auch Sinn. Der „Rechner“ ist in alle Lebensbereiche vorgedrungen, und erspart uns vielerorts, selbst rechnen zu müssen. Programmieren müssen wir sie aber immer noch selbst. Vedische Mathematik Indien ist heute vor allem für die „vedische Mathematik“ bekannt. Dabei handelt es sich um 16 Rechenregeln, die dazu dienen, das Kopfrechnen extrem zu be- schleunigen. Aufgeschrieben hat sie ein Abt namens Thirt- haji; nach seinem Tod wur- den sie er entlicht. Kritiker bemängeln aber, bei den Regeln handle es sich nicht um richtige Mathema- tik, sondern um Tricks, die schneller zum Ziel führen. Mathematik in China Warum sind Chinesen so gut in Mathe? Kein reines Vorurteil, die Siegertreppchen auf internationalen Mathematik-Olympia- den beweisen es. Eine Studie sagt: Chinesen haben ein bes- seres Verhältnis zu Zahlen als beispielsweise Deutsche. Das liege daran, dass die chinesischen Zahlwörter simpler aufge- baut seien als in europäischen Sprachen. Statt für die Zahl 20 ein neues Wort lernen zu müssen, sagen Chinesen einfach „Zwei-Zehn“. Dieser strenge Aufbau gewöhnt schon chinesi- sche Kleinkinder an Zahlen, Rechen- und Zählsysteme.
  19. 19. - Stiftung Rechnen - 19 Mathe in der Sprache Berlin im Februar 1883: Im Moabiter Gefängnis wird der Insasse Albert aus seiner Zelle in einen zehn Qua- dratmeter großen, dreieckigen Innenhof geführt. Statt zu spazieren, fängt der Häftling an zu schreien, zaust seine Harre und springt wild zwischen den drei Wän- den umher. Aus den umliegenden Höfen ertönen ebenfalls Schreie von Mitgefangenen – alle sind iso- liert, nicht nur Albert. Die Ein- samkeit können sie nicht ertra- gen und „springen deshalb im Dreieck“. Durch Geschichten wie diese fanden Zahlen und geometri- sche Formen Eingang in unsere Sprache. Meist liegen den Rede- wendungen „Alltagspannen“ zu- grunde, die den Menschen frü- her immer wieder passierten und dadurch bis heute sinnbildlich für eine bestimmte Handlung stehen. Wenn jemand im 21. Jahrhundert im Dreieck springt, ist er wütend oder auch verzweifelt. „Kommt“ er „vom Hundertste ins Tausendste“, erzählt er von Dingen, die nicht relevant sind: Achthundert Jahre bevor Albert im Dreieck springt, sitzt Markthändler Brosius in Rom vor seinem Gemü- sestand. Mühsam versucht er auf einem mit senkrech- ten und waagerechten Linien bemalten Blatt seinen Gewinn zusammenzurechnen. An den waagerechten Linien stehen Dezimalwerte: eins, zehn, hundert, tau- send. Zwischen ihnen ist jeweils eine Lücke für Vielfa- che der Fünf – fünf, fünfzig, fünfhundert. Brosius schiebt Rechensteinchen auf dem Papier hin und her, um die Felder auszufüllen und zum Schluss die Sum- me zu zählen. Ab und zu verrutscht ihm ein Steinchen in der Linie und er gelangt vom Hunderter-Feld ins Tau- sendste und freut sich am Ende des Tages über einen beträchtlichen Gewinn. KLEINE GEMEINSAME VIELFACHE hne dass wir es wissen mischen wir tagt glich egri e aus der Mathematik in unsere Sprache. Aber warum? ■ Zahlen zwischen Buchstaben – woher kommt das? Text: Marieke Reimann Illustration: Annemarie Otten Journalist Holger Dambeck schreibt, dass die Mathe- matisierung der Sprache mit der Entwicklung des Bil- dungsbürgertums einhergeht: Rechnen, lesen und schreiben seien seit Jahrhunderten die drei Fertigkei- ten, die zum Grundkonstrukt der menschlichen Ausbil- dung gehören. Mathematische Redewendungen, die wir heute benutzen, kämen aus den verschiedensten Bereichen der Zahlenkunde: Wir finden einen gemeinsamen en- ner (Bruchrechnen), laufen im Kreis (Geometrie) und ziehen je- manden zur Rechenschaft (Kal- kulation). Die meisten mathema- tischen Redensarten seien Zahlwörter: Pi mal Daumen oder Null-Acht-Fünfzehn: m im ersten Weltkrieg Wa en schneller produzieren zu kön- nen, wurden zusehends einheit- liche Modelle entwickelt. Beson- ders nachgefragt war das Maschinengewehr der Marke Maxim von 1908. Das MG erhielt 1915 eine Gabelstüt- ze, die es nicht nur leichter, sondern auch handlicher machte. Dadurch wurde das Gewehr besonders be- liebt und zum Standardprodukt „08/15“. Heute können wir „drei Kreuze machen“, dass dieser Krieg vorbei ist. Und während wir das sagen, mischt sich Mathematik mit Religion. Denn drei Kreuze mach- ten früher nur gläubige Katholiken, heute aber auch Studenten, die eine schwere Prüfung bestanden ha- ben oder gestresste Arbeitnehmer, die endlich in den Urlaub fahren können. Zahlen in unserer Sprache, egal ob sie durch eine rfindung, dem lltagsgeschehen oder aus einem religiösen Ritual heraus entstanden sind, liefern zusätzliche Informationen. Sie verstärken das, was wir sagen wollen und sorgen seit jeher dafür, dass wir dort schneller Inhalte assoziieren, wo rein sprachliche Bilder zu langsam wären. ●
  20. 20. - Stiftung Rechnen - 20Rechnen-können heißt Durchblick-haben Molekül-Mathematik Zähl Dich selbst Mathematik hat kein Geschlecht 22 24 28 RECHNEN-KÖNNEN HEISST DURCHBLICK-HABEN. Die Rechenkompetenz stärken. Männersache Mathematik? Das muss und soll so nicht sein, sagen Experten und zeigen Auswege aus der XY-Zwickmühle auf.
  21. 21. - Stiftung Rechnen - 21 Rechnen-können heißt Durchblick-haben Prof. Günter M. Ziegler über die Zahl Fünf: Ich bin am Stadtrand von München aufgewachsen, aber inzwischen lebe (und rechne) ich schon lange in Berlin, ein Bruder wohnt in Frankfurt (und bewegt als Banker große Zahlen), aber die restlichen 75 Pro- zent meiner Brüder leben immer noch in München. Wie viele Jungs sind wir? Mathe-Botschafter Prof. Günter M. Ziegler: Mathematik ist voller bemer- kenswerter Geschichten. Der Professor und Leiter der Arbeitsgruppe „Diskrete Geometrie“ an der FU Berlin erzählt die- se Geschichten mit viel Engagement. Foto:©SandroMost
  22. 22. 22Mathe und Kunst - Stiftung Rechnen - Jan-PeterKasper/FSUJena
  23. 23. - Stiftung Rechnen - 23 Rechnen mit Zucker Eine durchsichtige Plastikplatte mit 384 runden Vertie- fungen – das ist das Herzstück des chemischen Com- puters. In den Händen von Martin Elstner sieht die Platte unspektakulär aus. Doch entscheidend ist nicht die Optik, sondern der Inhalt. In einigen der in Reihen angeordneten Vertiefungen ist eine farblose Flüssig- keit vorgelegt. Vorsichtig pipettiert der Chemiker weni- ge Tropfen einer Zuckerlösung in eines dieser Reakti- onsgefäße – und nach kurzer Zeit beginnt es darin grünlich zu leuchten. n den fchen haben ir einen arbsto und ir haben einen Fluoreszenz-Löscher, der sich mit dem arbsto erbindet. adurch ist die luoreszenz zu- n chst ausgeschaltet und der arbsto ist dunkel , erklärt Martin Elstner die Reaktion. „Wenn wir dann noch einen Zucker dazugeben, stört er die Verbindung der beiden und die luoreszenz ird eingeschaltet. Das simple Experiment könnte die Basis eines Com- puters sein, der mit Chemie rechnet. Das Prinzip dahinter ist nicht neu. Schon in den Neun- ziger Jahren kam der Chemiker Prasanna de Silva auf die Idee, Informationen chemisch zu codieren. Er ent- wickelte dafür ein System aus Molekülen, das je nach Kombination der verschiedenen Substanzen an- oder ausgeschaltet war und den jeweiligen Zustand durch Fluoreszenz anzeigte. Der Gedanke dahinter: Mit den so in Licht umgewandelten Information könnte man ge- nauso wie mit elektrisch codierter Information rechnen. Die Grundlage der Informationsverarbeitung sind zwei klar unterscheidbare Zustände: an und aus, Leuchten – kein Leuchten. Die grüne Fluoreszenz in Martin Elst- ners Anordnung entsteht nur dann, wenn in einer der Vertiefungen alle drei Chemikalien zusammenkom- men. Ohne Zucker bleibt es dunkel. Martin Elstner ver- ■ Auch mit Chemie kann man Informationen codie- ren und dann verarbeiten. Chemiker aus Jena ha- ben auf dieser Basis ein Rechensystem entwickelt, das zum Beispiel die medizinischen Diagnostik er- leichtern könnte. gleicht: „Das ist wie in einem elektrischen Computer. Wir haben entweder ein Signal in Form von Fluores- zenz oder kein Signal. Das ist null - eins und damit k nnen ir Bits darstellen. ie Kunststo latte ird damit zum Chip, auf dem Informationen gespeichert und verarbeitet werden können. In der Praxis muss das Lichtsignal dafür zunächst mit einem Fluoreszenz-Reader ausgelesen werden. Einem Mikrowellen-großen, grauen Kasten, in den Martin Elstner die Platte einschiebt. Das Gerät zeichnet die Lichtsignale auf und ordnet sie den jeweiligen Vertie- fungen zu. Ein festgelegtes Programm bestimmt an- schließend, wie die einzelnen Signale miteinander ver- rechnet werden. Es besteht aus logischen Operatoren, die die An/Aus-Information des Lichtes verknüpfen und vorgeben, ob leuchtende und nichtleuchtendes Kästchen an oder aus ergeben. Um das Ergebnis sichtbar werden zu lassen, wird wie- der Chemie genutzt. „Wir können keinen Strom von einer iode zur n chsten flie en lassen, erkl rt Martin Elstner. „Aber wir können entscheiden, ob wir den Zu- cker in die nächste Vertiefung geben wollen oder nicht. ünf echenschritte sind n tig, bis ein nder- gebnis angezeigt wird. Die Zwischenschritte machen das System fle ibel und erm glichen es, auch mehr als zwei Informationen miteinander zu veknüpfen. Den ersten Praxistest hat der Zuckercomputer schon bestanden. Martin Elstner ließ ihn 10 und 15 addieren. Nach diversen Rechenschritten lieferte er das korrekte Ergebnis. Auch Tic Tac Toe hat Martin Elstner gegen den Zuckercomputer gespielt. Mit einem entsprechen- den Programm ist vieles möglich, auch wenn klar ist, dass der chemische Computer nie die Rechenleistung eines elektrischen Computers erreichen wird. Eine enorme Rechenkapazität ist bei den Anwendungen, die Martin Elstner vorschweben, aber eher Nebensa- che: „Man könnte so ein System gut in der medizini- schen Diagnostik einsetzen, einen Tropfen Blut auf ei- nen entsprechenden Chip geben und die Level von verschiedenen Enzymen darin zu einer Gesamtdiag- nose errechnen lassen. ● MOLEKÜL-MATHEMATIK Warum sollte man nur mit Zahlen rechnen können? Das dachte sich schon vor etwa zwanzig Jahren ein Chemiker. Denn auch chemi- sche Moleküle können Information transportieren. Wissenschaftler an der Universität Jena haben diese Idee jetzt umgesetzt. Text: Magdalena Schmude
  24. 24. - Stiftung Rechnen - 24a tifie e REDAKTION: Der Gedanke, sich ständig selbst zu überwachen, mag den ein oder anderen erschrecken. Wie reagiert Ihre Umwelt auf Ihren Lebensstil? SCHUMACHER: Self-Tracking po- larisiert natürlich extrem: In mei- nem mfeld finden es die meisten Menschen interessant. Aber natür- lich gibt es Leute, die das als zeit- auf endig em finden. s gibt das Vorurteil, dass man unglaublich auf Selbstoptimierung aus wäre. Diese Leute sehen uantified Self als Ausdruck der permanenten Leis- tungsgesellschaft. ch finde das al- bern. Ich will einfach eine best- mögliche Lebensqualität durch das rheben und us erten on aten erreichen. REDAKTION: Das Argument Zeit ist trotzdem wohl schwer von der Hand zu weisen. SCHUMACHER: Das kommt im- mer darauf an, wie und welche Da- ten Sie erheben. ch messe iele Dinge, die automatisiert zu erfas- sen sind. Ich habe Sensoren in mei- nem Bett, die messen, ie iel ich schlafe. Ich zähle meine Schritte und meine Zahnbürste hat Blue- tooth. Die protokolliert mit einer App, wie oft ich meine Zähne put- ze. Oder dass meine Waage WLAN hat und mein Gewicht automatisch ZÄHL DICH SELBST ■ Florian Schumacher, 34, schreibt auf seinem Blog igrowdigital zum Thema uantified el und wer sein ohnung betritt merkt schnell ort wohnt ein el Tracking ionier der ersten tunde. L B S M ie genau wollen wir ber uns selbst escheid wissen ier eschichten ber enschen die ihr eben mit der il e von aten verbessert haben. nterviews Martin Moser Florian Schumacher misst, as geht. Seine Waage hat Wifi, seine Zahnbürste Bluetooth. Dadurch will er seine Lebensqualität steigern. erfasst – das habe ich einmal eingerichtet und das funktioniert dann. REDAKTION: Dennoch: Im Moment gibt es auch weitaus zeitaufwendigere Dinge zu mes- sen, die Sie jetzt noch nicht genannt haben. SCHUMACHER: Die muss ich ja auch nicht permanent im Alltag erfassen. Was ich zum Bei- spiel phasenweise mache, ist ein paar Tage die rn hrung zu rotokollieren. ür mich beson- ders ichtig, da ich sehr selten tierische ro- dukte esse. Das ist dann wirklich sehr aufwen- dig. s reicht aber, enn ich es ein aar age lang mache. abei erkennt man relati schnell, as an der eigenen rn hrung nicht stimmt. REDAKTION: Wann macht es denn Sinn in ei- nem Bereich Daten zu erheben? SCHUMACHER: Das Messen ist kein Selbst- z eck. ur enn ich den indruck habe, ich lerne et as, ist es sinn oll. nsere Generation hat jetzt die Möglichkeit, dass man die klassi- schen Krankheiten des lters ermeiden kann. Wir sind zwar noch ganz am Anfang. Die tech- nologischen Möglichkeiten werden sich aber noch eiter erbessern. REDAKTION: Manch einer möchte gar nicht so genau über seinen Körper Bescheid wis- sen. Gibt es einen Punkt, an dem Sie lieber keine Daten erheben? SCHUMACHER: ür mich ers nlich, denke ich nicht. ber das ist natürlich eine y ra- ge. s gibt natürlich Menschen, die brauchen den Schutz des Nichtwissens. Ich denke mir immer, die Wahrheit kann auch nicht schlim- mer sein – und die Daten können mir helfen, länger und glücklich zu leben. ●
  25. 25. - Stiftung Rechnen - 25 a tifie e REDAKTION: Herr Elgeti, wie wichtig ist es für Sie, Zahlen über den eigenen Kör- per zu erheben? ELGETI: s hat sich als Schlüssel zu mei- ner Gesundheit herausgestellt, nachdem ich selbst erursacht in eine Krankheit hi- neingerutscht bin. rüher ar ich Body- builder und meine Nahrung war extrem eiweißlastig und es war immer extrem iel. ch habe acht Liter Milch getrunken, drei bis ier Schnitzel gegessen und an jeder Wurstbude unterwegs angehalten. REDAKTION: Gesund klingt das nicht. ELGETI: ie olgen haben sich nfang 40 bemerkbar gemacht: Arthrose und rthritis. ch konnte den inkauf nicht in den fünften Stock meiner Altbauwoh- nung schleppen. Mir sind ständig Sa- chen aus der Hand gefallen. Ich musste eine L sung finden und bin etzt sehr zu- frieden. REDAKTION: Sie haben ihre Ernährung radikal umgestellt. Vom Fleischfresser zum Veganer? ELGETI: Nicht ganz so streng. Ab und zu in Gesellschaft darf es auch mal ein isch sein. ber in der endenz ist meine r- n hrung etzt sehr flanzenlastig. Meine echerchen haben ergeben, dass meine Krankheit ohl auf einer ehlern hrung beruht. Übersäuerung kann ein Grund für rthrose und rthritis sein. Mein roblem ar s gibt iele M glichkeiten, die r- nährung umzustellen. Ich brauchte ein- fach Zahlen und Messungen, um die Sa- che wirklich richtig anpacken zu können. REDAKTION: Für welche Methode ha- ben Sie sich dann entschieden? ELGETI: Ich habe eine Studie gefunden, die besagt, dass der Urin pH-Wert ein su er Wert ist, um die rn hrung zu kon- trollieren. in einzelner Wert sagt zwar so gut wie gar nichts aus, weil er on ielen aktoren abh ngig ist. ber aus der Masse ieler Werte l sst sich et- REDAKTION: Herr Schreiber, geht es bei Ihnen eigentlich um das Optimieren des eigenen Körpers? SCHREIBER: Das Optimieren ist bei mir nur ein Nebenaspekt. Hauptsäch- lich möchte ich meinen Gesundheitszustand erhalten. Ich möchte wissen, ie mein K r er genau funktioniert und inflüsse auf ihn erkennen. eshalb erhebe ich Daten über mich selbst. REDAKTION: Wenn man ihren Tagesablauf nimmt: Was messen Sie über den Tag verteilt? SCHREIBER: ch messe unterschiedliche inge und ersuche dabei u- sammenhänge festzustellen. Das Wichtigste ist nach meinem Schlaganfall der Blutdruck. Ihn beobachte ich im Verhältnis zu anderen Sachen, wie etwa der nzahl meiner Schritte, meinem Schlaf oder meinem Ka eekonsum. Man h rt a immer so Sachen ie bei Ka eekonsum schl ft man schlecht. ann gibt es ieder eine Studie die sagt, Ka eekonsum ist gut für den Blut- druck. Das sind alles Studien, die sind mit irgendwelchen Leuten gemacht. ie beziehen sich nicht konkret auf mich. urch uantified Self finde ich heraus, wie mein Körper tickt und habe Daten über mich selbst. REDAKTION: Klingt nach vielen Zahlen, die Sie am Ende des Tages haben. SCHREIBER: Stimmt. Was mich ein bisschen ner t ist, dass man z ar iele aten erfassen kann, aber das us erten zu iel eit kostet. Wenn man r- kenntnisse daraus haben will, wird es kompliziert. Vor allem bei Korrelatio- nen z ischen z ei Werten Wie erh lt sich mein Blutdruck zum Beis iel im ergleich zu meinem Ka eekonsum ür die medizinische nalyse gehe ich auch deshalb regelmäßig zum Arzt. REDAKTION: Wie offen war ihr Arzt gegenüber den selbst erhobenen Daten? SCHREIBER: Mein ausarzt findet das gut, enn ich bereits mit aten zu ihm komme. as ünscht er sich sogar on ielen seiner atienten. ch zeige ihm inzwischen nur noch eine App, in der ich meine Werte eintrage. Dann sieht er sich da die Diagramme an. REDAKTION: Die Daten helfen aber auch Ihnen als Patient mehr zu verstehen? SCHREIBER: Ganz klar. ür mich ird mein K r er trans arenter. s sollte aber nicht so weit gehen, dass man sich selber therapiert und dem Arzt sagt, as er zu tun hat. as finde ich gef hrlich. ch ürde z ar meinem rzt nicht wiedersprechen. Wenn ich Zweifel hätte, würde ich aber eine zweite Mei- nung einholen. ● ■ athias lgeti erkrankte an rthrose und rthritis chmerzen in allen elenken bis er eine nur au den ersten lick eigenartige ethode entdeckt. ■ ach einem chlagan all mit nde hat ndreas chreiber ange an- gen sich intensiver mit seinem eigenen rper zu besch tigen er er- hebt aten um seine esundheit zu erhalten. K K S B K M G S SB W SS Andreas Schreiber Sich optimieren ist für ihn nur ein Nebenaspekt.
  26. 26. - Stiftung Rechnen - 26a tifie e was ablesen. Also hab ich gemessen: fünf bis sieben Mal am Tag. Mit Becher und ei- nem Aquarium-Messstift, das ist so eine Art ieberthermometer mit dem man den Wert im Aquariumwasser bestimmt. REDAKTION: Was war ihr Ergebnis? ELGETI: Ich habe die Werte in eine Tabelle eingetragen und war erstaunt: Obwohl ich mich meiner Meinung nach sehr gesund er- nährt hatte, war ich extrem übersäuert. Ich musste meine rn hrung erst mal sechs Wochen radikal umstellen. Keine säuernden Nahrungsmittel, nur noch basisches Zeug. Das habe ich sechs Wochen durchgezogen. REDAKTION: Wie hat sich ihr Leben nach der Ernährungsumstellung verändert? ELGETI: Das hatte eine phänomenale Wir- kung. Ich habe schon nach 14 Tagen eine Veränderung gemerkt. Meine Gelenke wur- den wieder beweglicher. REDAKTION: Können Sie das auch auf die Dauer durchhalten? ELGETI: Dafür habe ich eine App entwi- ckelt, die Sauerkraut-App, mit deren Hilfe das ber achen meiner rn hrung iel einfacher gelingt. s gibt so eine egel, die für mich ganz gut funktioniert und ich mit der kontrollieren kann rozent s u- erndes, rozent basisches ssen. s gibt also etwas Spielraum, sodass kleine Sünden möglich sind. Aber ich muss auch sehen, dass ich mich an meine Grenze hal- te um rühstück et a gibt es etzt bei mir meistens Karto eln mit Sauerkraut. ● REDAKTION: Herr Crain, Sie erfassen Ihre Produktivität bei der Arbeit. Was ist Ihr Ziel? CRAIN: ch hatte das Gefühl, dass ich zu iel eit ersch ende und un- rodukti bin. a ersuchte ich mit uantified Self ein besseres erst nd- nis dafür zu bekommen, ie ich meine eit erbringe und ie ich sie e - zienter nutzen kann. REDAKTION: Wie sind Sie dabei vorgegangen? CRAIN: s gibt eine Methode, die omodoro echnik, die ich ein bisschen ereinfacht aus robiert habe und mich daran bis heute in meiner rbeit richte. Ich arbeite jeweils in 25 Minuten Abschnitten in einem Bereich und mache dann kurz ause. n der egel schreibe ich or dem eitblock auf, as ich mache. m nde be erte ich den Block dann on eins bis drei nach seiner ekti it t. as mache ich seit und habe etzt fast solcher Bl cke in erschiedenen rbeitsbereichen aufgeführt. REDAKTION: Was war ihre persönliche Erkenntnis dabei? CRAIN: ass ich ahnsinnig enig gearbeitet hatte, fand ich. ür mich ist das Wesentliche aber erst einmal nicht so sehr, elches rgebnis aus der Messung rauskommt, sondern welches Verhalten es bei mir auslöst. Das hat sich seit damals sehr ge ndert. llein om letzten Jahr zu diesem konnte ich meine rodukti it t, enn man so ill, um et a rozent steigern. REDAKTION: Wie entsteht die Verbesserung, wenn Sie wissen, was Sie den Tag über getan haben? CRAIN: ch sehe in einer abelle, ie iel ich in der Woche, im Monat oder im Jahr orher gemacht habe. Man ill mit der eit immer besser erden, damit die Zahl nicht nach unten geht. Die Stärke dieser Methode ist, dass sie einen Anreiz für eine kontinuierliche Verbesserung setzt. REDAKTION: Wie diszipliniert muss man dafür sein? CRAIN: Wenn man bei Null beginnt, ist das nicht einfach. Wir neigen tendenziell dazu, sch ierige ufgaben aufzuschieben und iele sind leicht ablenkbar. ft hat man ielleicht selber das Gefühl as ar etzt eit, die h tte ich lieber anders erbracht. as geht mir genauso. ch sehe die Methode deshalb als Hilfsmittel, um mit einem Mangel an Selbstdisziplin umzugehen. ● ■ Brian Crain, 29, weiß genau, was er letzten Sommer getan hat, oder am ersten uli ochenende vor zwei ahren der nternehmer aus erlin trackt seine rbeitszeit und steigert dadurch seine roduktivit t. K SM SS Mathias Elgeti r konnte sich mit kaum noch bewegen, dann stellte er mit ilfe on uantified Self Methoden seine rn hrung um. Brian Crain uantified Self gibt ihm Selbstdisziplin.
  27. 27. S S S M M 27 a tifie e ti t g e h e
  28. 28. - Stiftung Rechnen - 28Mädchen und Mathe Um ein Haar wäre auch Anina Mischaus gutes Verhältnis zur Mathematik sehr früh zu Ende gewesen. „Ich war immer saugut in Mathe, eine Einserkandidatin“, erzählt die Professorin, die heute die Ar- beitsgruppe Gender Studies in der Ma- thematik am Institut für Mathematik der Freien Universität Berlin leitet. „Bis zur achten oder neunten Klasse. Da beka- men wir einen Lehrer, der mir die Freude am Fach regelrecht versaut hat.“ Ab die- sem Zeitpunkt sei der Unterricht „Hor- ror“ für sie gewesen, erzählt sie weiter, ihre Noten wurden schlechter. Sie mied das Fach für die restliche Schulzeit, stu- dierte Soziologie und Theologie und kam erst auf Umwegen zu ihrem einstigen Vorzeige-Fach zurück. Damit es künftig Schülerinnen und Schü- lern besser ergeht, engagiert sie sich heute in der Ausbildung von Lehrerinnen ■ Dass Mädchen schlechter in Mathe sind als Jungs, hängt nicht von biolo- gischen Unterschieden ab, sondern wird von einem Mix aus Erziehung, Schule und gesellschaftlichen Rollen- bildern verursacht. Um das zu ändern, ist ein prinzipielles Umdenken nötig. Text: Magdalena Schmude Vergleich nicht verbessert. Genauso un- verändert ist an deutschen Schulen der kleine, aber signifikante Leistungsunter- schied zwischen Jungen und Mädchen. Glaubt man PISA, sind Mädchen tatsäch- lich schlechter in Mathe. Anina Mischau will das nicht so stehen lassen: „Mädchen nutzen andere Lernstrategien als Jungs, sie brauchen o enere nterrichtsformen. ür sie ist der h ufige rontalunterricht in Mathe besonders nachteilig.“ Laura Martignon, die an der Pädagogi- schen Hochschule Ludwigsburg den Lehrstuhl für Mathedidaktik und Gender- forschung inne hat, bestätigt das: „Mäd- chen rofitieren zum Beis iel on dialo- gischem Lernen, das ihnen mehr Freiheit und Gestaltungsspielraum lässt.“ Erklä- rungsversuchen, die Mädchen mathe- matische Fähigkeiten auf Grund ihres biologischen Geschlechts absprechen, widerspricht sie energisch: „Das ist Quatsch. Wenn das tatsächlich so wäre, müssten wir die Unterschiede in allen Ländern sehen. Aber ganz im Gegenteil: Es gibt ein paar Länder, in denen die Mädchen in Mathe-Leistungstests kons- tant besser abschneiden als die Jungs.“ Das gilt zum Beispiel für Island, Bulgari- en oder Liechtenstein. Für Laura Martig- non keine Überraschung: „Hier zeigt sich ganz deutlich die Wirkung des soge- nannten kulturellen Geschlechts. Das ist die soziale Rolle, die eine Gesellschaft Frauen und Männern zuschreibt. Ein wichtiger Faktor dabei ist auch die Gleichberechtigung.“ Die Studie des italienischen Wirtschafts- wissenschaftlers Luigi Guiso aus dem Jahr 2008 wies sogar einen Zusammen- hang zwischen der Gleichstellung von Frauen in einer Gesellschaft und ihrem Erfolg in Mathematik nach. „Je besser die Gleichstellung der Frau ist, desto besser schneiden Mädchen ab“ erklärt Laura Martignon. „Island ist dafür ein gu- tes Beispiel. Hier sind die Mädchen klar besser als die Jungs und wenn man sich die isl ndisch rbeits elt ansieht, findet man Frauen dort überall in wichtigen Po- sitionen, in der Wirtschaft oder Politik zum Beispiel. Entscheidend ist aber auch, dass die Mädchen in dem Be- wusstsein aufwachsen, dass sie diese Möglichkeiten haben werden.“ Knapp die Hälfte aller Studienanfänger im Fach Mathematik sind weiblich und Lehrern und versucht, deren Verhält- nis zur Mathematik zu verändern. Denn ihre eigenen Erlebnisse als Schülerin könnten noch immer beispielhaft dafür stehen, dass h ufig et as schief l uft, wenn es darum geht, Jungen und Mäd- chen nachhaltig für ein Fach zu begeis- tern, das in der Wahrnehmung der meis- ten als theoretisch, trocken und damit besonders für Mädchen und Frauen als unattraktiv oder schlicht zu schwer gilt. „Unser Matheunterricht ist schlecht“, sagt Anina Mischau mit Nachdruck, „das müssen wir ändern.“ Die Ergebnisse der letzten PISA-Studien geben ihr recht: Trotz zahlreicher Aktio- nen zur Förderung des mathematischen Verständnisses in den letzten Jahren ha- ben sich die Leistungen deutscher Schü- ler im Fach Mathematik im internationalen MATHEMATIK HAT KEIN GESCHLECHT„Mädchen können kein Mathe und Jungs sind schlechter in Deutsch.“ Diese und ähnliche Geschlechterstereotype sind in vielen Köpfen noch fest verankert, obwohl sie längst widerlegt sind. Woher kommt das und was lässt sich dagegen tun?
  29. 29. Dazu sind nicht nur entsprechende Vorbilder nö- tig, sondern auch eine Bestätigung durch die eige- nen Eltern im frühen Kindes- und Jugendalter. Und auch hier sieht Laura Martignon in Deutschland Probleme: „Eltern haben noch immer unterschied- liche Erwartungen an Söhne und Töchter und tra- gen dadurch unbewusst dazu bei, die Ge- schlechterstereotype weiterzugeben. Auch im Bezug auf mathematische Fähigkeiten. Da werden Mädchen deutlich weniger gefordert und geför- dert, zu Hause wie in der Schule.“ Wer mit der Vor- stellung aufwachse, von Natur aus schlechter in Mathe zu sein oder weniger leisten zu müssen, erfülle diese Vorhersage teilweise ganz automa- tisch. Eine Art selbsterfüllende Prophezeiung, die sich auch in sozialpsychologischen Versuchen zeigen lässt: Wurden Frauen vor einem Mathe-Test darauf hingewiesen, dass es um geschlechtsspe- zifische nterschiede gehen soll oder dass rauen in solchen Tests generell schlechter abschneiden als Männer, erzielten sie tatsächlich schlechtere Ergebnisse. Ohne diese Hinweise rechneten sie gleich gut. Zum Geschlechterstereotyp kommt erschwerend noch das Fachstereotyp hinzu. „Mathematik gilt per se als männlich“, sagt Anina Mischau, „außerdem als kompliziert, stinklangweilig und absolut praxis- fern.“ Zusätzlich sei Mathe für viele ein Angstfach, denn: „Wer in Geschichte nicht mitkommt, der gilt als faul. Wer schlecht in Mathe ist, ist dumm.“ Sie wünscht sich deshalb einen ganzheitlichen Ansatz, um Mathematik für beide Geschlechter attraktiver zu machen. „Wir brauchen langfristige Programme, kurze ktionen er u en zu schnell. azu geh rt für sie die gezielte Vorbereitung von Lehrern und Er- ziehern, damit ein geschlechtersensibler, anregen- der Unterricht möglich ist, von dem alle Schüler rofitieren k nnen. nd auch das Bild on Mathe- matik in der Gesellschaft soll sich verändern: „Wir müssen dafür sorgen, dass Mathematik nicht mehr als das Bäh-Fach gilt, sondern ganzheitlich gese- hen wird. Als spannendes, abwechslungsreiches Fach, das Spaß macht.“ ● 2014 gewann eine Frau die Fields-Medaille, die wichtigste Auszeichnung in der Mathematik Zu Beginn des 20. Jahrhunderts waren Frauen in der Mathematik sehr präsent 29 Mädchen und Mathe - Stiftung Rechnen -
  30. 30. - Stiftung Rechnen - 30Gute Rechner braucht das Land Damit jedes Kreuzchen gleich viel zählt Die Entdeckung der Unendlichkeit Wieso eigentlich Mathe? 32 34 36 GUTE RECHNER BRAUCHT DAS LAND! Im Privatleben und im Beruf. Ein gerechtes Wahlsystem ist für eine Demokratie ein Muss. Aber was ist gerecht und wie funktioniert ein solches Wahlsystem? Eine Frage an die Mathematik.
  31. 31. - Stiftung Rechnen - 31 Gute Rechner braucht das Land Vince Ebert über die Zahl Fünf: Wenn Menschen gesagt be- kommen, eine Operation geht in fünf Prozent aller Fälle schief, entscheiden sich viel weniger Patienten für den Ein- gri als wenn sie gesagt be- kommen, die Operation verläuft in 95 Prozent aller Fälle erfolg- reich. Die Information jedoch ist in beiden Fällen exakt die gleiche. Trotzdem verbinden wir Zahlen oftmals mit Gefüh- len, das macht es so schwer, Statistiken zu interpretieren. Mathe-Botschafter Vince Ebert: Mit Wortwitz und Komik begeistert der studierte Physiker als Wissenschafts- kabarettist gleichermaßen Laien wie na- turwissenschaftliches Fachpublikum.
  32. 32. - Stiftung Rechnen - 32Mathematik der Macht REDAKTION: Herr Pukelsheim, ist unser Wahlsys- tem gerecht? PUKELSHEIM: Um das zu beantworten, muss der Begri gerecht erst mal inter retiert erden. n eutschland macht das das Bundes erfassungs- gericht. nd das Bundes erfassungsgericht stellt die orderung ganz oben an, dass ir als W hler und W hlerinnen alle im gleichen Ma e zum rgeb- nis einer Wahl beitragen. as ist der Begri der r- folgs ertgleichheit unserer Stimmen. ass hre Stimme und meine Stimme gleich iel ert ist. as ist die uantitati e msetzung dieses ualitati en Begri s der Gerechtigkeit. REDAKTION: Und das war bis zur Wahlrechtsreform nicht so, dass jede Stimme gleich viel zählte? PUKELSHEIM: s gab zumindest kleine ekte, die das so ein bisschen in rage stellten. as hing mit den berhangmandaten zusammen. enn die berhangmandate konnten a nur gro e arteien ge innen und dann fingen die kleinen an zu schrei- en, dass sie da benachteiligt sind. us Sicht der W hler und W hlerinnen hie das Wenn ir für gro e arteien stimmen, haben ir o nung, durch die berhangmandate ein bisschen ücken ind zu erzeugen. Wenn man aber nh nger einer kleinen artei ist, usste man on orne herein Mich ird dieser ücken ind nicht nach orne bef rdern. Wegen dieses ektes haben letztlich z ei Bürger or dem Bundes erfassungsgericht geklagt. nd DAMIT JEDES KREUZCHEN GLEICH VIEL ZÄHLT Gerecht soll ein Wahlsystem sein, damit jeder gleichberechtigt mitbestimmen kann, wie regiert wird. Doch um das sicherzustellen, besteht manchmal Korrekturbedarf. In solchen Fällen wendet sich die Politik auch an die Mathematik, zum Beispiel an den Stochastik-Professor Friedrich Pukelsheim. ■ Bei der Reform des Wahlrechts 2009 sollten auf Weisung des Bundesverfassungsgerichts die Regelung zu Überhang- mandaten geändert und das negative Stimmgewicht abge- scha t werden. er athematiker riedrich ukelsheim hat dabei geholfen. Text: Magdalena Schmude n ografik K.design das Bundes erfassungsgericht hat dem Bundestag gesagt hr müsst as tun. REDAKTION: Und dann ist die Politik auf Sie zugekommen und hat gesagt: „Rechnen Sie uns mal durch, wie man das anders machen könnte? PUKELSHEIM: s ist a durchaus üblich, dass für die Beratung zu s eziellen hemen e terne Sach erst ndige geh rt er- den. ch hatte an der Wahlmathematik seit dem Jahr ge- arbeitet und auch rtikel er entlicht. REDAKTION: Wie kam es dazu, dass sie als Mathematiker sich mit dem Wahlrecht beschäftigt haben? PUKELSHEIM: ür die meiste eit meines beruflichen Lebens habe ich Statistik gemacht und habe selber nie er artet, dass ich einmal so nah an den olitischen ntscheidungs rozess herankommen k nnte. ber im ahmen dieser statistischen ersuchs lanung ergab sich ein roblem, das aus mathema- tischer Sicht, ie ir Mathematiker sagen, isomor h ist, also sich zahlenm ig genauso ausdrückt ie dieses erh ltnis- ahl roblem. s ist eigentlich ie in der Schule ine e t- aufgabe und eine andere haben unterschiedliche e te, füh- ren aber zu den selben Gleichungen und ormeln, die man an enden muss. So ar das hier auch und als mir das be- usst urde, habe ich gedacht ch, das ist a interessant, dazu machst du mal ein Seminar , eil das mal ein attrakti es Beis iel ist, o die Mathematik in die Gesellschafts issen- schaften ausgreift und nicht nur in die atur issenschaften. nd dann habe ich dieses Seminar gemacht, zusammen mit einem Kollegen aus der olitik issenschaft und andere Semi- nare zusammen mit den erfassungsrechtlern, und so bin ich immer eiter reingerutscht in diese hematik. REDAKTION: Kann man einem Laien erklären, was Sie mathe- matisch getan haben, um das Verhältniswahl-Problem zu lösen? PUKELSHEIM: Wir haben bei der Bundestags ahl a z ei Stimmen, ir haben die rststimme für die Wahl eines Wahl- kreisabgeordneten und die eitstimme, die das erh ltnis der arteien bestimmt. nd am bgleich z ischen der rst- stimme und der eitstimme hat es gehakt, deshalb gab es früher die berhangmandate. ie entstanden sozusagen h- rend der errechnung als berh nge aus den eitstimmen,
  33. 33. - Stiftung Rechnen - 33 Mathematik der Macht die dann irgend ie nicht eiter integriert urden, sondern ste- hen blieben. Jetzt erden diese berh nge sch n berücksich- tigt, indem die erh ltnisrechnung darauf abgestimmt ird, as mit der rststimme in den Wahlkreisen herausgekommen ist. us mathematischer Sicht ist es bei n endungs roble- men absolut g ngig, solche ebenbedingungen zu berück- sichtigen. nd diese ebenbedingung bedeutet im konkreten all, dass in edem Bundesland ede artei in der erh ltnis- rechnung so iele Sitze kriegen muss, ie sie schon mit rst- stimmen an irektmandaten ge onnen hat. REDAKTION: Das ist wirklich so einfach? Man führt dann ein- fach eine Nebenbedingung ein und dadurch verändert sich das Ergebnis? PUKELSHEIM: ebenbedingungen gibt es immer, bei edem raktischen roblem. on daher ist es aus mathematischer Sicht ein kleiner Schritt, auch enn es für das Bundes ahlge- setz ein gro er Schritt ar, diese berhangmandate in den Gri zu kriegen. REDAKTION: Ihr Vorschlag ist letztlich mit kleinen Änderungen umgesetzt worden. Hat Sie das stolz gemacht, dass die Politi- ker auf den Mathematiker hören? PUKELSHEIM: lso ich sehe es eher so, dass ich der utr ger bin, oder die Mathematik der utr ger ist und nach ie or die olitik bestimmt. ass ir on der Mathematik her kommen und sagen ey, ihr müsst das so machen , das ist nicht die Sicht, ie ich das ahrnehme. as ist, glaube ich, auch ob ekti nicht so. ie olitiker haben ge isse rei- heitsgrade, die k nnen natürlich immer auch as machen, o man dann daneben steht als atur- issenschaftler und sagt ber das ist doch nicht gut so , dann sagen die Wir sind o- litiker und keine atur issenschaftler. REDAKTION: Aber die Zusammenarbeit bei der Wahlrechtsreform hat ganz gut funktioniert, oder? PUKELSHEIM: lso aus meiner Sicht ar die usammenarbeit sehr gut. ch bin selbst beeindruckt, mit elcher ochachtung der Mathe- matik begegnet ird, und dass die Kommentare oder rl uterungen on mir als Mathematiker durch- aus so gesehen urden, dass sie nicht artei olitisch moti iert sind, sondern dass das die ussage der Mathematik ist. nd enn die Ma- thematik sagt, da ist kein negati es Stimmge icht mehr drin in dieser L - sungsm glichkeit, dann stellt sich kein olitiker da hin und sagt as ist aber doch drin. Sondern da sagen sie alle. h, der Mathematiker hat gesagt, das geht , und dann ist das eine M glichkeit. ann ist im- mer noch die z eite rage, ob sie dann diese M glichkeit umsetzen ollen oder nicht. ber da hat Mathematik schon ein sehr hohes nsehen, muss man sagen. REDAKTION: Würden Sie sagen, das Wahlsystem ist jetzt gerechter? PUKELSHEIM: as Wahlsystem ents richt etzt ziemlich makellos den Kriterien, die ir alle da on er arten und die das Bundes erfassungsgericht r zisiert und rechtlich erbindlich formuliert hat. ch ürde also sagen Ja. ● CDU/CSU LINKE GRÜNE SPD r ografi ach der neuen egelung gibt es im Bundestag mehr bgeordnete als orgesehen, da ge onnene irektmandate einer artei urs rüng lich zu einer erschiebung des Stimm erh ltnisses führten und die so ge onnenen berhangmandate nun nach der Wahlrechtsreform mit usgleichs- mandaten für die anderen arteien kom ensiert erden. AUSSEN-KREIS: erteilung der usgleichsmandate INNEN-KREIS: ktuelle Sitz erteilung
  34. 34. 34Genie, Wahnsinn & die Unendlichkeit - Stiftung Rechnen - Die Entdeckung der Unendlichkeit be- gann so klein, abgeschlossen und un- scheinbar, wie man es kaum vermuten würde: mit einem handgeschriebenen Brief. Georg Cantor, ein junger Mathema- tikprofessor aus Halle hatte sich mit einer Frage an seinen erfahrenen Kollegen Richard Dedekind gewandt. Mit ge- schwungener Feder formulierte er am 29. November 1873 folgende Zeilen: „Ge- statten Sie mir, Ihnen eine Frage vorzule- gen, die für mich ein gewisses theoreti- sches Interesse hat, die ich mir aber nicht beantworten kann; vielleicht können Sie es, und sind so gut, mir darüber zu schrei- ben, es handelt sich um folgendes….“ Was Cantor umtrieb, war die Frage nach der Messbarkeit der Unendlichkeit. Er wollte wissen, ob verschiedene Zahlen- mengen, die natürlichen N und ihre be- kannten bermengen, die rationalen und die reellen Zahlen R, unterschiedlich groß sind. Mehr noch: Kann man alle reel- len Zahlen jeweils genau einer natürlichen Zahl zuordnen? Oder anders gefragt: Gibt es gleich viele natürliche und reelle Zahlen oder ist R vielleicht größer als N? Cantors Fragen muten für Nichtmathe- matiker nicht selbsterklärend, sogar ab- surd an. Wie soll eine unendliche Menge größer sein als eine andere unendliche Menge? Für Cantor Zeitge- nossen ar die rage teil eise sogar ein ront, eine Beleidigung der Mathematik. Dass der Mathematiker aus Halle wenige Wochen nach seinem Brief an Dedekind sogar selbst die Lö- sung für seine Frage fand, machte ihn zwar posthum zu einem der wichtigsten Mathematiker der Geschich- te, zu seiner Lebenszeit aber zu einem teils umstritte- nen, angefeindeten Querdenker. Warum? Georg Cantor, zu diesem Zeitpunkt gerade einmal 28 Jahre alt, hatte die Unendlichkeit messbar gemacht. Er hatte bewiesen, dass unendliche Mengen unterschiedlich groß sein können oder mathematisch ausgedrückt: Dass sie unterschiedliche Mächtigkeit besitzen. Dass der 1845 in Sankt Petersburg geborene Cantor eine derartige mathematische Leistung vollbringen würde, war in seiner Jugend alles andere als absehbar gewesen. Er besuchte zunächst eine Handelsschule. Aber die Mathematik ließ ihn nicht los. Mit 17 studierte er schließlich doch, in Zürich, Göttingen und Berlin. Für seine weiterführende akademische Laufbahn musste er jedoch in die Provinz: nach Halle. Die Stadt im heutigen Sachsen-Anhalt war im 18. Jahrhundert einmal ein Zentrum der Aufklärung gewesen, als Can- tor 1869 in die Stadt kam, war dieser Ruf verblasst. Cantor ließ sich davon nicht abschrecken. Der junge Mann mit der hohen Stirn, dem schmalen Gesicht und den klugen Augen war sicher, in Halle endlich „Glück, Befriedigung und ahrhaftigen Genuss zu finden. ie ersten Jahre tat er dies auch – nicht nur im akademi- schen Sinne. Über seine Schwester Sophie lernte er Vally Guttmann kennen, eine fröhliche Kaufmannstoch- ter. Die beiden heirateten, bekamen sechs Kinder. Es war in dieser Zeit, als sich bei Cantor die Unend- lichkeit immer mehr ins Bewusstsein schob. Die Fra- gen, die ihn beschäftigten, gehörten jedoch zu denen, die in der damaligen Zeit gar nicht vorstellbar waren. DIE SUCHE NACH DER UNENDLICHKEIT Georg Cantor war ein junger Professor in der Provinz, doch ihm gelang eine Entdeckung, die die Mathematik im 19. Jahrhundert erschütterte: Er maß die Unendlichkeit. ■ Der Hallenser Mathematiker Georg Cantor (1845 – 1918) gilt als Begründer der Mengenlehre. Er fand heraus, dass unendliche Mengen unterschiedlich groß sein können. Eine Erkenntnis, die mit den damaligen Vorstellungen der Mathe- matik brach. Text: Sophie Anfang Illustration: Annemarie Otten
  35. 35. 35 Genie, Wahnsinn und die Unendlichkeit - Stiftung Rechnen - Was das Unendliche betraf, hielt man es im 19. Jahr- hundert immer noch mit der Antike – die Menschen damals konnten mit der Idee des Unbegrenzten nichts anfangen. Auch für die christliche Lehre war das Un- endliche letztendlich Gott. Und Gott könne und dürfe man nicht messen. Aber Cantor mochte ungewohnte Gedanken. Er war ein vielinteressierter Denker, las die Philosophen ge- nauso wie die Naturwissenschaftler. Ein unruhiger Geist, der seine Wohnung bis unter die Decke mit Bü- chern vollstopfte und jeden Tag um fünf Uhr zu arbei- ten begann. Wenn er wollte, konnte er sich in Ideen festbeißen. Bei der Unendlichkeit tat er es. Er begann mit den natürlichen Zahlen. Und stieß auf Unglaubliches: Die Menge der positiven ganzen Zah- len, also der natürlichen Zahlen N, und der ganzen Zahlen inklusive der negativen Zahlen, Z, sind gleich groß. Denn jeder ganzen Zahl kann genau eine aus der rein positiven Menge zugeordnet werden, man kann sie durchnummerieren. „Abzählbarkeit“ wird dieses Phänomen in der Mathematik genannt. Doch damit nicht genug. Als nächstes nahm sich der umtriebige Mathematiker die Brüche vor. Könnte es sein, dass die rationalen Zahlen ebenfalls „abzählbar“ und ihre Menge damit gleich groß ist, wie die natürli- chen Zahlen? Und tatsächlich gelang es Cantor, auch dies nachzuweisen. Sein dafür entwickeltes Diagonal- verfahren gehört noch heute zu den Klassikern der Mathematik. Womit wir wieder beim Anfang wären: bei Cantors Brief an Dedekind. Denn letztendlich blieb die Frage, ie es um die reellen ahlen bestellt ist. m , e oder die anderen ahlen mit den unendlichen i ern- folgen hinter dem Komma. Damit der Beweis hand- habbarer wurde, nahm sich Cantor nicht die ganze Menge der reellen Zahlen vor, sondern betrachtete erst einmal nur das Intervall zwischen Null und Eins. Wenn in diesem Raum die reellen Zahlen bereits mäch- tiger sind als die natürlichen und die rationalen, dann muss das auch für die reellen Zahlen an sich gelten, so die Idee. Mit einem recht einfachen Verfahren gelang es Cantor, nachzuweisen, dass R nicht durchnumme- riert werden kann – und die Menge reeller Zahlen damit größer ist als die der natürlichen Zahlen. Cantor, der Kaufmannssohn an der Provinzuniversität, hatte so nicht nur bewiesen, dass es unterschiedliche Arten von Unendlichkeit gibt, sondern im Alleingang die Mengenlehre begründet. Anerkennung bekam Cantor trotzdem kaum. ie er entlichung seiner ntdeckung im relle- schen Journal, dem Referenzblatt der Mathematik, wurde erst lange hinausgezögert und, als es schließ- lich soweit war, glich die Besprechung einer mathe- matischen Fußnote. Schwerer wog für Cantor jedoch der o ensichtliche Widerstand einer seiner einstigen Lehrer: Der Berliner Mathematiker Leo- pold Kronecker, ein mathematischer Hardliner mit klaren Vorstellungen da- von, was gedacht werden durfte und was nicht. Cantors Ideen gehörten zu letzter Kategorie. Kronecker sah keinen Sinn darin, sich mit Unendlichem zu beschäftigen. Can- tors Ideen betrachtete er als sinnlos. Vor seinen Studenten soll sich der damals bedeutende Mathematiker sogar über Cantors Mengenlehre lustig gemacht haben. Bewiesen ist es nicht, doch die Vermu- tung liegt nahe, dass es an Kroneckers influss in Berlin lag, dass antor es nie als Professor in die heutige Hauptstadt gescha t hat. Es gehört zu den traurigen Kapiteln von Cantors Geschichte, dass der in seinen jungen Jahren so gesellige und geistrei- che Mann letztendlich auch nicht die Kraft besaß, seine Ideen gegen die Wi- derstände zu verteidigen. Mit 39 Jahren bekam Cantor seinen ers- ten manisch-depressiven Schub. „Zirku- läre Manie“ nannte es sein damaliger Arzt. Bis zu seinem Tod war er mehrmals in psychologischer Behandlung. Die Krankheit machte aus dem genialen Mathematiker einen Mann mit wechsel- haftem Gemüt. In guten Phasen war er unglaublich umtriebig, trug etwa maßgeb- lich zur Gründung der Deutschen Mathe- matiker-Vereinigung bei. Diese überbor- dende Energie endete nicht selten in einem gewissen Größenwahn. Manchmal kam es sogar vor, dass Cantor sich dem preußischen Geheimdienst andienen wollte. In schlechten Phasen verließ ihn hinge- gen jede Energie und der sonst so le- bensfrohe Mann wurde schwermütig. Mehrere Jahre ging das noch so. Ein Le- ben zwischen Jubel und Trübsinn, mit einem zum Lebensende hin immer trüber werdenden Geist. Dass die Mengenlehre in diesen Jahren immer mehr anerkannt wurde, wird er nur noch am Rande mit- bekommen haben. Mit 72 Jahren, wenige Jahre nach seiner Emeritierung, starb Cantor am 6. Januar 1918 in einer Nervenklinik. Die Endlich- keit des Lebens hatte den Entdecker der Unendlichkeit bezwungen. ●
  36. 36. - Stiftung Rechnen - 36Wieso Mathematik? LAURA MUNDT 25, studiert Mathematik und Physik in Freiburg 1: Der Klassiker. Ich habe mich schon lange für Naturwissenschaf- ten interessiert, habe entsprechend Chemie und Physik in der Oberstufe belegt. Auf die Idee, Physik und Ma- thematik zu studieren, hat mein Phy- siklehrer mich gebracht. Für mich hat es sehr viel bedeutet, dass je- mand wie er mir so etwas zutraut. 2: Ich kann über die Witze aus Big Bang Theory lachen! 3: Physik und Mathematik begeis- tern mich – das möchte ich teilen! Also habe ich angefangen Physik und Mathematik auf Lehramt zu stu- dieren. Seit dem dritten Semester arbeite ich zusätzlich als wissen- schaftliche Hilfskraft an einem Fraunhofer Institut, verbrachte sogar mehrere Monate an einem Partner- institut in Seoul. Nächstes Jahr fan- ge ich meine Promotion in Physik an, statt an die Schule zu gehen, nach sechs Jahren Studium kann ich es kaum erwarten endlich selbst zu forschen! Ob ich danach an die Schule gehe, habe ich noch nicht entschieden. Wenn ja macht die ra iserfahrung ho entlich eine bessere Lehrerin aus mir, wenn nicht erde ich andere Wege finden mei- ne Leidenschaft zu teilen. WIESO EIGENTLICH MATHE? ANDREAS HEINDL 25 Jahre, studiert Mathematik und Sport in Würzburg 1: Ich wollte in erster Linie Lehrer werden. Die Fächerkombination Mathe/Sport (Ethik Drittfach) hat sich tatsächlich eher aus meiner Studienbiografie heraus ent ickelt. Ich war zuerst für Deutsch und Wirt- schaft in Erlangen-Nürnberg einge- schrieben und bin dann aber wegen privaten Interessen doch noch nä- her an meiner Heimatstadt geblie- ben: Begonnen habe ich in Würz- burg mit Mathe/Deutsch, bis ich gemerkt habe, dass ich der denkbar ungeeigneteste Mensch war um Germanistik zu unterrichten. Ich hatte selbst einfach keinen Spaß daran. Sport hat sich dann aus dem im Studium entwickelten Interesse für Bewegungskulturen ergeben. 2: Mathematik ist eine sehr strenge Wissenschaft: Ganz klare Logik ist in der Beweisführung eines Satzes sehr wichtig. Das tägliche Üben von Strukturen und deren Zusammen- hängen, und diese dann auch hieb- und stichfest erklären zu müssen, hilft bei allem, was man so macht: zwischenmenschliche Beziehungen analysieren, Wohnungseinrichtung planen oder Einkaufszettel schrei- ben. Allerdings ist es für manche Beweise in der Mathematik auch wichtig, quer denken zu können, andere Standpunkte einnehmen zu können. Das bringt mich natürlich auch in meiner Selbstrefle ion e t- rem weiter. 3: Das ist eine sehr schwierige Fra- ge. Zu Beginn des Studiums waren es sicher andere Ziele als jetzt und wahrscheinlich werden es wieder andere Ziele am Ende, beziehungs- weise nach dem Studium sein. Si- cherlich will ich mich auf einen möglichen Beruf vorbereiten, Inter- esse spielt auch eine große Rolle. Ich denke, dass die Ziele irgendwo zwischen Berufswunsch und Selbstverwirklichung liegen. ■ UNSERE FRAGEN: 1: Wieso hast du dich für dein Studium entschieden? 2: Wie nutzt dir dein Studium im Alltag? 3: Welches Ziel verfolgst du mit deinem Studium? inen arkplatz finden Zeit gewinnen oder iano spielen wer athematik studiert kann sie berall gebrauchen. ir haben n athestudenten ge ragt was sie an ihrem ach begeistert. Protokolle: Lisa Böttinger Sie gehören zu den Akademikern mit den besten Berufsaussichten – und sorgen unter fachfremden Kommilitonen dennoch oft für Verwunderung. Rund 57.000 junge Menschen studierten im Jahr 2012 in Deutschland Mathematik, davon fast die Hälfte Frauen. Dennoch: Ein Studium aus Zahlen und For- meln, das können sich viele Studienanfänger nicht vorstellen. Vielleicht haben sie die Mathe-Studen- ten nicht nach ihren Motiven gefragt. Für die geht ihr Fach nämlich weit über das Rechnen hinaus. Die Fähigkeit, Probleme zu lösen, schätzen sie als be- sonders wertvoll ein. Sie nutzt Mathematikern nicht nur im Alltag, sondern auch in Herzensangelegen- heiten. Sie können Dinge aus einer anderen Pers- pektive betrachten. So haben sie bisher immer eine passende Lösung gefunden. ●
  37. 37. - Stiftung Rechnen - 37 Wieso Mathematik? DANIEL PAVLICEK 32 Jahre, promoviert in Mathematik in Berlin 1: An Mathe hat mir schon in der Schule gefallen, dass man das Ge- fühl hat, Probleme zu lösen - und dann findet man heraus, dass es noch einen klareren, leichteren und vor allem kürzeren Weg zur gleichen Lösung gibt. Später habe ich her- ausgefunden, dass das Prinzip, so Energie zu sparen, gute Mathematik ausmacht. Mathematiker tendieren dazu, ein wenig faul zu sein. 2: Abgesehen von technischen De- tails im Alltag gefällt es mir, Dinge, die mir passieren, mit Mathe zu er- klären. Wie wahrscheinlich ist es zum Beispiel, in meiner Straße einen ark latz zu finden nd arum herrscht eigentlich immer Chaos in meinem immer 3: Mathe ist mein Handwerkszeug, um aus einem Problem bestimmte Merkmale und Muster herauszufil- tern, Konzepte zu generalisieren und versteckte Verbindungen zwi- schen hemen zu finden das ür- de ich allgemein über Mathe sagen. Aber eigentlich mache ich das ein- fach gerne. ELISABETH KRÄTZ- SCHMAR 23 Jahre, studiert Statistik in München 1: Ich habe mich für das Statistik Studium entschieden, weil Statistik den Reiz hat, dass man mit ganz verschiedenen Themengebieten in Kontakt kommt, denn überall wird heutzutage Datenanalyse ge- braucht. Zu lernen, wie man aus Rohdaten Wissen extrahiert, ist deshalb heute wahrscheinlich wich- tiger denn je – und spannend dazu. 2: Man denkt in ganz anderen Mus- tern, geht bei allem sehr systema- tisch vor und spart so oft Zeit. Au- ßerdem wird man in den Medien jeden Tag mit Statistik konfrontiert, zum Beispiel bei Wahlumfragen oder den Ergebnissen der neuesten Pisa-Studie. Heutzutage ist ein Grundverständnis von Statistik un- erlässlich, damit man die Masse an Information, die auf einen täglich einprasselt, verstehen kann. 3: Momentan macht es mir einfach Spaß zu lernen, auch wenn es natürlich manchmal anstrengend ist. Ich könnte mir gut vorstellen, später zu forschen und zu lehren, um Anderen den Spaß an Statistik zu vermitteln, oder aber an einem Wirtschafts- oder Meinungs- forschungsinstitut zu arbeiten. JOHANNA WEIROWSKI 26, studiert Mathematik und Musik in Potsdam 1: Weil ich in den Naturwissen- schaften und in Mathematik immer gut und gleichzeitig fasziniert von mehreren Mathematik- und Physik- lehrern war. Für mich war Mathema- tik damals eine wichtige Grundlage und ein Teil meiner Auseinanderset- zung mit der Welt. Sicherlich nicht unbedingt im großen Raum wie auf Tribünen, sondern eher alleine am Schreibtisch. Ich habe schon da- mals gerne Probleme gelöst – nicht nur in der Mathematik, sondern auch in anderen Bereichen. 2: In Zeiten des intensiven Mathe- matik-Studiums hat man viele Par- allelen und Ähnlichkeiten zwischen Mathematik und Alltag gezogen. Persönlich habe ich gelernt mit vie- len Niederlagen umzugehen, an et- was dranzubleiben, nicht zu schnell aufzugeben – lange alltägliche Ar- beit bringt letztendlich das Ver- ständnis einer schwierigen Sache. Aber wenn man die Welt der Mathe- matik verstanden hat und zum Bei- spiel eigene Beweise durchführt, wird es langweilig für mich. Mathe- matik bedeutet auch, Dinge verste- hen zu lernen und sie langfristig im Kopf zu behalten, Strukturen zu er- kennen wie zum Beispiel in der Mu- siktheorie oder beim Pianospielen. Man erkennt Probleme – auf dem Papier sowie auch im Zwischen- menschlichen. 3: Ursprünglich wollte ich irgend- wann mal Lehrerin werden. Mittler- weile geht es für mich eher darum, einen Abschluss zu haben, um mich dann selbstständig machen zu können. JohannaWeirowskiElisabethKrätzschmarDanielPavlicekLauraMundtAndreasHeindl
  38. 38. - Stiftung Rechnen - 38Rechnen ist überall Chaosbändiger Die Mathematik der Natur Malen nach Zahlen 40 42 48 RECHNEN IST ÜBERALL. Mathematik im Alltag erleben. Fibonacci-Zahlen, Symmetrien, Muster. Mathematik lässt sich vielerorts in der Natur beobachten. Aber auch die Kunst wäre ohne das Rechnen ziemlich aufgeschmissen.
  39. 39. - Stiftung Rechnen - 39 Rechnen ist überall Prof. Albrecht Beutels- pacher über die Zahl Fünf: Die Fünf zeigt sich in der Welt oft als Pentagramm, als fünfzackiger Stern: Weihnachtssterne, Hotelsterne, Sterne auf Flaggen, Seesterne, das Kernhaus eines Apfels quer durchgeschnitten. Diese Pentagramme zeigen alle die Power der Fünf. Mathe-Botschafter Prof. Albrecht Beutelspacher: Mit seinem Mathematikum in Gießen macht der Uni-Professor Mathematik erlebbar – als Sicht auf die Welt, zum Beispiel in Mustern, Symmetrien oder Formen.
  40. 40. Regen statt Sonne, Wind statt Schnee. Was der Wetterbericht voraussagt, muss nicht immer stimmen. Warum, das hat auch mathematische Gründe. Ein Besuch bei einem Berliner Wetterunternehmen. CHAOSBÄNDIGER 40Wetter
  41. 41. - Stiftung Rechnen - dräder oder hängen dicke Messgeräte mit nervösen Nadeln. Das Werkzeug des Meteorologen ist der Computer – und sein Sachverstand. „Das Erste ist die Beschreibung des Ist-Zustandes in der Atmosphäre“, erklärt Riemann. Datensammeln. Über den ganzen Glo- bus verteilt gibt es rund 11 000 Land- stationen. Dazu kommen Satelliten, Wetterballons und mit Messinstru- menten ausgestattete andelsschi e. Gemessen werden etwa Luftdruck, Temperatur, Luftfeuchtigkeit, Wind und Sonnenscheindauer. Gebündelt und gezähmt werden die Da- ten in England. Viermal täglich werden die Messungen nach Reading bei Lon- don an das Europäische Zentrum für mittelfristige Wettervorhersagen über- mittelt, einer Organisation mit 20 Mit- gliedsstaaten. „Die stecken die Daten in große Rechner“, erklärt Riemann. Vereinfacht gesagt wird das gewünsch- te Gebiet virtuell mit einem dreidimensi- onalem Gitternetz überzogen, in das die Daten eingespeist werden. Anhand von Näherungsformeln kann der Computer berechnen, wie sich das Wetter für die kommenden Tage entwickeln wird. 200 Billionen Gleitkomma-Operationen pro ekunde scha en die upercom- puter. Trotzdem brauchen sie zum Rechnen acht Stunden. In Berlin wer- den die Modelle aus Reading so verfei- nert, dass über kleinere Regionen, etwa Berlin oder München etwas ausgesagt werden kann. iese rognose immert t glich au ei- nem der drei Bildschirme von Riemann. Auf sie verlassen kann er sich nicht: „Ich gehe immer noch so ran: Kann das stimmen?“ Dafür hat er auf einem Bild- schirm den Ist-Zustand, auf dem aktu- elle Messwerte angezeigt werden. Und manchmal, das weiß der 47-Jährige, ■ Das Wetter ist ein chaotisches System. Kleine Änderungen im Anfangszu- stand können große Veränderungen im Endzustand hervorrufen. Trotz Super- computer wird das Wetter daher nie zu 100 Prozent vorhersagbar sein. Text: Sophie Anfang Foto: Matthias Besant, Frankfurt 41 Wetter An dem Tag, an dem laut Wetterprog- nose die Sonne scheinen soll, schaut Jörg Riemann von seinem Bürofenster aus in eine trübe Suppe aus Wolken und Nebel. Wie ein grauer Schleier hän- gen sie über den Bürokomplexen und Wohnhäusern in Berlin Adlershof. Von Sonne keine Spur. „Wir hatten eine Stunde Sonnenschein prognostiziert, selbst da lagen wir drü- ber“, sagt Riemann, ein freundlicher Mann mit bequemen Pulli und dunkler Hornbrille. Seit 20 Jahren arbeitet der Meteorologe bei der Meteogroup, ei- nem der größten Wetterunternehmen Europas. Riemann ist Wahlberliner, schon seit dem Studium. Wenn Riemann spricht, hört man den Hallenser immer aber noch heraus. Vielleicht hat Riemanns Gelassenheit mit seiner Herkunft zu tun, die falsche Prognose bringt ihn je- denfalls nicht aus der Ruhe. „Wir müs- sen jetzt sehen, was dazu geführt hat, dass das Modell nicht stimmt“, sagt Riemann. Er nennt das auch: den „Klin- ken u finden. Wetter ist eine komplexe Sache. Erst En- de des 19. Jahrhunderts gab es regelmä- ßige Wettervorhersagen in Deutschland. Seither ist die Meteorologie durch Com- puter weiter vorangeschritten, fehlerfrei prognostizieren kann sie trotzdem nicht. Wetter ist chaotisch – im mathemati- schen Sinne. Will heißen: Kleine Verän- derungen im Ausgangszustand können große Veränderungen im Endzustand zur Folge haben. Das Verhalten des Systems ist nur schwer berechenbar. Um zu erklären, wie Prognosen über- haupt entstehen, führt Riemann in das schmucklose Großraum-Büro mit fünf Arbeitsplätzen. An den Wänden hän- gen Klimakurven, Wetterkarten, Satel- litenbilder. Hier drehen sich keine Win- kommen Prognose und Wirklichkeit nicht zusammen. Beim fehlenden Sonnenschein von heute etwa. Das Modell hatte Sonne vorausgesagt. Riemann hatte aber das trübe Wetter gesehen: „Da wusste man aus dem Bauch heraus: Im November mit Hochdruckgebiet, da gehen die Wolken nicht weg.“ Erfahrung statt Computermodell. Je weiter die Progno- se in der Zukunft liegt, desto schwieri- ger wird es. Eine 3-Tages-Prognose ist zu 75 Prozent richtig, bei einer 7-Ta- ges-Prognose steht die Chance Fünf- zig-zu-Fünfzig. Es gibt viele Gründe, weshalb das Mo- dell nicht stimmen kann: Weil das Messgerät an der Wetterstation 20,4 Grad statt 20,2 Grad misst, ein Fehler, der sich aufsummiert. Genauso physi- kalische Phänomene, die beim Messen nicht erfasst wurden: „Wenn ich eine 100-prozentige Wettervorhersage ha- ben wollte, dann müsste ich die ganze rde mit etterstationen zup astern. Das andere Problem sind Schwächen in den Gleichungen selbst. Riemann malt dazu einen von der Sonne weg geneig- ten Erdball an ein Flipchart. „Wegen der Stellung der Erde kommt es zu westlich dominierten Luftströmen“, erklärt er: die Westlage, die typische Großwetterlage in Europa. Sie ist intensiv erforscht wor- den und mathematisch gut zu beschrei- ben. Mit Westlagen könnten Computer gut rechnen, sagt Riemann. In letzter Zeit haben die Westlagen jedoch zu- gunsten anderer Lagen abgenommen, die unberechenbarer und für Prognosen schwieriger sind. Um diesen Problemen Herr zu werden, variieren Meteorologen die Anfangsbe- dingungen minimal und lassen vom Computer durchrechnen, wie sich die Modelle verändern. Führen kleine Än- derungen zu unterschiedlichen Ergeb- nissen, ist zweifelhaft, dass das, was heute prognostiziert wird, in sieben Ta- gen noch stimmt. Ganz sicher kann man sich als Meteo- rologe aber nie sein. Selbst, wenn man ein so erfahrener Chaosbändiger ist, wie Riemann. Er nimmt das locker: „Letztendlich ist Meteorologie eine Wahrscheinlichkeitsrechnung.“ ●
  42. 42. 42Mathematik in der Natur Ausgeklügelt: Die Samen und Blüten von Gänseblümchen sind nach der Fibonacci-Reihe aufgebaut. GLEICHMÄSSIGE GÄNSEBLÜMCHEN DIE MATHEMATIK DER NATUR Ob bei der Anordnung einzelner Blütenblätter, der Symmetrie eines Ahornsamens oder der Spirale eines Schneckenhauses – auch die Schöpfung greift auf bestimmte mathematische Gesetze zurück. - Stiftung Rechnen -
  43. 43. Gänseblümchen können zu Säften, Sala- ten und Suppen verarbeitet werden. Doch auch mathematisch ist das Wiesenkraut interessant, denn die Anzahl der Blüten- blätter und die Anordnung der gelben Sa- men sind nicht willkürlich. Gänseblüm- chen haben entweder 34, 55 oder 89 Blütenblätter – alles Zahlen aus der Fibo- nacci-Reihe. 1,1,2,3,5,8 – so beginnt die Fibonacci-Zahlenfolge. Jede Zahl ergibt sich aus der Summe der beiden vorherge- henden. Diese Reihe lässt sich auch bei anderen Blumen erkennen: So haben Lili- en stets drei, Butterblumen fünf und Rin- gelblumen dreizehn Blütenblätter. Bei Gänseblümchen oder Sonnenblumen sind die Samen zudem spiralförmig ange- ordnet. Die Anzahl der Spiralen ist eben- falls immer eine Fibonacci-Zahl. Auch der Goldene Schnitt bestimmt die Anordnung von Blättern und Blüten, etwa bei Hecken- rosen und Glockenblumen. Beide sind nach dem Muster eines Fünfecks konstru- iert. Jede Strecke und Teilstrecke eines solchen Pentagramms steht zu einer an- deren Strecke im Verhältnis des Goldenen Schnitts. Interessant ist auch: Teilt man einen 360-Grad-Winkel im Goldenen Schnitt, erhält man den Goldenen Winkel, , Grad. Bei ielen flanzen ist der b- stand der Blätter im Goldenen Winkel an- geordnet. Ursache ist das Bestreben der flanzen, ihre Bl tter auf bstand zu hal- ten. So nutzen sie Regenwasser und Son- nenlicht optimal. ● ■ Die Schönheit der Natur ist kein Zu- fall: Ihre Bauweise folgt etwa der gol- denen Spirale, der Fibonacci-Folge oder formschöner Symmetrie. Text: Jana Felgenhauer Fotos: Günter von Dulong 43 Mathematik in der Natur - Stiftung Rechnen -
  44. 44. Die Samen eines Ahornbaumes, die Fell- musterung von Großkatzen und Zacken eines Schneekristalls: Das alles sind Bei- spiele für symmetrische Formen in der Natur. Muster und Formen gelten dann als symmetrisch, wenn eine Seite das genaue Spiegelbild einer anderen ergibt. Viele Lebewesen sind spiegelsymmet- risch aufgebaut, wenn auch Augen, Oh- ren, Arme und Beine beim Menschen nie hundertprozentig deckungsgleich sind. Dass beim Wachstum eines Lebewe- sens symmetrische Muster entstehen, geht neben genetischen Eigenschaften auf chemische, physikalische und dyna- mische Prozesse zurück. So konnten Forscher bei der Entwicklung von Tieren beobachten, dass noch unbestimmte Zellen eines Embryos gleichmäßig auf beide Körperseiten wanderten und sich dort zu igmentzellen di erenzierten. Nicht etwa zentral gesteuerte Befehle waren ausschlaggebend für die Ent- scheidung der Zelle, sondern Signale benachbarter Zellen. Wozu Symmetrie überhaupt gut ist, haben Studien inzwi- schen bewiesen. So können wir symme- trische Strukturen besser wahrnehmen als unsymmetrische und demnach schneller auf Gefahren reagieren – zum Beispiel wenn eine Wespe in gelb- sch arzer Warnf rbung im nflug ist. Ahornsamen sind mit kleinen Flügeln ausgestattet, die an die Symmetrie von Schmetterlingsflügeln erinnern. hr ty i- scher lugstil ist der Schraubenflug. Durch den entstehenden Auftrieb verlän- gert sich die Flugzeit, wodurch sich die Samen – vom Wind weggetrieben – wei- ter verbreiten können. ● - Stiftung Rechnen - 44Mathematik in der Natur
  45. 45. Clever: Ahornsamen sind so aufgebaut, dass sie lange in der Luft bleiben und sich weit verbreiten. SYMMETRISCHE AHORNSAMEN - Stiftung Rechnen - 45 Mathematik in der Natur
  46. 46. Harmonisch: Schneckenhäuser, Muscheln und ganze Galaxien entsprechen dem Ver- lauf der Goldenen Spirale. Sie ist die grund- legende mathematische Form in der Natur. PERFEKTE SCHNECKE - Stiftung Rechnen - 46Mathematik in der Natur
  47. 47. Die Goldene Spirale – in der Schöpfung kommt sie au allend oft or. as menschliche Ohr, die Hörner eines Wid- ders, Muscheln und Schneckenhäuser, sie alle sind spiralförmig. Auf dem Pa- pier entsteht die Goldene Spirale so: Zu- erst zeichnet man ein Goldenes Recht- eck, bei dem sich die Seitenlängen im Goldenen Schnitt verhalten, die also in einen kleinen und einen größeren Ab- schnitt teilbar sind. Diese Form lässt sich nun in ein kleineres Rechteck und Quadrat zerlegen. Das verbleibende Rechteck ist wieder ein Goldenes Recht- eck. Wiederholt man diese Prozedur, entstehen immer wieder neue Goldene Rechtecke. Das heißt: kleinere Recht- ecke und größere Quadrate. Diese Qua- drate sind so angeordnet, dass sie sich zu einer Spiralform drehen. Durch die inneren Eckpunkte der Quadrate lassen sich Kreisbögen ziehen, die eine Spirale ergeben. So entsteht eine Goldene Spi- rale. Der Radius der Goldenen Spirale vergrößert beziehungsweise verkleinert sich ro Grad um den aktor hi . Aber zurück zur Natur. Dort ist Goldene S irale zum Beis iel beim Mottenflug zu beobachten. enn das nsekt fliegt nicht geradlinig auf ein Licht zu, sondern in immer engeren Kreisen – spiralförmig. icht nur bei flanzen oder ieren finden wir die Goldene Spirale, auch Hurrikans, Galaxien, Hoch- und Tiefdruckgebiete verlaufen spiralförmig. Man könnte also sagen, sie ist die universellste Form im Universum und daher auch Symbol für die Unendlichkeit. ● - Stiftung Rechnen - 47 Mathematik in der Natur
  48. 48. - Stiftung Rechnen - 48Mathe und Kunst Von ganz nah wimmelt das Bild, dass einem schlecht wird: Quadrate in blau und rot, pixelige Rechtecke, wilde Punkte. Ein blau-rotes Riesen-Tetris. Pures Chaos. Das Bild stammt von François Morellet, einem französischen Künstler. Es zeigt Nummern, die sein Computer dem Telefonbuch entnommen hat. uf llig. Jede i er urde zu einem unkt und in ein as- ter eingefügt. Das erscheint wie Chaos. Aber mit ein bisschen Entfernung sieht man plötzlich: Es gibt Struktur. Das strukturierte Chaos-Bild ist ein Beispiel für die Monte-Car- lo-Methode, ein Verfahren, das eingesetzt wird, um komplexe mathematische Probleme zu lösen – nicht durch Berechnung, sondern durch Stichproben. Erfunden hat diese Methode der Mathematiker Stanislaw Ulam, ein leidenschaftlicher Soli- tär-Spieler, der lange an seinen Erfolgschancen herumrechne- te. Zuerst probierte er es mit dem Abzählen aller Möglichkei- ten. Dann ließ er den Computer Stichproben ziehen. Und so näherte er sich dem Ergebnis. Man kann mit der Monte-Carlo-Methode die Kreiszahl Pi be- rechnen oder das Risiko bei Finanzgeschäften, es funktioniert immer gleich: Compu- ter lassen Zufallszahlen regnen. Und Mathemati- ker betrachten dann das Ergebnis und welche Ordnung dabei ent- steht. François Morellet hat das mit Telefonnum- mern gemacht, entstan- den ist ein Bild. Ein kla- rer Fall von Mathematik. Aber natürlich auch große Kunst. ● Es ist eine Kuriosität der Mathematik. Und es ist überall: in Mu- seen und vor Bankgebäuden, am Hals schöner Frauen und in den Logos mathematischer Vereine, in den traumartigen Bil- dern des Künstlers M. C. Escher. Schon Kinder basteln es. Aber was ist das genau: ein Möbiusband? Ein Möbiusband entsteht, wenn man einen längeren Papier- streifen an der Längsachse um 180 Grad dreht und die Enden zusammenklebt. Fertig. Nimmt man jetzt einen Stift und fährt auf dem Papier entlang, gerät man von außen nach innen und zurück – ohne abzusetzen. Aber von „außen“ und „innen“ zu sprechen, ist eigentlich schon falsch. Möbiusbänder haben kein Außen, und kein Innen. Rein mathematisch gibt es nur ei- ne Seite, und nur einen Rand. Der niederländische Maler M. C. Escher setzte Ameisen auf ein Möbiusband. Die Ameisen krabbeln hintereinander her: zuerst auf der einen Seite, dann tauchen sie auf der anderen wieder auf, um nach einer weiteren Runde erneut den Startpunkt zu erreichen. Eine Rennstrecke ohne Ziel, Ameisen auf Kurs Un- endlichkeit. Escher war fasziniert vom Möbiusband, so wie viele Künstler seit 1858. Damals entdeckten gleich zwei Mathematiker das Prinzip. Aber nur August Ferdinand Möbius schrieb Mathema- tikgeschichte. Beliebt ist seitdem auch folgende Frage: Was passiert, wenn man ein Möbiusband entlang der Mittellinie zer- teilt? Die Antwort: Ein neues, längeres Möbiusband entsteht. Noch mehr Unendlichkeit für Eschers Ameisen. ● MALEN NACH ZAHLEN Wir sehen nur die Mona Lisa oder ein kurioses Bild, aber in Wahrheit regieren Zahlen, Formeln, Sinus und Kosinus, Geometrie. Die Kunst ist voll von Mathematik. Über eine sehr fruchtbare Verbindung. ■ Mathematik hilft: beim Goldenen Schnitt und der Zentralperspektive. Und sie inspiriert: mit der Methode Monte-Carlo, dem Möbiusband und trigonometrischen Formeln. Text: Hannes Vollmuth Illustration: Annemarie Otten ZUFALL ALS WERKZEUG ANNÄHERND DIE KUNST DER SCHLEIFE ENDLOS

×